JP2004316755A - Stage unit - Google Patents

Stage unit Download PDF

Info

Publication number
JP2004316755A
JP2004316755A JP2003110348A JP2003110348A JP2004316755A JP 2004316755 A JP2004316755 A JP 2004316755A JP 2003110348 A JP2003110348 A JP 2003110348A JP 2003110348 A JP2003110348 A JP 2003110348A JP 2004316755 A JP2004316755 A JP 2004316755A
Authority
JP
Japan
Prior art keywords
stage device
vacuum
pressure
hydrostatic bearing
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003110348A
Other languages
Japanese (ja)
Inventor
Choshoku Sai
長植 崔
Kotaro Tsui
浩太郎 堆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003110348A priority Critical patent/JP2004316755A/en
Publication of JP2004316755A publication Critical patent/JP2004316755A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stage unit capable of having superior stability in vacuum and being applicable to vacuum conditions. <P>SOLUTION: The stage unit to be used in vacuum has a means monitoring pressure in the vicinity of the stage unit so as to always maintain the gap of a hydrostatic bearing within a designated value even though pressure in the vicinity of the stage unit is changed, and the stage unit comprises a stage having a method controlling supplied pressure to the hydrostatic bearing in proportion to the change of pressure or preload onto the hydrostatic bearing. On another occasion, the stage unit has a means for monitoring the gap of the hydrostatic bearing, and comprises the stage having a means for controlling supplied pressure to the hydrostatic bearing or preload onto the hydrostatic bearing so as to always maintain the gap of the hydrostatic bearing within a designated value, even though the circumstance is changed from vacuum conditions to regular air conditions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種測定器、および半導体リソグラフィ工程で用いる真空内露光装置用位置決め装置に関するものである。
【0002】
【従来の技術】
従来の単純浮上型静圧流体軸受を用いたステージ装置を真空中使用する場合には、大気中の絶対給気圧のそのまま用いるか、または大気中の絶対給気圧より大気圧分だけ下げて用いていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来例では以下の問題が生じる。
【0004】
真空中では大気中と違って大気圧のような雰囲気圧力の静圧軸受にかかる力がほとんどないため、大気中の給気圧のままで用いると軸受隙間が大気中のときより広くなってしまい、静圧軸受の安定領域が狭まる。さらに給気圧を大気圧分だけ下げて用いても軸受隙間が大気中のときより広くなってしまい、静圧軸受が発振しやすいと言った新しい問題が生じる。
本発明はこれらの問題に鑑み、真空内でも安定性に優れた真空対応ステージ装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明では、従来の問題を解決し、真空内でも発振することなく安定に動作する真空対応ステージ装置を実現するために、ステージ周囲の圧力が変化しても常に静圧軸受のすきまを所定値近傍の値になるようなステージ装置を提案する。
【0006】
その手段としては、真空内で使用するステージ装置において、ステージ周囲の圧力が変化しても常に静圧軸受の隙間を所定値範囲内に保つように、ステージ装置周囲の圧力を監視する手段を備え、その変化に応じて静圧軸受への供給圧、もしくは静圧軸受の予圧を制御する手段を備えたステージを構成する。
【0007】
または、静圧軸受の隙間を監視する手段を備え、真空チャンバーの圧力が大気から真空に、または真空から大気に変化しても常に静圧軸受の隙間が所定値の範囲内になるように、静圧軸受への供給圧、もしくは静圧軸受の予圧を制御する手段を備えたステージを構成する。
【0008】
ステージ周囲の圧力を監視する手段としては、真空計を用いる。真空計は大気圧から高真空まで計測可能なものでもよい。また大気圧から低真空までと、低真空から高真空までとで別々の真空計を用いてもよい。
【0009】
ステージ装置周囲圧力変化の信号はアンプを介してコントローラー送られ、静圧軸受のすきまが所定値を保つように静圧軸受の供給圧を制御できるサーボバルブを制御する。
【0010】
または、ステージ装置周囲圧力変化の信号はアンプを介して静圧軸受へ予圧を制御できる電磁石に送られ、静圧軸受のすきまが所定値を保つように電磁石の力を制御する。
【0011】
または、ステージ装置を大気から真空チャンバー内に入れる前に予圧補正用の磁石を取り付けてから真空チャンバー内に搬入する。
【0012】
静圧軸受の隙間を測定する手段として、真空対応の非接触型の変位計を用いる。
【0013】
該非接触型の変位計は静電容量型変位計でもよい。
【0014】
該非接触型の変位計は渦電流型でもよい。
該非接触型の変位計は光ピックアップでもよい。
【0015】
また、静圧軸受装置は流量が少なく、減衰性に優れた多孔質タイプのものが望ましい。
【0016】
(作用)
本発明によれば、静圧軸受の隙間は常に安定領域に位置する範囲内の値を保つため、静圧軸受の隙間が広くなって発振しやすくなるような現象がなくなり、真空中でも安定に動作することができる真空対応ステージが実現可能になる。
【0017】
【発明の実施の形態】
(第1の実施例)
図1に本発明のステージ装置の第1実施例を示す。真空チャンバー1の中にステージ定盤2と定盤2の上を移動可能な可動体3が設置されている。可動体3を支える静圧軸受4にはチャンバー1の外部から高圧流体が給気通路6に供給され、ステージ定盤2との間に隙間5を形成する。静圧軸受4から隙間5を通って真空チャンバー内に排出される気体のほとんどは、静圧軸受の周りに設けた不図示の排気溝と排気管11、12、13を通して真空チャンバー外部に設置してある不図示の真空ポンプ11,12,13に吸い込まれ、周囲に排出される。また僅かな気体は隙間5を通って真空チャンバー1の中に排出されるが、この部分の気体とチャンバー、ステージ装置等からのアウトガスは排気通路14を通って、不図示のチャンバー用真空ポンプによって強制排出され、所望の真空度を保つ。
【0018】
真空チャンバー1には真空内圧力を常時監視できる真空計10が取り付けられ、その出力信号はアンプ9を介してコントローラー8に入力される。コントローラーには図2に示すような、予め入力しておいた静圧軸受への給気圧をコントロールするパターンが入力されており、真空チャンバー内の圧力Pcの変化によって静圧軸受への絶対給気圧Pvをサーボバルブ7を介して調整し、静圧軸受へ供給することによって、軸受隙間を常に安定領域の範囲内に抑え、安定性を向上させることができる。
【0019】
ステージ装置を大気中で評価する場合、静圧軸受4にかかる負荷はステージ可動体3の自重以外に、大気圧Paが負荷として静圧軸受4にかかる。しかし真空中で評価する場合はステージ装置の周囲の圧力が大気圧Paの5桁以下になるため、負荷として静圧軸受にかかる力は可動体3の自重に比べほぼゼロに近い。そこで大気圧Paの影響を考慮して真空中における静圧軸受4への絶対給気圧Pvを大気中の絶対給気圧Psより大気圧Pa分だけ下げてPv=Ps Paで供給すれば大気中と同じ隙間5を保たれると予想されがちであるが、図6に示すように、大気中と真空中で荷重が同じ(雰囲気圧力による負荷は除く)の場合は、気体の圧縮性によって軸受の隙間5は大気中より広くなる。また図7に示すように、この場合隙間内の気体膜の周波数特性は減衰比の負になる不安定領域が広がり、真空中で不安定になりやすいことが分かる。
【0020】
即ち、大気中において所望の軸受隙間 h に対して絶対給気圧Psで給気した場合、真空中における軸受への絶対給気圧Pvは、大気中と同じ隙間を保つためには Pv < Ps Pa にしなければならない。
【0021】
(第2の実施例)
図2に本発明のステージ装置の第2実施例を示す。第1実施例の静圧軸受への給気圧を制御する代わりに、静圧軸受の隙間を調整する予圧力を制御する。図2において、静圧軸受への絶対給気圧は大気中とおなじのPv=Psにし、電磁石16の吸引力を調整することで常に軸受の隙間を適切な範囲内に維持し、発振するのを防ぐことが可能である。図8の曲線▲3▼に示してあるように、この場合静圧軸受の動剛性が増加し、結果的には安定領域が広くなり、安定的に動作することができる。
【0022】
また絶対給気圧Pvはある程度下げて電磁石で隙間を調整してもよい。
【0023】
(第3の実施例)
図3に本発明のステージ装置の第3実施例を示す。大気中では所望の隙間になるように予圧磁石を取り付けステージの各種性能調整を行ったあと、真空チャンバーの浮上量も大気中と同じくして安定性を保つために、予圧補償磁石18を取り付けてから真空チャンバーに搬入する。この場合は静圧軸受への絶対給気圧Pvは大気中と同じかある程度下げてもよい。
【0024】
(第4の実施例)
図4に本発明のステージ装置の第5実施例を示す。ここでは軸受の隙間を常時監視し、隙間の変動が生じた場合その変化量をアンプ9を介してコントローラー8に入力し、所定の隙間範囲内に戻るように静圧軸受への絶対給気圧Pvを制御する。
【0025】
(第5の実施例)
図5に本発明のステージ装置の第4実施例を示す。ここでは軸受の隙間を常時監視し、隙間の変動が生じた場合その変化量をアンプ9を介してコントローラー8に入力し、所定の隙間範囲内に戻るように電磁石16の吸引力を制御する。この場合絶対給気圧Pvは大気中と同じかある程度下げてもよい。
【0026】
【発明の効果】
以上説明したように、本発明で提案するステージ装置を用いれば、真空中でも安定性に優れたステージ装置の実現が可能である。
【図面の簡単な説明】
【図1】本発明における第1実施例を示す図である。
【図2】本発明における第2実施例を示す図である。
【図3】本発明における第3実施例を示す図である。
【図4】本発明における第4実施例を示す図である。
【図5】本発明における第5実施例を示す図である。
【図6】従来技術における問題点を示す図である。
【図7】従来技術における問題点を示す図である。
【図8】従来技術における問題点を示す図である。
【符号の説明】
1 真空チャンバー
2 ステージ定盤
3 可動体
4 静圧軸受
5 静圧軸受隙間
6 静圧軸受への給気通路
7 サーボバルブ
8 コントローラー
9 アンプ
10 真空計
11、12、13 静圧軸受からの流体を回収する通路
14 流体回収通路
17 予圧磁石
15 電磁石
16 制御用ケーブル
19 変位計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to various measuring devices and a positioning device for a vacuum exposure apparatus used in a semiconductor lithography process.
[0002]
[Prior art]
When a conventional stage device using a simple floating hydrostatic bearing is used in a vacuum, the absolute supply pressure in the atmosphere is used as it is, or the absolute supply pressure in the atmosphere is reduced by the amount of the atmospheric pressure. Was.
[0003]
[Problems to be solved by the invention]
However, the above-described conventional example has the following problems.
[0004]
In vacuum, unlike in the atmosphere, unlike the atmosphere, there is almost no force applied to the hydrostatic bearing at atmospheric pressure such as atmospheric pressure, so if used with the supply pressure in the atmosphere, the bearing gap will be wider than in the atmosphere, The stable area of the hydrostatic bearing narrows. Further, even if the air supply pressure is reduced by the atmospheric pressure, the bearing gap becomes wider than in the atmosphere, which causes a new problem that the hydrostatic bearing is likely to oscillate.
In view of these problems, an object of the present invention is to provide a vacuum-compatible stage device having excellent stability even in a vacuum.
[0005]
[Means for Solving the Problems]
In the present invention, in order to solve the conventional problem and realize a vacuum-compatible stage device that operates stably without oscillation even in a vacuum, the clearance of the hydrostatic bearing is always set to a predetermined value even when the pressure around the stage changes. We propose a stage device that is close to the value.
[0006]
As the means, in a stage device used in a vacuum, there is provided a means for monitoring the pressure around the stage device so that the gap between the hydrostatic bearings is always kept within a predetermined value range even if the pressure around the stage changes. A stage having means for controlling the supply pressure to the hydrostatic bearing or the preload of the hydrostatic bearing according to the change is constituted.
[0007]
Alternatively, a means for monitoring the gap of the hydrostatic bearing is provided, so that the gap of the hydrostatic bearing always falls within a predetermined value range even if the pressure of the vacuum chamber changes from the atmosphere to the vacuum or from the vacuum to the atmosphere. A stage having means for controlling the supply pressure to the hydrostatic bearing or the preload of the hydrostatic bearing is constituted.
[0008]
A vacuum gauge is used as means for monitoring the pressure around the stage. The vacuum gauge may be capable of measuring from atmospheric pressure to high vacuum. Separate vacuum gauges may be used for atmospheric pressure to low vacuum and for low vacuum to high vacuum.
[0009]
The signal of the pressure change around the stage device is sent to the controller via the amplifier, and controls the servo valve capable of controlling the supply pressure of the hydrostatic bearing so that the clearance of the hydrostatic bearing maintains a predetermined value.
[0010]
Alternatively, the signal of the pressure change around the stage device is sent to the electromagnet capable of controlling the preload to the hydrostatic bearing via the amplifier, and the force of the electromagnet is controlled so that the clearance of the hydrostatic bearing maintains a predetermined value.
[0011]
Alternatively, a magnet for preload correction is attached before the stage device is put into the vacuum chamber from the atmosphere, and then the stage device is carried into the vacuum chamber.
[0012]
As a means for measuring the gap between the hydrostatic bearings, a non-contact type displacement meter compatible with vacuum is used.
[0013]
The non-contact type displacement meter may be a capacitance type displacement meter.
[0014]
The non-contact type displacement meter may be an eddy current type.
The non-contact type displacement meter may be an optical pickup.
[0015]
Further, it is desirable that the hydrostatic bearing device be of a porous type having a small flow rate and excellent damping properties.
[0016]
(Action)
According to the present invention, since the gap between the hydrostatic bearings always keeps a value within a range located in the stable region, the phenomenon that the gap between the hydrostatic bearings is widened and oscillation becomes easy is eliminated, and the operation is stable even in a vacuum. A vacuum-compatible stage that can be realized.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
FIG. 1 shows a first embodiment of the stage device of the present invention. A stage base 2 and a movable body 3 movable on the base 2 are installed in a vacuum chamber 1. A high-pressure fluid is supplied to the static pressure bearing 4 supporting the movable body 3 from the outside of the chamber 1 to the air supply passage 6, and a gap 5 is formed between the static pressure bearing 4 and the stage base 2. Most of the gas discharged from the static pressure bearing 4 into the vacuum chamber through the gap 5 is set outside the vacuum chamber through exhaust grooves (not shown) provided around the static pressure bearing and exhaust pipes 11, 12, and 13. It is sucked by vacuum pumps 11, 12, and 13 (not shown) and discharged to the surroundings. Further, a small amount of gas is discharged into the vacuum chamber 1 through the gap 5, and the gas in this portion and outgas from the chamber, the stage device, and the like pass through the exhaust passage 14 and are discharged by a chamber vacuum pump (not shown). It is forcibly discharged to maintain a desired degree of vacuum.
[0018]
The vacuum chamber 1 is provided with a vacuum gauge 10 capable of constantly monitoring the internal pressure of the vacuum, and its output signal is input to the controller 8 via the amplifier 9. As shown in FIG. 2, a pattern for controlling the supply pressure to the hydrostatic bearing, which has been input in advance, is input to the controller, and a change in the pressure Pc in the vacuum chamber changes the absolute supply pressure to the hydrostatic bearing. By adjusting Pv via the servo valve 7 and supplying it to the hydrostatic bearing, the bearing gap can always be kept within the range of the stable region, and the stability can be improved.
[0019]
When the stage device is evaluated in the atmosphere, the load applied to the static pressure bearing 4 is not limited to the weight of the stage movable body 3 but the atmospheric pressure Pa is applied to the static pressure bearing 4 as a load. However, when the evaluation is performed in a vacuum, since the pressure around the stage device is five digits or less of the atmospheric pressure Pa, the force applied to the hydrostatic bearing as a load is almost zero compared to the weight of the movable body 3. Therefore, considering the influence of the atmospheric pressure Pa, if the absolute supply pressure Pv to the static pressure bearing 4 in vacuum is reduced by the atmospheric pressure Pa from the absolute supply pressure Ps in the atmosphere by the amount of the atmospheric pressure Pa, and the supply is performed at Pv = Ps Pa, then the pressure in the atmosphere is reduced. Although it is likely to be expected that the same gap 5 is maintained, as shown in FIG. 6, when the load is the same in air and vacuum (excluding load due to atmospheric pressure), the compressibility of the gas causes The gap 5 is wider than in the atmosphere. In addition, as shown in FIG. 7, in this case, the frequency characteristic of the gas film in the gap has an unstable region where the damping ratio becomes negative, and it is easy to become unstable in a vacuum.
[0020]
That is, when air is supplied to the desired bearing gap h at the absolute supply pressure Ps in the atmosphere, the absolute supply pressure Pv to the bearing in the vacuum is set to Pv <Ps Pa in order to maintain the same gap as in the atmosphere. There must be.
[0021]
(Second embodiment)
FIG. 2 shows a second embodiment of the stage device of the present invention. Instead of controlling the supply pressure to the hydrostatic bearing of the first embodiment, a preload for adjusting the clearance of the hydrostatic bearing is controlled. In FIG. 2, the absolute supply pressure to the hydrostatic bearing is set to the same Pv = Ps as that in the atmosphere, and by adjusting the attraction force of the electromagnet 16, the gap between the bearings is always maintained within an appropriate range, and oscillation is prevented. It is possible to prevent. As shown by the curve {circle around (3)} in FIG. 8, in this case, the dynamic rigidity of the hydrostatic bearing is increased, and as a result, the stable region is widened and stable operation can be achieved.
[0022]
Alternatively, the gap may be adjusted with an electromagnet while the absolute supply pressure Pv is lowered to some extent.
[0023]
(Third embodiment)
FIG. 3 shows a third embodiment of the stage device of the present invention. In the atmosphere, a preload magnet is attached so that a desired gap is obtained, and various performance adjustments of the stage are performed. Then, in order to maintain the floating amount of the vacuum chamber in the same manner as in the atmosphere, a preload compensating magnet 18 is attached. From the vacuum chamber. In this case, the absolute supply pressure Pv to the hydrostatic bearing may be equal to or lower than that in the atmosphere.
[0024]
(Fourth embodiment)
FIG. 4 shows a fifth embodiment of the stage device of the present invention. Here, the gap of the bearing is constantly monitored, and when the gap fluctuates, the amount of the change is input to the controller 8 via the amplifier 9, and the absolute supply pressure Pv to the hydrostatic bearing is returned so as to return within the predetermined gap range. Control.
[0025]
(Fifth embodiment)
FIG. 5 shows a fourth embodiment of the stage device of the present invention. Here, the gap between the bearings is constantly monitored, and when a change in the gap occurs, the amount of change is input to the controller 8 via the amplifier 9 and the attraction force of the electromagnet 16 is controlled so as to return to within a predetermined gap range. In this case, the absolute supply pressure Pv may be equal to or lower to some degree in the atmosphere.
[0026]
【The invention's effect】
As described above, the use of the stage device proposed in the present invention makes it possible to realize a stage device having excellent stability even in a vacuum.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a second embodiment of the present invention.
FIG. 3 is a view showing a third embodiment of the present invention.
FIG. 4 is a diagram showing a fourth embodiment of the present invention.
FIG. 5 is a diagram showing a fifth embodiment of the present invention.
FIG. 6 is a diagram showing a problem in the related art.
FIG. 7 is a diagram showing a problem in the related art.
FIG. 8 is a diagram showing a problem in the related art.
[Explanation of symbols]
Reference Signs List 1 vacuum chamber 2 stage base 3 movable body 4 static pressure bearing 5 static pressure bearing gap 6 air supply passage to static pressure bearing 7 servo valve 8 controller 9 amplifier 10 vacuum gauge 11, 12, 13 fluid from static pressure bearing Collecting passage 14 Fluid collecting passage 17 Preload magnet 15 Electromagnet 16 Control cable 19 Displacement meter

Claims (17)

単純浮上型の静圧軸受装置で支持される部分を有する移動可能なステージ装置において、真空中で発振しないように静圧軸受の隙間を調整する手段を備えたことを特徴とするステージ装置。A movable stage device having a portion supported by a simple floating type hydrostatic bearing device, comprising a means for adjusting a gap between the hydrostatic bearings so as not to oscillate in a vacuum. 請求項1において、ステージ装置の置かれている真空チャンバーの圧力を測定する手段を備え、且つ該ステージ装置周囲の圧力に応じて該静圧軸受の隙間が所定値を保つように該静圧軸受への供給圧を制御する手段を有することを特徴とするステージ装置。2. The static pressure bearing according to claim 1, further comprising means for measuring a pressure of a vacuum chamber in which the stage device is placed, and wherein a gap between the static pressure bearings maintains a predetermined value according to a pressure around the stage device. A stage device comprising means for controlling a supply pressure to a stage. 請求項1において、ステージ装置の置かれている真空チャンバーの圧力を測定する手段を備え、且つ該ステージ装置周囲の圧力に応じて該静圧軸受の隙間が所定値を保つように該静圧軸受への予圧を制御する手段を有することを特徴とするステージ装置。2. The static pressure bearing according to claim 1, further comprising means for measuring a pressure of a vacuum chamber in which the stage device is placed, and wherein a gap between the static pressure bearings maintains a predetermined value according to a pressure around the stage device. A means for controlling a preload to the stage. 請求項1において、静圧軸受の隙間を測定する手段を備え、ステージ装置周囲の圧力が変化しても該静圧軸受の隙間が所定値を保つように該静圧軸受への供給圧を制御する手段を有することを特徴とするステージ装置。2. The apparatus according to claim 1, further comprising means for measuring a gap between the hydrostatic bearings, and controlling a pressure supplied to the hydrostatic bearing so that the gap between the hydrostatic bearings maintains a predetermined value even when the pressure around the stage device changes. A stage device comprising: 請求項1において、静圧軸受の隙間を測定する手段を備え、ステージ装置周囲の圧力が変化しても該静圧軸受の隙間が所定値を保つように該静圧軸受の予圧を制御する手段を有することを特徴とするステージ装置。2. The means according to claim 1, further comprising means for measuring a gap of the hydrostatic bearing, wherein the preload of the hydrostatic bearing is controlled such that the gap of the hydrostatic bearing maintains a predetermined value even when the pressure around the stage device changes. A stage device comprising: 請求項2、3において、ステージ装置の周囲である真空チャンバーの圧力を測定する手段として、大気圧から高真空までを測定できる真空計を用いる。真空計は大気圧から低真空まで測定可能なのものと、低真空から高真空まで測定可能なものに分けても良い。In Claims 2 and 3, as means for measuring the pressure of the vacuum chamber around the stage device, a vacuum gauge capable of measuring from atmospheric pressure to high vacuum is used. Vacuum gauges may be divided into those that can measure from atmospheric pressure to low vacuum and those that can measure from low vacuum to high vacuum. 請求項4、5における静圧軸受の隙間を測定する手段として、非接触型の変位計を用いることを特徴とする。A non-contact type displacement meter is used as means for measuring the gap between the hydrostatic bearings according to the fourth and fifth aspects. 請求項7の非接触型の変位計は真空対応であることを特徴とする。The non-contact type displacement meter according to claim 7 is compatible with a vacuum. 請求項8において、非接触型の変位計は静電容量型であることを特徴とする。According to claim 8, the non-contact type displacement meter is of a capacitance type. 請求項8において、非接触型の変位計は渦電流型であることを特徴とする。According to claim 8, the non-contact type displacement meter is of an eddy current type. 請求項8において、非接触型の変位計は光ピックアップであることを特徴とする。According to claim 8, the non-contact type displacement meter is an optical pickup. 請求項2、4において、静圧軸受への供給圧を制御する手段としてサーボバルブを用いることを特徴とするステージ装置。5. The stage device according to claim 2, wherein a servo valve is used as means for controlling a supply pressure to the hydrostatic bearing. 請求項3、5において、静圧軸受の予圧を制御する手段として電磁石を用いたことを特徴とするステージ装置。6. The stage device according to claim 3, wherein an electromagnet is used as means for controlling the preload of the hydrostatic bearing. 請求項3、5において、静圧軸受の予圧を制御する手段としてステージ装置を大気中から真空チャンバー内に入れる前に予圧磁石を追加することを特徴とするステージ装置。6. The stage device according to claim 3, wherein a preload magnet is added as a means for controlling the preload of the hydrostatic bearing before the stage device is put into the vacuum chamber from the atmosphere. 請求項1〜14に示すステージ装置において、静圧軸受は多孔質静圧軸受であることを特徴とするステージ装置。15. The stage device according to claim 1, wherein the hydrostatic bearing is a porous hydrostatic bearing. 請求項1〜15に示すステージ装置を用いた真空用ステージ装置。A vacuum stage device using the stage device according to claim 1. 請求項1〜15において、半導体露光装置用の位置決め装置として用いる真空用ステージ。16. The vacuum stage according to claim 1, which is used as a positioning device for a semiconductor exposure apparatus.
JP2003110348A 2003-04-15 2003-04-15 Stage unit Withdrawn JP2004316755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110348A JP2004316755A (en) 2003-04-15 2003-04-15 Stage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110348A JP2004316755A (en) 2003-04-15 2003-04-15 Stage unit

Publications (1)

Publication Number Publication Date
JP2004316755A true JP2004316755A (en) 2004-11-11

Family

ID=33471231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110348A Withdrawn JP2004316755A (en) 2003-04-15 2003-04-15 Stage unit

Country Status (1)

Country Link
JP (1) JP2004316755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130260A (en) * 2011-12-22 2013-07-04 Canon Inc Liquid static pressure linear motion guide device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130260A (en) * 2011-12-22 2013-07-04 Canon Inc Liquid static pressure linear motion guide device

Similar Documents

Publication Publication Date Title
JP4815538B2 (en) Vacuum control system and vacuum control method
WO2017147949A1 (en) Electromagnetically enabled active type dynamic gas bearing
US20070014494A1 (en) Vacuum pre-loaded pneumatic bearing with onboard vacuum generator
JPH07111238A (en) Self-weight support device
WO2017027382A1 (en) Device and method for magnetically controlled dry gas seal
JP2009212314A (en) Vibration suppression apparatus, exposure apparatus, and method of manufacturing device
JP2005032818A (en) Hydrostatic bearing, pointing device and aligner
JP2004316755A (en) Stage unit
TW201104363A (en) An immersion lithographic apparatus and a device manufacturing method
JP2008215107A (en) Compressor
CN102668059B (en) Vacuum chuck
CN104568440A (en) Device for detecting performance of static pressure gas bearing in vacuum environment and using method thereof
JP5261545B2 (en) Vacuum control system and vacuum control method
US6402380B1 (en) Fluid bearing operable in a vacuum region
JP2007107604A (en) Vibration resistant device, and vibration resistant method
CN110925309A (en) Air bearing with active control of air film shape
KR101634420B1 (en) Vacuum control system and vacuum control method
JP2006250291A (en) Vibration isolating device
JP2006083923A (en) Magnetic bearing device and turbo molecular drag pump equipped with the same
CN204301999U (en) The device for detecting performance of hydrostatic gas-lubricated bearing under a kind of vacuum environment
JP2005307993A (en) Method for calibrating stage device using variable restriction static pressure bearing
JP2004019760A (en) Hydrostatic bearing
JP2011247314A (en) Active vibration removing device
JPH02156625A (en) Direct-acting guide apparatus
JP2007298102A (en) Gas spring type vibration resistant device and control method for the device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704