JP2004336390A - アダプティブアレーおよび測位装置 - Google Patents

アダプティブアレーおよび測位装置 Download PDF

Info

Publication number
JP2004336390A
JP2004336390A JP2003129496A JP2003129496A JP2004336390A JP 2004336390 A JP2004336390 A JP 2004336390A JP 2003129496 A JP2003129496 A JP 2003129496A JP 2003129496 A JP2003129496 A JP 2003129496A JP 2004336390 A JP2004336390 A JP 2004336390A
Authority
JP
Japan
Prior art keywords
dimensional
waves
adaptive array
array
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003129496A
Other languages
English (en)
Inventor
Tetsuo Iwata
哲郎 岩田
Hiroshi Otani
浩史 大谷
Hironori Suzaki
寛則 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2003129496A priority Critical patent/JP2004336390A/ja
Publication of JP2004336390A publication Critical patent/JP2004336390A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】全方位に対して指向性パターンを一度に形成できる2次元アレーアンテナに、不要波と所望波の両方に拘束条件が設定可能なDCMP法を適用する。また、測位用衛星からの電波を受信する際、マルチパスによる影響を回避して、例えば低仰角からの電波も利用できるようにし、マルチパスが多く発生する劣悪な環境下でも高精度に測位する。
【解決手段】複数の素子アンテナ1a,1b・・・1nを2次元上に配置した2次元アレーアンテナ1を備え、各素子アンテナの受信信号強度を1次元の列ベクトルとしてデータ化し、所望波および/または不要波の到来方向を拘束条件としてDCMP法により最適複素重みを求める。この最適複素重みを複素重み付与部2へ与えることによって、GPS受信機5は所定の指向性パターンのもとで受信を行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、複数の励振素子を2次元状に配置した2次元励振素子アレーを備え、その2次元励振素子アレーの指向性パターンを制御するようにしたアダプティブアレーおよびそれを備えた測位装置に関するものである。
【0002】
【従来の技術】
複数の素子アンテナを配列し、その全部または一部を励振するようにしたアレーアンテナは所望の指向性パターンを得ることができ、その特性を生かして種々の分野で利用されている。
【0003】
ところで、GPS (Global Positioning System)におけるデータ受信において、一般にマルチパス(多重伝搬)の問題がある。これは人工衛星からの電波が建物や地面など複数の箇所で反射し、反射をしない直接波に重畳して受信アンテナに入射することによって生ずる。マルチパスが生じると、直接波と反射波が干渉し、位置計測の精度の低下をもたらし、最悪の場合には計測不可能となってしまう。例えば仰角20度以下では、地上からの各種不要信号や雑音によってGPS衛星からの信号を分離・検出することが困難になる。
【0004】
このような不都合への対策はいくつか提案されているが、ハード的な対処法の一つとして、アンテナのアレー化がある(非特許文献1参照)。アレー化によって、各素子アンテナの出力に適当な複素数の重みを乗算する、すなわち各素子アンテナの受信電波の振幅と位相をそれぞれ適当に操作することによって、直接波の到来方向にのみ指向性をもたせるのである。
【0005】
以下、直接信号波を所望波、干渉を引き起こす反射波を単に不要波と言う。
【0006】
アレーアンテナのデータ処理に関しては、各種のアダプティブなアルゴリズムが報告されている(非特許文献2参照)。ここでアダプティブとは、電波を受信しながら複素重みを逐次修正して、アンテナの指向性パターンを所望の形状に適応させていくことを意味する。
【0007】
【非特許文献1】
吉田孝監修,” 改訂レーダ技術” ,電子情報通信学会編,コロナ社,1996.
【非特許文献2】
菊間信良,” アレーアンテナによる適応信号処理” ,科学技術出版社,1998.
【0008】
【発明が解決しようとする課題】
ところで、GPS電波は地平面または水平面より上の全方向から到来するので、その到来方向を瞬時に計測するためには、複数の素子アンテナを2次元配置してアレーアンテナを2次元形状にする必要がある。しかし、2次元アレーアンテナに関するDCMP法に関しては、上記非特許文献1,非特許文献2を含めて明確な形では公表されていない。これはアンテナのサイズやコストの問題があることと、素子アンテナ間で干渉が生じやすいという装置的な問題があるためだと考えられる。したがって、技術的な性能評価もほとんどなされていない。
【0009】
そこで、この発明の目的は、不要波と所望波の両方に自由に拘束条件が設定可能なDCMP法に着目し、これを全方位に対して指向性パターンを一度に形成できる2次元アレーアンテナに適用したアダプティブアレーを提供することにある。
【0010】
また、この発明の他の目的は、測位用衛星からの電波を受信する際、マルチパスによる影響を回避して、例えば低仰角からの電波も利用できるようにして、マルチパスが多く発生する劣悪な環境下でも高精度に測位にできるようにした測位装置を提供することにある。
【0011】
【課題を解決するための手段】
この発明は、複数の励振素子を2次元上に配置した2次元励振素子アレーと、各励振素子の受信信号に対して、設定された複素重みを乗じるとともにそれらの結果を加算して1つの受信信号を求める受信信号処理手段を備え、該受信信号処理により2次元励振素子アレーの指向性パターンを制御するようにしたアダプティブアレーにおいて、各励振素子の受信信号の強度を1次元の列ベクトルとしてデータ化する手段と、該データの相関行列データと、設定された所望波および/または不要波の到来方向を拘束条件としてDCMP法により最適複素重みを求める解析手段と、該最適複素重みを前記受信信号処理手段に設定する手段とを備えたことを特徴としている。
【0012】
このように、各励振素子の受信信号の強度を1次元の列ベクトルとしてデータ化することにより、そして、その列ベクトルに対してDCMP法により最適複素重みを求めることにより、複数の素子アンテナを2次元状に配置した2次元励振素子アレーで所望の2次元指向性パターンを得る。
【0013】
また、この発明は、前記2次元上に配置された励振素子の受信信号による2次元受信データ行列から複数の小行列を抽出し、該小行列毎に相関行列を求め、それら複数の小行列について求めた相関行列の1次元の列ベクトルを平均化して平均相関行列を求める手段を備え、前記解析手段は、該平均相関行列について解析処理を行うようにしたことを特徴としている。
【0014】
このように、2次元受信データ行列から複数の小行列を抽出し、それらの小行列について求めた相関行列の1次元の列ベクトルを平均化することによって空間平均を行う。このことにより、複数の励振素子が隣接配置していることに伴う相互干渉による影響を緩和する。
【0015】
また、この発明は、前記複数の励振素子を、平面上で十字状に直交するように配置する。このことにより、複数の励振素子間の隣接関係を緩和し、且つ、少ない励振素子で2次元励振素子アレーとして作用させる。
【0016】
また、この発明は、前記アダプティブアレーを備え、前記励振素子を測位用衛星からの受信信号を受ける素子アンテナとし、前記アダプティブアレーによる測位用衛星からの受信信号を基に当該アダプティブアレーの位置を測位するとともに測位用衛星の方向を求める手段を設け、前記解析手段が測位用衛星の方向を前記所望波の到来方向とする拘束条件で前記DCMP法を適用するようにしたことを特徴としている。
【0017】
このようにして測位用衛星からの直接波のみを受信することにより、マルチパスの発生する環境下でも高精度な測位を維持する。
【0018】
【発明の実施の形態】
実施形態に係るアダプティブアレーおよびそれを用いた測位装置について、各図を参照して説明する。
図1は、その全体の構成を示すブロック図である。ここで1は、複数の素子アンテナ1,1・・・1を2次元状に配置したアレーアンテナである。2で示す部分は、各素子アンテナ1〜1の受信信号に対して複素重みを与える複素重み付与部である。21,21・・・21は各素子アンテナの受信信号の振幅を調整する振幅調整器、22a,22b・・・22nは各素子アンテナの信号の位相を調整する位相調整器である。これらの振幅調整および位相調整された各素子アンテナの受信信号は加算部3で加算されて1つの受信信号Pout として求められる。
【0019】
受信信号処理部4は、各素子アンテナ1,1・・・1の受信信号を入力し、後に示す方法により各素子アンテナの受信信号に対して与えるべき複素重みを求め、複素重み付与部2の振幅調整器21および位相調整器22に対してそれぞれ相当する調整量を与える。
【0020】
GPS受信機5は、上記所定の指向性パターンのもとで受信された受信信号を入力してアレーアンテナ1の位置を求めるための処理を行う。また、求めたアレーアンテナ1の位置に対する各GPS衛星の3次元方向を求め、それを受信信号処理部4へ与える。
【0021】
次に、本願発明の実施形態であるアダプティブアレーの説明の前段階として1次元DCMP法について述べる。
図1において、素子アンテナ1,1・・・1が1次元に配列されていて、所望波Sと不要波Uが異なる方向から入射するものとする。複素重み付与部2で各素子アンテナの出力(受信信号)に与えられる複素重みをW、その振幅をA、位相をδとすると、複素重み付与部2でAexp (jδ)(i = 1〜M)が乗算され、最終的にそれらが加算されてアレーアンテナ出力Pout となる。
【0022】
ここで、DCMP法では、以下の式を満足するようなM ×1の列ベクトルからなる複素重みWを求める。
【0023】
【数1】
Figure 2004336390
【0024】
【数2】
Figure 2004336390
【0025】
ここで、
;(5) 式で与えられるM ×1の拘束ベクトル
;(6) 式で与えられる拘束応答値
L ;拘束数
上添字T,*,Hはそれぞれ転置,複素共役,複素共役転置を表す。すなわち、(2) 式の拘束条件下で、(1) 式で表されるアレーアンテナからの最終的な出力電力Pout を最小化するような複素重みWを求める。RXXは各素子アンテナからの出力信号の相関行列であり、アレーアンテナ各素子の出力を時間tの関数として、
【0026】
【数3】
Figure 2004336390
【0027】
と列ベクトル表記すると、
【0028】
【数4】
Figure 2004336390
【0029】
で与えられる。ここで< ・> は時間平均を表す。また、第l(エル)番目の入射波に対する拘束ベクトルC と拘束応答値Hは次式で与えられる。
【0030】
【数5】
Figure 2004336390
【0031】
【数6】
Figure 2004336390
【0032】
ここで、θは天頂角、φは方位角である。これらの角度は後に図3で示す二次元座標系で一般的に表したものである。一次元アレーの場合はφ=0とする。式中のΨは、第i番目の素子アンテナに入射する電波の基準素子アンテナに対する位相差であり、電波の入射方向と周波数fが既知であれば計算できる。また、Hは、指向性のヌルを強く形成するときには0、指向性を持たせたいときには1となるように定数Z,ξを設定するが、状況に応じてその中間値にもできる。これらの条件から、最終的に最適な複素重みWopt を、Lagrangeの未定係数法を用いて次式のように計算する。
【0033】
【数7】
Figure 2004336390
【0034】
ここで、Cは拘束ベクトルCを列ベクトルとする大きさM ×L の拘束行列、HはHを要素とするM ×1 の拘束応答ベクトルである。このときアレーアンテナの角度指向性Dは次式で与えられる。
【0035】
【数8】
Figure 2004336390
【0036】
ここで、Vは素子アンテナの方向ベクトルである。長方形平面リニアアレーの場合、m行n列素子に対応するi 番目のベクトル要素は、第1番目の素子アンテナを位相基準点として、i = m + M(n−1) (m = 1 〜M, n = 1〜N)とすると、
【0037】
【数9】
Figure 2004336390
【0038】
となる。ここで、dx,dyはx( 横) 方向、y( 縦) 方向の素子間隔であり、cは光速である。
【0039】
図2は、複数の素子アンテナの2次元上への配置例を示している。(A)の場合、5×5で合計25個の素子アンテナを直交するマトリックスの各交点にそれぞれ配置している。また、(B)に示す例では、5×5のマトリックスを考えた時、第3行×第3例分に合計9個の素子アンテナを配置している。
【0040】
図1に示した各素子アンテナ1,1・・・1を2次元状に配置して、DCMP法を2次元アレーアンテナに適用する場合には、概念的には1次元の場合の拡張を行う。まず、大きさM ×N の二次元アレーで取得した受信データ行列を、MN× 1の列ベクトルに並べかえて処理する。図4に示す例では、N列を順に1列に並びかえるようにしているが、この並べかえの順に特別な意味はない、例えば、M ×N の受信データ行列の各要素をランダムに列ベクトルに並べかえてもよい。ただ、ここではデータの再構成の際に便利なようにN列を順に1列に並びかえる。
【0041】
図4において、奥行き方向(紙面に垂直方向)は、時系列の受信データである。このようにして作成した列ベクトルを、一次元の場合の受信データベクトルE(t) と同様に見なして、相関行列Rxx=<E(t) E(t) >を計算する。
【0042】
空間平均処理を行う場合は、図5に示すように、M ×N の二次元アレー受信データ行列からすべての可能な組合せのm ×n の小行列を抽出し、図4で示した操作によって列ベクトルに変換して相関行列を作成する。それらの各相関行列の単純平均操作を要素ごとに行うことによって、平均相関行列RXX^ を求める。拘束条件行列に対しても同様の処理を行う。それ以後の処理は、一次元DCMP法の場合と同様である。
【0043】
図6は、2次元DCMP法の処理手順について示している。まず、各素子アンテナの受信信号をサンプリングし、AD変換してデータを収集する(s1)。続いて、図4・図5に示した方法により2次元データの1次元化を行う(s2)。そして、その1次元化データに対する相関行列の計算を行う(s3)。この小行列の組み合わせ可能な全ての場合について相関行列を求める(s4→s2→・・・)。図5に示したように、大きさM×Nの二次元アレーによるM×Nの二次元アレー受信データ行列からm×nの小行列を抽出する場合、
(M−m+1)×(N−n+1)通りの場合について相関行列を求める。ここで、M=N=5、m=n=3とすると、9つの相関行列Rxxを求める。
【0044】
続いて、求めた全ての相関行列を単純平均することによって、空間平均処理を行う(s5)。その後、所望波の到来方向を拘束条件として設定し、DCMP法の計算を行う(s6→s7)。この計算によって、最適複素重みWopt を求める(s8)。そして、この複素重みWopt を図1に示した複素重み付与部2へ与える(s9)。必要に応じて以上の処理を繰り返すことによって所望の指向性パターンのもとで2次元アレーアンテナを用いた受信を行う(s10→s1→・・・)。
【0045】
次に、シミュレーションの結果を示す。
シミュレーションデータは以下のようにして作成した。まず、大きさM ×N の二次元アレーアンテナに対し、図3に示す( θ, φ) 座標系で、任意方向から複数個の振幅の異なる正弦波が入射するものとする。それらの入射波を各素子アンテナ上で時間tの関数として加算合成する。さらに合成値の最大値に対して任意のパーセンテージの標準偏差を有するガウスノイズを素子毎に独立に重畳させた。
したがってシミュレーションパラメータは、所望波Sおよび不要波Uを含めた入射波の個数w、各入射波の入射角度( θ, φ) 、および所望波、不要波、ノイズのdB値での相対強度Ps: Pu: Pn、ノイズの割合σ%、搬送波周波数f、サンプリング周波数fs、全データ点数TN、アレーの素子数M ×N 、素子間隔d、空間平均のサイズm×nである。ここでは簡単のため、M=N、m=n=k、d=d=dとした。なお、実際のGPS受信機では、周波数をダウンコンバートして直交検波後I−Qサンプリングを行うか、アンダーサンプリング等の処理が行われるが、シミュレーションでは、本質的な違いはないので、f=1.5GHzの複素指数関数データを直接作成し、fs=15GHzでサンプリングした。
また、素子間隔dは搬送波周波数の波長の半分に固定( d=c/2f(cは光速) )し、全データ点数TN=10,000点とした。また、0 ≦θ≦90、−180≦φ≦180 (単位は度)とし、空間平均のサイズk は、一次元DCMP法の基礎実験から全素子数の2/3程度に設定した。また、十字形状アレーの場合の計算は、図2の(B)に示すように正方形状アレーのデータに対して、素子の存在しない部分のデータを零として計算を行った。
【0046】
先ず、一次元リニアアレーアンテナにDCMP法を適用した場合のシミュレーション結果の要点は次のとおりである。以下、添え字のs, u, n は、それぞれ所望波、不要波、雑音を表し、数字は波の番号を表す。
【0047】
・同一条件で、アレーの素子数を増加させると、所望波のメインローブの幅が狭くなり、結果として不要波の電力レベルも抑圧される。
【0048】
・同一条件で、空間平均処理を行わない場合と行った場合を比較すると、行った場合の方が不要波の抑圧の効果が非常に高い。空間平均処理のサイズkは、経験的にアレー全素子数の2/3程度にすると良好な結果が得られることが判明した。
【0049】
・同一条件でアレーの素子間隔を変化させた場合、素子間隔dが搬送波周波数の波長の1/2以下の場合は良好な結果が得られるが、それ以上にすると、サンプリング定理を満足しなくなるため、エイリアジングによる擬似ピークが現れる。
【0050】
・所望波と不要波の角度分解能は、例えば12素子、θs =0( Hs =1),θu= 1 ( H =0),θu=−1( H=0), Ps: Pu: Pn =1: 100: 50の場合、1度以下の角度分解で100dB以上の指向性感度差が得られる程高い。一方、近接した角度で複数の拘束条件を設定すれば、ヌルの幅を広くすることが可能なことも確認した。
【0051】
・ノイズについては、Ps: Pu: Pn = 1: 100: 100のように、不要波と同一レベルまで許容してもヌルが形成できることが確認された。
【0052】
次に、5 ×5 二次元正方形状配列アレー(M=N=5)のシミュレーションデータに、二次元DCMP法を適用した場合の結果の一例を図7に示す。この例では、所望波Sのみに拘束条件(θ = 30,φ = 0, H = 1 )を課し、不要波Ui (i = 1, 2, 3 )が3方向から到来した場合の結果である。ここで、Ps: Pu: Pn = 1:100 :50とした。黒塗りの矢印は拘束条件を課したことを表し、白抜きの矢印は条件を設定しなかったことを表している。これより所望波Sのみの拘束条件の設定で、3つの不要波方向にヌルが正確に形成されることがわかる。ここで、空間平均のサイズはk = 3 とした。
【0053】
図8は、同じ5 ×5 二次元正方形状配列アレーに対して、入射不要波個数を8個とし、所望波Sのみに拘束条件(θ = 30,φ = 0, H = 1 )を課した場合の結果である。図7の場合と同じく、Ps: Pu: Pn = 1:100 :50とした。それに対して、到来した所望波と不要波の全てに拘束条件を課した場合の結果を図9に示す。これらの2つの結果から、全ての入射波に拘束条件を課した場合には、不要波に対して拘束条件を課さなかった場合よりも深いヌルが形成されていることが判る。
【0054】
一般にM次の正方形アレーに対して、k次の空間平均処理を行った場合に検出可能な波の個数の最大値はkである。また、既に述べたように、DCMP法は、拘束条件下で受信電力が最小になるような重みを捜すので、所望波に対する不要波の相対的な電力レベルが大きいほど、ヌルが良好に形成される。したがって、所望波の電力レベルが不要波のそれよりも多少でも大きい場合は、所望波と不要波の両者に拘束条件を課すべきである。このことは、別のシミュレーションで確認した。
【0055】
図10は、十字形状アレーに対してシミュレーションを行った場合の結果である。ここで、アレーサイズは図2に示したように、5×5行列の中央3行3列部分とし、図7に示した正方形状アレーと全く同一条件、すなわち所望波Sについてのみ拘束条件を課し、空間平均のサイズはk = 3 とした。図から判るように、この条件では正確な方向にヌルが形成されていない。正方形状の場合は素子アンテナの数が25個であるのに対して十字形状の場合は9個であり、情報量の少なさという点からこの結果は当然と考えられる。これに対して、干渉性妨害波Uにも拘束条件(U1:θ = 60,φ = 90, H = 0、U: θ = 60,φ = 45, H = 0、U: θ = 45,φ = −120, H = 0) を課した場合の結果を図11に示す。この場合の結果を見ると、図7に示した正方形状アレーの場合とほぼ同等の指向性パターンが形成されることが分かる。これより拘束条件を導入すれば、十字形状アレーでも同一サイズの正方形状アレーと同様、不要波に対して正確なヌルが形成できることが確認された。
【0056】
次に、図1に示した受信信号処理部4がGPS受信機5の受信点(アレーアンテナ)から見た各GPS衛星の方向に関する情報を参照する場合の処理について示す。図12はそのためのGPS受信機5と受信信号処理部4の処理を示している。
【0057】
なお、GPS衛星の位置は公開された情報を基に既知として扱うことができるので、この実施形態で示すアルゴリズムの評価や測位装置の性能評価は可能である。すなわち、そのアルゴリズムの正当性は実証できる。
【0058】
まず、GPS受信機5は受信信号Pout を基に各GPS衛星からの電波のコード位相およびキャリア位相を観測する(s11)。また、その受信信号に重畳されている航法メッセージを抽出し、これらの情報を基にして受信点の測位演算を行う(s12→s13)。そして、その時点での各GPS衛星の位置と受信点の位置との相対位置関係を基に、受信点から見た各GPS衛星の3次元方向を求める(s14)。これらの方向を所望波の到来方向として拘束条件を課してDCMP法で最適複素重みWopt を求める(s15→s16→s17)。そして、その複素重みを複素重み付与部2へ与える。(s18)。以上の処理を必要に応じて繰り返す(s19→s11→・・・)。このことによって、反射波を受けずにGPS衛星からの直接波のみを受けることになり、より高精度な測位が可能となる。
【0059】
次に、不要波の到来方向を拘束条件として課す例を示す。図13は不要波および所望波の電波到来方向を求めるための手順を示している。まず、各素子アンテナからの出力信号をサンプリングし、AD変換してデータを収集する(s21)。そして、MUSIC法によって所望周波数の電波の到来方向を測定する(s22)。これらの複数の電波到来方向のうち、前述した方法により求めたGPS衛星の方向以外の電波到来方向を不要波の方向として検出する(s23)。そして、所望波(GPS衛星からの直接波)と不要波(反射波)の到来方向を拘束条件としてDCMP法により最適複素重みを求める(s24→s25→s26)。そして、この複素重みを複素重み付与部2へ与える(s27)。以上の処理を必要に応じて繰り返す(s28→s21→・・・)。なお、ステップs24では不要波についてのみ拘束条件を課すようにしてもよい。
【0060】
上述の測位装置は、当然に固定局と移動局のいずれにも適用できる。但し、移動局の場合、移動体の向く方位と姿勢の変化に伴って、アンテナから見た測位用衛星の相対的な方向が変化する。そのため、移動体の向いている方位と姿勢を検出し、その方位と姿勢に応じて上記指向性パターンを変化させればよい。
【0061】
また、実施形態では測位装置について示したが、同様にして通信衛星との間で通信を行う場合にも適用できる。すなわち、所望の通信衛星の方向に対するゲインを高めるとともに、不要波方向のゲインを抑制すれば、高SN比のもとで通信を行うことができる。
【0062】
以上に示した実施形態では、電波をアレーアンテナで受信する場合について示したが、その他に、水中音響機器であれば、励振素子が超音波振動子であるトランスデューサを用い、所定の指向性パターンで音響信号を受信する装置にも同様に適用できる。例えば、超音波の送受波によって水中探知を行う場合に問題となる、メインローブ以外のサイドローブからの不要波を抑圧する場合等にも適用可能である。特に超音波を扱う場合のように、使用周波数が低ければ、各振動子の受信信号をAD変換した後、すべてソフトウエアによる演算処理で複素重みの付与を行ってもよい。
【0063】
【発明の効果】
この発明によれば、各励振素子の受信信号の強度を1次元の列ベクトルとしてデータ化することにより、そして、その列ベクトルに対してDCMP法により最適複素重みを求めることにより、複数の励振素子を2次元状に配置した2次元励振素子アレーで所望の2次元指向性パターンが得られる。
【0064】
また、この発明によれば、2次元上に配置された励振素子の受信信号による2次元受信データ行列から複数の小行列を抽出し、それらの小行列について求めた相関行列の1次元の列ベクトルを平均化することによって空間平均がなされ、複数の励振素子が隣接配置していることに伴う相互相関による影響が緩和される。
【0065】
また、この発明によれば、励振素子を、平面上で十字状に直交するように配置したことにより、複数の励振素子が隣接することによる干渉が緩和され、且つ励振素子の数が大幅に少なくなるので、小型・軽量・低コスト化が図れる。
【0066】
また、この発明によれば、上記構成のアダプティブアレーと、そのアダプティブアレーによる測位用衛星からの受信信号を基に、そのアダプティブアレーの位置を測位するとともに測位用衛星の方向を求める手段とを備え、測位用衛星の方向を所望波の到来方向とする拘束条件で前記DCMP法を適用するようにしたことにより、マルチパスの発生する環境下でも高精度な測位を維持する。例えば低仰角の測位用衛星についても、その直接波のみを受信して、測位精度の低下を抑えることができる。
【図面の簡単な説明】
【図1】各実施形態に係るアダプティブアレーおよびそれを備えた測位装置の構成を示すブロック図
【図2】2次元アレーアンテナの各素子アンテナの配置例を示す図
【図3】2次元アレーアンテナと電波到来方向の座標系を示す図
【図4】2次元アレーアンテナの各素子アンテナのデータから1次元の列ベクトルへの変換例を示す図
【図5】2次元アレーアンテナの受信データ行列に対する空間平均の処理を示す図
【図6】2次元DCMP法の手順を示すフローチャート
【図7】2次元DCMP法を適用したシュミレーションの結果を示す図
【図8】2次元DCMP法を適用したシュミレーションの結果を示す図
【図9】2次元DCMP法を適用したシュミレーションの結果を示す図
【図10】2次元DCMP法を適用したシュミレーションの結果を示す図
【図11】2次元DCMP法を適用したシュミレーションの結果を示す図
【図12】測位装置に適用した場合のGPS受信機と受信信号処理部の処理内容を示すフローチャート
【図13】第3の実施形態に係る測位装置における受信信号処理部4の処理手順を示すフローチャート
【符号の説明】
1−アレーアンテナ
1a〜1n−素子アンテナ
2−複素重み付与部
3−加算部
21−振幅調整器
22−位相調整器

Claims (4)

  1. 複数の励振素子を2次元上に配置した2次元励振素子アレーと、各励振素子の受信信号に対して、設定された複素重みを乗じるとともにそれらの結果を加算して1つの受信信号を求める受信信号処理手段を備え、該受信信号処理により2次元励振素子アレーの指向性パターンを制御するようにしたアダプティブアレーにおいて、
    各励振素子の受信信号の強度を1次元の列ベクトルとしてデータ化する手段と、該データの相関行列データと、設定された所望波および/または不要波の到来方向を拘束条件としてDCMP法により最適複素重みを求める解析手段と、該最適複素重みを前記受信信号処理手段に設定する手段とを備えたアダプティブアレー。
  2. 前記2次元上に配置された励振素子の受信信号による2次元受信データ行列から複数の小行列を抽出し、該小行列毎に相関行列を求め、それら複数の小行列について求めた相関行列の1次元の列ベクトルを平均化して平均相関行列を求める手段を備え、前記解析手段は、該平均相関行列について解析処理を行うようにした請求項1に記載のアダプティブアレー。
  3. 前記複数の励振素子は、平面上で十字状に直交するように配置した請求項1または2に記載のアダプティブアレー。
  4. 請求項1〜3のいずれかに記載のアダプティブアレーを備え、前記励振素子を測位用衛星からの受信信号を受ける素子アンテナとし、前記アダプティブアレーによる測位用衛星からの受信信号を基に当該アダプティブアレーの位置を測位するとともに測位用衛星の方向を求める手段を設け、前記解析手段は測位用衛星の方向を前記所望波の到来方向とする拘束条件で前記DCMP法を適用するようにした測位装置。
JP2003129496A 2003-05-07 2003-05-07 アダプティブアレーおよび測位装置 Pending JP2004336390A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129496A JP2004336390A (ja) 2003-05-07 2003-05-07 アダプティブアレーおよび測位装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129496A JP2004336390A (ja) 2003-05-07 2003-05-07 アダプティブアレーおよび測位装置

Publications (1)

Publication Number Publication Date
JP2004336390A true JP2004336390A (ja) 2004-11-25

Family

ID=33505320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129496A Pending JP2004336390A (ja) 2003-05-07 2003-05-07 アダプティブアレーおよび測位装置

Country Status (1)

Country Link
JP (1) JP2004336390A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315811A (ja) * 2004-04-30 2005-11-10 Furuno Electric Co Ltd アダプティブアレーの特性最適化方法
JP2007028152A (ja) * 2005-07-15 2007-02-01 Mitsubishi Electric Corp Gps用干渉除去装置
JP2007028153A (ja) * 2005-07-15 2007-02-01 Mitsubishi Electric Corp Gps用干渉除去装置
JP2007051984A (ja) * 2005-08-19 2007-03-01 Toshiba Corp 干渉波抑圧装置及び干渉波抑圧方法
JP2008151582A (ja) * 2006-12-15 2008-07-03 Denso Corp レーダ装置
JP2014114006A (ja) * 2012-11-16 2014-06-26 Tokai Rika Co Ltd タイヤ位置判定装置
JP2014114007A (ja) * 2012-11-16 2014-06-26 Tokai Rika Co Ltd タイヤ位置判定装置
JP2015009781A (ja) * 2013-07-02 2015-01-19 株式会社東海理化電機製作所 タイヤ位置判定装置
CN112415469A (zh) * 2020-11-01 2021-02-26 西安电子工程研究所 一种两维数字阵列雷达快速干扰测向方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315811A (ja) * 2004-04-30 2005-11-10 Furuno Electric Co Ltd アダプティブアレーの特性最適化方法
JP4500098B2 (ja) * 2004-04-30 2010-07-14 古野電気株式会社 アダプティブアレーの特性最適化方法
JP4507103B2 (ja) * 2005-07-15 2010-07-21 三菱電機株式会社 Gps用干渉除去装置
JP2007028152A (ja) * 2005-07-15 2007-02-01 Mitsubishi Electric Corp Gps用干渉除去装置
JP2007028153A (ja) * 2005-07-15 2007-02-01 Mitsubishi Electric Corp Gps用干渉除去装置
JP4507102B2 (ja) * 2005-07-15 2010-07-21 三菱電機株式会社 Gps用干渉除去装置
JP2007051984A (ja) * 2005-08-19 2007-03-01 Toshiba Corp 干渉波抑圧装置及び干渉波抑圧方法
JP2008151582A (ja) * 2006-12-15 2008-07-03 Denso Corp レーダ装置
JP2014114006A (ja) * 2012-11-16 2014-06-26 Tokai Rika Co Ltd タイヤ位置判定装置
JP2014114007A (ja) * 2012-11-16 2014-06-26 Tokai Rika Co Ltd タイヤ位置判定装置
JP2015009781A (ja) * 2013-07-02 2015-01-19 株式会社東海理化電機製作所 タイヤ位置判定装置
CN112415469A (zh) * 2020-11-01 2021-02-26 西安电子工程研究所 一种两维数字阵列雷达快速干扰测向方法
CN112415469B (zh) * 2020-11-01 2023-06-20 西安电子工程研究所 一种两维数字阵列雷达快速干扰测向方法

Similar Documents

Publication Publication Date Title
US10637520B2 (en) Devices and methods using the hermetic transform
CN106546983B (zh) 雷达装置
US20220113363A1 (en) Direction of arrival estimation
US10571544B2 (en) Direction finding using signal power
US20220163623A1 (en) Radar device
Azzouzi et al. New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach
JP2005033805A (ja) 円形スーパーディレクティブ受信アンテナ・アレイ
JP2006270847A (ja) アンテナ装置
CN108880647B (zh) 一种基于频率分集阵列天线的波束控制方法
CN102664666A (zh) 一种高效的宽带稳健自适应波束形成方法
JP2004336390A (ja) アダプティブアレーおよび測位装置
CN105807252B (zh) 基于矩形天线阵列的波达角估计方法
JP2009097862A (ja) レーダ装置
Le Marshall et al. MIMO radar array for termite detection and imaging
JP4500098B2 (ja) アダプティブアレーの特性最適化方法
RU2431862C1 (ru) Способ поляризационно-независимого пеленгования многолучевых радиосигналов
CN107241131A (zh) 一种利用信号非圆特性的波束形成方法
JP4925502B2 (ja) アレーアンテナ、方位推定装置、通信装置及び方位推定方法
RU2410707C2 (ru) Способ поляризационно-независимого обнаружения и локализации широкополосных радиосигналов
Le Marshall et al. High resolution, wide coverage termite imager
CN103579759A (zh) 一种实现阵列天线波束全向覆盖的方法
JP6415392B2 (ja) 信号処理装置
CN111669191B (zh) 一种基于分布式接收系统的短波超短波信号增强方法
CN110954887B (zh) 基于球不变约束和反对称的相控阵mimo波束形成方法
CN109474549B (zh) 一种基于三维波束图案的三维信道估计方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205