JP3816910B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements Download PDF

Info

Publication number
JP3816910B2
JP3816910B2 JP2003312712A JP2003312712A JP3816910B2 JP 3816910 B2 JP3816910 B2 JP 3816910B2 JP 2003312712 A JP2003312712 A JP 2003312712A JP 2003312712 A JP2003312712 A JP 2003312712A JP 3816910 B2 JP3816910 B2 JP 3816910B2
Authority
JP
Japan
Prior art keywords
package
moisture
hygroscopic
resin
apparent density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003312712A
Other languages
Japanese (ja)
Other versions
JP2005085792A (en
Inventor
光雄 矢田部
貴司 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIKAWAKOGYO CO.,LTD.
Resonac Corp
Original Assignee
YOSHIKAWAKOGYO CO.,LTD.
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIKAWAKOGYO CO.,LTD., Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical YOSHIKAWAKOGYO CO.,LTD.
Priority to JP2003312712A priority Critical patent/JP3816910B2/en
Publication of JP2005085792A publication Critical patent/JP2005085792A/en
Application granted granted Critical
Publication of JP3816910B2 publication Critical patent/JP3816910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Drying Of Gases (AREA)
  • Packages (AREA)

Description

本願発明は半導体素子を収納するためのパッケージ、特に、CCD,MOS,CPDなどの固体撮像素子、EPROMなどの光を利用するメモリのような光学特性を有する半導体素子収納用の箱形の中空パッケージに関する。   The present invention relates to a package for housing a semiconductor element, in particular, a solid-state image sensor such as a CCD, MOS, CPD, a box-shaped hollow package for housing a semiconductor element having optical characteristics such as a memory using light such as EPROM. About.

半導体素子収納用の箱形の中空パッケージは、その内部に形成されたダイパッドに半導体素子が固着され、ボンディングワイヤーによりリードに接続されており、そして、パッケージの開口部はガラスあるいは透明なプラスチック製のリッド(蓋)が気密シール用の接着剤層により接着されて気密シールされている。   A box-shaped hollow package for housing a semiconductor element has a semiconductor element fixed to a die pad formed therein and connected to a lead by a bonding wire, and the opening of the package is made of glass or transparent plastic. A lid (lid) is adhered and hermetically sealed by an adhesive layer for hermetic sealing.

半導体素子の機能は、微細なゴミ、埃に大きく影響され易く、ゴミ、埃のない雰囲気とするのが不可欠である。また、半導体素子とレンズの取付には半導体装置を基準に行なわれるため、中空パッケージの寸法精度と平坦度は非常に高いレベルを要求される。それとともに、パッケージ内部に微量でも水分が浸入すると、半導体素子の機能が低下し、ついには、使用不能の状態に至る場合もある。特に透明な蓋材の内側に水分が結露して光透過率を低下させてしまうという重大な問題がある。   The function of the semiconductor element is greatly affected by fine dust and dust, and it is essential to have an atmosphere free from dust and dust. Further, since the semiconductor element and the lens are attached based on the semiconductor device, the hollow package is required to have a very high level of dimensional accuracy and flatness. At the same time, if a small amount of moisture enters the inside of the package, the function of the semiconductor element deteriorates, and eventually it may become unusable. In particular, there is a serious problem in that moisture condenses inside the transparent lid and the light transmittance is lowered.

樹脂製中空パッケージの場合、多くはエポキシ樹脂からなる。ところが、樹脂本来の耐湿特性には限界があり、さらに効率的に湿気の浸入を防止することが可能な高度な特性を有するパッケージ素材並びに半導体装置が求められていた。   In the case of a resin-made hollow package, many are made of an epoxy resin. However, there is a limit to the inherent moisture resistance of the resin, and there has been a demand for a package material and a semiconductor device having advanced characteristics that can efficiently prevent moisture from entering.

この中空パッケージへの水分の浸入を防ぐために、下記特許文献に開示されているように、従来から多くの手法が提案されている。   In order to prevent moisture from entering the hollow package, many techniques have been proposed in the past as disclosed in the following patent document.

例えば、特許文献1にはパッケージ内に吸湿材を封入することが、特許文献2にはパッケージの封止用キャップの接着用樹脂に吸湿材を含有させることが、特許文献3には中空パッケージにガス吸着剤を入れることが、特許文献4にはパッケージ内に乾燥剤を装入することが、また、特許文献5には、撮像素子の封止用接着剤に無定形シリカを充填材として使用することが、特許文献6にはパッケージの封止用キャップも接着剤用樹脂を撥水層と吸水層の2層で構成させることが記載され、さらに、特許文献7には、特許文献2に記載のパッケージの封止用キャップの接着用樹脂に吸湿材を含有させるに際しての組成を特定したものが開示されている。   For example, Patent Document 1 discloses that a hygroscopic material is enclosed in a package, Patent Document 2 indicates that a hygroscopic material is contained in an adhesive resin for a sealing cap of the package, and Patent Document 3 describes that a hollow package is included. It is necessary to insert a gas adsorbent. In Patent Document 4, a desiccant is charged in the package. In Patent Document 5, amorphous silica is used as a sealing material for the image sensor sealing agent. In Patent Document 6, it is described that the sealing cap of the package also includes an adhesive resin composed of two layers of a water-repellent layer and a water-absorbing layer. Further, Patent Document 7 describes Patent Document 2 What specified the composition at the time of making the adhesive resin of the sealing cap of the package of description contain a moisture absorbing material is disclosed.

さらに、特許文献8には、中空パッケージの本体の構成材にシリカゲル、ゼオライト等の無機物を含む吸湿材を含有させたものが開示されている。   Further, Patent Document 8 discloses that a constituent material of the main body of the hollow package contains a hygroscopic material containing an inorganic substance such as silica gel or zeolite.

上記各特許文献に記載の吸湿材を用いて半導体素子収納用パッケージ内への湿分の浸入を防止するための手段の中で、特許文献8に記載のパッケージ本体の構成材に吸湿材を含有させることが最も効果的である。
特開昭53−75860号公報 実開昭59−6842号公報 特開昭62−221137号公報 特開平2−201960号公報 特開平3−60056号公報 特開平4−85859号公報 特許第2746826号公報 特許第2750254号公報
Among the means for preventing moisture from entering the semiconductor element housing package using the moisture absorbent described in each of the above patent documents, a moisture absorbent is included in the constituent material of the package body described in Patent Document 8. It is the most effective.
JP-A-53-75860 Japanese Utility Model Publication No.59-6842 JP-A-62-221137 JP-A-2-201960 Japanese Patent Laid-Open No. 3-60056 JP-A-4-85859 Japanese Patent No. 2746826 Japanese Patent No. 2750254

このパッケージ本体の構成材に吸湿材を含有させてパッケージ内への湿分の浸入の防止に際しては、構成材に含有させる吸湿材をより多く樹脂に埋入させることにより、水分の通過を長期間に渡り有効に阻止できる。   In order to prevent moisture from entering the package by incorporating a moisture absorbent into the component of the package body, the moisture can be passed through the resin for a long time by embedding more of the moisture absorbent to be contained in the component. Can be effectively blocked over

ところが、前記特許文献8に記載の発明においては、吸湿材を多量に埋入させることにより、金型にて樹脂を成形する際に樹脂の流れ性(流動性)が悪くなり、成形体が得られない。そのため、湿分の浸入防止に機能する吸湿材は50重量%以下しか含有させることができず、この吸湿材の量的制限がパッケージ本体の防湿能そのものの限界となり、これが、湿分による収納半導体素子の性能低下をもたらす結果を招いている。   However, in the invention described in Patent Document 8, the flowability (fluidity) of the resin is deteriorated when the resin is molded with a mold by embedding a large amount of the hygroscopic material, and a molded body is obtained. I can't. For this reason, the moisture absorbing material that functions to prevent moisture from entering can be contained only in an amount of 50% by weight or less, and the quantitative limitation of the moisture absorbing material is the limit of the moisture resistance of the package body itself. This results in a reduction in device performance.

本願発明の第1の課題は、パッケージ本体の防湿能を向上させる手段を提供することにある。   A first object of the present invention is to provide means for improving the moisture-proof ability of a package body.

本願発明の他の課題は、パッケージ本体の防湿能を向上させつつ、パッケージ本体の成形性を向上させる手段を提供することにある。   Another object of the present invention is to provide means for improving the moldability of a package body while improving the moisture resistance of the package body.

本願発明のさらに他の課題は、湿分の浸入による性能劣化の少ない半導体装置を得ることにある。   Still another object of the present invention is to obtain a semiconductor device with little performance deterioration due to infiltration of moisture.

本願発明は、吸湿材を含有するパッケージ本体成形用樹脂の流動成形性は、樹脂に添加配合される吸湿材の粒径及び見掛密度の調整を行うことによって維持され、これによってパッケージ本体の成形性を維持しつつ多量の吸湿材を配合できるという知見に基づいて完成した。すなわち、本発明は、樹脂基材に、吸湿材を樹脂基材に対し50重量%を超え90重量%まで配合し、吸湿率を1.0重量%以上とした半導体素子収納用パッケージであって、前記配合される吸湿材は、見掛密度が1.5g/cm 以下であって、その差が0.2g/cm 以上であり、かつ、平均粒径が0.1〜200μmの範囲内であって、その差が5μm以上である見掛密度と平均粒径において異なる2種類以上の吸湿材を含有することを特徴とする。 In the present invention, the flow moldability of the resin for molding a package main body containing a hygroscopic material is maintained by adjusting the particle size and apparent density of the hygroscopic material added to the resin, thereby forming the package main body. It was completed based on the knowledge that a large amount of hygroscopic material can be blended while maintaining the properties. That is, the present invention is a package for housing a semiconductor element in which a hygroscopic material is blended in a resin base material in an amount of more than 50% to 90% by weight with respect to the resin base material, and the moisture absorption rate is 1.0% by weight or more. The hygroscopic material to be blended has an apparent density of 1.5 g / cm 3 or less, a difference of 0.2 g / cm 3 or more, and an average particle size of 0.1 to 200 μm. It is characterized in that it contains two or more types of hygroscopic materials that differ in apparent density and average particle diameter, the difference of which is 5 μm or more.

パッケージ本体の成形樹脂に配合される吸湿材が粗粒の場合、少量の場合はさほどでもないが、それが増量すれば、樹脂の流動成形性は極端に劣化する。また、微粒の場合は、樹脂中に均一に分散している場合には、その配合量が樹脂の成形性に与える影響は粗粒ほどでもないが、増量すると吸湿材の微粒子が樹脂成形体中に偏在し、パッケージ本体の品質を維持することはできなくなる。   When the hygroscopic material blended in the molding resin of the package body is coarse, the amount is not so much in a small amount, but if it is increased, the flow moldability of the resin is extremely deteriorated. In addition, in the case of fine particles, when the amount is evenly dispersed in the resin, the effect of the blending amount on the moldability of the resin is not as large as that of the coarse particles. Therefore, the quality of the package body cannot be maintained.

ところが、吸湿材として粒径の異なる2種類以上の吸湿材を混合して用いた場合には、配合した粗粒子の間に微粒子が介在し、充填量を増大するとともに、粗粒子の間に存在する微粒子が、配合吸湿材の配合によって低下する樹脂の成形性の低下を緩和する機能を果たす。   However, when two or more kinds of hygroscopic materials having different particle diameters are mixed and used as the hygroscopic material, fine particles are present between the blended coarse particles, increasing the filling amount and existing between the coarse particles. The fine particles that perform the function of alleviating the decrease in moldability of the resin, which is reduced by the blending of the blended moisture absorbent.

吸湿材として見掛密度の異なる2種類以上の吸湿材を混合して用いた場合も同様に、樹脂の成形性の低下を緩和する機能を果たす。   Similarly, when two or more kinds of hygroscopic materials having different apparent densities are mixed and used as the hygroscopic material, the function of alleviating a decrease in moldability of the resin is achieved.

その結果、半導体素子収納用の箱形の中空パッケージを構成する樹脂組成物中に吸湿材を90重量%程度まで配合することを可能とする。吸湿材を高充填化することにより、樹脂のエポキシ成分占有率が減少することで、水分の浸入経路が少なくなり、水分浸入速度を低速化させる効果も望まれる。   As a result, it is possible to add up to about 90% by weight of the hygroscopic material in the resin composition constituting the box-shaped hollow package for housing the semiconductor element. By increasing the moisture absorption material to be filled, the epoxy component occupancy of the resin is reduced, so that the moisture intrusion route is reduced and the effect of reducing the moisture infiltration rate is also desired.

しかしながら、樹脂成形体そのものの幾分かの強度の劣化は、吸湿材の混入量の増大とともに免れることはできず、その点から十分な機械的強度を維持するためには、70重量%までの配合が望ましい。   However, some deterioration in strength of the resin molded body itself cannot be avoided with an increase in the amount of moisture-absorbing material, and in order to maintain sufficient mechanical strength, up to 70% by weight. Formulation is desirable.

吸湿材を多量に埋入させることで防湿効果は向上するが、中空パッケージ形状が大きい場合や特殊形状である場合等、流動性を十分に確保する必要性がある場合には、吸湿材以外に樹脂の流動性を維持するシリカ等の無機充填剤を添加し、それを含めて、粒度分布調整を行うことも可能である。   Although the moisture-proof effect is improved by embedding a large amount of moisture-absorbing material, if there is a need to ensure sufficient fluidity, such as when the hollow package shape is large or a special shape, other than the moisture-absorbing material It is also possible to adjust the particle size distribution by adding an inorganic filler such as silica that maintains the fluidity of the resin.

粒径の異なる2種類以上の吸湿材を混合する場合、その粒径は0.1〜200μmの範囲から選択し、且つ、それぞれの平均粒径差を5μm以上とするのがよい。粒径が200μmを超えると成形に際して金型のゲートに吸湿材が詰まり、樹脂が所定型内に流れなくなり、成形体が得られなくなる場合がある。また、粒径が0.1μm以下の場合は、粒子が偏在し好ましくない。   When mixing two or more types of hygroscopic materials having different particle diameters, the particle diameter is preferably selected from the range of 0.1 to 200 μm, and the average particle diameter difference between them is preferably 5 μm or more. When the particle diameter exceeds 200 μm, the moisture absorbing material is clogged in the gate of the mold at the time of molding, and the resin may not flow into the predetermined mold and the molded body may not be obtained. On the other hand, when the particle size is 0.1 μm or less, the particles are unevenly distributed, which is not preferable.

また、見掛密度の異なる2種類以上の吸湿材を混合する場合、それぞれの見掛密度を1.5g/cm以下とすることによってその吸湿効果は著しくなる。 Moreover, when mixing two or more types of hygroscopic materials having different apparent densities, the hygroscopic effect becomes remarkable by setting each apparent density to 1.5 g / cm 3 or less.

吸湿材としては、シリカゲル、ゼオライトを含む多孔質構造のものを使用する。しかしながら、この無機質の吸湿材の中でも、ゼオライトを適用することにより、ゼオライトに含まれるアルミナにより、熱伝導率の向上が期待される。また、シリカゲル、ゼオライト等の無機吸湿材は多孔質構造であり、樹脂成分が多孔質部に入り込むことにより、樹脂と吸湿材のロック効果が見込める。また、実装時のリフロー処理中における高温環境下においても、樹脂と吸湿材から亀裂、剥れ等の発生を防ぐことも可能となる。   As the hygroscopic material, a porous structure containing silica gel and zeolite is used. However, among these inorganic hygroscopic materials, application of zeolite is expected to improve the thermal conductivity due to alumina contained in the zeolite. In addition, inorganic hygroscopic materials such as silica gel and zeolite have a porous structure, and when the resin component enters the porous portion, a locking effect between the resin and the hygroscopic material can be expected. Further, even under a high temperature environment during the reflow process at the time of mounting, it becomes possible to prevent the occurrence of cracks, peeling, etc. from the resin and the moisture absorbent.

また、本願発明に使用する吸湿材は、単一材の使用に限られない。したがって、その吸湿材の粒径及び見掛密度に応じて配合することで、上記規定の吸湿材の構成は簡単に得られる。   The hygroscopic material used in the present invention is not limited to the use of a single material. Therefore, the composition of the prescribed moisture absorbent material can be easily obtained by blending according to the particle size and apparent density of the moisture absorbent material.

本願発明によって、従来より防湿能の高いパッケージを得ることができる。   According to the present invention, it is possible to obtain a package having a higher moisture-proofing capacity than before.

そして、吸湿材の粒径及び見掛密度の調整を行うことによって、樹脂の流動成形性と成形体の特性に影響を与えることなく、任意に含有する吸湿材の量を、任意に調整できる。   Then, by adjusting the particle size and the apparent density of the hygroscopic material, the amount of the hygroscopic material to be arbitrarily contained can be arbitrarily adjusted without affecting the flow moldability of the resin and the characteristics of the molded body.

その結果、パッケージ本体中に含まれる吸湿材の含量を90重量%程度まで増大でき、パッケージ内の湿分を長期にわたって少なくすることができ、収納された半導体素子を品質の劣化なく長く維持できる。   As a result, the content of the moisture absorbing material contained in the package main body can be increased to about 90% by weight, the moisture in the package can be reduced over a long period of time, and the housed semiconductor element can be maintained for a long time without deterioration in quality.

また吸湿材が樹脂組成物中に50重量%を超える範囲で埋入されることで、樹脂全体の比重が小さくなり、ひいては中空パッケージ並びに半導体装置の大幅な軽量化が達成できる。   Further, since the hygroscopic material is embedded in the resin composition in an amount exceeding 50% by weight, the specific gravity of the entire resin is reduced, and as a result, the hollow package and the semiconductor device can be significantly reduced in weight.

以下、本願発明を実施例に基づいて実施の形態を説明する。   Embodiments of the present invention will be described below based on examples.

図1は、本願発明を適用した中空パッケージの例を示す。同図において、箱型の中空パッケージ10は、凹部1aを有する絶縁基体1とガラスや透明プラスチックなどの蓋体4と半導体素子5とその外部との電気的接続を行うリードフレーム2とからなる。半導体素子5は、樹脂製接着剤3を介して凹部1aの底部に固定する。リードフレーム2は、中空パッケージ10のトランスファー成形時に一体成形され、中空パッケージ10内の内部リード部2aと外部リード部2bとからなる。中空パッケージ10の凹部1a底面に配置された半導体素子5はボンディングワイヤー6を介してリードフレーム2の内部リード部2aと連結されている。   FIG. 1 shows an example of a hollow package to which the present invention is applied. In the figure, a box-shaped hollow package 10 includes an insulating substrate 1 having a recess 1a, a lid 4 such as glass or transparent plastic, a semiconductor element 5, and a lead frame 2 that electrically connects the outside. The semiconductor element 5 is fixed to the bottom of the recess 1a through the resin adhesive 3. The lead frame 2 is integrally formed at the time of transfer molding of the hollow package 10 and includes an internal lead portion 2 a and an external lead portion 2 b in the hollow package 10. The semiconductor element 5 disposed on the bottom surface of the concave portion 1 a of the hollow package 10 is connected to the internal lead portion 2 a of the lead frame 2 through the bonding wire 6.

絶縁基体1は、硬化剤、難燃化剤、シリカ、反応促進剤、顔料、カップリング剤、離型剤及び吸湿材を配合したエポキシ樹脂組成物をトランスファー成形機にて180℃、15MPa加圧下、1.5分の条件下で成形を行い、ポストキュアして製作される。   The insulating substrate 1 is prepared by applying an epoxy resin composition containing a curing agent, a flame retardant, silica, a reaction accelerator, a pigment, a coupling agent, a release agent, and a hygroscopic material at 180 ° C. and 15 MPa under a transfer molding machine. , Molded under 1.5 minutes, and post-cured.

中空パッケージに高い防湿能を保有させるためには、絶縁基体、つまりエポキシ樹脂成形体の吸湿率が1.0重量%以上あることが好ましい。そこで、エポキシ樹脂成形体に1.0重量%以上の特性を保有させる手法として、吸湿材をより多量に配合することが望まれる。   In order for the hollow package to have a high moisture resistance, it is preferable that the moisture absorption rate of the insulating substrate, that is, the epoxy resin molded body is 1.0% by weight or more. Therefore, it is desired to mix a larger amount of the moisture absorbent as a method for causing the epoxy resin molded body to have a characteristic of 1.0% by weight or more.

見掛密度の異なる吸湿材を使用し、エポキシ樹脂組成物に全組成物基準で55重量%配合し、トランスファー成形により、円板状の樹脂成形片を得、吸湿率を測定した。   Using hygroscopic materials having different apparent densities, 55 wt% of the epoxy resin composition was blended on the basis of the total composition, a disk-shaped resin molded piece was obtained by transfer molding, and the moisture absorption rate was measured.

表1は、使用した5種類の吸湿材と測定した吸湿率の結果を示す。同表において、サンプルNo.1は吸湿材として通常シリカを使用した比較例で、サンプルNo.2〜5は吸湿材としてゼオライトを使用した本願発明の実施例である。   Table 1 shows the results of the five types of hygroscopic materials used and the measured moisture absorption rates. In the same table, sample No. No. 1 is a comparative example in which silica is usually used as a hygroscopic material. Examples 2 to 5 are examples of the present invention using zeolite as a hygroscopic material.

各サンプルの見掛密度は、JIS規格K 6220-1:2001 の7.7項に準じて測定した値である。また、吸湿率は、上記の通りエポキシ樹脂組成物をトランスファー成形して得られた円板状の樹脂成形片を使用して樹脂組成物の吸湿率として算出した。即ち、十分に乾燥した樹脂成形片を市販のプレッシャークッカー試験機に入れ、温度121℃、湿度100%の湿熱環境で20時間曝露し、重量増加量を測定し、吸湿率とした。

Figure 0003816910
評価の結果、中空パッケージが高い防湿能を保有できるとされるエポキシ樹脂成形体の吸湿率1.0重量%を満足した吸湿材は、見掛密度が1.5g/cm以下であることが確認された。好ましくは1.0g/cm以下にすることにより確実にエポキシ樹脂成形体の吸湿率が1.0重量%を満足することが可能となり、中空パッケージの防湿安定性を満足することが可能となる。 The apparent density of each sample is a value measured according to 7.7 of JIS standard K 6220-1: 2001. Further, the moisture absorption rate was calculated as the moisture absorption rate of the resin composition using a disk-shaped resin molded piece obtained by transfer molding of the epoxy resin composition as described above. That is, a sufficiently dried resin molded piece was placed in a commercially available pressure cooker tester, exposed in a moist heat environment at a temperature of 121 ° C. and a humidity of 100% for 20 hours, and the weight increase was measured to obtain the moisture absorption rate.
Figure 0003816910
As a result of the evaluation, the hygroscopic material satisfying the moisture absorption rate of 1.0% by weight of the epoxy resin molded body, which is said to have a high moisture-proofing ability of the hollow package, has an apparent density of 1.5 g / cm 3 or less. confirmed. Preferably, by setting it to 1.0 g / cm 3 or less, the moisture absorption rate of the epoxy resin molded body can surely satisfy 1.0% by weight, and the moisture-proof stability of the hollow package can be satisfied. .

ここで表1で吸湿性に優れた結果が得られた吸湿材(ゼオライト)の見掛密度1.5g/cm以下において、実際に、図1に示す形状の中空パッケージ体への成形を試み、その成形性を評価した。しかし、その成形性は必ずしも良好とは言えなかった。 Here, with the apparent density of 1.5 g / cm 3 or less of the hygroscopic material (zeolite) from which excellent results in hygroscopicity are obtained in Table 1, an attempt was made to actually form a hollow package body having the shape shown in FIG. The moldability was evaluated. However, the moldability was not always good.

そこで、成形性の向上を図る目的で、異なる見掛密度を有する吸湿材を2種類組合せ、評価を実施した。評価では表1に示したサンプルNo.2〜5の見掛密度1.5g/cm以下である4種類の吸湿材を使用し、全ての組合せで吸湿材を55重量%配合し、それぞれにおける流動成形性と吸湿率の確認を行った。スパイラルフロー値は、一般的に成形時の樹脂重要指標とされるもので、スパイラルフロー値が70cm以上を成形安定性が確保できるエポキシ樹脂組成物である、70cm未満を成形安定性が確保できないエポキシ樹脂組成物であると判断した。スパイラルフロー値は、EMMI1−66に準じて測定した。 Therefore, for the purpose of improving the moldability, two types of hygroscopic materials having different apparent densities were combined and evaluated. In the evaluation, the sample No. shown in Table 1 was used. 4 types of hygroscopic materials having an apparent density of 1.5 g / cm 3 or less of 2 to 5 are used, and 55 wt% of the hygroscopic materials are blended in all combinations, and the flow moldability and the hygroscopic rate of each are confirmed. It was. The spiral flow value is generally regarded as an important resin index at the time of molding. An epoxy resin composition that can ensure molding stability when the spiral flow value is 70 cm or more, and an epoxy that cannot ensure molding stability when it is less than 70 cm. It was judged to be a resin composition. The spiral flow value was measured according to EMMI 1-66.

表2は評価を実施した6種類のサンプル(サンプルNo.6〜11)の吸湿材の組合せとその特性、及びスパイラルフロー値と吸湿率の評価結果を示す。

Figure 0003816910
表2において、各サンプルは以下の通りのものである。 Table 2 shows the combinations of hygroscopic materials of the six types of samples (samples Nos. 6 to 11) and the characteristics thereof, and the evaluation results of the spiral flow value and the moisture absorption rate.
Figure 0003816910
In Table 2, each sample is as follows.

サンプルNo.6:表1のサンプルNo.2で使用した見掛密度1.5g/cmとサンプルNo.3で使用した見掛密度1.0g/cmの2種類のゼオライトを配合したもの
サンプルNo.7:サンプルNo.2で使用した見掛密度1.5g/cmとサンプルNo.4で使用した見掛密度0.5g/cmの2種類のゼオライトを配合したもの
サンプルNo.8:サンプルNo.2で使用した見掛密度1.5g/cmとサンプルNo.5で使用した見掛密度0.3g/cmの2種類のゼオライトを配合したもの
サンプルNo.9:サンプルNo.3で使用した見掛密度1.0g/cmとサンプルNo.4で使用した見掛密度0.5g/cmの2種類のゼオライトを配合したもの
サンプルNo.10:サンプルNo.3で使用した見掛密度1.0g/cmとサンプルNo.5で使用した見掛密度0.3g/cmの2種類のゼオライトを配合したもの
サンプルNo.11:サンプルNo.4で使用した見掛密度0.5g/cmとサンプルNo.5で使用した見掛密度0.3g/cmの2種類のゼオライトを配合したもの
上記各サンプルとも全組成物基準で合計55重量%となるようにエポキシ樹脂組成物に配合し、トランスファー成形機にて図1に示す形状の中空パッケージ体に成形した。
Sample No. 6: Sample No. in Table 1 The apparent density of 1.5 g / cm 3 and the sample No. 3 blended with two types of zeolite having an apparent density of 1.0 g / cm 3 used in Sample No. 3 7: Sample No. The apparent density of 1.5 g / cm 3 and the sample No. 4 blended with two types of zeolite having an apparent density of 0.5 g / cm 3 8: Sample No. The apparent density of 1.5 g / cm 3 and the sample No. No. 5 blended with two types of zeolite having an apparent density of 0.3 g / cm 3 9: Sample No. 3 and an apparent density of 1.0 g / cm 3 and sample No. 4 blended with two types of zeolite having an apparent density of 0.5 g / cm 3 10: Sample No. 3 and an apparent density of 1.0 g / cm 3 and sample No. No. 5 blended with two types of zeolite having an apparent density of 0.3 g / cm 3 11: Sample No. 4 and an apparent density of 0.5 g / cm 3 and sample No. 5 blended with two types of zeolite having an apparent density of 0.3 g / cm 3 used in No. 5 The above samples were blended into the epoxy resin composition so that the total amount was 55% by weight, and a transfer molding machine Was formed into a hollow package body having the shape shown in FIG.

評価の結果、異なる見掛密度を有する2種類の吸湿材を配合したサンプルNo.6〜11の全てにおいて70cm以上のスパイラルフロー値が得られ、流動成形性の良好なエポキシ樹脂組成物が得られた。よって1.5g/cm以下の2種類の見掛密度を有する吸湿材を配合することにより、高い流動成形性及び吸湿率を得られることが確認された。 As a result of the evaluation, sample No. 2 containing two types of hygroscopic materials having different apparent densities was used. A spiral flow value of 70 cm or more was obtained in all of 6 to 11, and an epoxy resin composition having good fluid moldability was obtained. Therefore, it was confirmed that high fluid moldability and moisture absorption can be obtained by blending two kinds of hygroscopic materials having an apparent density of 1.5 g / cm 3 or less.

上記実施例では、2種類の異なる見掛密度を有する吸湿材を配合させ、エポキシ樹脂組成物の評価を実施したが、この種類は2種類に限定されるものではなく、更に異なる見掛密度を有する吸湿材を追加し、3種類以上配合しても構わない。   In the above examples, two types of hygroscopic materials having different apparent densities were blended and the epoxy resin composition was evaluated, but this type is not limited to two types, and further different apparent densities are obtained. Three or more kinds of hygroscopic materials may be added and added.

更に流動安定性を高めるために吸湿材の粒径に着目し、粒径の相違に伴うスパイラルフロー値への影響を評価した。この評価では、見掛密度は1.0g/cmとし、その条件下で粒径の異なる2種類の吸湿材を配合し、スパイラルフロー値を確認した。表3は実施した異なる粒径を有する4種類の組合せとその特性、及びスパイラルフロー値の評価結果を示す。

Figure 0003816910
表3に示す各サンプルの吸湿材はゼオライトを使用したものであり、各サンプルについて全組成物基準で合計55重量%となるようにエポキシ樹脂組成物に配合し、トランスファー成形機にて図1に示す形状の中空パッケージ体に成形した。なお、表3における粒径差の欄は、配合した2種類の吸湿材の平均粒径の差を示す。 Further, in order to enhance the flow stability, attention was paid to the particle size of the hygroscopic material, and the influence on the spiral flow value due to the difference in particle size was evaluated. In this evaluation, the apparent density was 1.0 g / cm 3, and two types of hygroscopic materials having different particle diameters were blended under the conditions, and the spiral flow value was confirmed. Table 3 shows the four types of combinations with different particle sizes implemented, their characteristics, and the evaluation results of spiral flow values.
Figure 0003816910
The hygroscopic material of each sample shown in Table 3 uses zeolite. Each sample is blended with the epoxy resin composition so that the total amount is 55% by weight based on the total composition. The hollow package body having the shape shown was molded. In addition, the column of the particle diameter difference in Table 3 shows the difference in the average particle diameter of the two kinds of the moisture absorbent materials.

評価の結果、2種類の吸湿材に粒径の差を全く発生させなかったサンプルNo.13では、スパイラルフロー値が極端に低下し、中空パッケージの成形性の低下が推測される。また、平均粒径差が5μm以上である吸湿材を配合することにより、高い流動安定性が確保できることが確認された。なお、粒径の異なる吸湿材を3種類以上配合する場合においても、少なくとも2種類以上の吸湿材の平均粒径差を5μm以上とすることにより、流動安定性が確保される。   As a result of the evaluation, Sample No. which did not cause any difference in particle size between the two types of hygroscopic materials. In No. 13, the spiral flow value is extremely lowered, and it is assumed that the moldability of the hollow package is lowered. Moreover, it was confirmed that high flow stability can be ensured by blending a hygroscopic material having an average particle size difference of 5 μm or more. Even when three or more types of hygroscopic materials having different particle diameters are blended, flow stability is ensured by setting the average particle size difference of at least two types of hygroscopic materials to 5 μm or more.

以上の結果より、中空パッケージの防湿性を確保しつつ、且つ流動安定性を確保する手法として、吸湿材の粒径及び見掛密度の調整を行うことによって、樹脂の流動性と成形体の特性に影響を与えることなく、任意に含有する吸湿材の量を、任意に調整でき、90重量%程度まで増大が可能となる。   Based on the above results, the flowability of the resin and the properties of the molded body can be achieved by adjusting the particle size and apparent density of the moisture absorbent as a technique for ensuring the moisture stability of the hollow package and ensuring the flow stability. The amount of the hygroscopic material to be arbitrarily contained can be arbitrarily adjusted without affecting the amount, and can be increased to about 90% by weight.

また、中空パッケージの防湿性をサンプルNo.12、14、15で実施した。評価方法は以下の通りで実施した。   In addition, the moisture resistance of the hollow package is shown in Sample No. 12, 14 and 15. The evaluation method was implemented as follows.

得られたエポキシ樹脂組成物で成形した中空パッケージにエポキシ樹脂接着剤(2247D;スリーボンド製)でガラス製蓋材を用いて気密封止して中空樹脂成形体を得た。こうして気密シールした箱体の中空部に浸入する水分量を測定することにより組成物の耐湿性を評価した。測定は、箱体を十分乾燥の後、高温高湿槽に入れ、温度60℃、湿度90%RHの湿熱環境で所定時間曝露した。次に温度25℃、湿度50%RHの常温常湿下に15分放置し、中空部内の水分が結露するかどうかを調べた。結露が見られないものを良品とした。   The hollow package molded with the obtained epoxy resin composition was hermetically sealed with an epoxy resin adhesive (2247D; manufactured by ThreeBond) using a glass lid material to obtain a hollow resin molded body. The moisture resistance of the composition was evaluated by measuring the amount of moisture that entered the hollow portion of the hermetically sealed box. For the measurement, the box was sufficiently dried, then placed in a high-temperature and high-humidity tank, and exposed for a predetermined time in a humid heat environment at a temperature of 60 ° C. and a humidity of 90% RH. Next, it was allowed to stand for 15 minutes at room temperature and normal humidity at a temperature of 25 ° C. and a humidity of 50% RH, and it was examined whether or not moisture in the hollow portion was condensed. Products with no condensation were considered good products.

その結果、サンプルNo.12、14、15の何れにおいても、1500時間以上でも中空部内に水分の結露が発生せず、中空パッケージの防湿性が確認され、固体撮像素子や光学特性を有する素子において高い信頼性を確保する有効な手段である事が確認された。   As a result, sample no. In any of 12, 14, and 15, moisture condensation does not occur in the hollow portion even for 1500 hours or more, and the moisture resistance of the hollow package is confirmed, ensuring high reliability in a solid-state imaging device or an element having optical characteristics. It was confirmed that it was an effective means.

本願発明は、半導体素子を収納するための箱型の中空パッケージ用として好適な耐湿性と成形性に優れたエポキシ樹脂組成物及び該樹脂組成物からなる半導体素子収納用中空パッケージに特に適している。   The present invention is particularly suitable for an epoxy resin composition excellent in moisture resistance and moldability suitable for a box-shaped hollow package for housing a semiconductor element, and a hollow package for housing a semiconductor element comprising the resin composition. .

本願発明を適用した中空パッケージの例を示す。The example of the hollow package to which this invention is applied is shown.

符号の説明Explanation of symbols

10 箱型の中空パッケージ
1 絶縁基体
1a 凹部
2 リードフレーム
2a 内部リード部 2b 外部リード部
3 樹脂製接着剤
4 蓋体
5 半導体素子
6 ボンディングワイヤー
DESCRIPTION OF SYMBOLS 10 Box-shaped hollow package 1 Insulation base | substrate 1a Recessed part 2 Lead frame 2a Internal lead part 2b External lead part 3 Resin adhesive 4 Lid body 5 Semiconductor element 6 Bonding wire

Claims (1)

樹脂基材に、吸湿材を樹脂基材に対し50重量%を超え90重量%まで配合し、吸湿率を1.0重量%以上とした半導体素子収納用パッケージであって、
前記配合される吸湿材は、見掛密度が1.5g/cm 以下であって、その差が0.2g/cm 以上であり、かつ、平均粒径が0.1〜200μmの範囲内であって、その差が5μm以上である見掛密度と平均粒径において異なる2種類以上の吸湿材を含有する半導体素子収納用パッケージ。
A package for housing a semiconductor element in which a moisture absorbing material is blended in a resin base material to more than 90% by weight with respect to the resin base material, and the moisture absorption rate is 1.0% by weight or more,
The hygroscopic material to be blended has an apparent density of 1.5 g / cm 3 or less, a difference of 0.2 g / cm 3 or more, and an average particle diameter in the range of 0.1 to 200 μm. A package for housing a semiconductor element containing two or more types of hygroscopic materials that differ in apparent density and average particle diameter, the difference of which is 5 μm or more .
JP2003312712A 2003-09-04 2003-09-04 Package for storing semiconductor elements Expired - Fee Related JP3816910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312712A JP3816910B2 (en) 2003-09-04 2003-09-04 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312712A JP3816910B2 (en) 2003-09-04 2003-09-04 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JP2005085792A JP2005085792A (en) 2005-03-31
JP3816910B2 true JP3816910B2 (en) 2006-08-30

Family

ID=34413887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312712A Expired - Fee Related JP3816910B2 (en) 2003-09-04 2003-09-04 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP3816910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125450B2 (en) * 2007-03-13 2013-01-23 日立化成工業株式会社 Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device

Also Published As

Publication number Publication date
JP2005085792A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US6399677B2 (en) Epoxy resin compositions and premolded semiconductor packages
KR101672384B1 (en) Composition for the protection of moisture sensitive devices
CN104903239B (en) It is wrapped by magnesium oxide powder and this is wrapped by the manufacture method of magnesium oxide powder
BRPI0809503A2 (en) METHOD FOR SELECTING A RESIN-RELATED SORVING COMPOSITION, MANUFACTURING ARTICLE, AND MULTI-LAYER BARRIER STRUCTURE
JPH0493362A (en) Filler for sealing electronic part and production thereof
JP3816910B2 (en) Package for storing semiconductor elements
JP2853550B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device using the same
JP3022135B2 (en) Epoxy resin composition
JP2002212264A (en) Epoxy resin composition for sealing of semiconductor and semiconductor device using the same
JP2006265370A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2572120B2 (en) Polymer / desiccant composite coating
JPS62221137A (en) Semiconductor device and manufacture thereof
JP2005146157A (en) Epoxy resin composition and hollow package for housing semiconductor element
JPH0366151A (en) Semiconductor device
JP2009019064A (en) Resin composition for sealing semiconductor, and semiconductor device using the same
JP4111865B2 (en) Epoxy resin composition and hollow package for housing semiconductor device using the same
JPH10182944A (en) Resin composition for sealing electronic parts
JP3119104B2 (en) Epoxy resin composition
JP2000281876A (en) Epoxy resin composition and semiconductor device
JP3611383B2 (en) Resin composition for sealing electronic parts
JP2002338788A (en) Epoxy resin composition and hollow package housing semiconductor element using the composition
JP4360578B2 (en) Semiconductor device
JP2789088B2 (en) Method for producing particulate inorganic composite
JPH1160914A (en) Epoxy resin composition and semiconductor device
JP3410173B2 (en) Hollow package for semiconductor device molded from epoxy resin composition and semiconductor device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3816910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees