JP2004327510A - Copper-plated laminated board for multilayered printed wiring board, multilayered printed wiring board and method of manufacturing the same - Google Patents

Copper-plated laminated board for multilayered printed wiring board, multilayered printed wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2004327510A
JP2004327510A JP2003116466A JP2003116466A JP2004327510A JP 2004327510 A JP2004327510 A JP 2004327510A JP 2003116466 A JP2003116466 A JP 2003116466A JP 2003116466 A JP2003116466 A JP 2003116466A JP 2004327510 A JP2004327510 A JP 2004327510A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
copper
multilayer printed
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003116466A
Other languages
Japanese (ja)
Other versions
JP4075673B2 (en
Inventor
Daisuke Kanetani
大介 金谷
Shuji Maeda
修二 前田
Taro Fukui
太郎 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003116466A priority Critical patent/JP4075673B2/en
Priority to CN200480010918.9A priority patent/CN1778155B/en
Priority to PCT/JP2004/005764 priority patent/WO2004095900A1/en
Priority to TW93111299A priority patent/TWI313577B/en
Publication of JP2004327510A publication Critical patent/JP2004327510A/en
Application granted granted Critical
Publication of JP4075673B2 publication Critical patent/JP4075673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-plated laminated board for multilayered printed wiring board for which alignment can be performed easily at the time of superimposing a plurality of one-sided circuit boards having adhesive layers upon another, and to provide a multilayered printed wiring board that can reduce the occurrence of defective positional deviations, because the board is manufactured by using the copper-plated laminated board, and to provide a method of manufacturing the wiring board. <P>SOLUTION: In the copper-plated laminated board 1 for multilayered printed wiring board, copper foil 2 on which a circuit is not yet formed, a hard insulating layer 3 formed by curing a thermosetting resin, an adhesive layer 4 which can be melted temporarily by heating, and a protective film 5, are arranged in this order and integrated. The multilayered printed wiring board is manufactured by using the copper-plated laminated board. In addition, the manufacturing method of the multilayered printed wiring board can also be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多層プリント配線板用銅張り積層板、多層プリント配線板及び多層プリント配線板の製造方法に関し、詳しくは、インターステシャルバイアホール構造の多層プリント配線板を製造するのに有効な多層プリント配線板用銅張り積層板、及びこの多層プリント配線板用銅張り積層板を用いて製造される多層プリント配線板とその製造方法に関する。
【0002】
【従来の技術】
インターステシャルバイアホール構造の多層プリント配線板の製造方法は、かなり以前から検討されている(例えば、特許文献1参照。)。近年ではレーザ加工技術やペースト印刷技術の進歩もあって、インターステシャルバイアホール構造の多層プリント配線板を製造する際のプレス回数を削減できる工法が提案されるに至っている(例えば特許文献2参照。)。
【0003】
特許文献2に示される工法を説明すると、図8(a)に示すような金属箔102が片面に貼着された絶縁性硬質基板103を準備する。次に、金属箔102をエッチングし、図8(b)に示すように、回路107を形成する。次に回路107が形成された絶縁性硬質基板103の回路107と反対側の面に、図8(c)に示すように、接着剤層104を形成する。次に、図8(d)に示すように、接着剤層104及び絶縁性硬質基板103の厚さ方向に貫通して回路107に接する穴108を形成する。次に、図8(e)に示すように、導電性ペースト109を、穴108に充填して片面回路基板111aを作製する。導電性ペースト109を、穴108に充填する時には、穴108の周囲に保護マスクを形成しておく。保護マスクは、接着剤層104の表面にフィルムや紙をラミネートし、穿孔加工の際に一緒に穴開けすることで形成できる。同様にして、図9に示すような片面回路基板111b、111c、111dを作製する。次に、図9に示すように、片面回路基板111a、111b、111c、111dを重ね合せた後、熱プレスを用いて、加熱、加圧して一体化して図10に示す多層プリント配線板112を製造する。
【0004】
【特許文献1】
特公昭45−13303号公報
【0005】
【特許文献2】
特開平9−36551号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献2に示される工法では、回路が形成された絶縁性硬質基板の回路と反対側の面に、接着剤層を形成するが、片面に回路が形成された絶縁性硬質基板の回路と反対側の面に、接着剤の塗布後に加熱したりもしくは接着シートを加熱しながらラミネートして接着剤層を形成しようとした場合、裏面に回路があるか、ないかで、熱容量の部分的な差異が生じ、その結果、接着剤層の膜厚や、粘性に部分的な差異が発生する。特に、絶縁性硬質基板が薄い場合には、接着剤層形成時の熱容量の部分的な差異により、接着剤層の膜厚や、粘性に部分的な差異が生じると、得られる接着剤層を有する片面回路基板に反り、ネジレが発生し、この片面回路基板を複数枚重ね合わせて、加熱、加圧する際の位置合せが著しく困難となるという問題があった。また、ピンラミネート法等で複数枚重ね合わせた片面回路基板の位置を仮固定しても、片面回路基板に反り、ネジレが発生していると、片面回路基板が平坦でなくなるために、加熱、加圧して得られる多層プリント配線板で、内層回路の位置についての位置ずれ不良が発生するという問題があった。
【0007】
本発明は、上記問題点を改善するために成されたもので、その目的とするところは、接着剤層を有する片面回路基板を複数枚重ね合わせたものを、加熱、加圧して一体化する工程を経てインターステシャルバイアホール構造の多層プリント配線板を製造する場合に、接着剤層を有する片面回路基板を複数枚重ね合わせる際の位置合せを容易に行うことを可能にする、多層プリント配線板用銅張り積層板を提供することにある。本発明の他の目的は、上記多層プリント配線板用銅張り積層板を用いて製造されることにより、内層回路の位置についての位置ずれ不良の発生を低減できる多層プリント配線板とその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明の多層プリント配線板用銅張り積層板は、回路が未形成であるべた銅箔と、熱硬化性樹脂が硬化して形成された硬質絶縁層と、加熱により一時的に溶融可能となる接着剤層と、保護フィルムとを、この順に配置して一体化していることを特徴とする。
【0009】
請求項2に係る発明の多層プリント配線板用銅張り積層板は、請求項1記載の多層プリント配線板用銅張り積層板において、硬質絶縁層が、基材入りであることを特徴とする。
【0010】
請求項3に係る発明の多層プリント配線板用銅張り積層板は、請求項2記載の多層プリント配線板用銅張り積層板において、基材が、ガラス織布、ガラス不織布、有機繊維織布又は有機繊維不織布であることを特徴とする。
【0011】
請求項4に係る発明の多層プリント配線板用銅張り積層板は、請求項3記載の多層プリント配線板用銅張り積層板において、基材が、ガラス織布又は有機繊維織布であって、かつ、開繊処理がされていることを特徴とする。
【0012】
請求項5に係る発明の多層プリント配線板用銅張り積層板は、請求項1乃至請求項4の何れかに記載の多層プリント配線板用銅張り積層板において、保護フィルムとして、表面粗度(Rz)が0.01〜5μmである粗面を持つフィルムを、この粗面を接着剤層側に配置して使用していることを特徴とする。
【0013】
請求項6に係る発明の多層プリント配線板用銅張り積層板は、請求項1乃至請求項5の何れかに記載の多層プリント配線板用銅張り積層板において、保護フィルムの厚みが、5〜100μmの範囲内であることを特徴とする。
【0014】
請求項7に係る発明の多層プリント配線板用銅張り積層板は、請求項1乃至請求項6の何れかに記載の多層プリント配線板用銅張り積層板を複数枚用いて製造していることを特徴とする。
【0015】
請求項8に係る発明の多層プリント配線板用銅張り積層板は、請求項7記載の多層プリント配線板の製造方法であって、
(1)請求項1乃至請求項6の何れかに記載の多層プリント配線板用銅張り積層板のべた銅箔面に回路を形成する工程、
(2)保護フィルム側から、穿孔加工を行い保護フィルム、接着剤層及び硬質絶縁層を貫通して前記回路に接する有底穴を形成する工程、
(3)前記有底穴に導電性を付与する工程、
(4)保護フィルムを剥離して片面回路基板を作製する工程、
(5)前記片面回路基板を、少なくとも2枚以上用いて、熱プレスにより積層成形する工程を経ることを特徴とする。
【0016】
【発明の実施の形態】
まず、多層プリント配線板用銅張り積層板に係る実施の形態を説明する。この実施の形態の多層プリント配線板用銅張り積層板は、接着剤層を有する片面回路基板を複数枚重ね合わせたものを、加熱、加圧して一体化する工程を経てインターステシャルバイアホール構造の多層プリント配線板を製造する場合に使用される上記片面回路基板を作製するための原材料となるものである。この実施の形態の多層プリント配線板用銅張り積層板1は、図1に示すように、回路が未形成であるべた銅箔2と、熱硬化性樹脂が硬化して形成された硬質絶縁層3と、加熱により一時的に溶融可能となる接着剤層4と、保護フィルム5とを、この順に配置して一体化している。
【0017】
この多層プリント配線板用銅張り積層板1では、べた銅箔2に回路形成がされる前の段階で硬質絶縁層3と接着剤層4とを一体化している。従って、硬質絶縁層3上に接着剤層4を形成するために、所定の接着剤を塗布後に加熱したり、もしくは、接着剤層4となるフィルム(接着シート)を加熱しながらラミネートして接着剤層4を硬質絶縁層3に仮接着しようとした場合に、回路の有無による仮接着時の熱容量の部分的な差異が生じることがない。そのため、接着剤層4の膜厚や、粘度挙動を全域にわたって、均一に保つことが可能となる。硬質絶縁層3が薄い場合でも、回路の有無による仮接着時の熱容量の部分的な差異が生じることがないので、接着剤層4の膜厚や、粘性に部分的な差異が生じず、その結果、得られる接着剤層4を有する片面回路基板に反り、ネジレが発生することが防止されて、平坦なものとなる。そのため、この多層プリント配線板用銅張り積層板1を用いて作製した接着剤層4を有する片面回路基板を複数枚重ね合わせた場合の位置合せは容易に行うことができるようになる。また、片面回路基板に反り、ネジレが発生するすることが防止されて、平坦なものとなっているため、片面回路基板を複数枚重ね合わせたものを加熱、加圧した際に、後述する片面回路基板に形成した導電性のバンプが移動することがなく、導電性バンプの移動による導電ペースト成分の粉落ちや、多層プリント配線板としたときの、内層回路の位置について位置ずれ不良の発生を低減することが可能となる。
【0018】
この実施の形態の多層プリント配線板用銅張り積層板1における、硬質絶縁層3は、熱硬化性樹脂が硬化して形成されたものであり、基材入りであることが、寸法安定性の点で好ましい。硬質絶縁層3は、熱硬化性樹脂が硬化して形成されたものであり、硬化が進んでいて熱プレスを用いた積層成形工程で溶融することはない。硬質絶縁層3を形成するための熱硬化性樹脂としては、例えばエポキシ樹脂、ビスマレイミドトリアジン樹脂、フッ素樹脂等が例示できる。また、硬質絶縁層3を基材入りとする場合の基材としては、ガラス織布、ガラス不織布、有機繊維織布、有機繊維不織布等を使用することが耐熱性の点で好ましい。
【0019】
この実施の形態の多層プリント配線板用銅張り積層板1を作製する材料として、べた銅箔2と硬質絶縁層3とが一体化している、通常の片面銅張積層板を使用することができ、例えば、ガラス織布基材エポキシ樹脂片面銅張積層板、ガラス不織布基材エポキシ樹脂片面銅張積層板、ガラス織布基材ビスマレイミドトリアジン樹脂片面銅張積層板、アラミド不織布基材エポキシ樹脂片面銅張積層板、ガラス織布基材フッ素樹脂片面銅張積層板等が使用できる。また、両面銅張積層板の片側の銅箔を除去したものも使用できる。
【0020】
さらに、硬質絶縁層3を基材入りとする場合には、基材がガラス織布又は有機繊維織布であって、開繊処理がされていると、寸法安定性向上に加えてバイアホール間の絶縁性を向上できるのでより好ましい。織布に開繊処理がされると、ヤーンが開繊されて樹脂の含浸性が良好となり、樹脂の未充填が防止されるため、バイアホール間の絶縁性を向上することができる。
【0021】
この実施の形態の多層プリント配線板用銅張り積層板1における、接着剤層4の形成は、例えば、熱硬化性樹脂を含む接着剤を、ロールコータ、カーテンコータ、スプレーコータ、スクリーン印刷などの手段で、上述した片面銅張り積層板に塗布してプレキュアーするか、あるいは、接着シートを熱ロール等を用いて片面銅張り積層板にラミネートする等の方法で行う。接着剤層4の厚みとしては、10〜50μmの範囲内とすることが好ましい。なお、本発明の接着剤層4は、加熱により一時的に溶融可能となり、その後の加熱で硬化する性質を持つものである。
【0022】
この実施の形態の多層プリント配線板用銅張り積層板1における、保護フィルム5は、特に制限するものではないが、回路形成時に多層プリント配線板用銅張り積層板1が浸漬される、塩化銅水溶液や水酸化ナトリウム水溶液等に対する耐薬品性を有するものが好ましく、具体的にはポリエチレンテレフタレートフィルムを例示できる。また、多層プリント配線板用銅張り積層板1に回路形成する工程中に、保護フィルム5が剥離すると、接着剤層4が露出して回路形成工程で使用している溶液を汚染する問題があるため、保護フィルム5には接着剤層4に対する密着性が要求される。このように、保護フィルム5は、多層プリント配線板用銅張り積層板1に回路形成する工程では接着剤層4の保護層として働くため、保護フィルム5の接着剤層4側の表面は、密着性を確保するために表面粗度(Rz)が0.01〜5μmの範囲内であることが好ましい。一方、得られた接着剤層4を有する片面回路基板を複数枚重ね合わせる直前には、この片面回路基板から保護フィルム5を剥離するので、保護フィルム5は剥離性を有していることが求められる。
【0023】
また、保護フィルム5の膜厚については、5〜100μmの範囲内であることが次の理由で好ましい。多層プリント配線板を製造するに当っては、多層プリント配線板用銅張り積層板1のべた銅箔2面に回路を形成した後、保護フィルム5側から、穿孔加工を行って保護フィルム5、接着剤層3及び硬質絶縁層2を貫通して前記回路に接する有底穴を形成し、次いで、この有底穴に導電性を付与するために、保護フィルム5側から導電性物質を有底穴内に印刷充填する。次いで、スキージ等で表面の余剰な導電性物質を取り除き平坦化した後に、保護フィルム5を剥離し、保護フィルム5の厚みとほぼ同じ突出高さで突出する導電性のバンプを形成する。導電性のバンプの突出高さの望ましい範囲は5〜100μmであるため、保護フィルム5の膜厚を5〜100μmの範囲内とすることが好ましいのである。
【0024】
次に、本発明の多層プリント配線板の製造方法と多層プリント配線板についての実施形態を説明する。
【0025】
本発明の多層プリント配線板の製造方法に係る実施形態では、上述した多層プリント配線板用銅張り積層板1を用いると共に、
(1)上述した多層プリント配線板用銅張り積層板1のべた銅箔面に回路を形成する工程、
(2)保護フィルム側から、穿孔加工を行い保護フィルム、接着剤層及び硬質絶縁層を貫通して前記回路に接する有底穴を形成する工程、
(3)前記有底穴に導電性を付与する工程、
(4)保護フィルムを剥離して片面回路基板を作製する工程、
(5)前記片面回路基板を、少なくとも2枚以上用いて、熱プレスにより積層成形する工程を経て多層プリント配線板を製造する。以下、工程順に図2、図3、図4に基づいて説明する。
【0026】
まず、回路が未形成のべた銅箔2と硬質絶縁層3とが一体化している材料として、図2(a)に示すような片面銅張積層板6を準備する。次に、片面銅張積層板6のべた銅箔2と反対側の面に、図2(b)に示すように、接着剤層4を形成する。接着剤層4は、熱硬化性樹脂を含む接着剤を、ロールコータ、カーテンコータ、スプレーコータ、スクリーン印刷などの手段で塗布してプレキュアーするか、あるいは、熱硬化性樹脂を含む接着シートを熱ロール等を用いてラミネートすることにより形成することができる。次に、保護フィルム5を熱ロールを用いて接着剤層4の表面にラミネートして、図2(c)に示すように、多層プリント配線板用銅張り積層板1を作製する。
【0027】
次に、多層プリント配線板用銅張り積層板1のべた銅箔2上に、感光性のドライフィルムをラミネートし、露光、現像、エッチング、剥離の各処理を施して、べた銅箔2を所定のパターン形状に加工して、図2(d)に示すように、回路7を形成する。
【0028】
次に、図2(e)に示すように、保護フィルム5側から、穿孔加工を行い保護フィルム5、接着剤層4及び硬質絶縁層3を貫通して上記回路7に接する有底穴8を形成する。回路7が有底穴8の底を形成する。穿孔加工は、保護フィルム5側から炭酸ガスレーザにより行うことが好ましい。その際に発生するレーザスミア(残さ)の除去が必要な場合には、過マンガン酸デスミアのような工法を用いてもよいし、UVレーザにて残さを除去してもよい。
【0029】
次に、前記有底穴8に導電性を付与する。導電性の付与は、スクリーン印刷法により、図2(f)に示すように、前記有底穴8内に導電性ペースト9を充填して行う。次に、保護フィルム5を剥離することにより、図2(g)に示すように、導電性ペースト9が突出して形成される導電性バンプ10を接着剤層4の表面から突出させる。この導電性バンプ10の突出高さは5〜100μmであることが以降の工程で、他の回路基板との接続性を良好にするためには望ましい。このようにして、接着剤層4を有する片面回路基板11aを作製する。
【0030】
同様にして、図3に示すような片面回路基板11b、11c、11dを作製する。次に、図3に示すように、片面回路基板11a、11b、11c、11dを重ね合せ、溶着法や、ガイドホールとガイドピンを用いるピンラミネート法で仮固定して位置合せを行う。このようにして、各片面回路基板を重ね合せたものを、熱プレスを用いて、加熱、加圧を施す積層成形により一体化して図4に示す多層プリント配線板12を製造する。熱プレスとしては真空熱プレスを用いるのが好ましい。熱プレスを用いて、加熱、加圧することにより、接着剤層4は一旦溶融した後、硬化し、導電性ペースト9もそれぞれ対応する回路に密着して熱硬化することにより、バイアホールが形成され、図4に示すインターステシャルバイアホール構造の多層プリント配線板12を得る。
【0031】
この多層プリント配線板の製造方法では、図1に示すような、回路が未形成であるべた銅箔2と、熱硬化性樹脂が硬化して形成された硬質絶縁層3と、加熱により一時的に溶融可能となる接着剤層4と、保護フィルム5とを、この順に配置して一体化している多層プリント配線板用銅張り積層板1を用いて、各片面回路基板11a、11b、11c、11dを作製するため、得られる各片面回路基板11a、11b、11c、11dは反り、ネジレが発生することが防止された平坦なものとなる。そのため、作製した片面回路基板11a、11b、11c、11dを複数枚重ね合わせる際の位置合せを容易に行うことができる。また、片面回路基板11a、11b、11c、11dは反り、ネジレが発生するすることが防止されて、平坦なものとなっているため、これらの片面回路基板を重ね合わせたものを仮固定して加熱、加圧した際に、これらの片面回路基板に形成した導電性バンプが移動することがなく、導電性バンプの移動に伴う導電ペースト成分の粉落ちや、多層プリント配線板としたときの内層回路の位置についての位置ずれ不良の発生を低減することが可能となる。
【0032】
従って、得られる多層プリント配線板12は、内層回路の位置について位置ずれ不良の発生が低減しているものとなる。
【0033】
【実施例】
(実施例1)
図2(a)に示す片面銅張積層板6として、FR−4グレードのガラス織布基材エポキシ樹脂片面銅張積層板(松下電工社製、品番R−1661、硬質絶縁層厚み0.1mm、銅箔厚み18μm)を用いた。次に、図2(b)に示すように、エポキシ樹脂の接着剤をロールコータで硬質絶縁層3の表面に塗布厚み30μmで塗布し、タック性がなくなるまで加熱(60℃)して、接着剤層4を形成した。次にラミネータ(温度80℃、圧力0.05MPa)を用いて、保護フィルム5であるポリエチレンテレフタレートフィルム(東レ社製、品番T−60、厚み38μm)を接着剤層4の表面にラミネーートして、図2(c)に示す、多層プリント配線板用銅張り積層板1を作製した。
【0034】
次に、多層プリント配線板用銅張り積層板1のべた銅箔2上に、感光性のドライフィルムをラミネートし、露光、現像した。さらに、塩化第2銅溶液を用いてエッチング処理し、次に水酸化ナトリウム溶液を用いてドライフィルムを剥離して、図2(d)に示すように、回路7を形成した。
【0035】
次に、図2(e)に示すように、保護フィルム5側から、穿孔加工を行い保護フィルム5、接着剤層4及び硬質絶縁層3を貫通して上記回路7に接する有底穴8を形成した。穿孔加工は、保護フィルム5側から炭酸ガスレーザを用いて穴あけした後、有底穴8内の回路7の表面に残さが残らないようにUVレーザを用いて残さ除去を行った。
【0036】
次に、有底穴8に導電性を付与するために、スクリーン印刷法により、図2(f)に示すように、有底穴8内に銀を主成分とする導電性ペースト9を充填した。次に、保護フィルム5を剥離することにより、図2(g)に示すように、導電性ペースト9が突出して形成される導電性バンプ10を接着剤層4の表面から突出させて、接着剤層4を有する片面回路基板11aを作製した。作製した片面回路基板11aは反りネジレが発生していない、平坦なものであった。
【0037】
同様にして、図3に示す片面回路基板11b、11c、11dを作製した。次に、片面回路基板11a、11b、11c、11dを重ね合せ、ピンラミネート法で仮固定して位置合せを行った。各片面回路基板11a、11b、11c、11dは、反りネジレが発生していない、平坦なものであったため、位置合せは容易に行うことができた。
【0038】
このようにして、各片面回路基板11a、11b、11c、11dを重ね合せたものを、熱プレスを用いて、真空下で加熱、加圧(180℃、1時間)をして、図4に示す多層プリント配線板12を得た。得られた多層プリント配線板12は、内層回路の位置について位置ずれ不良の発生はしていなかった。
【0039】
(実施例2)
実施例1と同様にして、図5(a)に示す片面回路基板11a、11b、11c、11dを作製した。次に、両面に形成している内層回路間が導通されているコア基板13の上下に、図5(a)に示すように、片面回路基板11a、11b、11c、11dを配置し、ピンラミネート法で仮固定して位置合せを行った。各片面回路基板11a、11b、11c、11dは、反りネジレが発生していない、平坦なものであったため、位置合せは容易に行うことができた。
【0040】
このようにして、コア基板13と片面回路基板11a、11b、11c、11dを重ね合せたものを、熱プレスを用いて、真空下で加熱、加圧(180℃、1時間)をして、図5(b)に示す多層プリント配線板12を得た。得られた多層プリント配線板12は、内層回路の位置について位置ずれ不良の発生はしていなかった。
【0041】
(実施例3)
実施例1と同様にして、図6(a)に示す片面回路基板11b、11cを作製した。また、図6(a)に示すように、導電性バンプ10を形成していて、べた銅箔2には回路を形成していない表層用基板14aを、実施例1の片面回路基板11aを作製する条件によって作製した。同様にして、他の表層用基板14bを作製した。次に、図6(a)に示すように、表層用基板14a、片面回路基板11b、11c、他の表層用基板14bを重ね合せ、ピンラミネート法で仮固定して位置合せを行った。表層用基板14a、14b、片面回路基板11b、11c、は、反りネジレが発生していない、平坦なものであったため、位置合せは容易に行うことができた。
【0042】
このようにして、表層用基板14a、14b、片面回路基板11b、11cを図6(a)に示すように重ね合せたものを、熱プレスを用いて、真空下で加熱、加圧(180℃、1時間)をして、図6(b)に示すように、表面にべた銅箔2を備える多層板15を得た。
【0043】
次に、多層プリント板15の所定位置にドリル加工を施し、次いでスルホールめっきを施した、次に、回路形成を行って、バイアホールとスルホールとを併せ持つ図7に示す多層プリント配線板12を得た。得られた多層プリント配線板12は、内層回路の位置について位置ずれ不良の発生はしていなかった。
【0044】
【発明の効果】
請求項1に係る発明の多層プリント配線板用銅張り積層板によれば、接着剤層を有する片面回路基板を複数枚重ね合わせたものを、加熱、加圧して一体化する工程を経てインターステシャルバイアホール構造の多層プリント配線板を製造する場合に、接着剤層を有する片面回路基板を複数枚重ね合わせる際の位置合せが容易にできる片面回路基板を得ることができる。
【0045】
請求項2に係る発明の多層プリント配線板用銅張り積層板によれば、請求項1の発明の効果に加えて、寸法安定性の良好な多層プリント配線板用銅張り積層板となるという効果を奏する。
【0046】
請求項3に係る発明の多層プリント配線板用銅張り積層板によれば、請求項2の発明の効果に加えて、耐熱性が良好な多層プリント配線板用銅張り積層板となるという効果を奏する。
【0047】
請求項4に係る発明の多層プリント配線板用銅張り積層板によれば、請求項3の発明の効果に加えて、バイアホール間の絶縁性が向上した多層プリント配線板を得ることができるという効果を奏する。
【0048】
請求項5に係る発明の多層プリント配線板用銅張り積層板によれば、請求項1の発明の効果に加えて、保護フィルムと接着剤層との密着性を良好にできるという効果を奏する。
【0049】
請求項6に係る発明の多層プリント配線板用銅張り積層板によれば、請求項1の発明の効果に加えて、他の回路基板との接続性を良好にできる片面回路基板を作製できるという効果を奏する。
【0050】
請求項7に係る発明の多層プリント配線板は、請求項1乃至請求項6の何れかに記載の多層プリント配線板用銅張り積層板を複数枚用いて製造しているので、、位置ずれ不良の発生が低減できている多層プリント配線板となる。
【0051】
請求項8に係る発明の多層プリント配線板の製造方法によれば、インターステシャルバイアホール構造の多層プリント配線板を製造する場合に、接着剤層を有する片面回路基板を複数枚重ね合わせる際の位置合せを容易に行うことが可能であって、かつ、内層回路の位置について位置ずれ不良の発生を低減することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の多層プリント配線板用銅張り積層板に係る実施形態の断面図である。
【図2】本発明の多層プリント配線板の製造方法に係る実施形態を説明するための、各工程を示す断面図である。
【図3】本発明の多層プリント配線板の製造方法に係る実施形態を説明するための、図2に続く工程を示す断面図である。
【図4】本発明の多層プリント配線板に係る実施形態を説明するための断面図である。
【図5】本発明の実施例2における各工程を示す断面図である。
【図6】本発明の実施例3における各工程を示す断面図である。
【図7】本発明の実施例3における、図6に続く工程を示す断面図である。
【図8】従来技術を説明するための、各工程を示す断面図である。
【図9】従来技術を説明するための、図7に続く工程を示す断面図である。
【図10】従来技術の多層プリント配線板を説明するための断面図である。
【符号の説明】
1 多層プリント配線板用銅張り積層板
2 べた銅箔
3 硬質絶縁層
4 接着剤層
5 保護フィルム
6 片面銅張り積層板
7 回路
8 有底穴
9 導電性ペースト
10 導電性バンプ
11a、11b、11c、11d 片面回路基板
12 多層プリント配線板
13 コア基板
14a、14b 表層用基板
102 金属箔
103 絶縁性硬質基板
104 接着剤層
107 回路
108 穴
109 導電性ペースト
111a、111b、111c、111d 片面回路基板
112 多層プリント配線板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper-clad laminate for a multilayer printed wiring board, a multilayer printed wiring board, and a method for manufacturing a multilayer printed wiring board, and more particularly, to a multilayer effective for manufacturing a multilayer printed wiring board having an interstitial via hole structure. The present invention relates to a copper-clad laminate for a printed wiring board, a multilayer printed-wiring board manufactured using the copper-clad laminate for a multilayer printed-wiring board, and a method of manufacturing the same.
[0002]
[Prior art]
A method of manufacturing a multilayer printed wiring board having an interstitial via hole structure has been studied for some time (for example, see Patent Document 1). In recent years, with the progress of laser processing technology and paste printing technology, a method of reducing the number of presses when manufacturing a multilayer printed wiring board having an interstitial via hole structure has been proposed (for example, see Patent Document 2). .).
[0003]
The method described in Patent Document 2 will be described. An insulating hard substrate 103 having a metal foil 102 adhered to one side as shown in FIG. 8A is prepared. Next, the metal foil 102 is etched to form a circuit 107 as shown in FIG. Next, as shown in FIG. 8C, an adhesive layer 104 is formed on the surface of the insulating hard substrate 103 on which the circuit 107 is formed, on the side opposite to the circuit 107. Next, as shown in FIG. 8D, a hole 108 that penetrates the adhesive layer 104 and the insulating hard substrate 103 in the thickness direction and contacts the circuit 107 is formed. Next, as shown in FIG. 8E, the holes 108 are filled with the conductive paste 109 to manufacture the single-sided circuit board 111a. When filling the hole 108 with the conductive paste 109, a protective mask is formed around the hole 108. The protective mask can be formed by laminating a film or paper on the surface of the adhesive layer 104 and making a hole at the time of a perforation process. Similarly, single-sided circuit boards 111b, 111c, and 111d as shown in FIG. 9 are manufactured. Next, as shown in FIG. 9, after the single-sided circuit boards 111a, 111b, 111c, and 111d are overlaid, they are integrated by heating and pressing using a hot press to form the multilayer printed wiring board 112 shown in FIG. To manufacture.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 45-13303
[0005]
[Patent Document 2]
JP-A-9-36551
[0006]
[Problems to be solved by the invention]
However, in the method disclosed in Patent Document 2, an adhesive layer is formed on the surface of the insulating hard substrate on which the circuit is formed on the side opposite to the circuit, but the circuit of the insulating hard substrate having the circuit formed on one surface is formed. If the surface opposite to the above is heated after applying the adhesive or laminated by heating the adhesive sheet to form an adhesive layer, the heat capacity is partially determined depending on whether there is a circuit on the back surface or not. As a result, partial differences occur in the thickness and the viscosity of the adhesive layer. In particular, when the insulating hard substrate is thin, if there is a partial difference in the thickness or viscosity of the adhesive layer due to a partial difference in heat capacity when forming the adhesive layer, the obtained adhesive layer is The single-sided circuit board has a problem that the single-sided circuit board is warped and twisted, and it becomes extremely difficult to align a plurality of the single-sided circuit boards when heating and pressing. In addition, even if the positions of the single-sided circuit boards superimposed by the pin laminating method are temporarily fixed, if the single-sided circuit boards are warped and twisted, the single-sided circuit boards are not flat, so that heating, In a multilayer printed wiring board obtained by pressurization, there has been a problem that a position shift defect occurs in the position of an inner layer circuit.
[0007]
The present invention has been made in order to improve the above-mentioned problems, and an object of the present invention is to integrate a plurality of single-sided circuit boards having an adhesive layer by heating and pressing. When manufacturing a multilayer printed wiring board having an interstitial via hole structure through a process, a multilayer printed wiring that enables easy alignment when a plurality of single-sided circuit boards having an adhesive layer are laminated. An object of the present invention is to provide a copper clad laminate for a board. Another object of the present invention is to provide a multilayer printed wiring board and a method of manufacturing the multilayer printed wiring board, which can be manufactured by using the copper-clad laminate for a multilayer printed wiring board, thereby reducing the occurrence of misalignment failure with respect to the position of an inner layer circuit. To provide.
[0008]
[Means for Solving the Problems]
The copper-clad laminate for a multilayer printed wiring board according to the invention according to claim 1 is a solid copper foil on which a circuit is not formed, a hard insulating layer formed by curing a thermosetting resin, and temporarily heated. It is characterized in that a meltable adhesive layer and a protective film are arranged in this order and integrated.
[0009]
According to a second aspect of the present invention, there is provided the copper-clad laminate for a multilayer printed wiring board according to the first aspect, wherein the hard insulating layer contains a base material.
[0010]
The copper-clad laminate for a multilayer printed wiring board of the invention according to claim 3 is the copper-clad laminate for a multilayer printed wiring board according to claim 2, wherein the base material is a glass woven fabric, a glass nonwoven fabric, an organic fiber woven fabric or It is an organic fiber nonwoven fabric.
[0011]
The copper-clad laminate for a multilayer printed wiring board according to claim 4 is the copper-clad laminate for a multilayer printed wiring board according to claim 3, wherein the base material is a glass woven fabric or an organic fiber woven fabric, In addition, the fiber is opened.
[0012]
The copper-clad laminate for a multilayer printed wiring board of the invention according to claim 5 is the copper-clad laminate for a multilayer printed wiring board according to any one of claims 1 to 4, wherein the protective film has a surface roughness ( A film having a rough surface with Rz) of 0.01 to 5 μm is used by arranging the rough surface on the adhesive layer side.
[0013]
The copper-clad laminate for a multilayer printed wiring board of the invention according to claim 6 is the copper-clad laminate for a multilayer printed wiring board according to any one of claims 1 to 5, wherein the protective film has a thickness of 5 to 5. It is characterized by being within a range of 100 μm.
[0014]
A copper-clad laminate for a multilayer printed wiring board according to the invention of claim 7 is manufactured by using a plurality of the copper-clad laminate for a multilayer printed wiring board according to any one of claims 1 to 6. It is characterized by.
[0015]
The copper-clad laminate for a multilayer printed wiring board of the invention according to claim 8 is the method for manufacturing a multilayer printed wiring board according to claim 7,
(1) a step of forming a circuit on a solid copper foil surface of the copper-clad laminate for a multilayer printed wiring board according to any one of claims 1 to 6;
(2) a step of forming a hole with a bottom through the protective film, the adhesive layer and the hard insulating layer so as to come into contact with the circuit from the protective film side by punching;
(3) a step of imparting conductivity to the bottomed hole;
(4) a step of peeling off the protective film to produce a single-sided circuit board;
(5) The method is characterized in that a step of laminating and molding by hot pressing using at least two or more of the single-sided circuit boards is provided.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
First, an embodiment relating to a copper-clad laminate for a multilayer printed wiring board will be described. The copper-clad laminate for a multilayer printed wiring board according to the present embodiment has an interstitial via-hole structure through a process in which a plurality of single-sided circuit boards having an adhesive layer are stacked and heated and pressed to integrate them. And a raw material for producing the single-sided circuit board used in the production of the multilayer printed wiring board. As shown in FIG. 1, a copper-clad laminate 1 for a multilayer printed wiring board according to this embodiment has a solid copper foil 2 on which no circuit is formed, and a hard insulating layer formed by curing a thermosetting resin. 3, an adhesive layer 4 that can be temporarily melted by heating, and a protective film 5 are arranged and integrated in this order.
[0017]
In the copper-clad laminate 1 for a multilayer printed wiring board, the hard insulating layer 3 and the adhesive layer 4 are integrated before a circuit is formed on the solid copper foil 2. Therefore, in order to form the adhesive layer 4 on the hard insulating layer 3, a predetermined adhesive is applied and then heated, or a film (adhesive sheet) to be the adhesive layer 4 is laminated while being heated and bonded. When the agent layer 4 is temporarily bonded to the hard insulating layer 3, there is no partial difference in heat capacity at the time of temporary bonding depending on the presence or absence of a circuit. Therefore, it is possible to keep the film thickness and the viscosity behavior of the adhesive layer 4 uniform over the entire region. Even when the hard insulating layer 3 is thin, there is no partial difference in heat capacity at the time of temporary bonding due to the presence or absence of a circuit, so there is no partial difference in the film thickness or viscosity of the adhesive layer 4. As a result, the resulting single-sided circuit board having the adhesive layer 4 is prevented from warping and twisting, and becomes flat. Therefore, when a plurality of single-sided circuit boards having the adhesive layer 4 manufactured using the copper-clad laminate 1 for a multilayer printed wiring board are stacked, the alignment can be easily performed. In addition, since the single-sided circuit board is prevented from warping and twisting and is flat, when a plurality of single-sided circuit boards are heated and pressed, a single-sided circuit board described below is heated. The conductive bumps formed on the circuit board do not move, causing the conductive bump components to move and the conductive paste components to fall off, and the misalignment of the position of the inner layer circuit when a multilayer printed wiring board is formed. It becomes possible to reduce.
[0018]
The hard insulating layer 3 in the copper-clad laminate 1 for a multilayer printed wiring board according to the present embodiment is formed by curing a thermosetting resin. It is preferred in that respect. The hard insulating layer 3 is formed by hardening a thermosetting resin, and is hardened and does not melt in a lamination molding process using a hot press. Examples of the thermosetting resin for forming the hard insulating layer 3 include an epoxy resin, a bismaleimide triazine resin, and a fluororesin. When the hard insulating layer 3 contains a substrate, it is preferable to use a glass woven fabric, a glass nonwoven fabric, an organic fiber woven fabric, an organic fiber nonwoven fabric, or the like from the viewpoint of heat resistance.
[0019]
As a material for manufacturing the copper-clad laminate 1 for a multilayer printed wiring board of this embodiment, a normal single-sided copper-clad laminate in which a solid copper foil 2 and a hard insulating layer 3 are integrated can be used. For example, glass woven base epoxy resin single-sided copper-clad laminate, glass nonwoven base epoxy resin single-sided copper-clad laminate, glass woven base bismaleimide triazine resin single-sided copper-clad laminate, aramid non-woven base epoxy resin single-sided A copper-clad laminate, a glass woven fabric substrate fluororesin single-sided copper-clad laminate, or the like can be used. Further, a double-sided copper-clad laminate obtained by removing a copper foil on one side can also be used.
[0020]
Further, when the hard insulating layer 3 contains a base material, if the base material is a glass woven fabric or an organic fiber woven fabric, and the fiber-spreading treatment is performed, not only the dimensional stability is improved but also the distance between the via holes is improved. This is more preferable because the insulating property of the resin can be improved. When the woven fabric is subjected to the fiber opening treatment, the yarn is opened to improve the impregnating property of the resin and prevent the resin from being unfilled, so that the insulation between the via holes can be improved.
[0021]
In the copper-clad laminate 1 for a multilayer printed wiring board according to this embodiment, the adhesive layer 4 is formed by, for example, applying an adhesive containing a thermosetting resin to a roll coater, curtain coater, spray coater, screen printing, or the like. This is performed by a method such as applying to the single-sided copper-clad laminate described above and pre-curing, or laminating the adhesive sheet to the single-sided copper-clad laminate using a hot roll or the like. The thickness of the adhesive layer 4 is preferably in the range of 10 to 50 μm. Note that the adhesive layer 4 of the present invention has a property that it can be temporarily melted by heating, and is cured by subsequent heating.
[0022]
The protective film 5 in the copper-clad laminate 1 for a multilayer printed wiring board according to the present embodiment is not particularly limited, but the copper-clad laminate 1 for a multilayer printed wiring board is immersed in forming a circuit. Those having chemical resistance to an aqueous solution or an aqueous sodium hydroxide solution are preferred, and specific examples thereof include a polyethylene terephthalate film. Further, if the protective film 5 is peeled off during the process of forming a circuit on the copper-clad laminate 1 for a multilayer printed wiring board, there is a problem that the adhesive layer 4 is exposed and the solution used in the circuit forming process is contaminated. Therefore, the protective film 5 is required to have adhesion to the adhesive layer 4. As described above, since the protective film 5 functions as a protective layer for the adhesive layer 4 in the step of forming a circuit on the copper-clad laminate 1 for a multilayer printed wiring board, the surface of the protective film 5 on the adhesive layer 4 side is in close contact. It is preferable that the surface roughness (Rz) is in the range of 0.01 to 5 μm in order to secure the property. On the other hand, immediately before the plurality of single-sided circuit boards having the obtained adhesive layer 4 are laminated, the protective film 5 is peeled off from the single-sided circuit board, so that the protective film 5 is required to have peelability. Can be
[0023]
The thickness of the protective film 5 is preferably in the range of 5 to 100 μm for the following reason. In manufacturing a multilayer printed wiring board, after forming a circuit on the solid copper foil 2 surface of the copper-clad laminate 1 for a multilayer printed wiring board, the protective film 5 is perforated to form a circuit. A bottomed hole that penetrates the adhesive layer 3 and the hard insulating layer 2 and is in contact with the circuit is formed. Then, in order to impart conductivity to the bottomed hole, a conductive substance is added from the protective film 5 side to the bottom. Print and fill in the holes. Next, after removing excess conductive material on the surface with a squeegee or the like and flattening, the protective film 5 is peeled off to form a conductive bump projecting at a height substantially equal to the thickness of the protective film 5. Since the desirable range of the protruding height of the conductive bump is 5 to 100 μm, it is preferable that the thickness of the protective film 5 be in the range of 5 to 100 μm.
[0024]
Next, embodiments of the method for manufacturing a multilayer printed wiring board and the multilayer printed wiring board of the present invention will be described.
[0025]
In the embodiment according to the method for manufacturing a multilayer printed wiring board of the present invention, the above-described copper-clad laminate 1 for a multilayer printed wiring board is used,
(1) a step of forming a circuit on a solid copper foil surface of the copper-clad laminate 1 for a multilayer printed wiring board described above;
(2) a step of forming a hole with a bottom through the protective film, the adhesive layer and the hard insulating layer so as to come into contact with the circuit from the protective film side by punching;
(3) a step of imparting conductivity to the bottomed hole;
(4) a step of peeling off the protective film to produce a single-sided circuit board;
(5) A multilayer printed wiring board is manufactured by using at least two single-sided circuit boards and laminating them by hot pressing. The process will be described below in the order of steps with reference to FIGS.
[0026]
First, a single-sided copper-clad laminate 6 as shown in FIG. 2A is prepared as a material in which a solid copper foil 2 on which a circuit is not formed and a hard insulating layer 3 are integrated. Next, an adhesive layer 4 is formed on the surface of the one-sided copper-clad laminate 6 opposite to the solid copper foil 2 as shown in FIG. The adhesive layer 4 is formed by applying an adhesive containing a thermosetting resin by means of a roll coater, a curtain coater, a spray coater, screen printing, or the like, and then pre-curing the adhesive. It can be formed by laminating using a roll or the like. Next, the protective film 5 is laminated on the surface of the adhesive layer 4 using a heat roll, thereby producing a copper-clad laminate 1 for a multilayer printed wiring board, as shown in FIG.
[0027]
Next, a photosensitive dry film is laminated on the solid copper foil 2 of the copper-clad laminate 1 for a multilayer printed wiring board, and each of exposure, development, etching, and peeling is performed. The circuit 7 is formed as shown in FIG. 2D.
[0028]
Next, as shown in FIG. 2 (e), from the side of the protective film 5, a hole is drilled to form a bottomed hole 8 which penetrates through the protective film 5, the adhesive layer 4 and the hard insulating layer 3 and contacts the circuit 7. Form. The circuit 7 forms the bottom of the bottomed hole 8. It is preferable that the perforation process is performed by a carbon dioxide laser from the protective film 5 side. If it is necessary to remove the laser smear (residue) generated at that time, a method such as desmear permanganate may be used, or the residue may be removed with a UV laser.
[0029]
Next, conductivity is given to the bottomed hole 8. The conductivity is imparted by filling a conductive paste 9 in the bottomed hole 8 by a screen printing method as shown in FIG. Next, by peeling off the protective film 5, as shown in FIG. 2 (g), the conductive bumps 10 formed by projecting the conductive paste 9 are projected from the surface of the adhesive layer 4. It is desirable that the protruding height of the conductive bump 10 be 5 to 100 μm in the subsequent steps in order to improve the connectivity with other circuit boards. Thus, the single-sided circuit board 11a having the adhesive layer 4 is manufactured.
[0030]
Similarly, single-sided circuit boards 11b, 11c, and 11d as shown in FIG. 3 are manufactured. Next, as shown in FIG. 3, the single-sided circuit boards 11a, 11b, 11c, and 11d are overlapped, and are temporarily fixed by a welding method or a pin laminating method using guide holes and guide pins to perform alignment. In this manner, the single-sided circuit boards are superimposed and integrated by heat press and lamination molding using a hot press to produce the multilayer printed wiring board 12 shown in FIG. It is preferable to use a vacuum hot press as the hot press. By applying heat and pressure using a hot press, the adhesive layer 4 is once melted and then hardened, and the conductive paste 9 is also in close contact with the corresponding circuit and thermoset to form a via hole. Then, a multilayer printed wiring board 12 having an interstitial via hole structure shown in FIG. 4 is obtained.
[0031]
In this method for manufacturing a multilayer printed wiring board, as shown in FIG. 1, a solid copper foil 2 having no circuit formed thereon, a hard insulating layer 3 formed by curing a thermosetting resin, and a temporary Each of the single-sided circuit boards 11 a, 11 b, 11 c, using a copper-clad laminate 1 for a multilayer printed wiring board in which an adhesive layer 4 that can be melted and a protective film 5 are arranged and integrated in this order. Since the single-sided circuit boards 11a, 11b, 11c, and 11d are manufactured to be 11d, the single-sided circuit boards 11a, 11b, 11c, and 11d are flat and prevented from warping and twisting. Therefore, it is possible to easily perform alignment when a plurality of the single-sided circuit boards 11a, 11b, 11c, and 11d are stacked. In addition, since the single-sided circuit boards 11a, 11b, 11c, and 11d are prevented from warping and twisting and are flat, the single-sided circuit boards are temporarily fixed. When heated and pressurized, the conductive bumps formed on these single-sided circuit boards do not move, powder of conductive paste components accompanying the movement of the conductive bumps, and the inner layer when forming a multilayer printed wiring board It is possible to reduce the occurrence of a position shift defect regarding the position of the circuit.
[0032]
Therefore, in the obtained multilayer printed wiring board 12, the occurrence of misregistration defects in the position of the inner circuit is reduced.
[0033]
【Example】
(Example 1)
As the single-sided copper-clad laminate 6 shown in FIG. 2A, an FR-4 grade glass woven fabric base epoxy resin single-sided copper-clad laminate (manufactured by Matsushita Electric Works, product number R-1661, hard insulating layer thickness 0.1 mm) , A copper foil thickness of 18 μm). Next, as shown in FIG. 2 (b), an adhesive of epoxy resin is applied to the surface of the hard insulating layer 3 with a roll coater to a thickness of 30 μm, and heated (60 ° C.) until tackiness is lost. Agent layer 4 was formed. Next, using a laminator (temperature 80 ° C., pressure 0.05 MPa), a polyethylene terephthalate film (manufactured by Toray Industries, product number T-60, thickness 38 μm) as the protective film 5 is laminated on the surface of the adhesive layer 4, A copper-clad laminate 1 for a multilayer printed wiring board shown in FIG.
[0034]
Next, a photosensitive dry film was laminated on the solid copper foil 2 of the copper-clad laminate 1 for a multilayer printed wiring board, and was exposed and developed. Further, an etching treatment was performed using a cupric chloride solution, and then the dry film was peeled off using a sodium hydroxide solution, thereby forming a circuit 7 as shown in FIG.
[0035]
Next, as shown in FIG. 2 (e), from the side of the protective film 5, a hole is drilled to form a bottomed hole 8 which penetrates through the protective film 5, the adhesive layer 4 and the hard insulating layer 3 and contacts the circuit 7. Formed. In the perforation process, after a hole was formed using a carbon dioxide laser from the protective film 5 side, the residue was removed using a UV laser so that no residue was left on the surface of the circuit 7 in the bottomed hole 8.
[0036]
Next, in order to impart conductivity to the bottomed hole 8, a conductive paste 9 containing silver as a main component was filled in the bottomed hole 8 by a screen printing method as shown in FIG. . Next, by peeling the protective film 5, the conductive bumps 10 formed by projecting the conductive paste 9 are projected from the surface of the adhesive layer 4 as shown in FIG. A single-sided circuit board 11a having the layer 4 was produced. The produced single-sided circuit board 11a was flat without warpage.
[0037]
Similarly, single-sided circuit boards 11b, 11c and 11d shown in FIG. 3 were produced. Next, the single-sided circuit boards 11a, 11b, 11c, and 11d were superimposed, temporarily fixed by a pin lamination method, and aligned. Each of the single-sided circuit boards 11a, 11b, 11c, and 11d was flat without any warpage and could be easily aligned.
[0038]
In this manner, the single-sided circuit boards 11a, 11b, 11c, and 11d are superimposed and heated and pressed (180 ° C., 1 hour) under vacuum using a hot press, and FIG. The multilayer printed wiring board 12 shown was obtained. In the obtained multilayer printed wiring board 12, no misalignment failure occurred at the position of the inner layer circuit.
[0039]
(Example 2)
In the same manner as in Example 1, single-sided circuit boards 11a, 11b, 11c, and 11d shown in FIG. Next, as shown in FIG. 5A, single-sided circuit boards 11a, 11b, 11c and 11d are arranged above and below the core board 13 in which the inner layer circuits formed on both sides are electrically connected to each other. It was temporarily fixed by the method and alignment was performed. Each of the single-sided circuit boards 11a, 11b, 11c, and 11d was flat without any warpage and could be easily aligned.
[0040]
In this manner, the core substrate 13 and the single-sided circuit boards 11a, 11b, 11c, and 11d are stacked and heated and pressed (180 ° C., 1 hour) under vacuum using a hot press. A multilayer printed wiring board 12 shown in FIG. 5B was obtained. In the obtained multilayer printed wiring board 12, no misalignment failure occurred at the position of the inner layer circuit.
[0041]
(Example 3)
In the same manner as in Example 1, single-sided circuit boards 11b and 11c shown in FIG. Further, as shown in FIG. 6A, a surface layer substrate 14a in which the conductive bumps 10 are formed and no circuit is formed on the solid copper foil 2, and a single-sided circuit substrate 11a of Example 1 are manufactured. It was produced under the following conditions. Similarly, another surface layer substrate 14b was manufactured. Next, as shown in FIG. 6A, the surface layer substrate 14a, the single-sided circuit boards 11b and 11c, and the other surface layer substrate 14b were superimposed and temporarily fixed by a pin lamination method to perform positioning. Since the surface substrates 14a and 14b and the single-sided circuit substrates 11b and 11c were flat without warpage, the positioning could be easily performed.
[0042]
In this manner, the surface layer substrates 14a and 14b and the single-sided circuit boards 11b and 11c are superimposed as shown in FIG. 6A, and heated and pressed under vacuum (180 ° C.) using a hot press. 1 hour) to obtain a multilayer board 15 having a solid copper foil 2 on the surface as shown in FIG. 6 (b).
[0043]
Next, drill processing is performed on a predetermined position of the multilayer printed board 15 and then through-hole plating is performed, and then a circuit is formed to obtain a multilayer printed wiring board 12 having both via holes and through holes as shown in FIG. Was. In the obtained multilayer printed wiring board 12, no misalignment failure occurred at the position of the inner layer circuit.
[0044]
【The invention's effect】
According to the copper-clad laminate for a multilayer printed wiring board according to the first aspect of the present invention, a laminate of a plurality of single-sided circuit boards having an adhesive layer is heated and pressed to integrate them. When manufacturing a multilayer printed wiring board having a char via hole structure, it is possible to obtain a single-sided circuit board that can easily be aligned when a plurality of single-sided circuit boards having an adhesive layer are stacked.
[0045]
According to the copper-clad laminate for a multilayer printed wiring board according to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, an effect that the copper-clad laminate for a multilayer printed wiring board having good dimensional stability is obtained. To play.
[0046]
According to the copper-clad laminate for a multilayer printed wiring board according to the third aspect of the present invention, in addition to the effect of the second aspect of the invention, there is provided an effect that a copper-clad laminate for a multilayer printed wiring board having good heat resistance is obtained. Play.
[0047]
According to the copper-clad laminate for a multilayer printed wiring board of the invention according to claim 4, in addition to the effect of the invention of claim 3, it is possible to obtain a multilayer printed wiring board with improved insulation between via holes. It works.
[0048]
According to the copper-clad laminate for a multilayer printed wiring board according to the fifth aspect of the present invention, in addition to the effect of the first aspect of the invention, there is an effect that the adhesion between the protective film and the adhesive layer can be improved.
[0049]
According to the copper-clad laminate for a multilayer printed wiring board according to the invention of claim 6, in addition to the effect of the invention of claim 1, a single-sided circuit board capable of improving the connectivity with other circuit boards can be manufactured. It works.
[0050]
Since the multilayer printed wiring board of the invention according to claim 7 is manufactured using a plurality of the copper-clad laminates for multilayer printed wiring boards according to any one of claims 1 to 6, misalignment is poor. This is a multilayer printed wiring board in which the occurrence of occurrence can be reduced.
[0051]
According to the method for manufacturing a multilayer printed wiring board of the invention according to claim 8, when manufacturing a multilayer printed wiring board having an interstitial via hole structure, a method for stacking a plurality of single-sided circuit boards having an adhesive layer is used. It is possible to easily perform the alignment, and to reduce the occurrence of the misalignment of the position of the inner layer circuit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a copper-clad laminate for a multilayer printed wiring board according to the present invention.
FIG. 2 is a cross-sectional view showing each step for describing an embodiment according to a method for manufacturing a multilayer printed wiring board of the present invention.
FIG. 3 is a sectional view illustrating a step following FIG. 2 for describing an embodiment of the method for manufacturing a multilayer printed wiring board according to the present invention.
FIG. 4 is a cross-sectional view illustrating an embodiment according to the multilayer printed wiring board of the present invention.
FIG. 5 is a sectional view showing each step in a second embodiment of the present invention.
FIG. 6 is a cross-sectional view showing each step in Embodiment 3 of the present invention.
FIG. 7 is a cross-sectional view showing a step following the step shown in FIG. 6 in the third embodiment of the present invention.
FIG. 8 is a cross-sectional view showing each step for explaining a conventional technique.
FIG. 9 is a cross-sectional view showing a step following FIG. 7 for explaining the conventional technique.
FIG. 10 is a cross-sectional view for explaining a conventional multilayer printed wiring board.
[Explanation of symbols]
1 Copper-clad laminates for multilayer printed wiring boards
2 Solid copper foil
3 Hard insulation layer
4 Adhesive layer
5 Protective film
6 Single-sided copper-clad laminate
7 circuits
8 Hole with bottom
9 conductive paste
10 Conductive bump
11a, 11b, 11c, 11d Single-sided circuit board
12. Multilayer printed wiring board
13 core board
14a, 14b Surface layer substrate
102 metal foil
103 Insulating hard substrate
104 adhesive layer
107 circuits
108 holes
109 conductive paste
111a, 111b, 111c, 111d Single-sided circuit board
112 Multilayer Printed Wiring Board

Claims (8)

回路が未形成であるべた銅箔と、熱硬化性樹脂が硬化して形成された硬質絶縁層と、加熱により一時的に溶融可能となる接着剤層と、保護フィルムとを、この順に配置して一体化していることを特徴とする多層プリント配線板用銅張り積層板。A solid copper foil on which a circuit is not formed, a hard insulating layer formed by curing a thermosetting resin, an adhesive layer which can be temporarily melted by heating, and a protective film are arranged in this order. A copper-clad laminate for multilayer printed wiring boards characterized by being integrated. 硬質絶縁層が、基材入りであることを特徴とする請求項1記載の多層プリント配線板用銅張り積層板。The copper-clad laminate for a multilayer printed wiring board according to claim 1, wherein the hard insulating layer contains a base material. 基材が、ガラス織布、ガラス不織布、有機繊維織布又は有機繊維不織布であることを特徴とする請求項2記載の多層プリント配線板用銅張り積層板。The copper-clad laminate for a multilayer printed wiring board according to claim 2, wherein the substrate is a glass woven fabric, a glass nonwoven fabric, an organic fiber woven fabric, or an organic fiber nonwoven fabric. 基材が、ガラス織布又は有機繊維織布であって、かつ、開繊処理がされていることを特徴とする請求項3記載の多層プリント配線板用銅張り積層板。The copper-clad laminate for a multilayer printed wiring board according to claim 3, wherein the base material is a glass woven fabric or an organic fiber woven fabric, and has been subjected to fiber opening treatment. 保護フィルムとして、表面粗度(Rz)が0.01〜5μmである粗面を持つフィルムを、この粗面を接着剤層側に配置して使用していることを特徴とする請求項1乃至請求項4の何れかに記載の多層プリント配線板用銅張り積層板。A film having a rough surface having a surface roughness (Rz) of 0.01 to 5 [mu] m is used as the protective film, with the rough surface being disposed on the adhesive layer side. The copper-clad laminate for a multilayer printed wiring board according to claim 4. 保護フィルムの厚みが、5〜100μmの範囲内であることを特徴とする請求項1乃至請求項5の何れかに記載の多層プリント配線板用銅張り積層板。The copper-clad laminate for a multilayer printed wiring board according to any one of claims 1 to 5, wherein the thickness of the protective film is in the range of 5 to 100 µm. 請求項1乃至請求項6の何れかに記載の多層プリント配線板用銅張り積層板を複数枚用いて製造していることを特徴とする多層プリント配線板。A multilayer printed wiring board manufactured by using a plurality of copper-clad laminates for a multilayer printed wiring board according to any one of claims 1 to 6. 請求項7記載の多層プリント配線板の製造方法であって、
(1)請求項1乃至請求項6の何れかに記載の多層プリント配線板用銅張り積層板のべた銅箔面に回路を形成する工程、
(2)保護フィルム面側から、穿孔加工を行い保護フィルム、接着剤層及び硬質絶縁層を貫通して前記回路に接する有底穴を形成する工程、
(3)前記有底穴に導電性を付与する工程、
(4)保護フィルムを剥離して片面回路基板を作製する工程、
(5)前記片面回路基板を、少なくとも2枚以上用いて、熱プレスにより積層成形する工程
を経ることを特徴とする多層プリント配線板の製造方法。
It is a manufacturing method of the multilayer printed wiring board of Claim 7, Comprising:
(1) a step of forming a circuit on a solid copper foil surface of the copper-clad laminate for a multilayer printed wiring board according to any one of claims 1 to 6;
(2) forming a hole with a bottom through the protective film, the adhesive layer, and the hard insulating layer to make contact with the circuit from the protective film surface side by punching;
(3) a step of imparting conductivity to the bottomed hole;
(4) a step of peeling off the protective film to produce a single-sided circuit board;
(5) A method for producing a multilayer printed wiring board, comprising a step of laminating and molding by hot pressing using at least two single-sided circuit boards.
JP2003116466A 2003-04-22 2003-04-22 Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board Expired - Fee Related JP4075673B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003116466A JP4075673B2 (en) 2003-04-22 2003-04-22 Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
CN200480010918.9A CN1778155B (en) 2003-04-22 2004-04-22 Multilayer printed wiring board-use copper-clad laminate sheet, multilayer printed wiring board and production method for multilayer printed wiring board
PCT/JP2004/005764 WO2004095900A1 (en) 2003-04-22 2004-04-22 Multilayer printed wiring board-use copper-clad laminate sheet, multilayer printed wiring board and production method for multilayer printed wiring board
TW93111299A TWI313577B (en) 2003-04-22 2004-04-22 Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116466A JP4075673B2 (en) 2003-04-22 2003-04-22 Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2004327510A true JP2004327510A (en) 2004-11-18
JP4075673B2 JP4075673B2 (en) 2008-04-16

Family

ID=33307992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116466A Expired - Fee Related JP4075673B2 (en) 2003-04-22 2003-04-22 Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board

Country Status (4)

Country Link
JP (1) JP4075673B2 (en)
CN (1) CN1778155B (en)
TW (1) TWI313577B (en)
WO (1) WO2004095900A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156495A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Via hole formation metal clad multilayer board and through hole formation unclad board
JP2006294725A (en) * 2005-04-07 2006-10-26 Fujikura Ltd Wiring board, multilayered wiring board, and manufacturing method of these
WO2007043438A1 (en) * 2005-10-11 2007-04-19 Sumitomo Electric Industries, Ltd. Multilayer printed wiring board and method for producing same
JP2007109727A (en) * 2005-10-11 2007-04-26 Sumitomo Electric Ind Ltd Multilayer printed wiring board and method of manufacturing same
JP2007109697A (en) * 2005-10-11 2007-04-26 Sumitomo Electric Ind Ltd Multilayer printed wiring board and method of manufacturing same
JP2007245674A (en) * 2006-03-17 2007-09-27 Mitsubishi Plastics Ind Ltd Resin attached copper foil
JP2008235833A (en) * 2007-03-23 2008-10-02 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring board
JP2008244061A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
JP2008244091A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
WO2009017051A1 (en) 2007-07-27 2009-02-05 Zeon Corporation Composite for multilayer circuit board
JP2010515281A (en) * 2007-01-02 2010-05-06 オルメット サーキッツ、インコーポレイテッド Method for making high density multilayer printed wiring board from parallel processed circuits and filled vias
KR101019155B1 (en) 2008-12-03 2011-03-04 삼성전기주식회사 Method for manufacturing substrate
JP2011187667A (en) * 2010-03-08 2011-09-22 Denso Corp Resin film, multilayer circuit board using the same, and method of manufacturing the same
CN103026805A (en) * 2010-04-30 2013-04-03 Ddi环球有限公司 Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
WO2015040878A1 (en) * 2013-09-20 2015-03-26 日本メクトロン株式会社 Method for manufacturing multilayer printed wiring board, and multilayer printed wiring board
CN104936381A (en) * 2014-03-18 2015-09-23 日本梅克特隆株式会社 Manufacture method of flexible printed circuit board and intermediate product thereof
JP2018125350A (en) * 2017-01-30 2018-08-09 新光電気工業株式会社 Wiring board and manufacturing method of the same
US10244640B2 (en) * 2014-02-21 2019-03-26 Mitsui Mining & Smelting Co., Ltd. Copper clad laminate provided with protective layer and multilayered printed wiring board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179808B (en) * 2011-12-21 2016-08-24 北大方正集团有限公司 Multilayer board and preparation method thereof
CN103730190B (en) * 2014-01-16 2016-08-17 广州新视界光电科技有限公司 Complex copper conductive film and preparation method thereof and metal line circuit
JP6322075B2 (en) * 2014-07-23 2018-05-09 日本メクトロン株式会社 Manufacturing method of multilayer printed wiring board
TWI626870B (en) * 2016-12-05 2018-06-11 中華精測科技股份有限公司 Vertical connection interface structure, circuit board having interface structure and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104196A (en) * 1985-10-31 1987-05-14 日東紡績株式会社 Multilayer printed circuit substrate
JP4776056B2 (en) * 2000-03-23 2011-09-21 イビデン株式会社 Conductive paste
JP2001105555A (en) * 1999-10-13 2001-04-17 Ajinomoto Co Inc Adhesive film and method for manufacturing multi-layer printed wiring board using adhesive film
JP4489899B2 (en) * 2000-03-08 2010-06-23 イビデン株式会社 Method for manufacturing double-sided circuit board for multilayer printed wiring board

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156495A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Via hole formation metal clad multilayer board and through hole formation unclad board
US7926175B2 (en) 2005-04-07 2011-04-19 Fujikura Ltd. Wiring board, multilayer wiring board, and method for manufacturing the same
JP2006294725A (en) * 2005-04-07 2006-10-26 Fujikura Ltd Wiring board, multilayered wiring board, and manufacturing method of these
JP2007109697A (en) * 2005-10-11 2007-04-26 Sumitomo Electric Ind Ltd Multilayer printed wiring board and method of manufacturing same
JP2007109727A (en) * 2005-10-11 2007-04-26 Sumitomo Electric Ind Ltd Multilayer printed wiring board and method of manufacturing same
KR101281898B1 (en) * 2005-10-11 2013-07-03 스미토모덴키고교가부시키가이샤 Multilayer printed wiring board and method for producing same
TWI412313B (en) * 2005-10-11 2013-10-11 Sumitomo Electric Industries Multilayer printing wire board and method for producting the same
WO2007043438A1 (en) * 2005-10-11 2007-04-19 Sumitomo Electric Industries, Ltd. Multilayer printed wiring board and method for producing same
JP2007245674A (en) * 2006-03-17 2007-09-27 Mitsubishi Plastics Ind Ltd Resin attached copper foil
JP2010515281A (en) * 2007-01-02 2010-05-06 オルメット サーキッツ、インコーポレイテッド Method for making high density multilayer printed wiring board from parallel processed circuits and filled vias
JP2008235833A (en) * 2007-03-23 2008-10-02 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring board
JP2008244061A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
JP2008244091A (en) * 2007-03-27 2008-10-09 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring circuit board
WO2009017051A1 (en) 2007-07-27 2009-02-05 Zeon Corporation Composite for multilayer circuit board
TWI407866B (en) * 2007-07-27 2013-09-01 Zeon Corp Production method of composite for multilayer circuit board
KR101019155B1 (en) 2008-12-03 2011-03-04 삼성전기주식회사 Method for manufacturing substrate
JP2011187667A (en) * 2010-03-08 2011-09-22 Denso Corp Resin film, multilayer circuit board using the same, and method of manufacturing the same
CN103026805A (en) * 2010-04-30 2013-04-03 Ddi环球有限公司 Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
KR20130059356A (en) * 2010-04-30 2013-06-05 디디아이 글로벌 코퍼레이션 Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
EP2564677A4 (en) * 2010-04-30 2015-06-24 Viasystems Technologies Corp L L C Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
KR101694575B1 (en) * 2010-04-30 2017-01-09 디디아이 글로벌 코퍼레이션 Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
WO2015040878A1 (en) * 2013-09-20 2015-03-26 日本メクトロン株式会社 Method for manufacturing multilayer printed wiring board, and multilayer printed wiring board
JP2015061058A (en) * 2013-09-20 2015-03-30 日本メクトロン株式会社 Multilayer printed wiring board manufacturing method and multilayer printed wiring board
US9788439B2 (en) 2013-09-20 2017-10-10 Nippon Mektron, Ltd. Manufacturing method of multilayer printed wiring board
TWI621388B (en) * 2013-09-20 2018-04-11 Nippon Mektron Kk Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
US10004148B2 (en) 2013-09-20 2018-06-19 Nippon Mektron, Ltd. Manufacturing method of multilayer printed wiring board
US10244640B2 (en) * 2014-02-21 2019-03-26 Mitsui Mining & Smelting Co., Ltd. Copper clad laminate provided with protective layer and multilayered printed wiring board
CN104936381A (en) * 2014-03-18 2015-09-23 日本梅克特隆株式会社 Manufacture method of flexible printed circuit board and intermediate product thereof
CN104936381B (en) * 2014-03-18 2018-12-07 日本梅克特隆株式会社 The manufacturing method and its intermediate product of flexible printed circuit board
JP2018125350A (en) * 2017-01-30 2018-08-09 新光電気工業株式会社 Wiring board and manufacturing method of the same

Also Published As

Publication number Publication date
TW200427389A (en) 2004-12-01
CN1778155B (en) 2010-12-08
JP4075673B2 (en) 2008-04-16
TWI313577B (en) 2009-08-11
WO2004095900A1 (en) 2004-11-04
CN1778155A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP4075673B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
US6459046B1 (en) Printed circuit board and method for producing the same
US6320140B1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method of its production
US20060180344A1 (en) Multilayer printed wiring board and process for producing the same
WO1998056220A1 (en) Single-sided circuit board and method for manufacturing the same
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP4043115B2 (en) Multi-layer printed wiring board
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP3492467B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
JP2001015913A (en) One-sided circuit board and its production, and production of multilayered wiring board
JPH1154926A (en) One-sided circuit board and its manufacture
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JP2002198652A (en) Multilayer printed wiring board, method of manufacturing the same and single-sided circuit board therefor
JP2006066738A (en) Multi-layer printed wiring board, copper-clad laminate therefor, and method for manufacturing the same
JPH1041635A (en) Single-sided circuit board for multilayer printed wiring board, its manufacture, and multilayer printed wiring board
JP2001015919A (en) Multilayer printed wiring board, circuit-board therefor and its manufacture
KR100651422B1 (en) Method for fabricating the multi layer using Layup Process
JP3253886B2 (en) Single-sided circuit board for multilayer printed wiring board, method for manufacturing the same, and multilayer printed wiring board
JP2007335631A (en) Manufacturing method of laminated wiring board
JP2011082429A (en) Multilayer wiring board having cavity portion and method of manufacturing the same
JP2008235640A (en) Circuit board and circuit board manufacturing method
JPH10126058A (en) Manufacture of multilayered printed interconnection board
JP2001308521A (en) Method for manufacturing multilayered circuit board
JP3492667B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees