JP2005146157A - Epoxy resin composition and hollow package for housing semiconductor element - Google Patents

Epoxy resin composition and hollow package for housing semiconductor element Download PDF

Info

Publication number
JP2005146157A
JP2005146157A JP2003387330A JP2003387330A JP2005146157A JP 2005146157 A JP2005146157 A JP 2005146157A JP 2003387330 A JP2003387330 A JP 2003387330A JP 2003387330 A JP2003387330 A JP 2003387330A JP 2005146157 A JP2005146157 A JP 2005146157A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
package
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003387330A
Other languages
Japanese (ja)
Inventor
Daisuke Suzuki
大介 鈴木
Masayuki Kondo
政幸 近藤
Naoyuki Kato
奈緒之 加藤
Toshiya Urakawa
俊也 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003387330A priority Critical patent/JP2005146157A/en
Publication of JP2005146157A publication Critical patent/JP2005146157A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition which has a sufficient moisture resistance and does not injure its resin flowability or its resin strength after curing; and a hollow package prepared by using the composition and used for housing a semiconductor element. <P>SOLUTION: The epoxy resin composition gives a cured resin having the following features: in an environment with a relative humidity of 100% at 121°C, the cured resin with a size of 50 mm × 50 mm × 1.5 mm has a saturated water absorption coefficient of 1 mass% or higher and the time from its dry state to its saturated water absorption state is 64 hours or longer. The composition contains at least one kind of epoxy resin selected from epoxy resins having a naphthalene ring structure and epoxy resins having a dicyclopentadiene structure, a curing agent composed of at least one kind of phenol resin selected from aralkylphenol resins, dicyclopentadiene type phenol resins, and naphthalene type phenol resins, a water-absorbing agent, and if necessary an inorganic filler. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、硬化物の透湿性が低く、部品を製造する際の金型成形性に優れ、特に半導体素子を収納する中空パッケージとして好適に使用されるエポキシ樹脂組成物、及びこのエポキシ樹脂組成物で製造された、半導体素子収納用中空パッケージに関する。   The present invention relates to an epoxy resin composition having low moisture permeability of a cured product and excellent mold moldability when producing parts, and particularly suitable for use as a hollow package for housing a semiconductor element, and the epoxy resin composition The present invention relates to a hollow package for housing a semiconductor element, manufactured in the above.

半導体素子は、周囲の温度や湿度の変化、あるいは微細なごみや埃に大きく影響され、その特性を劣化させてしまい、また機械的振動や衝撃を受けることにより破損しやすいことが知られている。これら外的要因から半導体素子を保護するために、セラミックス製の箱や樹脂で封止し、パッケージとして使用に供されていることは良く知られている。   It is known that a semiconductor element is greatly affected by changes in ambient temperature and humidity, or fine dust and dust, and its characteristics are deteriorated, and it is easily damaged due to mechanical vibration and impact. In order to protect the semiconductor element from these external factors, it is well known that the semiconductor element is sealed with a ceramic box or resin and used as a package.

なかでも、CCD、CMOSを代表とする固体撮像素子や、LD、PDなどのレーザ素子、フォトダイオード素子などは、パッケージ外部からの光の通路が必要であり、一般的なLSI素子のように、周囲を樹脂やセラミックスで封止することができない。これらの半導体素子は、一般に一方が開放された中空タイプのパッケージに実装され、その後開放部をガラスなど透明材料で封止することにより、パッケージングされている。   Among them, solid-state imaging devices such as CCD and CMOS, laser devices such as LD and PD, photodiode devices, etc. need a light path from the outside of the package. Like general LSI devices, The surroundings cannot be sealed with resin or ceramics. These semiconductor elements are generally packaged by being mounted in a hollow type package in which one side is opened, and then the open part is sealed with a transparent material such as glass.

この中空タイプのパッケージを製造するにあたり、金属やセラミックスを用いる気密封止方式の場合、本質的に非透湿であるが、製造コストが高い、寸法精度が悪いなどの欠点を有する。これに対して樹脂封止の場合、製造コストは比較的低く、寸法精度も高いが、樹脂は基本的に水分が拡散する性質を有しており、時間が経つと徐々に水分を通過させ、半導体素子の特性を劣化させたり、気密性を保持したパッケージ内部に浸透した水分がガラス面を結露させたりして信頼性を失わせるという欠点があった(例えば、非特許文献1、非特許文献2など参照)。   In manufacturing this hollow type package, the hermetic sealing method using metal or ceramics is essentially non-moisture permeable, but has disadvantages such as high manufacturing cost and poor dimensional accuracy. On the other hand, in the case of resin sealing, the manufacturing cost is relatively low and the dimensional accuracy is high, but the resin basically has a property of diffusing moisture, and gradually passes moisture over time, There has been a drawback that reliability of the semiconductor element is deteriorated or moisture permeated into the inside of the package maintaining airtightness causes the glass surface to dew and lose reliability (for example, Non-Patent Document 1, Non-Patent Document). 2 etc.).

これまで、樹脂を中空パッケージに使用するにあたり、様々な工夫がなされてきた。その中でも、樹脂組成物に吸湿材料を添加し、樹脂中を浸透する水分を吸着することにより、中空内部への水の侵入を防ごうとする技術が提案されている(例えば、特許文献1、特許文献2、特許文献3など参照)。   Until now, various devices have been made to use a resin in a hollow package. Among them, a technique for preventing water from entering the hollow interior by adding a hygroscopic material to the resin composition and adsorbing moisture penetrating through the resin has been proposed (for example, Patent Document 1, (See Patent Document 2 and Patent Document 3).

信学技法 TECHNICAL REPORT OF IEICE. ICD95−194(1995−12) 社団法人電子情報通信学会TECHNICICAL REPORT OF IEICE. ICD95-194 (1995-12) The Institute of Electronics, Information and Communication Engineers 日東技法Vol.28,No.2,Oct.1990 p.84−95Nitto Technique Vol. 28, no. 2, Oct. 1990 p. 84-95 特許第2750254号明細書Japanese Patent No. 2750254 特開平6−49333号公報JP-A-6-49333 特開2001−220496号公報Japanese Patent Laid-Open No. 2001-220696

これらの技術は、いずれも吸湿材料を添加するため、樹脂流動性や硬化後の樹脂強度に悪影響を及ぼすことがある。そのため、吸湿材料に含まれる不純物(たとえばアルカリ金属類)をできるだけ少なくし、また吸湿材料の形状、粒径などを最適化して改善しようとする試みがあるが、根本的な解決には至っていない。   Since all of these techniques add a hygroscopic material, the resin fluidity and the resin strength after curing may be adversely affected. For this reason, attempts have been made to minimize and improve impurities (for example, alkali metals) contained in the hygroscopic material and to optimize and improve the shape and particle size of the hygroscopic material, but have not yet reached a fundamental solution.

例えば、特開2001−220496号公報においては、所定の耐湿性を持たせるために、多孔質シリカをエポキシ樹脂組成物全体の55質量%以上含有させることを特徴としているが、多孔質シリカを多量に配合させると、多孔質シリカが樹脂組成物中の離型剤成分(ワックス)等を吸着して樹脂流動性を悪化させたり、カップリング剤(シランカップリング剤など)を吸着して樹脂と無機フィラーの密着強度を弱めたりして、結果的に硬化後の樹脂強度が下がってしまうという問題点があった。   For example, Japanese Patent Application Laid-Open No. 2001-220296 is characterized in that the porous silica is contained in an amount of 55% by mass or more of the entire epoxy resin composition in order to give a predetermined moisture resistance. When mixed with the porous silica, the release agent component (wax) in the resin composition is adsorbed to deteriorate the resin fluidity, or the coupling agent (silane coupling agent etc.) is adsorbed to the resin. There is a problem that the adhesive strength of the inorganic filler is weakened, and as a result, the resin strength after curing is lowered.

さらには、比較的大型のパッケージであれば、パッケージの厚みの効果により、添加する吸湿材料の量を少なくでき、樹脂流動性や硬化後の樹脂強度の低下を防ぐことができたが、近年においては、電子デバイスの高機能化・小型化要求に伴い、中空パッケージも小型化、薄型化の要求が厳しくなり、耐湿性能は従来以上の要求がなされている。そのため、より多量の吸湿材料を含有させざるを得ず、満足な樹脂流動性や硬化後の樹脂強度が得られなかった。   Furthermore, if the package is relatively large, the amount of moisture-absorbing material to be added can be reduced due to the effect of the thickness of the package, and a decrease in resin fluidity and resin strength after curing can be prevented. With the demand for higher functionality and size reduction of electronic devices, the demand for miniaturization and thinning of hollow packages has become stricter, and moisture resistance performance has been demanded more than ever. For this reason, a larger amount of moisture-absorbing material must be contained, and satisfactory resin fluidity and resin strength after curing cannot be obtained.

従って、本発明の課題は、十分な耐湿性を有し、樹脂流動性や硬化後の樹脂強度を損なわないエポキシ樹脂組成物及び、それを用いた半導体素子収納用中空パッケージを提供することである。   Accordingly, an object of the present invention is to provide an epoxy resin composition that has sufficient moisture resistance and does not impair resin flowability and resin strength after curing, and a hollow package for housing semiconductor elements using the same. .

本発明者らは鋭意検討した結果、湿熱環境下において特定の飽和吸水率を有し、かつ乾燥状態から飽和吸水状態に達するまでの時間(以下「飽和吸水時間」と言うことがある。)が特定の時間以上を有するエポキシ樹脂組成物を用いれば、前記課題を解決できることを見出し本発明を完成した。   As a result of intensive studies, the present inventors have a specific saturated water absorption rate in a wet heat environment and a time required to reach a saturated water absorption state from a dry state (hereinafter, sometimes referred to as “saturated water absorption time”). The present invention has been completed by finding that the above problems can be solved by using an epoxy resin composition having a specific time or longer.

すなわち、本発明のエポキシ樹脂組成物は、121℃、相対湿度100%の環境下において、大きさ50mm×50mm×1.5mmの硬化樹脂の飽和吸水率が1質量%以上であり、飽和吸水時間が64時間以上であることを特徴とする。   That is, the epoxy resin composition of the present invention has a saturated water absorption of 1% by mass or more and a saturated water absorption time of a cured resin having a size of 50 mm × 50 mm × 1.5 mm in an environment of 121 ° C. and 100% relative humidity. Is 64 hours or more.

また、特定のエポキシ樹脂及び硬化剤に、吸水剤を含有させたエポキシ樹脂組成物が前記特性を有し、それを用いれば前記課題を解決できることを見出し本発明に至った。   Moreover, the epoxy resin composition which made the specific epoxy resin and the hardening | curing agent contain the water absorbing agent has the said characteristic, and if it was used, the said subject could be solved and it came to this invention.

すなわち、本発明のエポキシ樹脂組成物は、下記(a)からなるエポキシ樹脂と、下記(b)からなる硬化剤と、吸水剤、必要によりさらに無機フィラーを含有することを特徴とする。
(a)ナフタレン環構造を有するエポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂のいずれか、または両方から選択される少なくとも1種のエポキシ樹脂、
(b)アラルキルフェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ナフタレン型フェノール樹脂のいずれか、または2つ以上から選択される少なくとも1種のフェノール樹脂。
That is, the epoxy resin composition of the present invention is characterized by containing an epoxy resin comprising the following (a), a curing agent comprising the following (b), a water-absorbing agent and, if necessary, an inorganic filler.
(A) at least one epoxy resin selected from either an epoxy resin having a naphthalene ring structure, an epoxy resin having a dicyclopentadiene structure, or both;
(B) Any one of aralkylphenol resin, dicyclopentadiene type phenol resin, naphthalene type phenol resin, or at least one phenol resin selected from two or more.

吸水剤が下記(c)のシリカを含み、該シリカをエポキシ樹脂組成物全体量の1質量%以上、50質量%以下で含有するエポキシ樹脂組成物は、本発明の好ましい態様である。
(c)1−ブタノールを媒体として測定した密度が2.1g/cm未満であり、60℃、相対湿度90%の環境下における24時間後の吸湿率が3質量%以上であり、平均粒径が0.1μm以上、3μm未満のシリカ。
An epoxy resin composition containing a silica of the following (c) and containing the silica in an amount of 1% by mass or more and 50% by mass or less of the total amount of the epoxy resin composition is a preferred embodiment of the present invention.
(C) The density measured using 1-butanol as the medium is less than 2.1 g / cm 3 , the moisture absorption after 24 hours in an environment of 60 ° C. and 90% relative humidity is 3% by mass or more, and the average particle size Silica having a diameter of 0.1 μm or more and less than 3 μm.

また、吸水剤が下記(d)の多孔質カーボンを含み、該多孔質カーボンをエポキシ樹脂組成物全体量の2質量%以上、50質量%以下で含有するエポキシ樹脂組成物は、本発明の好ましい態様である。
(d)比表面積が0.5m/g以上、30m/g以下であり、平均粒径が3μm以上、50μm以下である多孔質カーボン
An epoxy resin composition containing the porous carbon of the following (d) and containing the porous carbon in an amount of 2% by mass or more and 50% by mass or less of the total amount of the epoxy resin composition is preferable in the present invention. It is an aspect.
(D) Porous carbon having a specific surface area of 0.5 m 2 / g or more and 30 m 2 / g or less and an average particle diameter of 3 μm or more and 50 μm or less

本発明により、前記エポキシ樹脂組成物を用いて成形してなる半導体素子収納用中空パッケージが提供される。   According to the present invention, there is provided a hollow package for housing a semiconductor element formed by using the epoxy resin composition.

本発明によれば、半導体素子収納用中空パッケージの作製に用いられる、耐湿性に優れたエポキシ樹脂組成物を提供することができる。該エポキシ樹脂組成物は、最適な吸水量と吸水速度を実現できるため、従来のように多量の吸水剤を添加する必要が無く、樹脂流動性や、機械的強度に影響を及ぼさない。本発明のエポキシ樹脂組成物を用いることにより、従来と比較して薄型の中空パッケージ、例えば表面実装型(SON型、QFN型)中空パッケージの作製が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin composition excellent in moisture resistance used for preparation of the hollow package for semiconductor element accommodation can be provided. Since the epoxy resin composition can realize the optimum water absorption amount and water absorption speed, it is not necessary to add a large amount of water absorbing agent as in the conventional case, and does not affect the resin fluidity and mechanical strength. By using the epoxy resin composition of the present invention, it is possible to produce a hollow package that is thinner than the conventional one, for example, a surface mount type (SON type, QFN type) hollow package.

以下に、本発明で得られる、耐湿性に優れたエポキシ樹脂組成物および中空パッケージについて具体的に述べる。   The epoxy resin composition excellent in moisture resistance and the hollow package obtained in the present invention are specifically described below.

本発明のエポキシ樹脂組成物は、その硬化樹脂の飽和吸水率が1質量%以上、好ましくは1.0質量%以上、3.5質量%以下、より好ましくは1.3質量%以上、3.5質量%以下、さらに好ましくは1.5質量%以上、3.5質量%以下であって、かつ乾燥状態から飽和状態に達するまでの時間が64時間以上、好ましくは72時間以上、さらに好ましくは80時間以上であることを特徴とする。   2. The epoxy resin composition of the present invention has a saturated water absorption of 1% by mass or more, preferably 1.0% by mass or more and 3.5% by mass or less, more preferably 1.3% by mass or more. 5% by weight or less, more preferably 1.5% by weight or more, and 3.5% by weight or less, and the time to reach saturation from the dry state is 64 hours or more, preferably 72 hours or more, more preferably It is characterized by being 80 hours or more.

本発明において、硬化樹脂とは、エポキシ樹脂組成物を成形して硬化させたものを言い、エポキシ樹脂組成物とは、エポキシ樹脂に硬化剤等の添加剤を配合したものを熱ロール等で練った混練物で、硬化反応は未反応の状態か部分的な反応にとどまっている。   In the present invention, the cured resin refers to an epoxy resin composition that has been molded and cured, and the epoxy resin composition refers to an epoxy resin blended with an additive such as a curing agent using a hot roll or the like. In the kneaded product, the curing reaction is in an unreacted state or a partial reaction.

本発明において飽和吸水率及び乾燥状態から飽和吸水状態に達するまでの時間は、以下のようにして測定する。エポキシ樹脂組成物を成形温度160℃、成形圧力1.5MPa、射出時間30秒間、硬化時間90秒間の条件で、50mm×50mm×1.5mmの試験片に成形する。これを180℃で12時間乾燥して(この状態を乾燥状態と言う)にした後、重量(W)を測定する。次いで市販のプレッシャークッカー試験機に入れ、121℃、相対湿度100%の環境下に放置する。8時間毎に重量を測定し、重量変化が0.02%以下となった時点を飽和吸水状態と定義し、飽和吸水時間を求めるとともに、その時点の重量Wから飽和吸水率(%)を下記式で表した。
{(W−W)/W}×100
In the present invention, the saturated water absorption rate and the time to reach the saturated water absorption state from the dry state are measured as follows. The epoxy resin composition is molded into a 50 mm × 50 mm × 1.5 mm test piece under the conditions of a molding temperature of 160 ° C., a molding pressure of 1.5 MPa, an injection time of 30 seconds, and a curing time of 90 seconds. This is dried at 180 ° C. for 12 hours (this state is referred to as a dry state), and then the weight (W 0 ) is measured. Next, it is placed in a commercially available pressure cooker tester and left in an environment of 121 ° C. and relative humidity of 100%. The weight is measured every 8 hours, and the time when the weight change becomes 0.02% or less is defined as the saturated water absorption state, the saturated water absorption time is obtained, and the saturated water absorption (%) is calculated from the weight W at that time as follows. Expressed by the formula.
{(W−W 0 ) / W 0 } × 100

なお、一旦吸湿した硬化樹脂では、180℃で12時間乾燥することで乾燥状態にすることができる。これは、180℃で乾燥時、重量変化がなくなることから明らかである。また、大きな形状の硬化樹脂については、50mm×50mm×1.5mmの大きさに切り出すことにより、同様にして測定し評価できる。   The cured resin that has once absorbed moisture can be dried by drying at 180 ° C. for 12 hours. This is apparent from the fact that there is no weight change when dried at 180 ° C. Further, a large-shaped cured resin can be measured and evaluated in the same manner by cutting it into a size of 50 mm × 50 mm × 1.5 mm.

上記の範囲の飽和吸水率及び飽和吸水時間を有するエポキシ樹脂組成物であれば、それを用いて成形した中空パッケージの肉厚が薄くとも、パッケージ内部に水が浸透するまでには長時間を要するため、耐湿性能としては満足するものとなる。   If the epoxy resin composition has a saturated water absorption rate and a saturated water absorption time in the above range, it takes a long time for water to penetrate into the package even if the hollow package formed using the epoxy resin composition is thin. Therefore, the moisture resistance performance is satisfactory.

本発明のエポキシ樹脂組成物は、下記(a)からなるエポキシ樹脂と、下記(b)からなる硬化剤と、吸水剤、必要によりさらに無機フィラーを含有するものが好ましい。
(a)ナフタレン環構造を有するエポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂のいずれか、または両方から選択される少なくとも1種のエポキシ樹脂、
(b)アラルキルフェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ナフタレン型フェノール樹脂のいずれか、または2つ以上から選択される少なくとも1種のフェノール樹脂。
The epoxy resin composition of the present invention preferably contains an epoxy resin comprising the following (a), a curing agent comprising the following (b), a water absorbing agent and, if necessary, an inorganic filler.
(A) at least one epoxy resin selected from either an epoxy resin having a naphthalene ring structure, an epoxy resin having a dicyclopentadiene structure, or both;
(B) Any one of aralkylphenol resin, dicyclopentadiene type phenol resin, naphthalene type phenol resin, or at least one phenol resin selected from two or more.

エポキシ樹脂(a)として具体的には、日本化薬(株)製NC−7000L(ナフタレン型エポキシ樹脂)、東都化成(株)製ESN−165M(ナフトールアラルキル型エポキシ樹脂)、大日本インキ(株)製EPICLON HP−7200(ジシクロペンタジエン型エポキシ樹脂)などがあげられる。
フェノール樹脂(b)として具体的には、三井化学(株)製MILEX(アラルキルフェノール樹脂)、日本石油化学(株)製DPP−6095L(ジシクロペンタジエン型フェノール樹脂)、東都化成(株)製SN−180(ナフタレン型フェノール樹脂)などがあげられる。
Specific examples of the epoxy resin (a) include NC-7000L (naphthalene type epoxy resin) manufactured by Nippon Kayaku Co., Ltd., ESN-165M (naphthol aralkyl type epoxy resin) manufactured by Tohto Kasei Co., Ltd., Dainippon Ink Co., Ltd. ) EPICLON HP-7200 (dicyclopentadiene type epoxy resin) and the like.
Specific examples of the phenol resin (b) include MILEX (aralkyl phenol resin) manufactured by Mitsui Chemicals, DPP-6095L (dicyclopentadiene type phenol resin) manufactured by Nippon Petrochemical Co., Ltd., SN manufactured by Tohto Kasei Co., Ltd. -180 (naphthalene type phenol resin).

なお、エポキシ樹脂に対する硬化剤の好ましい配合割合としては、エポキシ当量をE、フェノール当量をPとした場合、好ましくはPが0.5E以上、1.5E以下、より好ましくはPが0.6E以上、1.4E以下、さらにはPが0.7E以上、1.2E以下とすることが好ましい。   In addition, as a preferable mixing | blending ratio of the hardening | curing agent with respect to an epoxy resin, when an epoxy equivalent is set to E and a phenol equivalent is set to P, Preferably P is 0.5E or more, 1.5E or less, More preferably, P is 0.6E or more. 1.4E or less, and further P is preferably 0.7E or more and 1.2E or less.

エポキシ樹脂としてエポキシ樹脂(a)を選択し、硬化剤としてフェノール樹脂(b)を選択することにより、低吸湿性のエポキシ樹脂組成物を得ることができ、組成物中に吸水剤を添加した系においても、吸水速度を大きく増加させることが無い。また、前記(a)からなるエポキシ樹脂と、前記(b)からなる硬化剤と、吸水剤、必要によりさらに無機フィラーを含有させることにより、成形性、流動性、機械特性に優れ、ガラス転移点の高いエポキシ樹脂組成物を得ることができるため、中空パッケージ用樹脂原料として好適である。また、エポキシ樹脂がナフタレン環構造やジシクロペンタジエン環構造を有していれば所望の低吸湿性と耐熱性を併せ持つため、例えばナフトールアラルキル型エポキシ樹脂が好適に使用される。   By selecting the epoxy resin (a) as the epoxy resin and selecting the phenol resin (b) as the curing agent, a low hygroscopic epoxy resin composition can be obtained, and a system in which a water absorbing agent is added to the composition In this case, the water absorption speed is not greatly increased. In addition, by including an epoxy resin composed of (a), a curing agent composed of (b), a water-absorbing agent and, if necessary, an inorganic filler, it has excellent moldability, fluidity and mechanical properties, and has a glass transition point. Since an epoxy resin composition having a high value can be obtained, it is suitable as a resin material for hollow packages. Further, if the epoxy resin has a naphthalene ring structure or a dicyclopentadiene ring structure, it has both desired low hygroscopicity and heat resistance. For example, a naphthol aralkyl type epoxy resin is preferably used.

本発明のエポキシ樹脂組成物中のエポキシ樹脂及び硬化剤に、前記(a)および(b)の樹脂を含有していれば、本発明の目的を損なわず他の諸物性に影響を及ぼさない範囲内で、その他の樹脂を含有させることもできる。この場合のその他の樹脂としては、たとえばエポキシ樹脂として、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、アラルキルフェノール型エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。またフェノール樹脂としては、クレゾールノボラック型フェノール樹脂、ビスフェノール型フェノール樹脂、ビフェノール型フェノール樹脂、ハロゲン化フェノール樹脂などが挙げられる。いずれも、これらの例示に限定されるものではない。   As long as the epoxy resin and the curing agent in the epoxy resin composition of the present invention contain the resins (a) and (b), the scope of the present invention is not impaired and other physical properties are not affected. Inside, other resin can also be contained. Examples of the other resin in this case include an epoxy resin such as an ortho cresol novolak type epoxy resin, a bisphenol type epoxy resin, a biphenol type epoxy resin, an aralkylphenol type epoxy resin, and a halogenated epoxy resin. Examples of the phenol resin include a cresol novolac type phenol resin, a bisphenol type phenol resin, a biphenol type phenol resin, and a halogenated phenol resin. Neither is limited to these examples.

本発明のエポキシ樹脂組成物においては、吸水剤が下記のシリカ(c)を含んでいることが好ましい。
(c)1−ブタノールを媒体として測定した密度が2.1g/cm未満であり、60℃、相対湿度90%の環境下における24時間後の吸湿率が3質量%以上であり、平均粒径が0.1μm以上、3μm未満のシリカ。
このシリカ(c)の添加量は、エポキシ樹脂組成物全体量の1質量%以上、50質量%以下、より好ましくは1質量%以上、40質量%以下、さらには2質量%以上、30質量%以下であることが好ましい。ここで、1−ブタノールを媒体として測定する密度、吸湿率及び平均粒径の測定方法については、特開平6−49333号公報に記載されている方法と同様に行った。
In the epoxy resin composition of this invention, it is preferable that the water absorbing agent contains the following silica (c).
(C) The density measured using 1-butanol as the medium is less than 2.1 g / cm 3 , the moisture absorption after 24 hours in an environment of 60 ° C. and 90% relative humidity is 3% by mass or more, and the average particle size Silica having a diameter of 0.1 μm or more and less than 3 μm.
The addition amount of the silica (c) is 1% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 40% by mass or less, and further 2% by mass or more and 30% by mass of the total amount of the epoxy resin composition. The following is preferable. Here, the measuring method of density, moisture absorption and average particle diameter measured using 1-butanol as a medium was the same as the method described in JP-A-6-49333.

また、本発明のエポキシ樹脂組成物はおいては、吸水剤が下記の多孔湿カーボン(d)を含んでいることが好ましい。
(d)比表面積が0.5m/g以上、30m/g以下であり、平均粒径が3μm以上、50μm以下である多孔質カーボン。
この多孔質カーボン(d)の添加量は、エポキシ樹脂組成物全体量の2質量%以上、50質量%以下、より好ましくは2質量%以上、30質量%以下、さらには2質量%以上、20質量%以下であることが好ましい。ここで、非表面積はカンタクローム社製3検体全自動ガス吸着量測定装置オートソーブ3B型を用い、吸着ガスに窒素を使用して測定した。平均粒径はLeeds&Nothrup社製レーザ回折散乱法粒度分布計X−100を用いて測定した。
Moreover, in the epoxy resin composition of this invention, it is preferable that the water absorbing agent contains the following porous wet carbon (d).
(D) Porous carbon having a specific surface area of 0.5 m 2 / g or more and 30 m 2 / g or less and an average particle diameter of 3 μm or more and 50 μm or less.
The addition amount of the porous carbon (d) is 2% by mass or more and 50% by mass or less, more preferably 2% by mass or more and 30% by mass or less, and further 2% by mass or more, 20% by mass of the total amount of the epoxy resin composition. It is preferable that it is below mass%. Here, the non-surface area was measured using a three-sample fully automatic gas adsorption amount measuring device Autosorb 3B type manufactured by Cantachrome, and using nitrogen as the adsorption gas. The average particle size was measured using a laser diffraction scattering method particle size distribution analyzer X-100 manufactured by Leeds & Notrup.

(c)及び(d)は吸湿性能を有し、本発明の目的を達成するために好適な吸水剤となる。これらは、エポキシ樹脂やフェノール樹脂とのぬれ性が良く、混練工程において分散不良を起こしにくい。また、密度、吸湿率、平均粒径、比表面積と添加量が上記の範囲内であれば、エポキシ樹脂組成物として流動性、機械的強度などに悪影響を及ぼすことは無い。なお、これらに含有されるアルカリ金属類、アルカリ土類金属類などの不純物は少ない方ほど良いが、通常、2ppm以下程度であることが好ましい。   (C) and (d) have hygroscopic performance and are suitable water-absorbing agents for achieving the object of the present invention. These have good wettability with an epoxy resin and a phenol resin, and hardly cause poor dispersion in the kneading process. Moreover, if a density, a moisture absorption rate, an average particle diameter, a specific surface area, and an addition amount are in said range, there will be no bad influence on fluidity | liquidity, mechanical strength, etc. as an epoxy resin composition. In addition, although the one where there are few impurities, such as alkali metals contained in these and alkaline earth metals, is so good, it is usually preferable that it is about 2 ppm or less.

また、エポキシ樹脂組成物へのシリカ(c)及び/または多孔質カーボン(d)の添加量は、硬化樹脂の飽和吸水率及び飽和吸水時間が前記の範囲内になるように調整されることが好ましい。シリカ(c)及び/または多孔質カーボン(d)の添加量を増やすことにより、エポキシ樹脂組成物の耐湿性を高めることができるが、同時に吸水量も増えるため、吸水したあとの過熱時、たとえば半田による実装工程、半田フローやリフローによる実装工程などにおいて、高温による水蒸気発生量が多くなり、結果としてパッケージの破壊(リフロークラック)が発生するなどの不都合を生じる。また、エポキシ樹脂組成物の流動性や硬化後の機械強度にも悪影響を与える。   Further, the amount of silica (c) and / or porous carbon (d) added to the epoxy resin composition may be adjusted so that the saturated water absorption rate and the saturated water absorption time of the cured resin are within the above ranges. preferable. By increasing the addition amount of silica (c) and / or porous carbon (d), the moisture resistance of the epoxy resin composition can be increased. However, since the amount of water absorption increases at the same time, for example, during overheating after water absorption, In a mounting process using solder, a mounting process using solder flow or reflow, etc., the amount of water vapor generated due to high temperatures increases, resulting in inconveniences such as package breakage (reflow cracks). Moreover, the fluidity of the epoxy resin composition and the mechanical strength after curing are also adversely affected.

なお、その他の吸湿材料、たとえばゼオライト系やチタニア系吸湿材料、シリカゲル等の吸湿材料、酸化カルシウム等の金属酸化物等を、本発明の目的を損なわず、得られる諸物性に影響しない範囲で、エポキシ樹脂組成物中にさらに添加することもできる。   In addition, other hygroscopic materials, for example, zeolite-based or titania-based hygroscopic materials, hygroscopic materials such as silica gel, metal oxides such as calcium oxide, and the like, within the range not affecting the properties of the present invention, Further addition to the epoxy resin composition is also possible.

本発明のエポキシ樹脂組成物は、成形収縮率が好ましくは0.03%以上、0.35%以下、より好ましくは0.05%以上、0.30%以下、さらには0.08%以上、0.20%以下であることが好ましい。上記範囲の成形収縮率にすることで、金型離型性に優れ、かつ寸法精度に優れた成形体を得ることができる。ここで言う成形収縮率とは、目的とする中空パッケージを製造するときの成形圧力、成形温度での値を指す。すなわち、図1や図2に記載のパッケージを製造し、その際の外形寸法と金型キャビティ寸法より、キャビティに対する硬化収縮率が求められ、これを成形収縮率とする。なお、成形収縮率を上記範囲内にするためには、通常、無機フィラーを配合しその配合量を調整する。加えて、前記エポキシ樹脂、フェノール樹脂の種類、配合量を変えることによっても成形収縮率を調整することが可能である。   The epoxy resin composition of the present invention preferably has a molding shrinkage of 0.03% or more and 0.35% or less, more preferably 0.05% or more, 0.30% or less, and further 0.08% or more. It is preferable that it is 0.20% or less. By setting the molding shrinkage rate within the above range, a molded article having excellent mold releasability and excellent dimensional accuracy can be obtained. The molding shrinkage mentioned here refers to a value at a molding pressure and a molding temperature when a desired hollow package is manufactured. That is, the package shown in FIG. 1 and FIG. 2 is manufactured, and the curing shrinkage rate for the cavity is determined from the outer dimensions and the mold cavity size at that time, and this is the molding shrinkage rate. In order to make the molding shrinkage within the above range, an inorganic filler is usually blended and the blending amount is adjusted. In addition, it is possible to adjust the molding shrinkage rate by changing the kind and blending amount of the epoxy resin and phenol resin.

本発明のエポキシ樹脂組成物には、無機フィラーのほかさらに硬化触媒、着色剤、離型材、カップリング材、低応力化材、難燃剤などを、本発明の目的を損ねない範囲で添加することができる。無機フィラーは、エポキシ樹脂組成物の流動性、成形性、収縮率、吸水率、樹脂混練性などに影響を及ぼすので、目的に応じて種類、粒径、添加量を調整しながら添加される。すなわち、選択した樹脂の種類や粘度に応じて、エポキシ樹脂組成物が前記の成形収縮率を満たすように、無機フィラーの種類、粒径、添加量等が調整される。   In addition to the inorganic filler, the epoxy resin composition of the present invention may further contain a curing catalyst, a colorant, a release material, a coupling material, a stress reducing material, a flame retardant, and the like as long as the object of the present invention is not impaired. Can do. The inorganic filler affects the fluidity, moldability, shrinkage rate, water absorption rate, resin kneading property, and the like of the epoxy resin composition, and is added while adjusting the type, particle size, and addition amount according to the purpose. That is, according to the type and viscosity of the selected resin, the type, particle size, addition amount, and the like of the inorganic filler are adjusted so that the epoxy resin composition satisfies the molding shrinkage rate.

無機フィラーとしては、例えば前記のシリカ(c)以外のシリカ、アルミナなどの無機物が好ましく、特にシリカが好ましい。無機フィラーの平均粒径は、好ましくは5μm以上、30μm以下、より好ましくは10μm以上、30μm以下、さらには15μm以上、30μm以下であることが好ましい。無機フィラーの添加量は、エポキシ樹脂組成物全体量の30質量%以上、80質量%以下が好ましく、より好ましくは40質量%以上、78質量%以下、さらには45質量%以上、75質量%以下が好ましい。ただし、前記のシリカ(c)を使用する場合、無機フィラーとシリカ(c)の合計量が、エポキシ樹脂組成物全体量の92質量%以下にすることが好ましい。また、これらの無機フィラーは、半導体素子の誤動作を防ぐため、ウラン含有量の少ないものが好ましい。   As the inorganic filler, for example, inorganic substances such as silica other than silica (c) and alumina are preferable, and silica is particularly preferable. The average particle size of the inorganic filler is preferably 5 μm or more and 30 μm or less, more preferably 10 μm or more and 30 μm or less, and further preferably 15 μm or more and 30 μm or less. The addition amount of the inorganic filler is preferably 30% by mass or more and 80% by mass or less, more preferably 40% by mass or more and 78% by mass or less, and further 45% by mass or more and 75% by mass or less of the total amount of the epoxy resin composition. Is preferred. However, when using the said silica (c), it is preferable that the total amount of an inorganic filler and a silica (c) shall be 92 mass% or less of the epoxy resin composition whole quantity. These inorganic fillers preferably have a low uranium content in order to prevent malfunction of the semiconductor element.

図1、図2に本発明のエポキシ樹脂組成物を用いて成形される半導体素子収納用中空パッケージの一例の断面図を示す。半導体素子収納用中空パッケージの製造は、リードフレームを設置した金型に、上記のように調製されたエポキシ樹脂組成物を圧縮して得られたタブレットを、トランスファー成型して行った。具体的には、射出圧力1.5MPa、射出時間1分間、硬化時間1分間、金型温度160℃の条件でトランスファー成型を行い、次いで得られた成型体を180℃環境下で3時間ポストキュアーを行い、半導体収納用中空パッケージを得た。   1 and 2 are cross-sectional views showing an example of a hollow package for housing a semiconductor element formed using the epoxy resin composition of the present invention. The hollow package for housing a semiconductor element was manufactured by transfer molding a tablet obtained by compressing the epoxy resin composition prepared as described above into a mold having a lead frame. Specifically, transfer molding is performed under the conditions of an injection pressure of 1.5 MPa, an injection time of 1 minute, a curing time of 1 minute, and a mold temperature of 160 ° C., and then the obtained molded body is post-cured in a 180 ° C. environment for 3 hours. A hollow package for semiconductor storage was obtained.

例示した中空パッケージには、透湿防止板(例えば特許第2539111号明細書に記載のもの)が図示されているが、これはパッケージ底面部からの透湿をできるだけ防ぐため、底面部分に金属板からなる透湿防止板を装入し、アイランド構造をもたせることにより、さらに耐湿性を高めることができるものである。   In the illustrated hollow package, a moisture permeation prevention plate (for example, the one described in Japanese Patent No. 2539111) is shown. However, in order to prevent moisture permeation from the bottom surface of the package as much as possible, a metal plate is provided on the bottom surface portion. The moisture resistance can be further improved by inserting a moisture permeation preventive plate made of and having an island structure.

(実施例1)
表1に記載の量(数値の単位は質量部)でエポキシ樹脂、硬化剤、無機フィラー、硬化触媒、その他の添加剤を配合した。これを95℃の熱ロールで加熱混練した後、冷却、粉砕工程を経て、エポキシ樹脂組成物(EX−1)を得た。得られたエポキシ樹脂組成物を用いて、アイランド部を有する金属フレームとの一体成形により、図1に示した中空パッケージ(SOP(Small Outline Package)型)、および図2に示した表面実装型中空パッケージ(SON(Small Outline Non−Lead Package)型)を作製した。パッケージの厚みの最も薄い部分は半導体素子が搭載される部位(ダイアタッチ部)であり、この厚さは、SOP型で0.8mm、SON型で0.3mmであった。使用する金属フレームとしては、CA194合金(銅合金)を用いた。
(Example 1)
An epoxy resin, a curing agent, an inorganic filler, a curing catalyst, and other additives were blended in the amounts shown in Table 1 (the unit of numerical values is parts by mass). This was heat-kneaded with a hot roll at 95 ° C., and then cooled and pulverized to obtain an epoxy resin composition (EX-1). Using the resulting epoxy resin composition, the hollow package shown in FIG. 1 (SOP (Small Outline Package) type) and the surface mount type hollow shown in FIG. A package (SON (Small Outline Non-Lead Package) type) was produced. The thinnest part of the package is a part (die attach part) on which a semiconductor element is mounted. This thickness was 0.8 mm for the SOP type and 0.3 mm for the SON type. As a metal frame to be used, CA194 alloy (copper alloy) was used.

成形条件は、160℃、1.5MPaであり、射出時間1分間、硬化時間1分間とした。この条件で成形したパッケージの外形の成形収縮率は、(株)東京精密社製三次元測定器XYZAX−GC1000Dを用いて金型キャビティの寸法(これをLmとする)を測定し、同様に相当するパッケージの寸法(これをLtとする)を測定し、(Lm−Lt)/Lmの式により求めた。   The molding conditions were 160 ° C. and 1.5 MPa, the injection time was 1 minute, and the curing time was 1 minute. The molding shrinkage of the outer shape of the package molded under these conditions is the same as that obtained by measuring the dimension of the mold cavity (this is Lm) using a three-dimensional measuring instrument XYZAX-GC1000D manufactured by Tokyo Seimitsu Co., Ltd. The dimension of the package to be measured (this is assumed to be Lt) was determined by the formula of (Lm−Lt) / Lm.

このパッケージを180℃×6時間乾燥させた後にシール剤(協立化学産業(株)社製ワールドロックNo.8723K8L)を蓋接着部に塗布し、厚さ0.8mmのガラスを貼り付けて封止し、メタルハライドランプのUV光(照射条件は100mWで30秒間)を用いて硬化させた。このパッケージを市販のプレッシャークッカー試験機に入れ、121℃、相対湿度100%の環境下で2時間曝露した。試験機から取り出した後、室温で15分放置して温度が安定した後、100℃ホットプレートにガラス面を10秒間押し付け、次いで23℃のペルチェ式冷却板に7秒間押し付けた。すぐにガラス面を確認し、中空部内の水分が結露するかどうかを目視で調べた(以下、この試験法を「曇り試験」と記す)。この操作を繰り返し結露が認められない最大の時間を、曇り試験結果として表1下欄に示した。   After this package was dried at 180 ° C. for 6 hours, a sealant (World Lock No. 8723K8L, manufactured by Kyoritsu Chemical Industry Co., Ltd.) was applied to the lid adhering portion, and a 0.8 mm thick glass was pasted and sealed. Then, it was cured using UV light from a metal halide lamp (irradiation conditions were 100 mW for 30 seconds). This package was placed in a commercial pressure cooker tester and exposed for 2 hours in an environment of 121 ° C. and 100% relative humidity. After being removed from the tester and allowed to stand at room temperature for 15 minutes, the temperature was stabilized, and then the glass surface was pressed against a 100 ° C. hot plate for 10 seconds and then against a 23 ° C. Peltier cooling plate for 7 seconds. The glass surface was immediately confirmed, and it was visually examined whether or not moisture in the hollow portion was condensed (hereinafter, this test method is referred to as “fogging test”). This operation was repeated and the maximum time during which no condensation was observed was shown in the lower column of Table 1 as the fogging test result.

また、別途、エポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定し、結果を併せて表1下欄に示した。   Separately, the saturated water absorption rate and saturated water absorption time of the epoxy resin composition were measured, and the results are also shown in the lower column of Table 1.

なお、表1に記載した各原料は、以下のものを用いた。
ナフタレン型エポキシ樹脂:日本化薬(株)製 NC−7000L、
ナフトールアラルキル型エポキシ樹脂:東都化成(株)製 ESN−165M、
ジシクロペンタジエン型エポキシ樹脂:大日本インキ(株)製 EPICLON HP−7200、
オルソクレゾールノボラック型エポキシ樹脂:日本化薬(株)製 EOCN−102S、
アラルキルフェノール樹脂:三井化学(株)製 MILEX XLC−LL、
ジシクロペンタジエン型フェノール樹脂:新日本石油化学(株)製 DPP−6095L、
ナフタレン型フェノール樹脂:東都化成(株)製 SN−180、
フェノールノボラック樹脂:明和化成(株)製 HF−3M、
臭素化エポキシ樹脂:日本化薬(株)製BREN−S、
難燃剤:三酸化アンチモン(日本精鉱(株)製PATOX−M)、
低密度球状シリカ(シリカ(c)):密度1.83g/cm、吸湿率10.7%平均粒径1μm、
多孔質カーボン(多孔質カーボン(d)):比表面積4.5m/g、平均粒径13.6μm、
溶融シリカ:電気化学工業(株)製FB−820X(高純度球状溶融シリカ、平均粒径24μm)、
硬化触媒:四国化成(株)製キュアゾール(登録商標)2MZ(2−メチルイミダゾール)、
着色剤:三菱化学(株)製カーボンブラック#45、
カップリング剤:信越化学工業(株)製KBM−403、
離型剤:カルナバワックス。
In addition, the following were used for each raw material described in Table 1.
Naphthalene type epoxy resin: Nippon Kayaku Co., Ltd. NC-7000L,
Naphthol aralkyl epoxy resin: ESN-165M manufactured by Tohto Kasei Co., Ltd.
Dicyclopentadiene-type epoxy resin: EPICLON HP-7200 manufactured by Dainippon Ink Co., Ltd.
Orthocresol novolac type epoxy resin: EOCN-102S manufactured by Nippon Kayaku Co., Ltd.
Aralkylphenol resin: MILEX XLC-LL, manufactured by Mitsui Chemicals, Inc.
Dicyclopentadiene type phenolic resin: DPP-6095L manufactured by Nippon Petrochemical Co., Ltd.
Naphthalene type phenolic resin: SN-180 manufactured by Tohto Kasei Co., Ltd.
Phenol novolac resin: HF-3M manufactured by Meiwa Kasei Co., Ltd.
Brominated epoxy resin: Nippon Kayaku Co., Ltd. BREN-S,
Flame retardant: antimony trioxide (Nippon Seiko Co., Ltd. PATOX-M),
Low density spherical silica (silica (c)): density 1.83 g / cm 3 , moisture absorption 10.7% average particle size 1 μm,
Porous carbon (porous carbon (d)): specific surface area 4.5 m 2 / g, average particle size 13.6 μm,
Fused silica: FB-820X (High purity spherical fused silica, average particle size 24 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
Curing catalyst: Shikoku Kasei Co., Ltd. Curazole (registered trademark) 2MZ (2-methylimidazole),
Colorant: Carbon black # 45 manufactured by Mitsubishi Chemical Corporation
Coupling agent: Shin-Etsu Chemical Co., Ltd. KBM-403,
Mold release agent: Carnauba wax.

Figure 2005146157
Figure 2005146157

(実施例2)
エポキシ樹脂にナフトールアラルキル型エポキシ樹脂とジシクロペンタジエン型エポキシ樹脂を、フェノール樹脂にジシクロペンタジエン型フェノール樹脂を用いたこと以外は、実施例1と同様にエポキシ樹脂組成物(EX−2)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
(Example 2)
An epoxy resin composition (EX-2) was prepared in the same manner as in Example 1 except that a naphthol aralkyl type epoxy resin and a dicyclopentadiene type epoxy resin were used for the epoxy resin and a dicyclopentadiene type phenol resin was used for the phenol resin. did. A package was molded in the same manner as in Example 1, and a haze test was conducted. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

(実施例3)
フェノール樹脂にナフタレン型フェノール樹脂を用いたこと以外は、実施例1と同様にエポキシ樹脂組成物(EX−3)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
(Example 3)
An epoxy resin composition (EX-3) was produced in the same manner as in Example 1 except that a naphthalene type phenol resin was used as the phenol resin. A package was molded in the same manner as in Example 1 and a haze test was performed. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

(実施例4)
吸湿材に多孔質カーボンを使用したこと以外は、実施例1と同様にエポキシ樹脂組成物(EX−4)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
Example 4
An epoxy resin composition (EX-4) was produced in the same manner as in Example 1 except that porous carbon was used as the hygroscopic material. A package was molded in the same manner as in Example 1 and a haze test was performed. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

(実施例5)
低密度球状シリカ添加量を14.5質量%にしたこと以外は、実施例1と同様にエポキシ樹脂組成物(EX−5)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
(Example 5)
An epoxy resin composition (EX-5) was produced in the same manner as in Example 1 except that the amount of low-density spherical silica added was 14.5% by mass. A package was molded in the same manner as in Example 1 and a haze test was performed. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

(比較例1)
エポキシ樹脂にオルソクレゾールノボラックエポキシ、フェノール樹脂にフェノールノボラックを選択し、その他は実施例1と同様にエポキシ樹脂組成物(EX−6)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
(Comparative Example 1)
Ortho-cresol novolac epoxy was selected as the epoxy resin, phenol novolac was selected as the phenol resin, and an epoxy resin composition (EX-6) was prepared in the same manner as in Example 1. A package was molded in the same manner as in Example 1 and a haze test was performed. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

(比較例2)
低密度球状シリカ添加量を0.7質量%にしたこと以外は、実施例1と同様にエポキシ樹脂組成物(EX−7)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
(Comparative Example 2)
An epoxy resin composition (EX-7) was produced in the same manner as in Example 1 except that the amount of low-density spherical silica added was 0.7% by mass. A package was molded in the same manner as in Example 1, and a haze test was conducted. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

(比較例3)
低密度球状シリカ添加量を5.5質量%にし、溶融シリカ添加量を1000重量部とした以外は、実施例1と同様にエポキシ樹脂組成物(EX−8)を作製した。実施例1と同様にパッケージを成形し、曇り試験を行った。結果を表1下欄に示す。また、あわせてエポキシ樹脂組成物の飽和吸水率および飽和吸水時間を測定した結果を表1下欄に示した。
(Comparative Example 3)
An epoxy resin composition (EX-8) was produced in the same manner as in Example 1 except that the amount of low-density spherical silica added was 5.5% by mass and the amount of fused silica added was 1000 parts by weight. A package was molded in the same manner as in Example 1 and a haze test was performed. The results are shown in the lower column of Table 1. In addition, the results of measuring the saturated water absorption rate and the saturated water absorption time of the epoxy resin composition are shown in the lower column of Table 1.

以上の結果をまとめると、実施例1から実施例5のエポキシ樹脂組成物は、いずれも前記の飽和吸水量、飽和吸水時間の範囲内である。その結果、図1のSOP型パッケージで16時間以上、図2の薄型SON型パッケージで8時間以上の曇り試験結果を示し、半導体素子収納用中空パッケージとして良好な耐湿性を有することがわかった。パッケージ樹脂厚みの最も薄い部分はダイアタッチ部3であり、当然、水はこの部分から最も速くパッケージ内に浸入する。特に、図2の薄型パッケージにおいては、樹脂部分の厚さが0.3mmと薄いため水分を透過させやすく、本発明の樹脂組成物が良好な性能を示したことが明らかとなった。   To summarize the above results, the epoxy resin compositions of Examples 1 to 5 are all within the range of the saturated water absorption amount and the saturated water absorption time. As a result, the haze test results of 16 hours or more with the SOP type package of FIG. 1 and 8 hours or more with the thin SON type package of FIG. 2 were found, and it was found that the semiconductor package has good moisture resistance. The thinnest part of the package resin is the die attach part 3, and naturally, water enters the package most rapidly from this part. In particular, in the thin package of FIG. 2, since the resin portion was as thin as 0.3 mm, it was easy to permeate moisture, and it was revealed that the resin composition of the present invention showed good performance.

これに対し、比較例1は、飽和吸水率は1.9質量%と十分だが、飽和吸水時間が実施例と比較して早い。そのため、図1のようなパッケージ樹脂厚みの厚いパッケージであれば比較的高い耐湿性を示すが、図2の薄型パッケージでは耐湿性が不足した。
また比較例2は、飽和吸水率が低いため、曇り試験において耐湿性が不十分な結果となった。
比較例3においては、飽和吸水時間が早い。そのため、図2のような薄型パッケージにおいては、十分な耐湿性を持たないことがわかった。
On the other hand, in Comparative Example 1, the saturated water absorption is sufficient at 1.9% by mass, but the saturated water absorption time is faster than in the Examples. Therefore, a package with a thick package resin as shown in FIG. 1 exhibits relatively high moisture resistance, but the thin package of FIG. 2 lacks moisture resistance.
Moreover, since the comparative example 2 has a low saturated water absorption rate, the moisture resistance was insufficient in the fog test.
In Comparative Example 3, the saturated water absorption time is fast. Therefore, it was found that the thin package as shown in FIG. 2 does not have sufficient moisture resistance.

本発明のエポキシ樹脂組成物は、内部に水分を浸透させにくい性能が必要とされる、例えばレーザ素子用パッケージ等に好適に使用できる。また、本発明のエポキシ樹脂組成物で成形したパッケージは、成形自由性が高いため、例えばレンズ鏡筒付きパッケージ、ピント合わせ部品付きパッケージ、基板一体型パッケージなど、形状の自由性を生かしたパッケージの作製も可能となる。   The epoxy resin composition of the present invention can be suitably used for, for example, a package for a laser element that requires the performance of preventing moisture from penetrating inside. In addition, since the package molded with the epoxy resin composition of the present invention has high molding flexibility, for example, a package using a lens barrel, a package with a focusing component, a substrate integrated package, etc. Production is also possible.

SOP型パッケージの概略断面図である(リードフレームを除いたパッケージ大きさは10.0mm×10.0mm×2.0mm)。FIG. 3 is a schematic cross-sectional view of an SOP type package (a package size excluding a lead frame is 10.0 mm × 10.0 mm × 2.0 mm). SON型パッケージの概略断面図である(リードフレームを除いたパッケージ大きさは、10.0mm×10.0mm×1.0mm)。It is a schematic sectional drawing of a SON type package (The package size except a lead frame is 10.0 mm x 10.0 mm x 1.0 mm).

符号の説明Explanation of symbols

1 エポキシ樹脂組成物
2 リードフレーム
3 ダイアタッチ部(パッケージで最も薄い部分、図1で0.8mm、図2で0.3mm)
4 透湿防止板(アイランド部)
DESCRIPTION OF SYMBOLS 1 Epoxy resin composition 2 Lead frame 3 Die attach part (the thinnest part in a package, 0.8 mm in FIG. 1, 0.3 mm in FIG. 2)
4 Moisture permeable prevention plate (island part)

Claims (5)

121℃、相対湿度100%の環境下において、大きさ50mm×50mm×1.5mmの硬化樹脂の飽和吸水率が1質量%以上であり、乾燥状態から飽和吸水状態に達するまでの時間が64時間以上であることを特徴とするエポキシ樹脂組成物。   Under an environment of 121 ° C. and a relative humidity of 100%, a cured resin having a size of 50 mm × 50 mm × 1.5 mm has a saturated water absorption of 1% by mass or more, and it takes 64 hours to reach a saturated water absorption state from a dry state. An epoxy resin composition characterized by the above. 下記(a)からなるエポキシ樹脂と、下記(b)からなる硬化剤と、吸水剤、必要によりさらに無機フィラーを含有することを特徴とするエポキシ樹脂組成物。
(a)ナフタレン環構造を有するエポキシ樹脂およびジシクロペンタジエン構造を有するエポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂、
(b)アラルキルフェノール樹脂、ジシクロペンタジエン型フェノール樹脂およびナフタレン型フェノール樹脂から選ばれる少なくとも1種のフェノール樹脂。
An epoxy resin composition comprising an epoxy resin comprising the following (a), a curing agent comprising the following (b), a water absorbing agent and, if necessary, an inorganic filler.
(A) at least one epoxy resin selected from an epoxy resin having a naphthalene ring structure and an epoxy resin having a dicyclopentadiene structure;
(B) At least one phenol resin selected from aralkyl phenol resins, dicyclopentadiene type phenol resins, and naphthalene type phenol resins.
吸水剤が下記(c)のシリカを含み、該シリカをエポキシ樹脂組成物全体量の1質量%以上、50質量%以下で含有する請求項2に記載のエポキシ樹脂組成物。
(c)1−ブタノールを媒体として測定した密度が2.1g/cm未満であり、60℃、相対湿度90%の環境下における24時間後の吸湿率が3質量%以上であり、平均粒径が0.1μm以上、3μm未満のシリカ。
The epoxy resin composition according to claim 2, wherein the water-absorbing agent contains silica of the following (c), and the silica is contained in an amount of 1% by mass to 50% by mass of the total amount of the epoxy resin composition.
(C) The density measured using 1-butanol as the medium is less than 2.1 g / cm 3 , the moisture absorption after 24 hours in an environment of 60 ° C. and 90% relative humidity is 3% by mass or more, and the average particle size Silica having a diameter of 0.1 μm or more and less than 3 μm.
吸水剤が下記(d)の多孔質カーボンを含み、該多孔質カーボンをエポキシ樹脂組成物全体量の2質量%以上、50質量%以下で含有する請求項2または3に記載のエポキシ樹脂組成物。
(d)比表面積が0.5m/g以上、30m/g以下であり、平均粒径が3μm以上、50μm以下である多孔質カーボン。
The epoxy resin composition according to claim 2 or 3, wherein the water-absorbing agent contains porous carbon of the following (d), and the porous carbon is contained in an amount of 2% by mass to 50% by mass of the total amount of the epoxy resin composition. .
(D) Porous carbon having a specific surface area of 0.5 m 2 / g or more and 30 m 2 / g or less and an average particle diameter of 3 μm or more and 50 μm or less.
請求項1から4のいずれかに記載のエポキシ樹脂組成物を用いて成形してなる半導体素子収納用中空パッケージ。   A hollow package for housing a semiconductor element formed by using the epoxy resin composition according to claim 1.
JP2003387330A 2003-11-18 2003-11-18 Epoxy resin composition and hollow package for housing semiconductor element Pending JP2005146157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387330A JP2005146157A (en) 2003-11-18 2003-11-18 Epoxy resin composition and hollow package for housing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387330A JP2005146157A (en) 2003-11-18 2003-11-18 Epoxy resin composition and hollow package for housing semiconductor element

Publications (1)

Publication Number Publication Date
JP2005146157A true JP2005146157A (en) 2005-06-09

Family

ID=34694704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387330A Pending JP2005146157A (en) 2003-11-18 2003-11-18 Epoxy resin composition and hollow package for housing semiconductor element

Country Status (1)

Country Link
JP (1) JP2005146157A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038519A (en) * 2005-08-03 2007-02-15 Toray Ind Inc Composite molded component
JP2007092002A (en) * 2005-09-30 2007-04-12 Hitachi Chem Co Ltd Epoxy resin composition, hollow package for semiconductor device and semiconductor part device by using the same
JP2011137064A (en) * 2009-12-28 2011-07-14 Sumitomo Chemical Co Ltd Liquid crystalline polyester resin composition, molded product, and composite member
US8315031B2 (en) 2007-10-12 2012-11-20 Panasonic Corporation Case mold type capacitor
JP2019147896A (en) * 2018-02-27 2019-09-05 旭化成株式会社 Epoxy resin composition for structural adhesive, and structure including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216196A (en) * 1994-01-26 1995-08-15 Shin Etsu Chem Co Ltd Epoxy resin composition
JPH07315820A (en) * 1994-05-18 1995-12-05 Nippon Carbon Co Ltd Hydrophilic carbon material and its production
JP2001220496A (en) * 1999-12-02 2001-08-14 Shin Etsu Chem Co Ltd Epoxy resin composition and open tubular package for semiconductor device element
JP2001302885A (en) * 2000-04-24 2001-10-31 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2001302886A (en) * 2000-04-24 2001-10-31 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2001335677A (en) * 1999-09-17 2001-12-04 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic parts device
JP2003160714A (en) * 2001-02-23 2003-06-06 Mitsui Chemicals Inc Epoxy resin composition and hollow package for housing semiconductor device using the same
JP2004323644A (en) * 2003-04-24 2004-11-18 Mitsui Chemicals Inc Epoxy resin composition and package for semiconductor device using it
JP2004331920A (en) * 2003-05-12 2004-11-25 Mitsui Chemicals Inc Epoxy resin composition and hollow package for housing semiconductor element by using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216196A (en) * 1994-01-26 1995-08-15 Shin Etsu Chem Co Ltd Epoxy resin composition
JPH07315820A (en) * 1994-05-18 1995-12-05 Nippon Carbon Co Ltd Hydrophilic carbon material and its production
JP2001335677A (en) * 1999-09-17 2001-12-04 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic parts device
JP2001220496A (en) * 1999-12-02 2001-08-14 Shin Etsu Chem Co Ltd Epoxy resin composition and open tubular package for semiconductor device element
JP2001302885A (en) * 2000-04-24 2001-10-31 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2001302886A (en) * 2000-04-24 2001-10-31 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2003160714A (en) * 2001-02-23 2003-06-06 Mitsui Chemicals Inc Epoxy resin composition and hollow package for housing semiconductor device using the same
JP2004323644A (en) * 2003-04-24 2004-11-18 Mitsui Chemicals Inc Epoxy resin composition and package for semiconductor device using it
JP2004331920A (en) * 2003-05-12 2004-11-25 Mitsui Chemicals Inc Epoxy resin composition and hollow package for housing semiconductor element by using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038519A (en) * 2005-08-03 2007-02-15 Toray Ind Inc Composite molded component
JP4670532B2 (en) * 2005-08-03 2011-04-13 東レ株式会社 Composite molded product
JP2007092002A (en) * 2005-09-30 2007-04-12 Hitachi Chem Co Ltd Epoxy resin composition, hollow package for semiconductor device and semiconductor part device by using the same
US8315031B2 (en) 2007-10-12 2012-11-20 Panasonic Corporation Case mold type capacitor
JP2011137064A (en) * 2009-12-28 2011-07-14 Sumitomo Chemical Co Ltd Liquid crystalline polyester resin composition, molded product, and composite member
JP2019147896A (en) * 2018-02-27 2019-09-05 旭化成株式会社 Epoxy resin composition for structural adhesive, and structure including the same
JP7080672B2 (en) 2018-02-27 2022-06-06 旭化成株式会社 Epoxy resin composition for structural adhesives and structures using this

Similar Documents

Publication Publication Date Title
US6399677B2 (en) Epoxy resin compositions and premolded semiconductor packages
JP2011184650A (en) Resin composition for electronic component encapsulation and electronic component device using the same
JP2005146157A (en) Epoxy resin composition and hollow package for housing semiconductor element
JP3022135B2 (en) Epoxy resin composition
JP2002212264A (en) Epoxy resin composition for sealing of semiconductor and semiconductor device using the same
JP2002080698A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2006274186A (en) Epoxy resin composition and semiconductor device
JP3598963B2 (en) Resin composition for optical semiconductor device
JPH11269351A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP2991850B2 (en) Epoxy resin composition
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP3359534B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2007099808A (en) Epoxy resin composition and semiconductor device
JP3119104B2 (en) Epoxy resin composition
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP2951092B2 (en) Epoxy resin composition
JPH10182944A (en) Resin composition for sealing electronic parts
JP3979634B2 (en) Epoxy resin composition and semiconductor device
JP5226957B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004331920A (en) Epoxy resin composition and hollow package for housing semiconductor element by using the same
JP2004323644A (en) Epoxy resin composition and package for semiconductor device using it
JP2008156403A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP3982209B2 (en) Resin composition for optical semiconductor device and optical semiconductor device
JP3816910B2 (en) Package for storing semiconductor elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721