JP2004323644A - Epoxy resin composition and package for semiconductor device using it - Google Patents

Epoxy resin composition and package for semiconductor device using it Download PDF

Info

Publication number
JP2004323644A
JP2004323644A JP2003119138A JP2003119138A JP2004323644A JP 2004323644 A JP2004323644 A JP 2004323644A JP 2003119138 A JP2003119138 A JP 2003119138A JP 2003119138 A JP2003119138 A JP 2003119138A JP 2004323644 A JP2004323644 A JP 2004323644A
Authority
JP
Japan
Prior art keywords
mass
resin composition
epoxy resin
average particle
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003119138A
Other languages
Japanese (ja)
Inventor
Daisuke Suzuki
大介 鈴木
Masao Kawaguchi
将生 川口
Tsukasa Sakuraba
司 桜庭
Toshiya Urakawa
俊也 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003119138A priority Critical patent/JP2004323644A/en
Publication of JP2004323644A publication Critical patent/JP2004323644A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition with improved adhesion of the resin to metals and a moisture-resistant package for a semiconductor device using the composition. <P>SOLUTION: The epoxy resin composition contains three ingredients: (a), (b) and (c). The total of the ingredients accounts for 50-95 mass%. (a): 10-30 mass% magnesium hydroxide having an average particle diameter of 0.1-5 μm. (b): 1-20 mass% silica having a density of less than 2.10 g/cm<SP>3</SP>as measured by using 1-butanol as the medium, a moisture absorption of 3% or more and an average particle diameter of 1-3 μm. (c): 30-70 mass% inorganic filler selected from the group consisting of silica and alumina having an average particle diameter of more than 3 μm and 30 μm or less. The semiconductor device is manufactured by integrally molding a metal or a composites comprising a metal and the epoxy resin composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リードフレーム等の金属に対する密着性を向上させ、これにより耐湿性に優れた半導体装置を製造するためのエポキシ樹脂組成物、ならびにこの樹脂組成物から成る半導体装置用パッケージに関する。
【0002】
【従来の技術】
ICやLSI等の半導体素子は、周囲の温度や湿度の変化、あるいは微細なごみや埃などに大きく影響され、その特性が変化してしまったり、機械的衝撃や振動により破損しやすいものとなっている。このため、半導体素子の外部環境からの保護のため、セラミックス製や樹脂製の箱(パッケージ)に封入した状態で使用に供することは良く知られている。中でも固体撮像素子(例えばCCD、MOS、CPD等)、光書き込み/消去可能なメモリー(例えばEPROM等)等、光学特性を有する半導体素子を用いた半導体装置には、光透過性が要求される。そのため、水分が結露して光透過率を低下させるのを防止するために、気密封止性、特に耐湿性が要求される。
【0003】
パッケージ方式には、大別して気密封止方式と樹脂封止方式がある。気密封止方式では、セラミックスが用いられることもあるが、樹脂を用いるパッケージも存在する。すなわち、樹脂製の中空パッケージ(以下、単に「パッケージ」と称することもある。)の中央部に、接着剤によって固着された半導体素子は、インサート成形によって樹脂成形体と一体化され、両端がパッケージの内側と外側に開放されたリードフレームとボンディングワイヤーによって、電気的に接続されている。また樹脂成形体の上面の開口部を、透明あるいは不透明、半透明な合成樹脂板、ガラス板、セラミックス板などの蓋材を接着剤によって固着し、半導体素子をパッケージ内に気密封止するというものである。
【0004】
しかしながら、このような封止手段を講じても、時間の経過に伴い微量の水分がパッケージ内に侵入し、半導体素子の機能を低下させ、ついには使用不可能の状態になったり、特に、前述の光学特性を有する半導体装置では、透明な蓋材の内側に水分が結露し、光透過率を低下させてしまうなどの問題があった。
【0005】
これに対し、末次らは、特開平6−49333号公報、特開平7−126494号公報、特開平7−126492号公報等において、ある種の吸湿材を樹脂中に含有させ、これによりパッケージや接着剤の耐湿性を大幅に向上させる手法を提案している。この手法により、これまで耐水性が不足していた樹脂製パッケージにおいても、特に光学特性を有する半導体装置に使用が可能となった。
【0006】
【発明が解決しようとする課題】
しかし近年においては、半導体装置の更なる小型化、薄型化が望まれ、それに伴いパッケージ厚みもこれまでよりも薄くなることが望まれている。したがって、これまでよりもさらに耐湿性を向上させたパッケージを用いないと、半導体素子の機能を低下させてしまうこととなっている。前述の特開平6−49333号公報記載の低密度球状シリカの添加量を増やせば、この問題をある程度解決することはできるが、さらに性能の優れた樹脂が求められる。
【0007】
そこで本発明の目的は、これまでよりも耐湿性を向上させ、より小型化、薄型化の半導体装置を製造することのできる樹脂組成物を提供し、これも用いて製造される半導体装置用パッケージを提供することにある。
【0008】
【課題を解決するための手段】
前述のように、一般的に樹脂から成る半導体装置は、外部基板と電気的接続を得るために、リードフレームを一体成形する。本発明者らは検討の結果、樹脂とリードフレームの密着力をより強める手法を開発した。
【0009】
すなわち、本発明により、シリカ及びアルミナからなる群より選択される、平均粒径が3μmを越え30μm以下の無機フィラーを、30質量%以上70質量%以下、平均粒径が0.1μm以上5μm以下の水酸化マグネシウムを10ないし30質量%含有することを特徴とするエポキシ樹脂組成物が提供される。
【0010】
さらに、エポキシ樹脂組成物中に、以下(a)、(b)、(c)の3成分を含有し、(a)、(b)、(c)の含有量の合計が50ないし95質量%であることを特徴とするエポキシ樹脂組成物が提供される。
(a)平均粒径が0.1μm以上5μm以下の水酸化マグネシウムが10ないし30質量%、
(b)1−ブタノールを媒体として測定した密度が2.10g/cm未満で吸湿率が3%以上、かつ平均粒径が0.1μm以上3μm以下のシリカが1質量%以上20質量%以下、
(c)シリカ及びアルミナからなる群より選択される平均粒径が3μmを越え30μm以下の無機フィラーを30質量%以上70質量%以下。
【0011】
また、これらのエポキシ樹脂組成物を用いて、金属または金属からなる複合材料と一体成形された半導体装置用パッケージが提供される。
【0012】
この特定の配合剤を含有するエポキシ樹脂組成物は、エポキシ樹脂組成物自体の耐湿性が向上すると共に、リードフレームとの密着性を著しく向上させ、その結果リードフレームと樹脂の界面から侵入する水を減少させることができる。すなわち、パッケージ内部に侵入する水分を減少させ、半導体装置の耐湿性を向上させることが出来る。
【0013】
【発明の実施の形態】
使用するエポキシ樹脂として特に制限は無く、公知の種々のエポキシ樹脂が挙げられ、例えばオルソクレゾール型、ビフェノール型、ナフタレン型、ビスフェノール型などのエポキシ樹脂が1種類または2種類以上混合して使用できる。
ここでエポキシ樹脂の配合割合としては、全樹脂組成物100重量%中に通常5〜25重量%、好ましくは5〜15重量%である。
【0014】
エポキシ樹脂に対する硬化剤としては、公知の種々の硬化剤が使用され、例えばフェノールノボラック類、脂肪族あるいは芳香族アミン、またはそれらの変性物、酸無水物、酸ヒドラジド等が挙げられる。これらの硬化剤は、エポキシ樹脂のエポキシ基に対し0.5ないし1.5当量、好ましくは0.8ないし1.2当量の割合で配合される。
【0015】
本発明の樹脂組成物中には、水酸化マグネシウムを含有することを特徴とする。使用する水酸化マグネシウムの平均粒子径(本発明において平均粒子径の測定はレーザー法による。)は0.1μm以上5μm以下であり、好ましくは0.5μm以上3μm以下であり、配合量は10質量%以上30質量%以下、好ましくは15質量%以上30質量%以下である。この範囲の水酸化マグネシウムを含有させることにより、樹脂としての成形性に優れ、金属または金属複合体との密着性が大幅に向上する。加えて、水酸化マグネシウムには難燃効果があるため、樹脂中の配合量を増やすことによって、環境に負荷をかけるハロゲン系難燃剤、アンチモン系難燃剤を使用することなく、難燃効果を得ることも出来る。
【0016】
また、成形性向上、寸法安定性向上などの目的で、シリカ及びアルミナからなる群より選択される、平均粒径3μmを越え30μm以下、好ましくは5μm以上30μm以下の無機フィラーを、全組成物基準で30質量%以上70質量%以下、好ましくは50質量%以上70質量%以下含有させることが好ましい。これらの無機フィラーの中ではシリカが好ましい。
【0017】
さらに、1−ブタノールを媒体として測定した密度が2.10g/cm未満で、吸湿率が3%以上、かつ、平均粒径が0.1μm以上3μm以下のシリカ(以下低密度シリカと言うことがある。密度、吸湿率の測定方法は特開平6−49333号公報に記載の方法による。)を1質量%以上20質量%以下、好ましくは5質量%以上20質量%以下含有することが好ましい。これにより、樹脂自体の耐湿性が著しく向上する。
【0018】
これら水酸化マグネシウム、低密度シリカ、シリカ及び/またはアルミナの合計が、全樹脂組成物基準で50質量%以上95質量%以下、好ましくは70質量%以上95質量%以下であることが好ましい。この範囲にあることによって、樹脂の耐侯性、成形性などが向上する。
【0019】
本発明の樹脂組成物には、この他に、本発明の目的を損ねない範囲で、成形性・離型性向上、強度向上等を目的とし、公知の種々の添加剤を配合することが可能である。例を挙げると、ガラス繊維、カーボン繊維、ガラスビーズ、マイカ、タルク、酸化チタン、炭酸カルシウム等の無機充填剤、酸化アンチモン、ハロゲン化エポキシ樹脂、ハロゲン化フェノール樹脂、リン化合物、水酸化アルミニウム等の難燃剤、ワックス類、脂肪酸、酸の金属塩などの離型剤、シランカップリング剤、着色顔料を例示することが出来る。
【0020】
上記のエポキシ樹脂組成物を用いて、金属または金属からなる複合体(例示できればあげて下さい)と一体成形することにより、本発明の半導体用パッケージが得られる。成形方法としては、あらかじめ金属または金属からなる複合体を金型内に挿入し、射出成形やトランスファー成形によるインサート成形する方法があげられる。この際に用いる金属材質は特に制限が無く適用でき、リードフレームとして用いる場合は、例えばFe−Ni合金系として42合金、46合金、コバール合金など、またCu合金系としてCA194、CA195、CA505、KLF−1、CAC−92、コバール合金等が好適に使用できる。
【0021】
なお、これまでは常温で固体のエポキシ樹脂組成物について述べたが、本発明は常温で液体のエポキシ樹脂組成物に適応することも可能である。この場合は、耐湿性が改善された、金属との密着力が強い液状接着剤として適応できる。
【0022】
また、本発明はリードフレームと樹脂の密着力を強くして、水の侵入を防ぐ手法を提案したが、樹脂の金属の密着力が強くなることを利用して他の用途に適応することも可能である。例えば、電子部品と放熱のための金属性ヒートシンク(放熱板)との密着力を上げ、衝撃や振動に対して破損しにくくするための樹脂として用いることが可能である。
【0023】
【実施例】
以下、本発明を実施例に基づいて説明するが、本発明はこれら実施例に何ら限定されるものではない。
【0024】
(実施例1)
表1に記載の量(数値の単位は質量部)で樹脂、充填材、硬化触媒、添加剤等を配合した。これを95℃の熱ロールで加熱混練した後、冷却、粉砕工程を経て、エポキシ樹脂組成物(EX−1)を得た。得られた樹脂組成物を用いて、図1に示す試験片の成形体をトランスファー成形で作製した。この際、使用する金属フレームとしては、42合金と、CA194合金の2種類を用いた。成形条件は、180℃、25MPaであり、射出時間1分間、硬化時間3分間とした。この試験片の両金属部分をつかませ、オリエンテック社製万能試験機テンシロンUTC5Tを用いて引抜試験を行い、引抜強度を求めた。測定した値を表1に示す。
【0025】
続いて、樹脂組成物EX−1を用いて42合金製リードフレームを一体成形して、図2記載のパッケージ(1/4型SOP(Small Outline Package))を作製した。このパッケージは、底面の厚さが0.35mmと薄型となっており、通常のパッケージ(一般的な固体撮像素子用樹脂パッケージは、底面厚さが0.8mm程度)よりも水を浸透させやすい。成形条件は前述と同じとした。このパッケージを十分乾燥させた後にシール剤(協立化学産業(株)社製ワールドロックNo.8723K8L)を蓋接着部に塗布し、厚さ0.8mmのガラスを貼り付けて封止し、メタルハライドランプのUV光(照射条件は100mW×30秒)を用いて硬化させた。このパッケージを市販のプレッシャークッカー試験機に入れ、121℃×100%の環境下で所定時間曝露した。次に、ガラス面を一定条件で強制冷却し、中空部内の水分が結露するかどうかを調べた(以下、この試験法を「曇り試験」と記す。)。結露が認められないものを良品とし、耐湿性の優劣は10個測定した中での良品率で判定した。結果を表1に示す。
【0026】
【表1】

Figure 2004323644
【0027】
なお、表1に記載した各原料は、以下の通りである。
エポキシ樹脂:日本化薬(株)社製EOCN−102S(オルソクレゾールノボラック型エポキシ樹脂)、
フェノール樹脂:明和化成(株)社製H−1(フェノールノボラック樹脂)、
臭素化エポキシ樹脂:日本化薬(株)社製BREN−S、
難燃剤:日本精鉱(株)社製PATOX−M(三酸化アンチモン)、
水酸化マグネシウム:協和化学工業(株)社製 キスマ5J(平均粒径0.8μm)、粒径を変えた品種(平均粒径0.05μm品、平均粒径7μm品)、
低密度シリカ:球状のもの、平均粒径1μm、密度1.83g/cm、吸湿率10.7%、
溶融シリカ:電気化学工業(株)社製FB−820(球状溶融シリカ、平均粒径26μm)、
硬化触媒(2MZ):四国化成(株)社製キュアゾール(登録商標)2MZ(2−メチルイミダゾール)、
着色剤:三菱化学(株)社製カーボンブラック#45、
カップリング剤:信越化学工業(株)社製KBM−403、
離型剤:カルナバワックス。
【0028】
(実施例2)
表1の実施例2に記載の配合で、実施例1と同様に樹脂組成物を作製した。以下、実施例1と同様の工程を経て、引抜強度、曇り試験良品率を測定した。結果を表1に示す。
【0029】
(比較例1)
表1の比較例1に記載の配合で、実施例1と同様に樹脂組成物を作製した。以下、実施例1と同様の工程を経て、引抜強度、曇り試験良品率を測定した。結果を表1に示す。
【0030】
(比較例2)
表1の比較例2に記載の配合で、実施例1と同様に樹脂組成物を作製した。以下、実施例1と同様の工程を経て、引抜強度、曇り試験良品率を測定した。結果を表1に示す。
【0031】
(比較例3)
表1の比較例3に記載の配合で、実施例1と同様に樹脂組成物を作製した。以下、実施例1と同様の工程を経て、引抜強度、曇り試験良品率を測定した。結果を表1に示す。
【0032】
(比較例4)
表1の比較例4に記載の配合で、実施例1と同様に樹脂組成物を作製した。以下、実施例1と同様の工程を経て、引抜強度、曇り試験良品率を測定した。結果を表1に示す。
【0033】
(比較例5)
表1の比較例5に記載の配合で、実施例1と同様に樹脂組成物を作製した。以下、実施例1と同様の工程を経て、引抜強度、曇り試験良品率を測定した。結果を表1に示す。
【0034】
表1の結果より、実施例1および2は、水酸化マグネシウムを本発明の通り配合しているため、引抜強度の向上が確認された。これにより、リードフレームと樹脂の密着強度が増し、この界面からの水の侵入を防ぐことによって、より耐湿性の向上が確認された。ただし、実施例2では、吸湿シリカが含まれていないため、実施例1と比較すると耐湿性に劣る。光機能性半導体素子用パッケージとして、より耐湿性を要求される場合には、実施例1の通り、吸湿シリカを含有させることが好ましい。
【0035】
これに対し、比較例1では、水酸化マグネシウムの平均粒径が、本発明より小さいものを使用している。その結果、引抜強度が弱いため樹脂とリードフレーム界面から水の侵入を許すばかりでなく、成形性が悪いためパッケージ自体にもボイドが多数見られた。これらによりパッケージ内に水が侵入するため、曇り試験の結果は悪いものとなった。
【0036】
比較例2では、水酸化マグネシウムの平均粒径が、本発明より大きいものを使用している。その結果、引抜強度が弱く、曇り試験の結果は良いものとならなかった。
【0037】
比較例3では、水酸化マグネシウムの添加量が足りないため、引抜強度が弱くなった。同様に比較例4では、水酸化マグネシウムの添加量が多すぎるため、成形性に難があり、成形不可能であった。
【0038】
比較例5では、水酸化マグネシウムを添加しない配合となっており、引き抜き強度は通常の半導体封止材料と同等である。これまでの比較例と同様、リードフレームと樹脂界面からの水の侵入による影響が見られた。
【0039】
なお、比較例1〜4において、成形が可能であったものについては、低密度シリカを添加しているため、ある程度の耐水性は確保されていることがわかる。しかし、本実施例のように小型、薄型パッケージに適応される場合等においては、本発明のように水酸化マグネシウムを添加して、より密着強度を強めることが有効であることが確認された。
【0040】
【発明の効果】
本発明によれば、エポキシ樹脂組成物に特定の水酸化マグネシウム、好ましくは特定のシリカを配合することにより、樹脂の耐湿性と金属密着性を著しく向上させたエポキシ樹脂組成物を提供することができ、この樹脂組成物は、半導体装置用のパッケージ素材として優れた適性を発揮することができる。
【図面の簡単な説明】
【図1】本発明の実施例、比較例において、樹脂と金属フレームの密着強度を測定する試験片の図である。
【図2】本発明の実施例、比較例において成形した、光機能性半導体素子を収納するパッケージである。
【符号の説明】
(1) 金属フレーム(厚さ:0.25mm)
(2) エポキシ樹脂成形部(一辺の長さ:20mm、厚さ:3mm)
(3) 金属フレームの樹脂への埋め込み部(長さ:5.3mm、幅:3.9mm)
(4) リードフレーム
(5) 樹脂パッケージ
(6) 金属板(材質:42合金)
(7) 封止ガラス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition for improving the adhesiveness to a metal such as a lead frame and thereby producing a semiconductor device having excellent moisture resistance, and a semiconductor device package comprising the resin composition.
[0002]
[Prior art]
Semiconductor elements such as ICs and LSIs are greatly affected by changes in ambient temperature and humidity, or by fine dust and dust, and their characteristics are changed, and are easily damaged by mechanical shock or vibration. I have. For this reason, it is well known that the semiconductor element is used in a state of being sealed in a ceramic or resin box (package) for protection from the external environment. Above all, a semiconductor device using a semiconductor element having optical characteristics, such as a solid-state imaging device (for example, CCD, MOS, CPD, etc.) and an optically writable / erasable memory (for example, EPROM, etc.), is required to have optical transparency. Therefore, in order to prevent the light transmittance from being reduced due to the condensation of moisture, hermetic sealing properties, particularly moisture resistance, are required.
[0003]
Package methods are roughly classified into an airtight sealing method and a resin sealing method. In the hermetic sealing method, ceramics may be used, but there are also packages using resin. That is, a semiconductor element fixed to the center of a hollow package made of resin (hereinafter sometimes simply referred to as “package”) by an adhesive is integrated with a resin molded body by insert molding, and both ends are packaged. Are electrically connected to each other by a bonding wire and a lead frame opened inside and outside. In addition, a transparent or opaque or translucent synthetic resin plate, glass plate, ceramic plate, or other lid material is fixed with an adhesive to the opening on the upper surface of the resin molded body, and the semiconductor element is hermetically sealed in the package. It is.
[0004]
However, even if such a sealing means is taken, a small amount of moisture penetrates into the package with the passage of time, deteriorating the function of the semiconductor element, and finally becomes unusable, In the semiconductor device having the above optical characteristics, there is a problem that moisture is condensed on the inside of the transparent lid member, and the light transmittance is reduced.
[0005]
On the other hand, Suetsugu et al. Disclosed in JP-A-6-49333, JP-A-7-126494, JP-A-7-126492, and the like that a certain kind of moisture-absorbing material was contained in a resin, whereby a package or A method for greatly improving the moisture resistance of the adhesive has been proposed. With this method, it has become possible to use even a resin package, which has been insufficient in water resistance, particularly for a semiconductor device having optical characteristics.
[0006]
[Problems to be solved by the invention]
However, in recent years, further miniaturization and thinning of the semiconductor device have been desired, and accordingly, the package thickness has been desired to be thinner than before. Therefore, unless a package with further improved moisture resistance is used, the function of the semiconductor element is reduced. This problem can be solved to some extent by increasing the amount of low-density spherical silica described in JP-A-6-49333, but a resin having better performance is required.
[0007]
Accordingly, an object of the present invention is to provide a resin composition capable of producing a more compact and thinner semiconductor device with improved moisture resistance than before, and a semiconductor device package manufactured using the same. Is to provide.
[0008]
[Means for Solving the Problems]
As described above, in a semiconductor device generally made of resin, a lead frame is integrally formed to obtain electrical connection with an external substrate. As a result of the study, the present inventors have developed a method for further increasing the adhesion between the resin and the lead frame.
[0009]
That is, according to the present invention, an inorganic filler having an average particle diameter of more than 3 μm and not more than 30 μm, which is selected from the group consisting of silica and alumina, has an average particle diameter of not less than 30% by mass and not more than 30% by mass and not more than 0.1 μm and not more than 5 μm. An epoxy resin composition comprising 10 to 30% by mass of magnesium hydroxide is provided.
[0010]
Further, the epoxy resin composition contains the following three components (a), (b) and (c), and the total content of (a), (b) and (c) is 50 to 95% by mass. An epoxy resin composition is provided.
(A) 10 to 30% by mass of magnesium hydroxide having an average particle size of 0.1 μm or more and 5 μm or less,
(B) 1% by mass or more and 20% by mass or less of silica having a density measured using 1-butanol as a medium of less than 2.10 g / cm 3 , a moisture absorption of 3% or more, and an average particle size of 0.1 μm or more and 3 μm or less. ,
(C) 30% by mass or more and 70% by mass or less of an inorganic filler having an average particle size of more than 3 μm and 30 μm or less selected from the group consisting of silica and alumina.
[0011]
In addition, there is provided a semiconductor device package formed integrally with a metal or a composite material composed of a metal using the epoxy resin composition.
[0012]
The epoxy resin composition containing this specific compounding agent not only improves the moisture resistance of the epoxy resin composition itself, but also significantly improves the adhesion to the lead frame, and as a result, water entering from the interface between the lead frame and the resin. Can be reduced. That is, moisture that enters the package can be reduced, and the moisture resistance of the semiconductor device can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin to be used is not particularly limited, and includes various known epoxy resins. For example, one or a mixture of two or more epoxy resins such as an orthocresol type, a biphenol type, a naphthalene type, and a bisphenol type can be used.
Here, the compounding ratio of the epoxy resin is usually 5 to 25% by weight, preferably 5 to 15% by weight based on 100% by weight of the whole resin composition.
[0014]
As the curing agent for the epoxy resin, various known curing agents are used, and examples thereof include phenol novolaks, aliphatic or aromatic amines, or modified products thereof, acid anhydrides, acid hydrazides and the like. These curing agents are added at a ratio of 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents, based on the epoxy groups of the epoxy resin.
[0015]
The resin composition of the present invention is characterized by containing magnesium hydroxide. The average particle size of the magnesium hydroxide used (the average particle size is measured by a laser method in the present invention) is 0.1 μm or more and 5 μm or less, preferably 0.5 μm or more and 3 μm or less, and the compounding amount is 10 mass%. % To 30% by mass, preferably 15% to 30% by mass. By containing magnesium hydroxide in this range, the moldability as a resin is excellent, and the adhesion to a metal or a metal composite is greatly improved. In addition, since magnesium hydroxide has a flame-retardant effect, increasing the blending amount in the resin achieves the flame-retardant effect without using halogen-based flame retardants and antimony-based flame retardants that place an burden on the environment. You can do it.
[0016]
An inorganic filler having an average particle diameter of more than 3 μm and not more than 30 μm, preferably not less than 5 μm and not more than 30 μm, which is selected from the group consisting of silica and alumina, for the purpose of improving moldability and dimensional stability, is based on all compositions The content is preferably 30% by mass or more and 70% by mass or less, more preferably 50% by mass or more and 70% by mass or less. Among these inorganic fillers, silica is preferred.
[0017]
Further, silica having a density measured using 1-butanol as a medium of less than 2.10 g / cm 3 , a moisture absorption of 3% or more, and an average particle size of 0.1 μm or more and 3 μm or less (hereinafter referred to as low density silica) The method for measuring the density and the moisture absorption is as described in JP-A-6-49333.) Is preferably 1% by mass to 20% by mass, more preferably 5% by mass to 20% by mass. . This significantly improves the moisture resistance of the resin itself.
[0018]
The total of magnesium hydroxide, low-density silica, silica and / or alumina is preferably from 50% by mass to 95% by mass, and more preferably from 70% by mass to 95% by mass, based on the total resin composition. By being in this range, the weather resistance and moldability of the resin are improved.
[0019]
In the resin composition of the present invention, in addition to the above, it is possible to incorporate various known additives for the purpose of improving moldability / release properties, improving strength, etc. within a range not impairing the object of the present invention. It is. Examples include inorganic fillers such as glass fiber, carbon fiber, glass beads, mica, talc, titanium oxide, and calcium carbonate, antimony oxide, halogenated epoxy resins, halogenated phenolic resins, phosphorus compounds, aluminum hydroxide and the like. Examples thereof include release agents such as flame retardants, waxes, fatty acids and metal salts of acids, silane coupling agents, and coloring pigments.
[0020]
The semiconductor package of the present invention can be obtained by integrally molding the above-mentioned epoxy resin composition with a metal or a composite of a metal (please give if possible). Examples of the molding method include a method in which a metal or a composite made of a metal is inserted into a mold in advance, and insert molding is performed by injection molding or transfer molding. The metal material used at this time can be applied without any particular limitation, and when used as a lead frame, for example, 42 alloy, 46 alloy, Kovar alloy, etc. as an Fe-Ni alloy system, and CA194, CA195, CA505, KLF as a Cu alloy system -1, CAC-92, Kovar alloy and the like can be suitably used.
[0021]
Although the epoxy resin composition which is solid at room temperature has been described so far, the present invention can be applied to an epoxy resin composition which is liquid at room temperature. In this case, it can be applied as a liquid adhesive having improved moisture resistance and strong adhesion to metal.
[0022]
Also, the present invention has proposed a method of preventing the intrusion of water by strengthening the adhesion between the lead frame and the resin.However, it is also possible to adapt to other applications by utilizing the increased adhesion of the metal of the resin. It is possible. For example, it can be used as a resin for increasing the adhesive force between an electronic component and a metallic heat sink (heat radiating plate) for heat dissipation and making it hard to be damaged by impact or vibration.
[0023]
【Example】
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
[0024]
(Example 1)
Resins, fillers, curing catalysts, additives and the like were blended in the amounts shown in Table 1 (units of the numerical values are parts by mass). This was heated and kneaded with a hot roll at 95 ° C., and then cooled and pulverized to obtain an epoxy resin composition (EX-1). Using the obtained resin composition, a molded article of the test piece shown in FIG. 1 was produced by transfer molding. At this time, as the metal frame to be used, two types of 42 alloy and CA194 alloy were used. The molding conditions were 180 ° C. and 25 MPa, the injection time was 1 minute, and the curing time was 3 minutes. Both metal parts of the test piece were gripped, and a pull-out test was performed using a universal testing machine Tensilon UTC5T manufactured by Orientec Co., Ltd. to determine the pull-out strength. Table 1 shows the measured values.
[0025]
Subsequently, a lead frame made of 42 alloy was integrally molded using the resin composition EX-1 to produce a package (1/4 type SOP (Small Outline Package)) shown in FIG. This package has a thin bottom surface with a thickness of 0.35 mm, and is easier to penetrate water than a normal package (a typical resin package for a solid-state imaging device has a bottom thickness of about 0.8 mm). . The molding conditions were the same as described above. After the package is sufficiently dried, a sealing agent (World Lock No. 8723K8L, manufactured by Kyoritsu Chemical Industry Co., Ltd.) is applied to the lid bonding portion, and a glass having a thickness of 0.8 mm is attached and sealed, and metal halide is applied. Curing was performed using UV light from a lamp (irradiation conditions were 100 mW × 30 seconds). This package was placed in a commercially available pressure cooker tester, and exposed for a predetermined time under an environment of 121 ° C. × 100%. Next, the glass surface was forcibly cooled under a certain condition, and it was examined whether or not moisture in the hollow portion was condensed (hereinafter, this test method is referred to as "cloudiness test"). A sample having no dew condensation was regarded as a non-defective product, and the superiority of moisture resistance was judged by a non-defective ratio among 10 samples. Table 1 shows the results.
[0026]
[Table 1]
Figure 2004323644
[0027]
In addition, each raw material described in Table 1 is as follows.
Epoxy resin: Nippon Kayaku Co., Ltd. EOCN-102S (orthocresol novolak type epoxy resin),
Phenol resin: Meiwa Kasei Co., Ltd. H-1 (phenol novolak resin),
Brominated epoxy resin: BREN-S manufactured by Nippon Kayaku Co., Ltd.
Flame retardant: PATOX-M (antimony trioxide) manufactured by Nippon Seiko Co., Ltd.
Magnesium hydroxide: Kisuma 5J (Kyowa Chemical Industry Co., Ltd.) (average particle size: 0.8 μm), varieties with different particle size (average particle size: 0.05 μm, average particle size: 7 μm),
Low density silica: spherical, average particle size 1 μm, density 1.83 g / cm 3 , moisture absorption 10.7%,
Fused silica: FB-820 manufactured by Denki Kagaku Kogyo Co., Ltd. (spherical fused silica, average particle size 26 μm),
Curing catalyst (2MZ): Cureazole (registered trademark) 2MZ (2-methylimidazole) manufactured by Shikoku Chemicals Co., Ltd.
Colorant: carbon black # 45 manufactured by Mitsubishi Chemical Corporation
Coupling agent: KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.
Release agent: carnauba wax.
[0028]
(Example 2)
A resin composition was prepared in the same manner as in Example 1 with the composition described in Example 2 of Table 1. Hereinafter, through the same steps as in Example 1, the pull-out strength and the haze test good product ratio were measured. Table 1 shows the results.
[0029]
(Comparative Example 1)
A resin composition was prepared in the same manner as in Example 1 with the composition described in Comparative Example 1 in Table 1. Hereinafter, through the same steps as in Example 1, the pull-out strength and the haze test good product ratio were measured. Table 1 shows the results.
[0030]
(Comparative Example 2)
A resin composition was prepared in the same manner as in Example 1 with the composition described in Comparative Example 2 in Table 1. Hereinafter, through the same steps as in Example 1, the pull-out strength and the haze test good product ratio were measured. Table 1 shows the results.
[0031]
(Comparative Example 3)
A resin composition was prepared in the same manner as in Example 1 with the composition described in Comparative Example 3 in Table 1. Hereinafter, through the same steps as in Example 1, the pull-out strength and the haze test good product ratio were measured. Table 1 shows the results.
[0032]
(Comparative Example 4)
A resin composition was prepared in the same manner as in Example 1 with the composition described in Comparative Example 4 in Table 1. Hereinafter, through the same steps as in Example 1, the pull-out strength and the haze test good product ratio were measured. Table 1 shows the results.
[0033]
(Comparative Example 5)
A resin composition was prepared in the same manner as in Example 1 with the composition described in Comparative Example 5 in Table 1. Hereinafter, through the same steps as in Example 1, the pull-out strength and the haze test good product ratio were measured. Table 1 shows the results.
[0034]
From the results in Table 1, in Examples 1 and 2, since magnesium hydroxide was blended as in the present invention, improvement in pull-out strength was confirmed. Thereby, the adhesion strength between the lead frame and the resin was increased, and it was confirmed that the prevention of water from entering this interface further improved the moisture resistance. However, in Example 2, since moisture-absorbing silica was not contained, the moisture resistance was inferior to Example 1. When more moisture resistance is required as a package for an optically functional semiconductor element, it is preferable that moisture-absorbing silica is contained as in Example 1.
[0035]
On the other hand, in Comparative Example 1, the average particle size of magnesium hydroxide was smaller than that of the present invention. As a result, in addition to allowing water to enter from the interface between the resin and the lead frame due to low pull-out strength, many voids were also found in the package itself due to poor moldability. Because of these, water penetrated into the package, and the result of the fogging test was poor.
[0036]
In Comparative Example 2, the average particle size of magnesium hydroxide is larger than that of the present invention. As a result, the pull-out strength was weak, and the result of the fogging test was not good.
[0037]
In Comparative Example 3, since the amount of magnesium hydroxide added was insufficient, the pull-out strength was weak. Similarly, in Comparative Example 4, since the amount of magnesium hydroxide added was too large, the moldability was difficult and molding was impossible.
[0038]
In Comparative Example 5, the composition was such that magnesium hydroxide was not added, and the pull-out strength was equivalent to that of a normal semiconductor sealing material. As in the comparative examples described above, the effect of water intrusion from the interface between the lead frame and the resin was observed.
[0039]
In Comparative Examples 1 to 4, it can be seen that the low-density silica was added to those that could be molded, so that a certain degree of water resistance was secured. However, it has been confirmed that, in the case where the present invention is applied to a small and thin package as in this example, it is effective to add magnesium hydroxide as in the present invention to further increase the adhesion strength.
[0040]
【The invention's effect】
According to the present invention, it is possible to provide an epoxy resin composition in which a specific magnesium hydroxide, preferably a specific silica is blended with the epoxy resin composition, thereby significantly improving the moisture resistance and metal adhesion of the resin. This resin composition can exhibit excellent suitability as a package material for a semiconductor device.
[Brief description of the drawings]
FIG. 1 is a view of a test piece for measuring the adhesion strength between a resin and a metal frame in Examples and Comparative Examples of the present invention.
FIG. 2 shows a package for accommodating an optically functional semiconductor element, which is molded in Examples and Comparative Examples of the present invention.
[Explanation of symbols]
(1) Metal frame (thickness: 0.25mm)
(2) Epoxy resin molded part (side length: 20 mm, thickness: 3 mm)
(3) Embedded portion of metal frame in resin (length: 5.3 mm, width: 3.9 mm)
(4) Lead frame (5) Resin package (6) Metal plate (material: 42 alloy)
(7) Sealing glass

Claims (3)

シリカ及びアルミナからなる群より選択される、平均粒径が3μmを越え30μm以下の無機フィラーを30質量%以上70質量%以下、平均粒径が0.1μm以上5μm以下の水酸化マグネシウムを10ないし30質量%含有することを特徴とするエポキシ樹脂組成物。An inorganic filler having an average particle diameter of more than 3 μm and not more than 30 μm, selected from the group consisting of silica and alumina, having an average particle diameter of not less than 30% by mass and not more than 70% by mass, and an average particle diameter of not less than 0.1 μm and not more than 5 μm not more than 10 μm. An epoxy resin composition containing 30% by mass. エポキシ樹脂組成物中に、以下(a)、(b)、(c)の3成分を含有し、(a)、(b)、(c)の含有量の合計が50ないし95質量%であることを特徴とする請求項1記載のエポキシ樹脂組成物。
(a)平均粒径が0.1μm以上5μm以下の水酸化マグネシウムが10ないし30質量%、
(b)1−ブタノールを媒体として測定した密度が2.10g/cm未満で吸湿率が3%以上、かつ平均粒径が0.1μm以上3μm以下のシリカが1質量%以上20質量%以下、
(c)シリカ及びアルミナからなる群より選択される平均粒径が3μmを越え30μm以下の無機フィラーを30質量%以上70質量%以下。
The epoxy resin composition contains the following three components (a), (b) and (c), and the total content of (a), (b) and (c) is 50 to 95% by mass. The epoxy resin composition according to claim 1, wherein:
(A) 10 to 30% by mass of magnesium hydroxide having an average particle size of 0.1 μm or more and 5 μm or less,
(B) 1% by mass or more and 20% by mass or less of silica having a density measured using 1-butanol as a medium of less than 2.10 g / cm 3 , a moisture absorption of 3% or more, and an average particle size of 0.1 μm or more and 3 μm or less. ,
(C) 30% by mass or more and 70% by mass or less of an inorganic filler having an average particle size of more than 3 μm and 30 μm or less selected from the group consisting of silica and alumina.
請求項1または2記載のエポキシ樹脂組成物を用いて、金属または金属からなる複合材料と一体成形された半導体装置用パッケージ。A semiconductor device package integrally molded with a metal or a composite material comprising a metal using the epoxy resin composition according to claim 1.
JP2003119138A 2003-04-24 2003-04-24 Epoxy resin composition and package for semiconductor device using it Pending JP2004323644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119138A JP2004323644A (en) 2003-04-24 2003-04-24 Epoxy resin composition and package for semiconductor device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119138A JP2004323644A (en) 2003-04-24 2003-04-24 Epoxy resin composition and package for semiconductor device using it

Publications (1)

Publication Number Publication Date
JP2004323644A true JP2004323644A (en) 2004-11-18

Family

ID=33498443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119138A Pending JP2004323644A (en) 2003-04-24 2003-04-24 Epoxy resin composition and package for semiconductor device using it

Country Status (1)

Country Link
JP (1) JP2004323644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146157A (en) * 2003-11-18 2005-06-09 Mitsui Chemicals Inc Epoxy resin composition and hollow package for housing semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146157A (en) * 2003-11-18 2005-06-09 Mitsui Chemicals Inc Epoxy resin composition and hollow package for housing semiconductor element

Similar Documents

Publication Publication Date Title
US6399677B2 (en) Epoxy resin compositions and premolded semiconductor packages
JPH10292094A (en) Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JP2006216899A (en) Molding material for compression molding and resin-sealed semiconductor device
US6878448B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2006265370A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2004323644A (en) Epoxy resin composition and package for semiconductor device using it
JP4765151B2 (en) Epoxy resin composition and semiconductor device
JPH10173103A (en) Epoxy resin compsn. for sealing semiconductor
JP2006124420A (en) Epoxy resin composition and semiconductor device
JPH10324795A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2002060468A (en) Epoxy resin composition, prepreg, and copper-clad laminate using the prepreg
JPS62209126A (en) Epoxy resin composition for sealing semiconductor device
JP4111865B2 (en) Epoxy resin composition and hollow package for housing semiconductor device using the same
JP2005146157A (en) Epoxy resin composition and hollow package for housing semiconductor element
JP2951092B2 (en) Epoxy resin composition
JPH098178A (en) Epoxy resin composition for sealing and semiconductor device using it
JPH11335527A (en) Epoxy resin composition for semiconductor sealing
JP3235798B2 (en) Epoxy resin composition
JPH11255955A (en) Capsule-type flame retardant and resin composition for semiconductor sealing by compounding the same
JP2008063466A (en) Epoxy resin composition and semiconductor device
JPH10287794A (en) Epoxy resin composition for semiconductor sealing
JP3235799B2 (en) Epoxy resin composition
JP3074155B2 (en) Semiconductor device
JP4794706B2 (en) Epoxy resin composition and semiconductor device
JP2593518B2 (en) Epoxy resin molding compound for semiconductor encapsulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205