JP2004328301A - 可変分周器および分周制御方法 - Google Patents
可変分周器および分周制御方法 Download PDFInfo
- Publication number
- JP2004328301A JP2004328301A JP2003119299A JP2003119299A JP2004328301A JP 2004328301 A JP2004328301 A JP 2004328301A JP 2003119299 A JP2003119299 A JP 2003119299A JP 2003119299 A JP2003119299 A JP 2003119299A JP 2004328301 A JP2004328301 A JP 2004328301A
- Authority
- JP
- Japan
- Prior art keywords
- value
- frequency
- clock signal
- frequency division
- set value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
【課題】カウンタのビット幅を増大させずに、より安定的な高速動作が可能とされた可変分周器を提供する。
【解決手段】2進ダウンカウンタ12には、カウント値が−N2になると初期値としてN1がロードされる。また、2進ダウンカウンタ12のカウント値の最上位ビットが分周制御信号PCTRとされ、N1がロードされると分周制御信号PCTRはLレベルとなり、さらにカウント値が“−1”となった時点で分周制御信号PCTRがHレベルとなる。カウント値の最上位ビットによりDMPS11の分周数が直接的に制御されるので、DMPS11での切り換え動作の遅延が生じにくい。また、カウント値の最上位ビットはクロック信号CLKOUT2として外部に出力される。N1とN2とを近い値に設定することにより2進ダウンカウンタ12のビット幅を小さくすることができるとともに、クロック信号CLKOUT2のデューティ比を50%に近づけることができる。
【選択図】 図1
【解決手段】2進ダウンカウンタ12には、カウント値が−N2になると初期値としてN1がロードされる。また、2進ダウンカウンタ12のカウント値の最上位ビットが分周制御信号PCTRとされ、N1がロードされると分周制御信号PCTRはLレベルとなり、さらにカウント値が“−1”となった時点で分周制御信号PCTRがHレベルとなる。カウント値の最上位ビットによりDMPS11の分周数が直接的に制御されるので、DMPS11での切り換え動作の遅延が生じにくい。また、カウント値の最上位ビットはクロック信号CLKOUT2として外部に出力される。N1とN2とを近い値に設定することにより2進ダウンカウンタ12のビット幅を小さくすることができるとともに、クロック信号CLKOUT2のデューティ比を50%に近づけることができる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、入力された信号を任意の分周比で分周する可変分周器および分周制御方法に関し、特に、プリスケーラと1つのカウンタとを具備する可変分周器および分周制御方法に関する。
【0002】
【従来の技術】
近年、高周波のクロック信号を任意の分周比で分周するニーズがますます高まっている。特に、PLL(Phase Locked Loop)を用いたクロック合成のように、VCO(Voltage Controlled Oscillators)の出力クロック信号を任意の分周比でフィードバックして、基準クロックと位相比較する回路の需要が高まっており、この回路に使用される可変分周器に対して、高速化および低消費電力化が要求されている。
【0003】
このような要求を満たすために、従来では、プリスケーラとして単一分周数の高速固定分周器を配置し、その後段に分周数可変の中低速分周器を配置した2段構成の可変分周器が用いられていた。この構成の可変分周器では、入力クロック信号の周波数を、プリスケーラによって後段の中低速分周器の動作し得る値まで低下させることで、簡単な構成でありながら高速のクロック信号に対する分周動作が可能となっている。しかし、プリスケーラの分周数をP、後段の中低速分周器の分周数をMとすると、可変分周器全体の分周数Nt1は(P*M)となる。すなわち、分周数Nt1はプリスケーラの分周数Pの整数倍となり、周波数の分解能が粗くなるという欠点があった。
【0004】
これに対して、プリスケーラとして2つの分周数での分周動作が可能なデュアルモデュラスプリスケーラ(DMPS)を用いた、パルススワロ方式といわれる可変分周器が知られている。その代表的な構成として、Pおよび(P+1)の2つの分周数をもつDMPSと、マスタカウンタおよびスワロカウンタとを具備し、DMPSの分周数の切り換えを、後段のマスタカウンタおよびスワロカウンタを用いて制御する可変分周器が知られている。このような可変分周器では、マスタカウンタおよびスワロカウンタの各分周数をM、Sとすると、全体の分周数Nt2は(P*M+S)となり、任意の分周数での分周動作が可能であるが、2つのカウンタが設けられ、かつそれらが同時にアクティブになる期間があることから、回路規模や消費電力が大きくなるという欠点がある。
【0005】
このようなパルススワロ方式の可変分周器の欠点を解消するために、後段の各カウンタを統合して単一のシングルプログラマブルカウンタのみを設けた可変分周器が考えられている。このようなシングルカウンタ方式の従来の可変分周器としては、以下のようなものがあった。
【0006】
その1つとして、2進カウンタにカウントさせる設定値としてあらかじめ2つの値を用意し、一方の値のカウントが終了すると他方の値を設定するようにして、2つの設定値を交互に切り換えてカウントを行い、設定値を切り換えるたびにプリスケーラの分周数を切り換える構成を有する可変分周器があった(例えば、特許文献1参照)。このような可変分周器は、全体の分周動作の1周期分の間に2進カウンタの設定値が2回ロードされるものであり、例えばダブルローディング方式等と呼ばれる。ここで、同様な方法で分周比の制御が行われる可変分周器について、図4を用いて説明する。
【0007】
図4は、ダブルローディング方式を採用した従来の可変分周器の構成例を示す図である。
図4に示す可変分周器は、DMPS41、2進ダウンカウンタ42、セレクタ43、検出器44、D−FF(ディレイ−フリップフロップ)45および46を具備する。
【0008】
DMPS41は、入力クロック信号を分周数Pおよび(P+1)で分周して、2進ダウンカウンタ42に出力する。2進ダウンカウンタ42には、カウント初期値N1およびN2のいずれかがセレクタ43によって選択され、設定される。検出器44は、2進ダウンカウンタ42のカウント値が“0”であるか否かを検出し、“0”となった場合に検出信号を出力する。そして、この検出信号により2進ダウンカウンタ42の初期値ロードタイミングが与えられる。従って、2進ダウンカウンタ42には、“0”までのカウントダウンが行われるたびにカウント初期値N1およびN2が交互に設定される。
【0009】
D−FF45は、検出器44による検出信号を、DMPS41からの分周クロック信号でラッチして出力する。D−FF46では、D−FF45からの出力信号がクロック入力端子に入力され、反転出力信号がデータ入力端子にフィードバックされる。これにより、D−FF45からの出力信号がHレベルとなるたびに、D−FF46からの出力信号のレベルが反転する。また、このD−FF45の出力信号のレベルに応じて、セレクタ43における選択信号と、DMPS41における分周数とが切り換えられる。
【0010】
従って、DMPS41からの分周クロック信号のN1周期分の間は、DMPS41は分周数(P+1)で動作し、分周クロック信号のN2周期分の間は、DMPS41は分周数Pで動作する。全体の分周数Nt3は、((P+1)*N1+P*N2)となる。
【0011】
また、シングルカウンタ方式との他の可変分周器として、分周動作の1周期分の間にカウンタに対して1回だけカウント初期値を設定する方式の可変分周器も考えられていた。この可変分周器は、分周動作の1周期の間におけるカウンタのカウント数に対する中間的な値を比較して、プリスケーラの分周数を切り換える構成を有し、例えば中間値比較方式等と呼ばれる。
【0012】
図5は、中間値比較方式を採用した従来の可変分周器の第1の構成例を示す図である。
図5に示す可変分周器は、DMPS51、2進ダウンカウンタ52、検出器53および54、D−FF55、およびRS−FF56を具備する。
【0013】
図4と同様に、DMPS51による分周クロック信号は、2進ダウンカウンタ52に出力される。2進ダウンカウンタ52には、全体の分周動作の1周期分をカウントするカウント初期値(N1+N2)が設定される。また、検出器53は、2進ダウンカウンタ52のカウント値が“0”となったときに検出信号を出力する。この検出信号が2進ダウンカウンタ52の初期値ロードタイミングを与え、2進ダウンカウンタ52は(N1+N2)分のカウントを繰り返す。
【0014】
また、D−FF55は、検出器53からの検出信号をDMPS51からの分周クロック信号でラッチして出力する。このD−FF55の出力信号は、可変分周器の出力クロック信号となるとともに、RS−FF56のリセット入力端子に入力される。一方、検出器54は、2進ダウンカウンタ52のカウント値が中間的な値であるN1となった場合に検出信号を出力し、この検出信号はRS−FF56のセット入力端子に入力される。RS−FF56の出力信号はDMPS51の分周数を制御する信号となり、これにより、2進ダウンカウンタ52がN1だけカウントする間、DMPS51には分周数として(P+1)が設定され、次にN2だけカウントする間、分周数としてPが設定される。
【0015】
なお、同様な方式によりDMPSの分周数を切り換える分周器として、DMPSからの出力信号を、2つのJK−FFで構成した4進アップカウンタにクロック信号として供給し、前段および後段の各JK−FFのQ出力を論理積演算した信号を、DMPSの分周比切り換え信号とする構成の分周器があった(例えば、特許文献2参照)。
【0016】
さらに、中間値比較方式の可変分周器の他の例として、2進ダウンカウンタのカウント値を負数まで拡大し、このカウント値が“0”となったときにプリスケーラの分周比を切り換え、さらにカウント値が所定の負数となったことが検出されると、プリスケーラの分周比をさらに切り換えるとともに、プリスケーラに所定の値を設定する構成を有する可変比率分周器も考えられている(例えば、特許文献3参照)。ここで、同様な方法で分周比の制御が行われる可変分周器について、図6を用いて説明する。
【0017】
図6は、中間値比較方式を採用した従来の可変分周器の第2の構成例を示す図である。
図6に示す可変分周器は、DMPS61、2進ダウンカウンタ62、検出器63および64、D−FF65、およびRS−FF66を具備する。この可変分周器は、図5に示した可変分周器において、検出器53および54での比較値を変更した構成とし、2進ダウンカウンタ52のカウント初期値を変更したものとなっている。
【0018】
2進ダウンカウンタ62のカウント初期値として、全体の分周動作でのカウント数に対して中間的な値であるN1が設定される。検出器64は、2進ダウンカウンタ62のカウント値が“0”となったとき検出信号を出力し、この検出信号はRS−FF66のセット入力端子に入力される。また、検出器63は、2進ダウンカウンタ62のカウント値が“−N2”となったときに検出信号を出力する。この検出信号は2進ダウンカウンタ62の初期値ロードタイミングを与え、これにより2進ダウンカウンタ62は、N1〜−N2までのカウントを行う。さらに、検出器63からの検出信号は、D−FF65でラッチされてRS−FF66のリセット入力端子に入力される。これにより、2進ダウンカウンタ62がN1分だけカウントする間、DMPS61には分周数として(P+1)が設定され、さらにN2分だけカウントする間、分周数としてPが設定される。
【0019】
ここで、図7は、上記のシングルカウンタ方式の可変分周器におけるカウント値の遷移を示すグラフである。
図5に示した可変分周器の場合、図7(A)に示すように、2進ダウンカウンタ52は(N1+N2)から“0”までのカウント動作を行う。そして、DMPS51からの分周クロック信号のN1周期分の間は、DMPS51は分周数(P+1)で動作し、分周クロック信号のN2周期分の間は、DMPS51は分周数Pで動作する。
【0020】
一方、図6に示した可変分周器の場合、図7(B)に示すように、2進ダウンカウンタ62はN1から−N2までのカウント動作を行う。そして、DMPS61からの分周クロック信号のN1周期分の間は、DMPS61は分周数(P+1)で動作し、分周クロック信号のN2周期分の間は、DMPS61は分周数Pで動作する。
【0021】
【特許文献1】
米国特許4,053,739号明細書(第2頁−第3頁、第1図)
【特許文献2】
特許第2571622号公報(第2頁、第1図)
【特許文献3】
特許第2978296号公報(第4頁、第1図)
【0022】
【発明が解決しようとする課題】
しかし、上記のシングルカウンタ方式の可変分周器では、以下のような問題点があった。まず、図4に示したダブルローディング方式の可変分周器の場合、例えばセレクタ43のように、2進ダウンカウンタ42に対する2つの設定値を切り換えて出力するための構成が必要で、これらの設定値のビット幅が大きくなると回路規模が大きくなることが問題となる。
【0023】
これに対して、図5に示した中間値比較方式の可変分周器の場合には、2進ダウンカウンタ52に対する設定値を1つとしたことで上記の問題を解決している。しかし、検出器54におけるN1の検出動作遅延が大きくなると、DMPS51の分周数の切り換えタイミングに誤差が生じて、所望の分周数を達成できなくなる。このことは、2進ダウンカウンタ52の動作速度を制約することにもなり、可変分周器全体の性能低下の原因となることが問題となる。
【0024】
これに対して、図6に示した中間値比較方式の可変分周器の場合は、検出器64での検出基準値を“0”とすることで高速な検出動作を可能とし、DMPS61の制御タイミングに余裕が生まれる。しかし、その後段のRS−FF66によるラッチ動作においても遅延が発生するため、さらなる高速化が行われたときに誤動作が発生することが考えられる。また、2進ダウンカウンタ62において正数から負数までのカウントが行われるので、カウント値の最上位ビットをサインビットに設定する必要があり、2進ダウンカウンタ62のビット幅が増加する。従って、回路規模が大きくなり、動作速度を制約する要因ともなる。
【0025】
本発明はこのような課題に鑑みてなされたものであり、カウンタのビット幅を増大させずに、より安定的な高速動作が可能とされた可変分周器を提供することを目的とする。
【0026】
また、本発明の他の目的は、カウンタのビット幅を増大させずに、より安定的な高速動作が可能とされた分周制御方法を提供することである。
【0027】
【課題を解決するための手段】
本発明では上記課題を解決するために、入力された信号を任意の分周数で分周する可変分周器において、入力される分周制御信号のレベルに応じて入力クロック信号を分周する分周手段と、前記分周手段によって生成された分周クロック信号に同期して、第1の設定値から、前記第1の設定値より小さい負数である第2の設定値までのカウントダウンを行うカウント手段とを有し、前記カウント手段によるカウント値の最上位ビットを前記分周制御信号および出力クロック信号とすることを特徴とする可変分周器が提供される。
【0028】
このような可変分周器では、入力クロック信号が分周手段により分周され、この分周手段の分周数は、分周制御信号のレベルに応じて切り換えられる。また、カウント手段により、分周手段によって生成された分周クロック信号に同期して、第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われる。さらに、カウント手段によるカウント値の最上位ビットが、分周制御信号として分周手段に直接的に供給されるとともに、出力クロック信号として出力される。これにより、カウント手段によるカウント値の符号が変化するタイミングで分周手段の分周数が切り換えられ、このとき出力クロック信号のレベルが変化する。
【0029】
また、例えば、分周手段における分周数がPおよび(P+1)であり、可変分周器全体の分周数である全体分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体分周数から(P*N)を減算した値を第1の設定値とし、Nから第1の設定値を減算した値を第2の設定値の絶対値としてもよい。これにより、第1および第2の設定値として、互いに絶対値の近い値が設定される。
【0030】
また、本発明では、入力された信号を任意の分周数で分周するための分周制御方法において、入力クロック信号を複数の分周数のうちのいずれかで分周するプリスケーラにより生成された分周クロック信号に同期して、第1の設定値から、前記第1の設定値より小さい負数である第2の設定値までのカウントダウンを行い、そのカウント値の最上位ビットの値に応じて前記プリスケーラの分周数を切り換えるとともに、前記最上位ビットを出力クロック信号とすることを特徴とする分周制御方法が提供される。
【0031】
このような分周制御方法では、入力クロック信号がプリスケーラにより複数の分周数のうちのいずれかで分周され、分周クロック信号に同期して、第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われる。また、そのカウント値の最上位ビットの値に応じて、プリスケーラの分周数が直接的に切り換えられるとともに、最上位ビットが出力クロック信号として出力される。これにより、カウント値の符号が変化するタイミングでプリスケーラの分周数が切り換えられ、このとき出力クロック信号のレベルが変化する。
【0032】
また、例えば、プリスケーラにおける分周数がPおよび(P+1)であり、全体の分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体の分周数から(P*N)を減算した値を第1の設定値とし、Nから第1の設定値を減算した値を第2の設定値の絶対値としてもよい。これにより、第1および第2の設定値として、互いに絶対値の近い値が設定される。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の実施の形態に係る可変分周器の構成例を示す図である。
【0034】
図1に示す可変分周器は、入力されたクロック信号CLKINを分周するDMPS11と、DMPS11により分周された分周クロック信号PCLKをカウントする2進ダウンカウンタ12と、2進ダウンカウンタ12のカウント値から特定の値を検出する検出器13と、検出器13からの検出信号をラッチするD−FF14とを具備する。
【0035】
DMPS11は、入力されたクロック信号CLKINを2つの分周数Pおよび(P+1)のいずれかで分周する。このDMPS11の分周数は、分周制御信号PCTRのレベルに応じて切り換えられる。本実施の形態では、分周制御信号PCTRがLレベルのとき分周数(P+1)、Hレベルのとき分周数Pに設定される。
【0036】
2進ダウンカウンタ12は、DMPS11によって分周された分周クロック信号PCLKの入力を受け、これに同期してカウントダウン動作を行う。この2進ダウンカウンタ12は、入力されるロード信号LOADがHレベルとなったタイミングで、カウント初期値としてN1をロードする。また、2進ダウンカウンタ12のカウント値は、最上位ビットをサインビットとした所定ビット数のデータとして検出器13に供給される。さらに、そのカウント値の最上位ビット(MSB:Most Significant Bit)だけは、分周制御信号PCTRとしてDMPS11に供給されるとともに、クロック信号CLKOUT2として外部に出力される。
【0037】
検出器13は、2進ダウンカウンタ12のカウント値が−N2となったか否かを検出し、検出されたときに検出信号をHレベルとする。この検出信号はD−FF14のデータ入力端子に出力されるとともに、ロード信号LOADとして2進ダウンカウンタ12に供給される。
【0038】
D−FF14は、DMPS11からの分周クロック信号PCLKに同期して、検出器13からの検出信号をラッチして出力する。このラッチ出力はクロック信号CLKOUT1として外部に出力される。
【0039】
この可変分周器では、2進ダウンカウンタ12のカウント値のうち、正負の符号を示す最上位ビットが、分周制御信号PCTRとして直接的にDMPS11に供給される。このような構成により、2進ダウンカウンタ12の出力段に検出器やラッチ回路等の分周制御回路が設けられないので、分周制御信号PCTRの出力に遅延が生じにくいことが特徴となっている。また、クロック信号CLKOUT1およびCLKOUT2は、後述するように、必要に応じて選択して出力される。
【0040】
図2は、この可変分周器における出力信号を示すタイムチャートである。以下、このタイムチャートを用いて、上記の可変分周器の動作について説明する。
まず、2進ダウンカウンタ12のカウント値が−N2となると、検出器13から検出信号が出力され、2進ダウンカウンタ12へのロード信号LOADがHレベルとなる。そして、次に分周クロック信号PCLKがHレベルとなった時点(タイミングT201)で、2進ダウンカウンタ12にはカウント初期値としてN1がロードされる。なお、ここではN1として正の値が設定されるものとする。これにより、2進ダウンカウンタ12のカウント値の最上位ビットが“0”となり、分周制御信号PCTRおよびクロック信号CLKOUT2がLレベルとなる。また、分周制御信号PCTRのレベル変化に応じて、DMPS11の分周数が(P+1)に設定される。なお、このとき、D−FF14から出力されるクロック信号CLKOUT1が、分周クロック信号PCLKの1周期分だけHレベルとなる。
【0041】
この後、(P+1)分周された分周クロック信号PCLKの入力に従って、2進ダウンカウンタ12によるカウントダウンが行われる。そして、カウント値が−1となると(タイミングT202)、その最上位ビットが“1”となり、分周制御信号PCTRおよびクロック信号CLKOUT2がともにHレベルとなる。これにより、DMPS11の分周数がPに切り換えられる。
【0042】
さらにこの後、P分周された分周クロック信号PCLKの入力に従って、2進ダウンカウンタ12によるカウントダウンが行われ、カウント値が−N2となると、検出器13からの検出信号がHレベルとなる。従って、次の分周クロック信号PCLKの入力タイミング(タイミングT203)で、カウント値の最上位ビットが“0”となり、分周制御信号PCTRおよびクロック信号CLKOUT2がともにLレベルとなって、DMPS11の分周数が(P+1)に切り換えられる。また、D−FF14からのクロック信号CLKOUT1が、分周クロック信号PCLKの1周期分だけHレベルとなる。
【0043】
以上の動作により、2進ダウンカウンタ12のカウント値が0以上の期間ではDMPS11の分周数が(P+1)に設定され、カウント値が負の数となる期間では分周数がPに設定される。従って、N1およびN2の設定に応じて、可変分周器全体として任意の分周数でクロック信号CLKINを分周することが可能となる。
【0044】
このような構成により、2進ダウンカウンタ12の出力値の最上位ビットが、分周制御信号PCTRとして直接的にDMPS11に供給されて、分周数が切り換えられる。従って、入力されるクロック信号CLKINの周波数が高くなった場合にも、分周クロック信号PCLKの出力タイミングに対する分周制御信号PCTRの入力遅延が生じにくくなり、分周数の切り換え誤動作の発生率が減少し、高速動作時の安定性が向上する。
【0045】
ところで、上記構成の可変分周器では、2進ダウンカウンタ12のカウント値の最上位ビットがサインビットとされていることから、N1およびN2をできるだけ小さくして2進ダウンカウンタ12のビット幅を抑制し、その回路規模を小さくすることが望ましい。上記の構成では、検出器13の検出基準値を負の数としたことにより、N1およびN2として互いにできるだけ近い値を選択することで、全体の分周数が大きい場合にもN1およびN2の値を減少させ、カウント値のビット幅の増加を抑制することが可能となる。
【0046】
このために、N1およびN2について以下のような算出方法を採用する。まず、上記の可変分周器全体の分周数Ntは、以下の式(1)で表される。
【0047】
【数1】
Pt=(P+1)*N1+P*N2=P*(N1+N2)+N2 ………(1)
ここで、N1およびN2の各値をできるだけ近づけるために、上記の式(1)において、N=N1+N2、N1=N2と仮定して、以下の式(2)のように変形する。そして、Nは自然数であることから、以下の式(3)によりNを概算する。
【0048】
【数2】
Nt=P*N+N/2=(P+1/2)*N ………(2)
N=INT[Nt/(P+1/2)] ………(3)
ただし、INT[x]はxの小数点以下第1位を四捨五入した整数部を示す。そして、概算されたNを基にして、N1およびN2をそれぞれ以下の式(4)および(5)から算出する。
【0049】
【数3】
N1=Nt−P*N ………(4)
N2=N−N1 ………(5)
一例として、P=4、Nt=171の場合、上記の式(2)〜(5)より、N1=N2=19となる。これに対して、N1およびN2に対する他の算出方法としては、例えば、上記の式(1)について、PtをPで除算した値の整数部が(N1+N2)で、そのときの余りがN1であると考えて算出する方法がある。この場合、NtをPで除算した値の整数部を(N1+N2)とし、この値にPを乗算した値をNtから減算してN1とすることで、N1およびN2が求められる。この算出方法では、例示したP=4、Nt=171のときに、N1=3、N2=39となるため、上記の式(2)〜(5)に従って算出した場合には、2進ダウンカウンタ12のビット幅を1ビット分削減することができる。
【0050】
ところで、このようにN1およびN2の値を近づけることにより、出力されるクロック信号CLKOUT2のデューティ比を50%に近づける効果も生まれる。このことについて、以下の図3を用いて説明する。
【0051】
図3は、可変分周器におけるカウント値の遷移を示すグラフである。
図3では、上記の式(2)〜(5)に従ってN1およびN2を算出した場合のカウント値の遷移について、グラフL1で示している。なお、この方法で算出したN1およびN2を、図3ではそれぞれN1_1、N2_1と表している。これに対して、上述した他の方法により算出した場合のカウント値の遷移について、グラフL2で示している。なお、この方法で算出したN1およびN2を、図3ではそれぞれN1_2、N2_2と表している。
【0052】
上記の式(1)について、PtをPで除算した値の整数部が(N1+N2)で、そのときの余りがN1であると考えてN1およびN2を算出した場合、N1の値はPの値より必ず小さくなる。このことから、DMPS11における分周数に対して全体の分周数が相対的に大きくなった場合には、N1と比較してN2が極端に大きくなる。図3において、DMPS11の分周数が(P+1)となる期間は、クロック信号CLKINの((P+1)*N1_2)周期分となり、Pとなる期間はクロック信号CLKINの(P*N2_2)周期分となる。従って、N1よりN2が極端に大きい場合は、グラフL2のようにクロック信号CLKOUT2のデューティ比は50%から大きく離れてしまう。
【0053】
一方、グラフL1の場合は、Pの値に関係なくN1_1およびN2_2が算出され、またこれらの値が近づくように算出されるので、デューティ比が50%により近づけられる。
【0054】
このように、クロック信号CLKOUT2のデューティ比を50%に近づける効果は、DMPS11の分周数に対して全体の分周数が大きい場合に特に有効である。例えば、例示したP=4、Nt=171の場合はデューティ比が44.4%となる。これに対して、P=4、Nt=29の場合、N1=5、N2=1でデューティ比が13.8%となり、50%から大きく離れる。例えばP=4の場合には、Ntが“84”より大きい場合にデューティ比を50%±10%の範囲に収めることが可能となる。
【0055】
ところで、上記構成の可変分周器では、NtがPまたは(P+1)の整数倍である場合には、DMPS11はいずれかの分周数でのみ動作する。すなわち、この場合には2進ダウンカウンタ12のカウント値の符号が変化しないため、クロック信号CLKOUT2のレベルが変化しない。従って、このような場合には、D−FF14からのクロック信号CLKOUT1を選択して外部に出力する必要がある。このために例えば、上記構成の可変分周器において、DMPS11の分周数と全体の分周数とに応じて、クロック信号CLKOUT1またはCLKOUT2のいずれかを選択的に出力する回路をさらに設けることが望ましい。
【0056】
以上のようにN1およびN2を算出することにより、2進ダウンカウンタ12のビット幅を大きくせずに全体の分周数を増加させることができ、なおかつシングルカウンタ方式であることから、回路規模の増大を防止し、消費電力を低減することができる。これとともに、より50%に近いデューティ比を有するクロック信号を生成することができる。従って、製造コストや消費電力が低く、高速動作時にも安定的に動作する小型の可変分周器が実現される。
【0057】
なお、上記構成の可変分周器では、2進ダウンカウンタ12のカウント値がN1から“0”となる期間をDMPS11の分周数を(P+1)とする期間としているために、実際に2進ダウンカウンタ12にロードすべき初期値は(N1−1)となる。このため、例えばN1=1あるいはN1=0とする場合には実際の初期値はそれぞれ“0”“−1”となるが、本実施の形態では負の数のカウントが可能であることから、このような初期値が直接入力された場合にも正常に動作する。
【0058】
【発明の効果】
以上説明したように、本発明の可変分周器では、カウント手段により、分周クロック信号に同期して第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われ、そのカウント値の符号が変化するタイミングで、カウント値の最上位ビットにより分周手段の分周数が直接的に切り換えられる。従って、カウント値の出力動作と分周手段での分周数の切り換え動作との間で発生される遅延量が抑制され、入力クロック信号が高速化された場合にも、安定的に動作させることが可能となる。
【0059】
また、例えば、分周手段における分周数がPおよび(P+1)であり、可変分周器全体の分周数である全体分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体分周数から(P*N)を減算した値を第1の設定値とし、Nから第1の設定値を減算した値を第2の設定値の絶対値とすることにより、第1および第2の設定値として互いに絶対値の近い値が設定されるので、カウント手段のビット幅を縮小させ、回路規模を小さくすることが可能となるとともに、デューティ比が50%付近となる出力クロック信号が得られる。
【0060】
また、本発明の分周制御方法では、分周クロック信号に同期して第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われ、そのカウント値の符号が変化するタイミングで、カウント値の最上位ビットによりプリスケーラの分周数が直接的に切り換えられる。従って、カウント値の出力動作とプリスケーラでの分周数の切り換え動作との間で発生される遅延量が抑制され、入力クロック信号が高速化された場合にも、安定的に動作させることが可能となる。
【0061】
また、例えば、プリスケーラにおける分周数がPおよび(P+1)であり、全体の分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体の分周数から(P*N)を減算した値を第1の設定値とし、整数部Nから第1の設定値を減算した値を第2の設定値の絶対値とすることにより、第1および第2の設定値として互いに絶対値の近い値が設定されるので、カウントを行う回路のビット幅を縮小させ、回路規模を小さくすることが可能となるとともに、デューティ比が50%付近となる出力クロック信号が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る可変分周器の構成例を示す図である。
【図2】本発明の実施の形態に係る可変分周器における出力信号を示すタイムチャートである。
【図3】可変分周器におけるカウント値の遷移を示すグラフである。
【図4】ダブルローディング方式を採用した従来の可変分周器の構成例を示す図である。
【図5】中間値比較方式を採用した従来の可変分周器の第1の構成例を示す図である。
【図6】中間値比較方式を採用した従来の可変分周器の第2の構成例を示す図である。
【図7】従来のシングルカウンタ方式の可変分周器におけるカウント値の遷移を示すグラフである。
【符号の説明】
11……DMPS、12……2進ダウンカウンタ、13……検出器、14……D−FF
【発明の属する技術分野】
本発明は、入力された信号を任意の分周比で分周する可変分周器および分周制御方法に関し、特に、プリスケーラと1つのカウンタとを具備する可変分周器および分周制御方法に関する。
【0002】
【従来の技術】
近年、高周波のクロック信号を任意の分周比で分周するニーズがますます高まっている。特に、PLL(Phase Locked Loop)を用いたクロック合成のように、VCO(Voltage Controlled Oscillators)の出力クロック信号を任意の分周比でフィードバックして、基準クロックと位相比較する回路の需要が高まっており、この回路に使用される可変分周器に対して、高速化および低消費電力化が要求されている。
【0003】
このような要求を満たすために、従来では、プリスケーラとして単一分周数の高速固定分周器を配置し、その後段に分周数可変の中低速分周器を配置した2段構成の可変分周器が用いられていた。この構成の可変分周器では、入力クロック信号の周波数を、プリスケーラによって後段の中低速分周器の動作し得る値まで低下させることで、簡単な構成でありながら高速のクロック信号に対する分周動作が可能となっている。しかし、プリスケーラの分周数をP、後段の中低速分周器の分周数をMとすると、可変分周器全体の分周数Nt1は(P*M)となる。すなわち、分周数Nt1はプリスケーラの分周数Pの整数倍となり、周波数の分解能が粗くなるという欠点があった。
【0004】
これに対して、プリスケーラとして2つの分周数での分周動作が可能なデュアルモデュラスプリスケーラ(DMPS)を用いた、パルススワロ方式といわれる可変分周器が知られている。その代表的な構成として、Pおよび(P+1)の2つの分周数をもつDMPSと、マスタカウンタおよびスワロカウンタとを具備し、DMPSの分周数の切り換えを、後段のマスタカウンタおよびスワロカウンタを用いて制御する可変分周器が知られている。このような可変分周器では、マスタカウンタおよびスワロカウンタの各分周数をM、Sとすると、全体の分周数Nt2は(P*M+S)となり、任意の分周数での分周動作が可能であるが、2つのカウンタが設けられ、かつそれらが同時にアクティブになる期間があることから、回路規模や消費電力が大きくなるという欠点がある。
【0005】
このようなパルススワロ方式の可変分周器の欠点を解消するために、後段の各カウンタを統合して単一のシングルプログラマブルカウンタのみを設けた可変分周器が考えられている。このようなシングルカウンタ方式の従来の可変分周器としては、以下のようなものがあった。
【0006】
その1つとして、2進カウンタにカウントさせる設定値としてあらかじめ2つの値を用意し、一方の値のカウントが終了すると他方の値を設定するようにして、2つの設定値を交互に切り換えてカウントを行い、設定値を切り換えるたびにプリスケーラの分周数を切り換える構成を有する可変分周器があった(例えば、特許文献1参照)。このような可変分周器は、全体の分周動作の1周期分の間に2進カウンタの設定値が2回ロードされるものであり、例えばダブルローディング方式等と呼ばれる。ここで、同様な方法で分周比の制御が行われる可変分周器について、図4を用いて説明する。
【0007】
図4は、ダブルローディング方式を採用した従来の可変分周器の構成例を示す図である。
図4に示す可変分周器は、DMPS41、2進ダウンカウンタ42、セレクタ43、検出器44、D−FF(ディレイ−フリップフロップ)45および46を具備する。
【0008】
DMPS41は、入力クロック信号を分周数Pおよび(P+1)で分周して、2進ダウンカウンタ42に出力する。2進ダウンカウンタ42には、カウント初期値N1およびN2のいずれかがセレクタ43によって選択され、設定される。検出器44は、2進ダウンカウンタ42のカウント値が“0”であるか否かを検出し、“0”となった場合に検出信号を出力する。そして、この検出信号により2進ダウンカウンタ42の初期値ロードタイミングが与えられる。従って、2進ダウンカウンタ42には、“0”までのカウントダウンが行われるたびにカウント初期値N1およびN2が交互に設定される。
【0009】
D−FF45は、検出器44による検出信号を、DMPS41からの分周クロック信号でラッチして出力する。D−FF46では、D−FF45からの出力信号がクロック入力端子に入力され、反転出力信号がデータ入力端子にフィードバックされる。これにより、D−FF45からの出力信号がHレベルとなるたびに、D−FF46からの出力信号のレベルが反転する。また、このD−FF45の出力信号のレベルに応じて、セレクタ43における選択信号と、DMPS41における分周数とが切り換えられる。
【0010】
従って、DMPS41からの分周クロック信号のN1周期分の間は、DMPS41は分周数(P+1)で動作し、分周クロック信号のN2周期分の間は、DMPS41は分周数Pで動作する。全体の分周数Nt3は、((P+1)*N1+P*N2)となる。
【0011】
また、シングルカウンタ方式との他の可変分周器として、分周動作の1周期分の間にカウンタに対して1回だけカウント初期値を設定する方式の可変分周器も考えられていた。この可変分周器は、分周動作の1周期の間におけるカウンタのカウント数に対する中間的な値を比較して、プリスケーラの分周数を切り換える構成を有し、例えば中間値比較方式等と呼ばれる。
【0012】
図5は、中間値比較方式を採用した従来の可変分周器の第1の構成例を示す図である。
図5に示す可変分周器は、DMPS51、2進ダウンカウンタ52、検出器53および54、D−FF55、およびRS−FF56を具備する。
【0013】
図4と同様に、DMPS51による分周クロック信号は、2進ダウンカウンタ52に出力される。2進ダウンカウンタ52には、全体の分周動作の1周期分をカウントするカウント初期値(N1+N2)が設定される。また、検出器53は、2進ダウンカウンタ52のカウント値が“0”となったときに検出信号を出力する。この検出信号が2進ダウンカウンタ52の初期値ロードタイミングを与え、2進ダウンカウンタ52は(N1+N2)分のカウントを繰り返す。
【0014】
また、D−FF55は、検出器53からの検出信号をDMPS51からの分周クロック信号でラッチして出力する。このD−FF55の出力信号は、可変分周器の出力クロック信号となるとともに、RS−FF56のリセット入力端子に入力される。一方、検出器54は、2進ダウンカウンタ52のカウント値が中間的な値であるN1となった場合に検出信号を出力し、この検出信号はRS−FF56のセット入力端子に入力される。RS−FF56の出力信号はDMPS51の分周数を制御する信号となり、これにより、2進ダウンカウンタ52がN1だけカウントする間、DMPS51には分周数として(P+1)が設定され、次にN2だけカウントする間、分周数としてPが設定される。
【0015】
なお、同様な方式によりDMPSの分周数を切り換える分周器として、DMPSからの出力信号を、2つのJK−FFで構成した4進アップカウンタにクロック信号として供給し、前段および後段の各JK−FFのQ出力を論理積演算した信号を、DMPSの分周比切り換え信号とする構成の分周器があった(例えば、特許文献2参照)。
【0016】
さらに、中間値比較方式の可変分周器の他の例として、2進ダウンカウンタのカウント値を負数まで拡大し、このカウント値が“0”となったときにプリスケーラの分周比を切り換え、さらにカウント値が所定の負数となったことが検出されると、プリスケーラの分周比をさらに切り換えるとともに、プリスケーラに所定の値を設定する構成を有する可変比率分周器も考えられている(例えば、特許文献3参照)。ここで、同様な方法で分周比の制御が行われる可変分周器について、図6を用いて説明する。
【0017】
図6は、中間値比較方式を採用した従来の可変分周器の第2の構成例を示す図である。
図6に示す可変分周器は、DMPS61、2進ダウンカウンタ62、検出器63および64、D−FF65、およびRS−FF66を具備する。この可変分周器は、図5に示した可変分周器において、検出器53および54での比較値を変更した構成とし、2進ダウンカウンタ52のカウント初期値を変更したものとなっている。
【0018】
2進ダウンカウンタ62のカウント初期値として、全体の分周動作でのカウント数に対して中間的な値であるN1が設定される。検出器64は、2進ダウンカウンタ62のカウント値が“0”となったとき検出信号を出力し、この検出信号はRS−FF66のセット入力端子に入力される。また、検出器63は、2進ダウンカウンタ62のカウント値が“−N2”となったときに検出信号を出力する。この検出信号は2進ダウンカウンタ62の初期値ロードタイミングを与え、これにより2進ダウンカウンタ62は、N1〜−N2までのカウントを行う。さらに、検出器63からの検出信号は、D−FF65でラッチされてRS−FF66のリセット入力端子に入力される。これにより、2進ダウンカウンタ62がN1分だけカウントする間、DMPS61には分周数として(P+1)が設定され、さらにN2分だけカウントする間、分周数としてPが設定される。
【0019】
ここで、図7は、上記のシングルカウンタ方式の可変分周器におけるカウント値の遷移を示すグラフである。
図5に示した可変分周器の場合、図7(A)に示すように、2進ダウンカウンタ52は(N1+N2)から“0”までのカウント動作を行う。そして、DMPS51からの分周クロック信号のN1周期分の間は、DMPS51は分周数(P+1)で動作し、分周クロック信号のN2周期分の間は、DMPS51は分周数Pで動作する。
【0020】
一方、図6に示した可変分周器の場合、図7(B)に示すように、2進ダウンカウンタ62はN1から−N2までのカウント動作を行う。そして、DMPS61からの分周クロック信号のN1周期分の間は、DMPS61は分周数(P+1)で動作し、分周クロック信号のN2周期分の間は、DMPS61は分周数Pで動作する。
【0021】
【特許文献1】
米国特許4,053,739号明細書(第2頁−第3頁、第1図)
【特許文献2】
特許第2571622号公報(第2頁、第1図)
【特許文献3】
特許第2978296号公報(第4頁、第1図)
【0022】
【発明が解決しようとする課題】
しかし、上記のシングルカウンタ方式の可変分周器では、以下のような問題点があった。まず、図4に示したダブルローディング方式の可変分周器の場合、例えばセレクタ43のように、2進ダウンカウンタ42に対する2つの設定値を切り換えて出力するための構成が必要で、これらの設定値のビット幅が大きくなると回路規模が大きくなることが問題となる。
【0023】
これに対して、図5に示した中間値比較方式の可変分周器の場合には、2進ダウンカウンタ52に対する設定値を1つとしたことで上記の問題を解決している。しかし、検出器54におけるN1の検出動作遅延が大きくなると、DMPS51の分周数の切り換えタイミングに誤差が生じて、所望の分周数を達成できなくなる。このことは、2進ダウンカウンタ52の動作速度を制約することにもなり、可変分周器全体の性能低下の原因となることが問題となる。
【0024】
これに対して、図6に示した中間値比較方式の可変分周器の場合は、検出器64での検出基準値を“0”とすることで高速な検出動作を可能とし、DMPS61の制御タイミングに余裕が生まれる。しかし、その後段のRS−FF66によるラッチ動作においても遅延が発生するため、さらなる高速化が行われたときに誤動作が発生することが考えられる。また、2進ダウンカウンタ62において正数から負数までのカウントが行われるので、カウント値の最上位ビットをサインビットに設定する必要があり、2進ダウンカウンタ62のビット幅が増加する。従って、回路規模が大きくなり、動作速度を制約する要因ともなる。
【0025】
本発明はこのような課題に鑑みてなされたものであり、カウンタのビット幅を増大させずに、より安定的な高速動作が可能とされた可変分周器を提供することを目的とする。
【0026】
また、本発明の他の目的は、カウンタのビット幅を増大させずに、より安定的な高速動作が可能とされた分周制御方法を提供することである。
【0027】
【課題を解決するための手段】
本発明では上記課題を解決するために、入力された信号を任意の分周数で分周する可変分周器において、入力される分周制御信号のレベルに応じて入力クロック信号を分周する分周手段と、前記分周手段によって生成された分周クロック信号に同期して、第1の設定値から、前記第1の設定値より小さい負数である第2の設定値までのカウントダウンを行うカウント手段とを有し、前記カウント手段によるカウント値の最上位ビットを前記分周制御信号および出力クロック信号とすることを特徴とする可変分周器が提供される。
【0028】
このような可変分周器では、入力クロック信号が分周手段により分周され、この分周手段の分周数は、分周制御信号のレベルに応じて切り換えられる。また、カウント手段により、分周手段によって生成された分周クロック信号に同期して、第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われる。さらに、カウント手段によるカウント値の最上位ビットが、分周制御信号として分周手段に直接的に供給されるとともに、出力クロック信号として出力される。これにより、カウント手段によるカウント値の符号が変化するタイミングで分周手段の分周数が切り換えられ、このとき出力クロック信号のレベルが変化する。
【0029】
また、例えば、分周手段における分周数がPおよび(P+1)であり、可変分周器全体の分周数である全体分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体分周数から(P*N)を減算した値を第1の設定値とし、Nから第1の設定値を減算した値を第2の設定値の絶対値としてもよい。これにより、第1および第2の設定値として、互いに絶対値の近い値が設定される。
【0030】
また、本発明では、入力された信号を任意の分周数で分周するための分周制御方法において、入力クロック信号を複数の分周数のうちのいずれかで分周するプリスケーラにより生成された分周クロック信号に同期して、第1の設定値から、前記第1の設定値より小さい負数である第2の設定値までのカウントダウンを行い、そのカウント値の最上位ビットの値に応じて前記プリスケーラの分周数を切り換えるとともに、前記最上位ビットを出力クロック信号とすることを特徴とする分周制御方法が提供される。
【0031】
このような分周制御方法では、入力クロック信号がプリスケーラにより複数の分周数のうちのいずれかで分周され、分周クロック信号に同期して、第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われる。また、そのカウント値の最上位ビットの値に応じて、プリスケーラの分周数が直接的に切り換えられるとともに、最上位ビットが出力クロック信号として出力される。これにより、カウント値の符号が変化するタイミングでプリスケーラの分周数が切り換えられ、このとき出力クロック信号のレベルが変化する。
【0032】
また、例えば、プリスケーラにおける分周数がPおよび(P+1)であり、全体の分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体の分周数から(P*N)を減算した値を第1の設定値とし、Nから第1の設定値を減算した値を第2の設定値の絶対値としてもよい。これにより、第1および第2の設定値として、互いに絶対値の近い値が設定される。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の実施の形態に係る可変分周器の構成例を示す図である。
【0034】
図1に示す可変分周器は、入力されたクロック信号CLKINを分周するDMPS11と、DMPS11により分周された分周クロック信号PCLKをカウントする2進ダウンカウンタ12と、2進ダウンカウンタ12のカウント値から特定の値を検出する検出器13と、検出器13からの検出信号をラッチするD−FF14とを具備する。
【0035】
DMPS11は、入力されたクロック信号CLKINを2つの分周数Pおよび(P+1)のいずれかで分周する。このDMPS11の分周数は、分周制御信号PCTRのレベルに応じて切り換えられる。本実施の形態では、分周制御信号PCTRがLレベルのとき分周数(P+1)、Hレベルのとき分周数Pに設定される。
【0036】
2進ダウンカウンタ12は、DMPS11によって分周された分周クロック信号PCLKの入力を受け、これに同期してカウントダウン動作を行う。この2進ダウンカウンタ12は、入力されるロード信号LOADがHレベルとなったタイミングで、カウント初期値としてN1をロードする。また、2進ダウンカウンタ12のカウント値は、最上位ビットをサインビットとした所定ビット数のデータとして検出器13に供給される。さらに、そのカウント値の最上位ビット(MSB:Most Significant Bit)だけは、分周制御信号PCTRとしてDMPS11に供給されるとともに、クロック信号CLKOUT2として外部に出力される。
【0037】
検出器13は、2進ダウンカウンタ12のカウント値が−N2となったか否かを検出し、検出されたときに検出信号をHレベルとする。この検出信号はD−FF14のデータ入力端子に出力されるとともに、ロード信号LOADとして2進ダウンカウンタ12に供給される。
【0038】
D−FF14は、DMPS11からの分周クロック信号PCLKに同期して、検出器13からの検出信号をラッチして出力する。このラッチ出力はクロック信号CLKOUT1として外部に出力される。
【0039】
この可変分周器では、2進ダウンカウンタ12のカウント値のうち、正負の符号を示す最上位ビットが、分周制御信号PCTRとして直接的にDMPS11に供給される。このような構成により、2進ダウンカウンタ12の出力段に検出器やラッチ回路等の分周制御回路が設けられないので、分周制御信号PCTRの出力に遅延が生じにくいことが特徴となっている。また、クロック信号CLKOUT1およびCLKOUT2は、後述するように、必要に応じて選択して出力される。
【0040】
図2は、この可変分周器における出力信号を示すタイムチャートである。以下、このタイムチャートを用いて、上記の可変分周器の動作について説明する。
まず、2進ダウンカウンタ12のカウント値が−N2となると、検出器13から検出信号が出力され、2進ダウンカウンタ12へのロード信号LOADがHレベルとなる。そして、次に分周クロック信号PCLKがHレベルとなった時点(タイミングT201)で、2進ダウンカウンタ12にはカウント初期値としてN1がロードされる。なお、ここではN1として正の値が設定されるものとする。これにより、2進ダウンカウンタ12のカウント値の最上位ビットが“0”となり、分周制御信号PCTRおよびクロック信号CLKOUT2がLレベルとなる。また、分周制御信号PCTRのレベル変化に応じて、DMPS11の分周数が(P+1)に設定される。なお、このとき、D−FF14から出力されるクロック信号CLKOUT1が、分周クロック信号PCLKの1周期分だけHレベルとなる。
【0041】
この後、(P+1)分周された分周クロック信号PCLKの入力に従って、2進ダウンカウンタ12によるカウントダウンが行われる。そして、カウント値が−1となると(タイミングT202)、その最上位ビットが“1”となり、分周制御信号PCTRおよびクロック信号CLKOUT2がともにHレベルとなる。これにより、DMPS11の分周数がPに切り換えられる。
【0042】
さらにこの後、P分周された分周クロック信号PCLKの入力に従って、2進ダウンカウンタ12によるカウントダウンが行われ、カウント値が−N2となると、検出器13からの検出信号がHレベルとなる。従って、次の分周クロック信号PCLKの入力タイミング(タイミングT203)で、カウント値の最上位ビットが“0”となり、分周制御信号PCTRおよびクロック信号CLKOUT2がともにLレベルとなって、DMPS11の分周数が(P+1)に切り換えられる。また、D−FF14からのクロック信号CLKOUT1が、分周クロック信号PCLKの1周期分だけHレベルとなる。
【0043】
以上の動作により、2進ダウンカウンタ12のカウント値が0以上の期間ではDMPS11の分周数が(P+1)に設定され、カウント値が負の数となる期間では分周数がPに設定される。従って、N1およびN2の設定に応じて、可変分周器全体として任意の分周数でクロック信号CLKINを分周することが可能となる。
【0044】
このような構成により、2進ダウンカウンタ12の出力値の最上位ビットが、分周制御信号PCTRとして直接的にDMPS11に供給されて、分周数が切り換えられる。従って、入力されるクロック信号CLKINの周波数が高くなった場合にも、分周クロック信号PCLKの出力タイミングに対する分周制御信号PCTRの入力遅延が生じにくくなり、分周数の切り換え誤動作の発生率が減少し、高速動作時の安定性が向上する。
【0045】
ところで、上記構成の可変分周器では、2進ダウンカウンタ12のカウント値の最上位ビットがサインビットとされていることから、N1およびN2をできるだけ小さくして2進ダウンカウンタ12のビット幅を抑制し、その回路規模を小さくすることが望ましい。上記の構成では、検出器13の検出基準値を負の数としたことにより、N1およびN2として互いにできるだけ近い値を選択することで、全体の分周数が大きい場合にもN1およびN2の値を減少させ、カウント値のビット幅の増加を抑制することが可能となる。
【0046】
このために、N1およびN2について以下のような算出方法を採用する。まず、上記の可変分周器全体の分周数Ntは、以下の式(1)で表される。
【0047】
【数1】
Pt=(P+1)*N1+P*N2=P*(N1+N2)+N2 ………(1)
ここで、N1およびN2の各値をできるだけ近づけるために、上記の式(1)において、N=N1+N2、N1=N2と仮定して、以下の式(2)のように変形する。そして、Nは自然数であることから、以下の式(3)によりNを概算する。
【0048】
【数2】
Nt=P*N+N/2=(P+1/2)*N ………(2)
N=INT[Nt/(P+1/2)] ………(3)
ただし、INT[x]はxの小数点以下第1位を四捨五入した整数部を示す。そして、概算されたNを基にして、N1およびN2をそれぞれ以下の式(4)および(5)から算出する。
【0049】
【数3】
N1=Nt−P*N ………(4)
N2=N−N1 ………(5)
一例として、P=4、Nt=171の場合、上記の式(2)〜(5)より、N1=N2=19となる。これに対して、N1およびN2に対する他の算出方法としては、例えば、上記の式(1)について、PtをPで除算した値の整数部が(N1+N2)で、そのときの余りがN1であると考えて算出する方法がある。この場合、NtをPで除算した値の整数部を(N1+N2)とし、この値にPを乗算した値をNtから減算してN1とすることで、N1およびN2が求められる。この算出方法では、例示したP=4、Nt=171のときに、N1=3、N2=39となるため、上記の式(2)〜(5)に従って算出した場合には、2進ダウンカウンタ12のビット幅を1ビット分削減することができる。
【0050】
ところで、このようにN1およびN2の値を近づけることにより、出力されるクロック信号CLKOUT2のデューティ比を50%に近づける効果も生まれる。このことについて、以下の図3を用いて説明する。
【0051】
図3は、可変分周器におけるカウント値の遷移を示すグラフである。
図3では、上記の式(2)〜(5)に従ってN1およびN2を算出した場合のカウント値の遷移について、グラフL1で示している。なお、この方法で算出したN1およびN2を、図3ではそれぞれN1_1、N2_1と表している。これに対して、上述した他の方法により算出した場合のカウント値の遷移について、グラフL2で示している。なお、この方法で算出したN1およびN2を、図3ではそれぞれN1_2、N2_2と表している。
【0052】
上記の式(1)について、PtをPで除算した値の整数部が(N1+N2)で、そのときの余りがN1であると考えてN1およびN2を算出した場合、N1の値はPの値より必ず小さくなる。このことから、DMPS11における分周数に対して全体の分周数が相対的に大きくなった場合には、N1と比較してN2が極端に大きくなる。図3において、DMPS11の分周数が(P+1)となる期間は、クロック信号CLKINの((P+1)*N1_2)周期分となり、Pとなる期間はクロック信号CLKINの(P*N2_2)周期分となる。従って、N1よりN2が極端に大きい場合は、グラフL2のようにクロック信号CLKOUT2のデューティ比は50%から大きく離れてしまう。
【0053】
一方、グラフL1の場合は、Pの値に関係なくN1_1およびN2_2が算出され、またこれらの値が近づくように算出されるので、デューティ比が50%により近づけられる。
【0054】
このように、クロック信号CLKOUT2のデューティ比を50%に近づける効果は、DMPS11の分周数に対して全体の分周数が大きい場合に特に有効である。例えば、例示したP=4、Nt=171の場合はデューティ比が44.4%となる。これに対して、P=4、Nt=29の場合、N1=5、N2=1でデューティ比が13.8%となり、50%から大きく離れる。例えばP=4の場合には、Ntが“84”より大きい場合にデューティ比を50%±10%の範囲に収めることが可能となる。
【0055】
ところで、上記構成の可変分周器では、NtがPまたは(P+1)の整数倍である場合には、DMPS11はいずれかの分周数でのみ動作する。すなわち、この場合には2進ダウンカウンタ12のカウント値の符号が変化しないため、クロック信号CLKOUT2のレベルが変化しない。従って、このような場合には、D−FF14からのクロック信号CLKOUT1を選択して外部に出力する必要がある。このために例えば、上記構成の可変分周器において、DMPS11の分周数と全体の分周数とに応じて、クロック信号CLKOUT1またはCLKOUT2のいずれかを選択的に出力する回路をさらに設けることが望ましい。
【0056】
以上のようにN1およびN2を算出することにより、2進ダウンカウンタ12のビット幅を大きくせずに全体の分周数を増加させることができ、なおかつシングルカウンタ方式であることから、回路規模の増大を防止し、消費電力を低減することができる。これとともに、より50%に近いデューティ比を有するクロック信号を生成することができる。従って、製造コストや消費電力が低く、高速動作時にも安定的に動作する小型の可変分周器が実現される。
【0057】
なお、上記構成の可変分周器では、2進ダウンカウンタ12のカウント値がN1から“0”となる期間をDMPS11の分周数を(P+1)とする期間としているために、実際に2進ダウンカウンタ12にロードすべき初期値は(N1−1)となる。このため、例えばN1=1あるいはN1=0とする場合には実際の初期値はそれぞれ“0”“−1”となるが、本実施の形態では負の数のカウントが可能であることから、このような初期値が直接入力された場合にも正常に動作する。
【0058】
【発明の効果】
以上説明したように、本発明の可変分周器では、カウント手段により、分周クロック信号に同期して第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われ、そのカウント値の符号が変化するタイミングで、カウント値の最上位ビットにより分周手段の分周数が直接的に切り換えられる。従って、カウント値の出力動作と分周手段での分周数の切り換え動作との間で発生される遅延量が抑制され、入力クロック信号が高速化された場合にも、安定的に動作させることが可能となる。
【0059】
また、例えば、分周手段における分周数がPおよび(P+1)であり、可変分周器全体の分周数である全体分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体分周数から(P*N)を減算した値を第1の設定値とし、Nから第1の設定値を減算した値を第2の設定値の絶対値とすることにより、第1および第2の設定値として互いに絶対値の近い値が設定されるので、カウント手段のビット幅を縮小させ、回路規模を小さくすることが可能となるとともに、デューティ比が50%付近となる出力クロック信号が得られる。
【0060】
また、本発明の分周制御方法では、分周クロック信号に同期して第1の設定値からこれより小さい負数である第2の設定値までのカウントダウンが行われ、そのカウント値の符号が変化するタイミングで、カウント値の最上位ビットによりプリスケーラの分周数が直接的に切り換えられる。従って、カウント値の出力動作とプリスケーラでの分周数の切り換え動作との間で発生される遅延量が抑制され、入力クロック信号が高速化された場合にも、安定的に動作させることが可能となる。
【0061】
また、例えば、プリスケーラにおける分周数がPおよび(P+1)であり、全体の分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、全体の分周数から(P*N)を減算した値を第1の設定値とし、整数部Nから第1の設定値を減算した値を第2の設定値の絶対値とすることにより、第1および第2の設定値として互いに絶対値の近い値が設定されるので、カウントを行う回路のビット幅を縮小させ、回路規模を小さくすることが可能となるとともに、デューティ比が50%付近となる出力クロック信号が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る可変分周器の構成例を示す図である。
【図2】本発明の実施の形態に係る可変分周器における出力信号を示すタイムチャートである。
【図3】可変分周器におけるカウント値の遷移を示すグラフである。
【図4】ダブルローディング方式を採用した従来の可変分周器の構成例を示す図である。
【図5】中間値比較方式を採用した従来の可変分周器の第1の構成例を示す図である。
【図6】中間値比較方式を採用した従来の可変分周器の第2の構成例を示す図である。
【図7】従来のシングルカウンタ方式の可変分周器におけるカウント値の遷移を示すグラフである。
【符号の説明】
11……DMPS、12……2進ダウンカウンタ、13……検出器、14……D−FF
Claims (6)
- 入力された信号を任意の分周数で分周する可変分周器において、
入力される分周制御信号のレベルに応じて入力クロック信号を分周する分周手段と、
前記分周手段によって生成された分周クロック信号に同期して、第1の設定値から、前記第1の設定値より小さい負数である第2の設定値までのカウントダウンを行うカウント手段と、
を有し、前記カウント手段によるカウント値の最上位ビットを前記分周制御信号および出力クロック信号とすることを特徴とする可変分周器。 - 前記カウント手段によるカウント値が前記第2の設定値となったことを検出して、前記カウント手段における前記第1の設定値の入力タイミングを与える設定値検出手段をさらに有することを特徴とする請求項1記載の可変分周器。
- 前記設定値検出手段の検出信号を前記分周手段からの前記分周クロック信号でラッチして出力するラッチ手段をさらに有し、
前記分周手段における分周数をPおよび(P+1)としたとき、前記可変分周器全体の分周数がPの整数倍または(P+1)の整数倍となった場合に、前記カウント値の最上位ビットの代わりに、前記ラッチ手段からの出力信号を前記出力クロック信号とすることを特徴とする請求項2記載の可変分周器。 - 前記分周手段における分周数はPおよび(P+1)であり、前記可変分周器全体の分周数である全体分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、前記全体分周数から(P*N)を減算した値を前記第1の設定値とし、Nから前記第1の設定値を減算した値を前記第2の設定値の絶対値とすることを特徴とする請求項1記載の可変分周器。
- 入力された信号を任意の分周数で分周するための分周制御方法において、
入力クロック信号を複数の分周数のうちのいずれかで分周するプリスケーラにより生成された分周クロック信号に同期して、第1の設定値から、前記第1の設定値より小さい負数である第2の設定値までのカウントダウンを行い、そのカウント値の最上位ビットの値に応じて前記プリスケーラの分周数を切り換えるとともに、前記最上位ビットを出力クロック信号とすることを特徴とする分周制御方法。 - 前記プリスケーラにおける分周数はPおよび(P+1)であり、全体の分周数を(P+0.5)で除算して得られる商の小数点以下第1位を四捨五入した整数部をNとしたとき、前記全体の分周数から(P*N)を減算した値を前記第1の設定値とし、Nから前記第1の設定値を減算した値を前記第2の設定値の絶対値とすることを特徴とする請求項5記載の分周制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119299A JP2004328301A (ja) | 2003-04-24 | 2003-04-24 | 可変分周器および分周制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119299A JP2004328301A (ja) | 2003-04-24 | 2003-04-24 | 可変分周器および分周制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004328301A true JP2004328301A (ja) | 2004-11-18 |
Family
ID=33498556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003119299A Pending JP2004328301A (ja) | 2003-04-24 | 2003-04-24 | 可変分周器および分周制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004328301A (ja) |
-
2003
- 2003-04-24 JP JP2003119299A patent/JP2004328301A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8847637B1 (en) | Time-interleaved multi-modulus frequency divider | |
US6456164B1 (en) | Sigma delta fractional-N frequency divider with improved noise and spur performance | |
US5748949A (en) | Counter having programmable periods and method therefor | |
CN105162457B (zh) | 高速分频器及使用高速分频器的锁相环路 | |
CN110830041B (zh) | 占空比50%的连续整数分频器及包括其的锁相环电路 | |
US7298810B2 (en) | Multi-modulus programmable frequency divider | |
JP2002314409A (ja) | ロック検出回路 | |
JP2005341596A (ja) | 対称的な出力を有するプログラマブル周波数分割器 | |
CN111092617B (zh) | 分频器电路、用于分频器电路的方法及补偿电路 | |
US7250803B2 (en) | PLL output clock stabilization circuit | |
US7424087B2 (en) | Clock divider | |
US7881422B1 (en) | Circuits and methods for dividing frequency by an odd value | |
US7157953B1 (en) | Circuit for and method of employing a clock signal | |
US20050237090A1 (en) | Frequency synthesizer and method | |
CN113016139A (zh) | 用于产生高比率倍频时钟信号的数字时钟电路 | |
US5066927A (en) | Dual modulus counter for use in a phase locked loop | |
US6316982B1 (en) | Digital clock with controllable phase skew | |
US7813466B2 (en) | Jitter-free divider | |
US6535989B1 (en) | Input clock delayed by a plurality of elements that are connected to logic circuitry to produce a clock frequency having a rational multiple less than one | |
US20040027181A1 (en) | Clock multiplying PLL circuit | |
US6445760B1 (en) | Partially-synchronous high-speed counter circuits | |
US8068576B2 (en) | Counters and exemplary applications | |
JP4434277B2 (ja) | クロック生成回路およびその使用方法 | |
JP2004328301A (ja) | 可変分周器および分周制御方法 | |
JPH08321775A (ja) | 分周器 |