JP2013130260A - Liquid static pressure linear motion guide device - Google Patents

Liquid static pressure linear motion guide device Download PDF

Info

Publication number
JP2013130260A
JP2013130260A JP2011281152A JP2011281152A JP2013130260A JP 2013130260 A JP2013130260 A JP 2013130260A JP 2011281152 A JP2011281152 A JP 2011281152A JP 2011281152 A JP2011281152 A JP 2011281152A JP 2013130260 A JP2013130260 A JP 2013130260A
Authority
JP
Japan
Prior art keywords
movable body
liquid supply
center
liquid
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011281152A
Other languages
Japanese (ja)
Other versions
JP2013130260A5 (en
Inventor
Hiroki Nosaka
弘紀 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011281152A priority Critical patent/JP2013130260A/en
Publication of JP2013130260A publication Critical patent/JP2013130260A/en
Publication of JP2013130260A5 publication Critical patent/JP2013130260A5/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To realize a structure that can suppress attitude change when a movable body 2 moves without upsizing and complicating a device.SOLUTION: Positions of liquid supply holes 7 in respective recessed parts 4 are arranged so as to satisfy a following condition: a summation of distances between a centroid G of a movable body 2 and respective liquid supply points P as geometric centroids of the liquid supply holes 7 of the respective recessed parts 4 in respective moving directions is larger than a summation of distances between the centroid G of the movable body 2 and centers N of the respective recessed parts 4 in the respective moving directions. Accordingly, a fluctuation of moment of the movable body 2 at moving is restrained and thereby attitude change thereof can be suppressed.

Description

本発明は、例えば超精密加工機などに用いられる、液体静圧軸受を備えた液体静圧直動案内装置に関する。   The present invention relates to a liquid hydrostatic linear motion guide device including a liquid hydrostatic bearing, which is used in, for example, an ultraprecision machine.

直動案内装置として、液体静圧軸受を備えた液体静圧直動案内装置が知られている。静圧軸受とは、可動体の軸受面と案内部材の案内面との間の軸受隙間に、強制的に加圧流体を供給することによって潤滑流体膜を形成し、この潤滑流体膜の圧力によって可動体を非接触で浮上させる方式の軸受である。作動流体に液体を用いる液体静圧軸受においては、多くの場合、図8(a)に示すように、可動体2に、軸受面3(斜格子領域)に開口した凹部4が形成されている。なお、図8(b)に示すように、軸受面3から凹部4の開口面5(梨地領域)を除いた部分をランド6(格子領域)と呼ぶ。したがって、軸受面3は凹部4の開口面5とランド6とから成る。   As a linear motion guide device, a liquid static pressure linear motion guide device including a liquid static pressure bearing is known. The hydrostatic bearing forms a lubricating fluid film by forcibly supplying a pressurized fluid to the bearing gap between the bearing surface of the movable body and the guide surface of the guide member, and the pressure of the lubricating fluid film This is a bearing that floats a movable body in a non-contact manner. In a liquid hydrostatic bearing that uses a liquid as a working fluid, in many cases, as shown in FIG. 8 (a), the movable body 2 is formed with a recess 4 that opens to the bearing surface 3 (oblique lattice region). . In addition, as shown in FIG.8 (b), the part remove | excluding the opening surface 5 (satin surface area | region) of the recessed part 4 from the bearing surface 3 is called the land 6 (lattice area | region). Therefore, the bearing surface 3 is composed of the opening surface 5 of the recess 4 and the land 6.

凹部4の開口面5はランド6に内包されており、図9(a)に示すように、凹部4は、ランド6と案内面1によって形成される軸受隙間8に対して十分な深さを持っている。この凹部4を設けることによって、圧力降下を生じることなく軸受面3に加圧流体を充填させることができる。このため、図9(a)と(b)を比較してわかるように、凹部4を設けない場合と比べて、同じ寸法の液体静圧軸受でより大きな圧力の積分値、即ち浮上力を得る事ができる。   The opening surface 5 of the recess 4 is included in the land 6. As shown in FIG. 9A, the recess 4 has a sufficient depth with respect to the bearing gap 8 formed by the land 6 and the guide surface 1. have. By providing the recess 4, the bearing surface 3 can be filled with a pressurized fluid without causing a pressure drop. For this reason, as can be seen by comparing FIGS. 9A and 9B, compared with the case where the recess 4 is not provided, a larger integrated value of the pressure, that is, the levitation force is obtained with the liquid hydrostatic bearing of the same size. I can do things.

しかし、凹部4を設けた場合、可動体2が移動した場合に可動体2の姿勢が傾く可能性がある。即ち、図9(c)に示すように、可動体2が図内左方向に移動すると、凹部4が流体溜まりになっていることで、軸受隙間8の図内右側で絞られる流量が増える。この結果、図内右側、すなわち可動体移動方向後方で圧力が高くなる圧力勾配が生じる。したがって、静止時に釣り合っている可動体2の重心周りのモーメントが、可動体2の移動により、移動方向後方部を持ち上げる方向に変動し、可動体2の姿勢変化を生じてしまう。   However, when the concave portion 4 is provided, the posture of the movable body 2 may be inclined when the movable body 2 moves. That is, as shown in FIG. 9C, when the movable body 2 moves in the left direction in the figure, the flow rate throttled on the right side in the figure of the bearing gap 8 increases because the recess 4 is a fluid pool. As a result, a pressure gradient is generated in which the pressure increases on the right side in the drawing, that is, behind the movable body moving direction. Accordingly, the moment around the center of gravity of the movable body 2 that is balanced when the movable body 2 is stationary fluctuates in the direction of lifting the rear portion in the movement direction due to the movement of the movable body 2, causing a change in the posture of the movable body 2.

通常、液体静圧軸受を備えた液体静圧直動案内装置では、可動体を挟み込むように同形式・同形状の軸受を対向配置することで、圧力分布の変動や偏りを打ち消し合う方法が一般的である。一方、同形式・同形状の軸受を対向配置しない場合に、可動体の姿勢変化を抑制する先行技術としては、可動体の傾きを検出して、静圧案内面に供給する流体の圧力を変化させる構造が提案されている(特許文献1)。   Normally, in a liquid hydrostatic linear motion guide device equipped with a liquid hydrostatic bearing, it is common to counteract fluctuations and biases in the pressure distribution by disposing bearings of the same type and shape so as to sandwich the movable body. Is. On the other hand, when the same type and shape bearings are not arranged opposite to each other, as a prior art for suppressing the change in the posture of the movable body, the inclination of the movable body is detected and the pressure of the fluid supplied to the static pressure guide surface is changed. The structure to be made is proposed (patent document 1).

特開昭62−241629号公報JP 62-241629 A

しかしながら、一般的な方法である静圧軸受の対向配置では装置の大型化や加工・組立の困難化を招く。一方、特許文献1に記載の技術の場合、傾きを検出する手段や傾きを補正するための手段を備えるために、装置の複雑化や大型化を招く。   However, the opposing arrangement of hydrostatic bearings, which is a common method, leads to an increase in size of the apparatus and difficulty in processing and assembly. On the other hand, in the case of the technique described in Patent Document 1, since the device for detecting the inclination and the means for correcting the inclination are provided, the apparatus becomes complicated and large.

本発明は、このような事情に鑑み、装置の大型化や複雑化を招くことなく、可動体の移動時の姿勢変化を抑制できる構造を実現すべく発明したものである。   In view of such circumstances, the present invention was invented to realize a structure capable of suppressing a change in posture during movement of a movable body without causing an increase in size and complexity of the apparatus.

本発明は、案内面を有する案内部材と、前記案内面との間で液体静圧軸受を構成する軸受面を有し、前記案内面に向けて与圧が付与された状態で配置され、前記案内部材に沿って移動する可動体と、前記軸受面と前記案内面との間に液体を供給する液体供給手段と、を備えた液体静圧直動案内装置において、前記可動体は、前記軸受面を移動方向に複数並べて配置し、複数の前記軸受面は、それぞれ、前記案内面に向けて開口する凹部と、前記凹部の底面もしくは壁面に配置されて前記液体供給手段から液体が供給される液体供給孔とが形成され、複数の前記液体供給孔は、それぞれの前記凹部内の前記液体供給孔の幾何学的重心となる液体供給点と前記可動体の重心とのそれぞれの前記移動方向の距離の総和が、前記凹部の中心と前記可動体の重心とのそれぞれの前記移動方向の距離の総和よりも、大きくなるように配置されている、ことを特徴とする液体静圧直動案内装置にある。   The present invention has a guide member having a guide surface and a bearing surface that constitutes a hydrostatic bearing between the guide surface and is arranged in a state where a pressurized pressure is applied toward the guide surface, A liquid static pressure linear motion guide apparatus comprising: a movable body that moves along a guide member; and a liquid supply means that supplies a liquid between the bearing surface and the guide surface. A plurality of surfaces are arranged side by side in the moving direction, and the plurality of bearing surfaces are respectively disposed on a recess opening toward the guide surface and on the bottom surface or wall surface of the recess, and liquid is supplied from the liquid supply means. Liquid supply holes are formed, and the plurality of liquid supply holes are arranged in the respective moving directions of the liquid supply point serving as the geometric center of gravity of the liquid supply hole in each of the recesses and the center of gravity of the movable body. The total distance is the center of the recess and the movable Than the respective sum of the distance of the movement direction between the center of gravity of which is arranged to be larger, there is provided a liquid electrostatic 圧直 kinematic guiding device, characterized in that.

本発明によれば、複数の軸受面にそれぞれ形成する凹部と、各凹部の底面にそれぞれ形成する液体供給孔との位置関係を規制することにより、可動体の移動時の可動体の重心周りのモーメント変動を小さくできる。このため、装置の大型化や複雑化を招くことなく、可動体の移動時の姿勢変化を抑制できる。   According to the present invention, by restricting the positional relationship between the concave portions formed on the plurality of bearing surfaces and the liquid supply holes formed on the bottom surfaces of the concave portions, the position around the center of gravity of the movable body when the movable body is moved is regulated. Moment fluctuation can be reduced. For this reason, the posture change at the time of movement of a movable body can be suppressed, without causing the enlargement and complication of an apparatus.

本発明の第1の実施形態に係る、(a)は液体静圧直動案内装置の概略構成断面図、(b)はそれぞれの軸受隙間の圧力分布を示す図、(c)はそれぞれの軸受面での浮上力と浮上力作用点を模式的に示す図。BRIEF DESCRIPTION OF THE DRAWINGS (a) based on the 1st Embodiment of this invention is a schematic structure sectional drawing of a hydrostatic pressure linear motion guide apparatus, (b) is a figure which shows the pressure distribution of each bearing clearance, (c) is each bearing The figure which shows typically the levitation force in a surface, and a levitation force action point. (a)は可動体の静止時の、(b)は可動体の移動時の、それぞれ、軸受隙間の圧力分布(左図)と、圧力分布が浮上力と浮上力作用点で置き換えられることを示す図(右図)。(A) When the movable body is stationary, (b) When the movable body is moved, the pressure distribution in the bearing gap (left figure) and that the pressure distribution is replaced by the levitation force and the levitation force action point, respectively. The figure shown (right figure). 液体静圧軸受の液体供給点と凹部の中心とを説明するための、可動体の一部断面図(上図)と、凹部のみを示す平面図(下図)。The partial cross section figure (upper figure) of a movable body for demonstrating the liquid supply point of a liquid hydrostatic bearing, and the center of a recessed part, and the top view (lower figure) which shows only a recessed part. 複数の液体供給孔を有する場合の液体供給点を説明するための、可動体の一部断面図(上図)と、凹部のみを示す平面図(下図)。The partial cross section figure (upper figure) of a movable body for demonstrating the liquid supply point in the case of having a some liquid supply hole, and the top view (lower figure) which shows only a recessed part. 液体供給点が、(a)は凹部の中心と同位置に、(b)は中心より移動方向前方に、(c)は中心より移動方向後方に配置された場合の、液体静圧軸受の断面図(左上図)、軸受隙間の圧力分布(左下図)、浮上力及び浮上力作用点(右図)。The cross section of the liquid hydrostatic bearing when the liquid supply point is arranged at the same position as the center of the recess, (b) at the front in the movement direction from the center, and (c) at the rear in the movement direction from the center. Fig. (Upper left), bearing gap pressure distribution (lower left), levitation force and levitation force action point (right). 本発明の第2の実施形態に係る液体静圧直動案内装置の概略構成断面図。The schematic structure sectional drawing of the liquid static pressure linear motion guide apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る液体静圧直動案内装置の概略構成断面図。The schematic structure sectional drawing of the liquid static pressure linear motion guide apparatus which concerns on the 3rd Embodiment of this invention. 軸受面((a)の斜格子領域)と、凹部((b)の梨地領域)と、ランド((b)の格子領域)との関係を説明するための、液体静圧軸受の概略構成斜視図。Schematic configuration perspective view of a hydrostatic bearing for explaining the relationship between the bearing surface (the oblique lattice region of (a)), the recess (the satin region of (b)) and the land (the lattice region of (b)) Figure. (a)は軸受面に凹部を形成した構成の静止時の、(b)は軸受面に凹部を形成しない構成の静止時の、(c)は軸受面に凹部を形成した構成の移動時の、それぞれ、液体静圧軸受の概略構成断面図(上図)と、軸受隙間の圧力分布を示す図(下図)。(A) is when the bearing surface is formed with a recess, (b) is when the bearing surface is not formed with a recess, and (c) is when the bearing surface is formed with a recess. FIG. 2 is a schematic sectional view (upper diagram) of a hydrostatic bearing, and a diagram (lower diagram) showing a pressure distribution in a bearing gap.

<第1の実施形態>
本発明の第1の実施形態について、図1ないし図5を用いて説明する。まず、液体静圧直動案内装置の概略構成について、図1(a)を用いて説明する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the liquid static pressure linear motion guide device will be described with reference to FIG.

[液体静圧直動案内装置]
本実施形態の液体静圧直動案内装置は、図1(a)に示す様に、案内部材1aと、可動体2と、液体供給手段である加圧液体供給装置9とを備える。案内部材1aは、例えばレール状の部材で、片面に可動体2の移動方向と平行な案内面1を有する。可動体2は、例えば、超精密加工機のワークを載置するステージなどであり、不図示の駆動機構により案内部材1aに沿って、図1(a)の矢印方向(左右方向)に移動自在に配置されている。駆動機構としては、例えばボールねじ機構などが挙げられる。即ち、案内部材1aと平行に雄ねじを配置し、可動体2に設けた雌ねじ部にこの雄ねじをボールを介して螺合させる。そして、モータを駆動して雄ねじを回転させることにより、可動体2が雄ねじと雌ねじ部との螺合に基づき雄ねじに沿って移動する。
[Liquid static pressure linear motion guide device]
As shown in FIG. 1A, the liquid static pressure linear motion guide device of the present embodiment includes a guide member 1a, a movable body 2, and a pressurized liquid supply device 9 as a liquid supply means. The guide member 1a is a rail-shaped member, for example, and has a guide surface 1 parallel to the moving direction of the movable body 2 on one side. The movable body 2 is, for example, a stage on which a workpiece of an ultra-precision processing machine is placed, and is movable along the guide member 1a in the arrow direction (left-right direction) in FIG. Is arranged. Examples of the driving mechanism include a ball screw mechanism. That is, a male screw is arranged in parallel with the guide member 1a, and this male screw is screwed into a female screw portion provided on the movable body 2 via a ball. And by driving a motor and rotating a male screw, the movable body 2 moves along a male screw based on the screwing of a male screw and a female screw part.

本実施形態の場合、このような可動体2の案内部材1aに対する支持を液体静圧軸受により構成している。このために、可動体2は、案内面1との間で液体静圧軸受を構成する軸受面3を有し、案内面1に向けて与圧が付与された状態で配置されている。なお、この与圧は、磁石を用いた磁気吸引力(或いは反発力)によるものや、流体によるものなど非接触の手段により付与され、可動体2の軸受面3が案内面1に押し付けられる方向に作用する。与圧は、可動体2の移動方向全体にほぼ均一に作用させることが好ましく、少なくとも、可動体2の重心周りでモーメントが釣り合うようにする。   In the case of the present embodiment, the support of the movable body 2 with respect to the guide member 1a is configured by a liquid hydrostatic bearing. For this purpose, the movable body 2 has a bearing surface 3 that constitutes a hydrostatic bearing with the guide surface 1, and is arranged in a state where a pressure is applied toward the guide surface 1. This pressure is applied by non-contact means such as a magnetic attraction force (or repulsive force) using a magnet or a fluid, and the bearing surface 3 of the movable body 2 is pressed against the guide surface 1. Act on. The pressurization is preferably applied almost uniformly in the entire moving direction of the movable body 2, and at least the moment is balanced around the center of gravity of the movable body 2.

液体静圧軸受は、可動体2の軸受面3と案内部材1aの案内面1との間の軸受隙間8に、強制的に加圧流体を供給することによって潤滑流体膜を形成する。そして、この潤滑流体膜の圧力と上述の与圧とのバランスによって可動体2を非接触で浮上させる。   The liquid hydrostatic bearing forms a lubricating fluid film by forcibly supplying a pressurized fluid to the bearing gap 8 between the bearing surface 3 of the movable body 2 and the guide surface 1 of the guide member 1a. Then, the movable body 2 is floated in a non-contact manner by the balance between the pressure of the lubricating fluid film and the above-described pressure.

加圧液体供給装置9は、例えばポンプなどで、軸受面3と案内面1との間に一定の圧の液体を供給する。本実施形態の場合、加圧液体供給装置9から可動体2の流体経路9aを介して、軸受面3と案内面1との間に液体を供給している。また、流体経路9aの上流には、図示しない絞りを設け、加圧液体供給装置9から送られる加圧液体の圧力を一旦下げてから、流体経路9aに送るようにしている。   The pressurized liquid supply device 9 supplies a liquid having a constant pressure between the bearing surface 3 and the guide surface 1 with, for example, a pump. In the case of the present embodiment, liquid is supplied between the bearing surface 3 and the guide surface 1 from the pressurized liquid supply device 9 via the fluid path 9 a of the movable body 2. Further, a throttle (not shown) is provided upstream of the fluid path 9a so that the pressure of the pressurized liquid sent from the pressurized liquid supply device 9 is once lowered and then sent to the fluid path 9a.

このように構成される本実施形態の液体静圧直動案内装置の場合、可動体2は、軸受面3を可動体2の移動方向に複数並べて配置している。なお、図示の例の場合、移動方向に2個並べているが、3個以上並べても良いし、図1(a)の紙面表裏方向にも並べてあっても良い。何れにしても、軸受面3は、少なくとも可動体2の移動方向に複数並べて配置されている。   In the case of the liquid static pressure linear motion guide device of the present embodiment configured as described above, the movable body 2 has a plurality of bearing surfaces 3 arranged in the moving direction of the movable body 2. In the case of the illustrated example, two are arranged in the movement direction, but three or more may be arranged, or they may be arranged in the front and back direction of the sheet of FIG. In any case, a plurality of bearing surfaces 3 are arranged side by side in at least the moving direction of the movable body 2.

複数の軸受面3は、それぞれ、案内面1に向けて開口する凹部4と、凹部4の底面4aに配置されて加圧液体供給装置9から液体が供給される液体供給孔7とが形成されている。なお、液体供給孔7は、凹部4の壁面に形成されていても良い。本実施形態の場合、前述の図8で説明した場合と同様に、軸受面3から凹部4の開口面5を除いた部分をランド6と呼ぶ。したがって、軸受面3は凹部4の開口面5とランド6から成る。凹部4の開口面5はランド6に内包されている。   Each of the plurality of bearing surfaces 3 is formed with a recess 4 that opens toward the guide surface 1 and a liquid supply hole 7 that is disposed on the bottom surface 4a of the recess 4 and is supplied with liquid from the pressurized liquid supply device 9. ing. The liquid supply hole 7 may be formed on the wall surface of the recess 4. In the case of the present embodiment, the portion obtained by removing the opening surface 5 of the recess 4 from the bearing surface 3 is referred to as a land 6 as in the case described with reference to FIG. Therefore, the bearing surface 3 includes the opening surface 5 of the recess 4 and the land 6. The opening surface 5 of the recess 4 is included in the land 6.

凹部4に形成された液体供給孔7は、流体経路9aに接続されており、加圧液体供給装置9から供給される加圧液体は、液体供給孔7を通して、凹部4、及び案内面1とランド6から成る軸受隙間8に供給される。そして、上述のように液体静圧軸受を形成する。なお、軸受面3及び凹部4の開口面5の形状は、前述の図8に示したような正方形以外に、長方形、円形、楕円形などの任意の形状とすることができる。また、凹部がこのような任意の形状である場合、その中心はその形状の幾何学的重心とする。また、軸受面3の面積、凹部4の開口面5の面積については、それぞれの軸受面3で異なっていても良いし、同じであっても良い。但し、可動体2の静止時に可動体2の重心G周りのモーメントが釣り合うように設定する。   The liquid supply hole 7 formed in the recess 4 is connected to the fluid path 9 a, and the pressurized liquid supplied from the pressurized liquid supply device 9 passes through the liquid supply hole 7 and the recess 4 and the guide surface 1. It is supplied to a bearing gap 8 made up of lands 6. Then, a liquid hydrostatic bearing is formed as described above. In addition, the shape of the opening surface 5 of the bearing surface 3 and the recessed part 4 can be made into arbitrary shapes, such as a rectangle, circular, and an ellipse other than the square as shown in the above-mentioned FIG. Further, when the concave portion has such an arbitrary shape, the center is the geometric center of gravity of the shape. Further, the area of the bearing surface 3 and the area of the opening surface 5 of the recess 4 may be different or the same for each bearing surface 3. However, the moment around the center of gravity G of the movable body 2 is set to be balanced when the movable body 2 is stationary.

[液体供給孔の位置]
次に、各凹部4内での液体供給孔7の位置について説明する。可動体2の静止時には、液体供給孔7の位置に拘らず、軸受面3に凹部4を有する液体静圧軸受の軸受隙間8では、一般的に図2(a)の左図に示したような圧力分布を形成する。本明細書では、この圧力分布の積分値を、その軸受面3に作用する可動体2を浮上させる力(案内面1と反対方向に働く力)である浮上力と呼ぶ。
[Position of liquid supply hole]
Next, the position of the liquid supply hole 7 in each recess 4 will be described. When the movable body 2 is stationary, the bearing gap 8 of the liquid hydrostatic bearing having the recess 4 on the bearing surface 3 is generally shown in the left diagram of FIG. 2A regardless of the position of the liquid supply hole 7. A good pressure distribution. In this specification, the integrated value of the pressure distribution is referred to as a levitation force that is a force (a force acting in a direction opposite to the guide surface 1) that causes the movable body 2 acting on the bearing surface 3 to float.

また、図2(a)左図における圧力分布は、図2(a)右図に示したように、浮上力とその作用点を用いて等価に置き換えることができるが、この浮上力の作用点を本明細書では浮上力作用点Qと呼ぶ。即ち、軸受隙間8の圧力分布の可動体2の移動方向と平行な断面を移動方向と垂直方向に複数取った場合に、その断面積が平均となる断面を、移動方向両側に面積を2等分する作用線上の点を浮上力作用点Qと言う。本実施形態の場合、軸受面3の形状は正方形で、凹部4と開口面5との間の空間の形状は直方体となる。このため、軸受隙間8の圧力分布の可動体2の移動方向と平行な断面を移動方向と垂直方向に複数取った場合の断面積はほぼすべて同じとなる。このため、軸受隙間8の可動体2の移動方向と平行な任意の断面の圧力分布が、図2(a)に示す圧力分布となり、この圧力分布の面積を移動方向両側に2等分する線が作用線となり、浮上力作用点Qは、この作用線上に存在する。   Further, as shown in the right diagram of FIG. 2A, the pressure distribution in the left diagram of FIG. 2A can be replaced equivalently by using the levitation force and its action point. Is called a levitation force action point Q in this specification. That is, when a plurality of cross sections parallel to the moving direction of the movable body 2 in the pressure distribution of the bearing gap 8 are taken in the direction perpendicular to the moving direction, the cross section with the average cross-sectional area is taken to have an area of 2 on both sides of the moving direction. The point on the line of action to be divided is called the levitation force action point Q. In the case of this embodiment, the shape of the bearing surface 3 is a square, and the shape of the space between the recess 4 and the opening surface 5 is a rectangular parallelepiped. For this reason, when a plurality of cross sections parallel to the moving direction of the movable body 2 in the pressure distribution of the bearing gap 8 are taken in the direction perpendicular to the moving direction, the cross sectional areas are almost the same. For this reason, the pressure distribution of an arbitrary cross section parallel to the moving direction of the movable body 2 in the bearing gap 8 becomes the pressure distribution shown in FIG. 2A, and a line that bisects the area of this pressure distribution on both sides of the moving direction. Becomes the action line, and the levitation force action point Q exists on this action line.

図2(a)に示す様に、可動体2の静止時の圧力分布は、圧力分布の中心に対して対象となり、可動体2の移動方向に関して釣り合った状態である。即ち、浮上力作用点Qは圧力分布の中央に位置する。これに対して、液体供給孔7が凹部4の可動体2の中心にある場合、可動体2を図2の左方向に移動させると、前述の図9(c)で説明したように、図2(b)左図に示すように右側で高くなるような圧力分布となる。そして、図2(b)右図に示す様に浮上力作用点Qが、図2(a)に示した場合よりも右側に移動することになる。   As shown in FIG. 2A, the stationary pressure distribution of the movable body 2 is a target with respect to the center of the pressure distribution and is in a state balanced with respect to the moving direction of the movable body 2. That is, the levitation force action point Q is located at the center of the pressure distribution. On the other hand, when the liquid supply hole 7 is at the center of the movable body 2 of the recess 4, if the movable body 2 is moved in the left direction of FIG. 2, as illustrated in FIG. 2 (b) The pressure distribution becomes higher on the right side as shown in the left figure. Then, as shown in the right diagram of FIG. 2B, the levitation force action point Q moves to the right side of the case shown in FIG.

なお、図3に示すように、凹部4の開口面5の幾何学的重心を凹部4の中心Nと呼ぶ。また、液体供給孔7の中心を凹部4の開口面5に垂直に投影した点を、その凹部4における液体供給点Pと呼ぶ。また、液体供給孔7は、図4に示す様に、凹部4内に複数設けても良い。この場合、液体供給点Pは、凹部内の複数の液体供給孔7の幾何学的重心とする。液体供給孔7が1個の凹部4に対して1個の場合は、図3に示したように、その中心が液体供給点Pとなる。以下、代表して、液体供給孔7が1個の凹部4に対して1個の場合について説明するが、液体供給孔7が1個の凹部4に対して複数ある場合に、上述のようにその幾何学的重心を液体供給点Pとして、同様に扱える。   As shown in FIG. 3, the geometric gravity center of the opening surface 5 of the recess 4 is referred to as the center N of the recess 4. The point where the center of the liquid supply hole 7 is projected perpendicularly to the opening surface 5 of the recess 4 is referred to as a liquid supply point P in the recess 4. Further, a plurality of liquid supply holes 7 may be provided in the recess 4 as shown in FIG. In this case, the liquid supply point P is the geometric center of gravity of the plurality of liquid supply holes 7 in the recess. When there is one liquid supply hole 7 for one recess 4, the center is the liquid supply point P as shown in FIG. 3. Hereinafter, the case where there is one liquid supply hole 7 for one recess 4 will be described as a representative, but when there are a plurality of liquid supply holes 7 for one recess 4, as described above. The geometric center of gravity can be handled similarly as the liquid supply point P.

本実施形態の場合、液体供給点Pが次の条件を満たす様に、複数の液体供給孔7を配置している。即ち、それぞれの凹部内の液体供給点Pと可動体2の重心Gとのそれぞれの移動方向の距離の総和が、凹部の中心Nと可動体2の重心Gとのそれぞれの移動方向の距離の総和よりも、大きくなるように、各液体供給孔7を配置している。本実施形態の場合、複数の軸受面3と、複数の凹部4と、複数の液体供給孔7とが、可動体2の移動方向に垂直で、かつ可動体2の重心Gを通る仮想平面Mについて対称に配置されている。   In the present embodiment, the plurality of liquid supply holes 7 are arranged so that the liquid supply point P satisfies the following conditions. That is, the sum of the distances in the movement direction between the liquid supply point P in each recess and the center of gravity G of the movable body 2 is the distance in the direction of movement between the center N of the recess and the center of gravity G of the movable body 2. Each liquid supply hole 7 is arranged so as to be larger than the total sum. In the case of this embodiment, a plurality of bearing surfaces 3, a plurality of recesses 4, and a plurality of liquid supply holes 7 are perpendicular to the moving direction of the movable body 2 and pass through the center of gravity G of the movable body 2. Are arranged symmetrically.

したがって、各液体供給孔7は、自身を有する凹部4の底面中央より可動体2の外端側に寄せられて配置されている。より詳細には、可動体2の移動方向に関して、液体供給点Pと可動体2の重心Gとの離間距離Lsが、その液体供給点P自身を有する凹部4の中心Nと可動体2の重心Gとの離間距離Lpより、大きくなる位置に各液体供給孔7が配置されている。これら離間距離Lsと離間距離Lpとの差を、液体供給点Pと凹部4の中心Nの離間距離Dとする。   Accordingly, each liquid supply hole 7 is arranged close to the outer end side of the movable body 2 from the center of the bottom surface of the recess 4 having itself. More specifically, with respect to the moving direction of the movable body 2, the separation distance Ls between the liquid supply point P and the center of gravity G of the movable body 2 is such that the center N of the recess 4 having the liquid supply point P itself and the center of gravity of the movable body 2. Each liquid supply hole 7 is arranged at a position larger than the separation distance Lp from G. A difference between the separation distance Ls and the separation distance Lp is defined as a separation distance D between the liquid supply point P and the center N of the recess 4.

図1(a)内の位置関係で言えば、可動体2の重心Gより左側にある液体静圧軸受の凹部4では、その凹部4の中心Nより左側に液体供給点Pが位置する。一方、可動体2の重心Gより右側にある液体静圧軸受の凹部4では、その凹部4の中心Nより右側に液体供給点Pが位置している。   In terms of the positional relationship in FIG. 1A, the liquid supply point P is located on the left side of the center N of the concave portion 4 in the concave portion 4 of the liquid hydrostatic bearing located on the left side of the center of gravity G of the movable body 2. On the other hand, in the concave portion 4 of the liquid hydrostatic bearing on the right side of the center of gravity G of the movable body 2, the liquid supply point P is located on the right side of the center N of the concave portion 4.

[静止時と移動時の重心周りのモーメント変動]
本実施形態の場合、このような構成で可動体2が図1(a)の左側に移動すると、可動体2の移動方向前方に存在する、図1(a)の左側の液体静圧軸受の軸受隙間8の圧力分布は、図1(b)左図のようになる。一方、可動体2の移動方向後方に存在する、図1(a)の右側の液体静圧軸受の軸受隙間8の圧力分布は、図1(b)右図のようになる。即ち、移動方向前方の液体静圧軸受の圧力分布は、全体として静止時(破線)よりも圧力が上昇し、且つ、移動方向後方で圧力が上昇するように傾く。一方、移動方向後方の液体静圧軸受の圧力分布は、全体として静止時(破線)よりも圧力が低下し、且つ、移動方向後方で圧力が上昇するように傾く。
[Moment fluctuation around the center of gravity when stationary and moving]
In the case of the present embodiment, when the movable body 2 moves to the left side in FIG. 1A with such a configuration, the liquid hydrostatic bearing on the left side in FIG. The pressure distribution in the bearing gap 8 is as shown in the left diagram of FIG. On the other hand, the pressure distribution in the bearing clearance 8 of the liquid hydrostatic bearing on the right side of FIG. 1A existing behind the moving direction of the movable body 2 is as shown on the right side of FIG. That is, the pressure distribution of the liquid hydrostatic bearing at the front in the moving direction is inclined so that the pressure increases as a whole as compared with the stationary state (broken line) and the pressure increases at the rear in the moving direction. On the other hand, the pressure distribution of the hydrostatic bearing at the rear in the moving direction is inclined such that the pressure is lower than that at rest (broken line) and the pressure is increased at the rear in the moving direction.

このような圧力分布となる結果、図1(c)に示す様に、移動方向前方の液体静圧軸受の浮上力Fd1は、静止時の浮上力Fs1よりも大きくなると共に、浮上力作用点が静止時よりも移動方向後方にシフトする。一方、移動方向後方の液体静圧軸受の浮上力Fd2は、静止時の浮上力Fs2よりも小さくなると共に、浮上力作用点が静止時よりも移動方向後方にシフトする。   As a result of such pressure distribution, as shown in FIG. 1 (c), the levitation force Fd1 of the liquid hydrostatic bearing in the forward direction of movement becomes larger than the levitation force Fs1 at rest, and the levitation force action point is Shift backward in the direction of movement than when stationary. On the other hand, the levitation force Fd2 of the liquid hydrostatic bearing at the rear in the movement direction is smaller than the levitation force Fs2 at rest, and the levitation force action point is shifted rearward in the movement direction than at rest.

この結果、移動時における移動方向前方の液体静圧軸受による可動体2の重心G周りのモーメントは、静止時に比べて重心からの距離が短くなるが、作用する力が大きくなる。一方、移動時における移動方向後方の液体静圧軸受による可動体2の重心G周りのモーメントは、静止時に比べて重心からの距離が長くなるが、作用する力が小さくなる。したがって、可動体2の移動時の可動体2の重心G周りのモーメント変動を小さくできる。このため、装置の大型化や複雑化を招くことなく、可動体2の移動時の姿勢変化を抑制できる。   As a result, the moment around the center of gravity G of the movable body 2 by the liquid hydrostatic bearing forward in the moving direction during movement is shorter than the distance from the center of gravity compared to when stationary, but the acting force increases. On the other hand, the moment around the center of gravity G of the movable body 2 by the liquid hydrostatic bearing at the rear of the moving direction during movement is longer than the distance from the center of gravity compared to when stationary but the acting force is reduced. Therefore, the moment fluctuation around the center of gravity G of the movable body 2 when the movable body 2 moves can be reduced. For this reason, the posture change at the time of the movement of the movable body 2 can be suppressed, without causing the enlargement and complication of the apparatus.

この点について、以下に詳しく説明する。まず、液体供給点Pを凹部の中心Nに配置した構成を比較例とし、本実施形態の効果をこの比較例と比較して説明する。液体静圧軸受による可動体2の重心G周りに働くモーメントは、液体静圧軸受による浮上力と、浮上力作用点と可動体2の重心Gとの距離の積で表される。この各液体静圧軸受による可動体2の重心G周りのモーメントの和は、可動体2の静止時では可動体2の重心G周りに釣り合っているとする。   This point will be described in detail below. First, a configuration in which the liquid supply point P is arranged at the center N of the recess will be described as a comparative example, and the effects of the present embodiment will be described in comparison with this comparative example. The moment acting around the center of gravity G of the movable body 2 by the liquid hydrostatic bearing is expressed by the product of the levitation force by the liquid hydrostatic bearing and the distance between the levitation force action point and the center of gravity G of the movable body 2. The sum of moments around the center of gravity G of the movable body 2 by the liquid hydrostatic bearings is assumed to be balanced around the center of gravity G of the movable body 2 when the movable body 2 is stationary.

比較例の液体静圧軸受を備えた液体静圧直動案内装置であれば、可動体2の移動時には、浮上力作用点が可動体2の移動方向後方に移動するため、可動体2の移動方向後方を持ち上げる方向にモーメントが変動する。しかし、本実施形態においては、浮上力作用点とともに、浮上力の大きさも変動する。この浮上力の変動は、可動体2の移動方向前方を持ち上げる方向である。したがって、可動体2の移動時のモーメントの変動を抑制することができる。更に詳細に説明する。   In the case of the liquid hydrostatic linear motion guide device provided with the liquid hydrostatic bearing of the comparative example, when the movable body 2 moves, the levitation force action point moves rearward in the movement direction of the movable body 2. The moment fluctuates in the direction of lifting the direction rearward. However, in the present embodiment, the magnitude of the levitation force varies with the levitation force action point. The fluctuation of the levitation force is a direction in which the movable body 2 is lifted forward in the moving direction. Therefore, variation in the moment when the movable body 2 moves can be suppressed. Further details will be described.

まず、液体供給点Pと凹部4の中心Nの位置関係によらず、浮上力作用点が可動体2の移動方向後方に移動することを説明する。可動体2の移動時には、凹部4が流体溜まりとなっていることで、可動体2の移動方向後方の軸受隙間8で絞られる流量が増える。一方、可動体2の移動方向前方の軸受隙間8では絞られる流量が減る。この結果、可動体2の移動方向後方に高くなっていく圧力勾配が生じる。これは液体供給点Pの位置に関係なく生じるため、液体供給点Pと凹部4の中心Nの位置関係によらず、浮上力作用点が可動体2の移動方向後方に移動する。   First, it will be described that the levitation force action point moves rearward in the moving direction of the movable body 2 regardless of the positional relationship between the liquid supply point P and the center N of the recess 4. When the movable body 2 moves, the concave portion 4 serves as a fluid pool, so that the flow rate restricted by the bearing gap 8 at the rear of the movable body 2 in the movement direction increases. On the other hand, the throttled flow rate is reduced in the bearing gap 8 in front of the movable body 2 in the moving direction. As a result, a pressure gradient that increases backward in the movement direction of the movable body 2 is generated. Since this occurs regardless of the position of the liquid supply point P, the levitation force action point moves backward in the movement direction of the movable body 2 regardless of the positional relationship between the liquid supply point P and the center N of the recess 4.

次に、液体静圧軸受の軸受面3において、可動体2の移動時に、液体供給孔7からの供給圧力より圧力が低下する圧力低下領域と、液体供給孔7からの供給圧力より圧力が上昇する圧力上昇領域が生じることを説明する。   Next, on the bearing surface 3 of the liquid hydrostatic bearing, when the movable body 2 moves, the pressure drop region in which the pressure drops from the supply pressure from the liquid supply hole 7 and the pressure rises from the supply pressure from the liquid supply hole 7. It will be explained that a pressure increase region occurs.

図5(a)(b)(c)の左図を用いるため、まず図の説明をする。図5の各図は、可動体2は図内左側に移動するものとして、それぞれの場合における圧力分布と、浮上力及び浮上力作用点を示した図である。なお、図示を簡易にするため、軸受隙間8での圧力降下は直線で近似してある。図5(a)は、液体供給点Pが凹部4の中心Nと一致する場合である。図5(b)は液体供給点Pが凹部4の中心Nより可動体2の移動方向前方に位置する場合である。図5(c)は液体供給点Pが凹部4の中心Nより可動体2の移動方向後方に位置する場合である。   In order to use the left figure of FIG. 5 (a) (b) (c), it demonstrates first. Each figure of FIG. 5 is a diagram showing the pressure distribution, levitation force, and levitation force action point in each case, assuming that the movable body 2 moves to the left side in the figure. In order to simplify the illustration, the pressure drop in the bearing gap 8 is approximated by a straight line. FIG. 5A shows a case where the liquid supply point P coincides with the center N of the recess 4. FIG. 5B shows a case where the liquid supply point P is located in front of the moving body 2 in the moving direction from the center N of the recess 4. FIG. 5C shows the case where the liquid supply point P is located behind the center N of the recess 4 in the moving direction of the movable body 2.

図5の各左図に示したように、液体供給点Pにおける供給圧力Psは可動体2の移動時でも静止時と等しいため、移動時の凹部4における圧力勾配は液体供給点Pにおける供給圧力Psを基準として生じる。そのため、凹部4において、液体供給点Pより可動体2の移動方向前方では供給圧力Psより低下し、また、液体供給点Pより可動体2の移動方向後方では供給圧力Psより上昇する。この作用により、軸受面3における圧力分布は、移動時に静止時より圧力が低下する圧力低下領域A1と、移動時に静止時より圧力が上昇する圧力上昇領域A2が生じる。   As shown in the left diagrams of FIG. 5, the supply pressure Ps at the liquid supply point P is equal to the stationary state even when the movable body 2 is moved, so the pressure gradient in the recess 4 during the movement is the supply pressure at the liquid supply point P. Occurs based on Ps. Therefore, in the concave portion 4, the supply pressure Ps decreases from the liquid supply point P in the moving direction of the movable body 2, and increases from the liquid supply point P to the supply pressure Ps in the movement direction of the movable body 2. Due to this action, the pressure distribution on the bearing surface 3 includes a pressure drop region A1 in which the pressure decreases when stationary during movement, and a pressure increase region A2 where the pressure increases during stationary when compared with stationary.

次に、液体供給点Pの凹部4の中心Nに対する位置によって、軸受面3における可動体2の移動時の圧力低下領域と圧力上昇領域の割合を変えられることを説明する。圧力低下領域A1と圧力上昇領域A2の境界は液体供給点Pとなる。これは、次のような理由による。即ち、液体供給孔7から一定の圧力の液体が凹部4内に供給され、軸受隙間8に向けて流れている。したがって、液体供給点Pよりも移動方向前方では、液体供給孔7から液体が流れる方向が移動方向と逆方向になる。そして、供給される流量が減少する傾向となり、圧力が低下する。一方、液体供給点Pよりも移動方向後方では、液体供給孔7から液体が流れる方向が移動方向と同方向になる。そして、供給される流量が増加する傾向となり、圧力が上昇する。   Next, it will be described that the ratio of the pressure drop region and the pressure rise region when the movable body 2 moves on the bearing surface 3 can be changed depending on the position of the liquid supply point P with respect to the center N of the recess 4. The boundary between the pressure drop region A1 and the pressure rise region A2 is a liquid supply point P. This is due to the following reason. That is, a liquid having a constant pressure is supplied from the liquid supply hole 7 into the recess 4 and flows toward the bearing gap 8. Therefore, in the moving direction ahead of the liquid supply point P, the direction in which the liquid flows from the liquid supply hole 7 is opposite to the moving direction. Then, the supplied flow rate tends to decrease, and the pressure decreases. On the other hand, behind the liquid supply point P, the direction in which the liquid flows from the liquid supply hole 7 is the same as the movement direction. Then, the supplied flow rate tends to increase, and the pressure increases.

したがって、液体供給点Pより可動体2の移動方向前方が圧力低下領域A1、液体供給点Pより可動体2の移動方向後方が圧力上昇領域A2となる。このため、液体供給点Pの凹部4の中心Nに対する位置を変えることによって、可動体2の移動時の、軸受面3における圧力低下領域A1と圧力上昇領域A2の割合を変化させることができる。   Accordingly, the moving direction front of the movable body 2 from the liquid supply point P is the pressure drop region A1, and the moving direction rear of the movable body 2 from the liquid supply point P is the pressure increase region A2. For this reason, by changing the position of the liquid supply point P with respect to the center N of the recess 4, the ratio of the pressure drop region A1 and the pressure rise region A2 on the bearing surface 3 when the movable body 2 is moved can be changed.

次に、各軸受面3における圧力低下領域A1と圧力上昇領域A2の割合を変えることによって、浮上力を変えられることを説明する。図5(a)左図に示すように、液体供給点Pと凹部4の中心Nが一致する場合、可動体2の移動時の圧力低下領域A1aと圧力上昇領域A2aが等しい。このため、可動体2の移動時において圧力低下領域A1aの圧力積分値F1aと、圧力上昇領域A2aの圧力積分値F2aが等しくなる。上述のように、圧力積分値と浮上力は等価であるため、図5(a)右図に示すように、可動体2の静止時と移動時とで浮上力は変わらない。   Next, it will be described that the levitation force can be changed by changing the ratio of the pressure drop region A1 and the pressure rise region A2 on each bearing surface 3. As shown in the left figure of Fig.5 (a), when the liquid supply point P and the center N of the recessed part 4 correspond, the pressure fall area | region A1a and the pressure rise area | region A2a at the time of the movement of the movable body 2 are equal. For this reason, when the movable body 2 moves, the pressure integrated value F1a of the pressure decrease region A1a and the pressure integrated value F2a of the pressure increase region A2a become equal. As described above, since the integrated pressure value and the levitation force are equivalent, the levitation force does not change between when the movable body 2 is stationary and when it moves as shown in the right figure of FIG.

しかし、図5(b)左図に示すように、液体供給点Pが凹部4の中心Nより可動体2の移動方向前方に位置する場合、可動体2の移動時の圧力上昇領域A2bが圧力低下領域A1bより大きくなる。このため、可動体2の移動時において圧力上昇領域A2bの圧力積分値F2bが、圧力低下領域A1bの圧力積分値F1bより大きくなる。圧力積分値と浮上力は等価であるため、図5(b)右図に示すように、可動体2の移動時の浮上力は静止時よりも大きくなる。   However, as shown in the left diagram of FIG. 5B, when the liquid supply point P is located in front of the center N of the recess 4 in the moving direction of the movable body 2, the pressure increase area A2b during the movement of the movable body 2 is the pressure. It becomes larger than the lowered region A1b. For this reason, when the movable body 2 moves, the pressure integral value F2b of the pressure increase region A2b becomes larger than the pressure integral value F1b of the pressure decrease region A1b. Since the integrated pressure value and the levitation force are equivalent, the levitation force when the movable body 2 moves is larger than that when the movable body 2 is stationary, as shown in the right diagram of FIG.

また、図5(c)左図に示すように、液体供給点Pが凹部4の中心Nより可動体2の移動方向後方に位置する場合、可動体2の移動時に圧力上昇領域A2cが圧力低下領域A1cより小さくなる。このため、可動体2の移動時において圧力上昇領域A2cの圧力積分値F2cが、圧力低下領域A1cの圧力積分値F1cより小さくなる。圧力積分値と浮上力は等価であるため、図5(c)右図に示すように、可動体2の移動時の浮上力は静止時よりも小さくなる。以上で、圧力低下領域A1と圧力上昇領域A2の割合を変えることによって、浮上力を変えることができることを説明した。   5C, when the liquid supply point P is located behind the center N of the recess 4 in the movement direction of the movable body 2, the pressure increase region A2c is reduced in pressure when the movable body 2 moves. It becomes smaller than area A1c. For this reason, when the movable body 2 moves, the pressure integrated value F2c of the pressure increasing region A2c becomes smaller than the pressure integrated value F1c of the pressure decreasing region A1c. Since the integrated pressure value and the levitation force are equivalent, the levitation force when the movable body 2 moves is smaller than that when the movable body 2 is stationary, as shown in the right diagram of FIG. As described above, it has been explained that the levitation force can be changed by changing the ratio between the pressure drop region A1 and the pressure rise region A2.

更に、本実施形態の液体静圧直動案内装置において、各液体静圧軸受の軸受面3における浮上力を変えることによって、可動体2に働くモーメントを抑制できることを説明する。本実施形態では、図1(a)に示した、可動体2の重心Gより可動体2の移動方向前方の液体静圧軸受では、図5(b)に示した形態をとり、可動体2の重心Gより可動体2の移動方向後方の液体静圧軸受では、図5(c)に示した形態をとる。以下、可動体2が各図内において左に移動するものとして、また、位置関係は可動体2の移動方向に関するものとして、各図内における位置関係を用いて説明する。   Furthermore, in the liquid hydrostatic linear motion guide device of the present embodiment, it will be described that the moment acting on the movable body 2 can be suppressed by changing the levitation force on the bearing surface 3 of each liquid hydrostatic bearing. In the present embodiment, the hydrostatic bearing shown in FIG. 1 (a) in front of the movable body 2 in the moving direction from the center of gravity G of the movable body 2 takes the form shown in FIG. The hydrostatic bearing behind the center of gravity G of the movable body 2 in the moving direction takes the form shown in FIG. In the following description, the movable body 2 is assumed to move to the left in each drawing, and the positional relationship is related to the moving direction of the movable body 2 and will be described using the positional relationship in each drawing.

まず、可動体2の重心Gより左側に設けられた液体静圧軸受について説明する。図1(c)に示したように、可動体2の静止時において、浮上力をFs1、浮上力作用点Qs1と可動体2の重心Gとの距離をXs1とする。また、可動体2の移動時において、浮上力をFd1、浮上力作用点Qd1と可動体2の重心Gとの距離をXd1とする。Fs1とFd1の差をΔF1、Xs1とXd1の差をΔX1とする。可動体2の静止時における、可動体2の左側を持ち上げる可動体2の重心G周りのモーメントMs1は、
Ms1=Fs1×Xs1・・・(1)
で表される。
First, the liquid hydrostatic bearing provided on the left side of the center of gravity G of the movable body 2 will be described. As shown in FIG. 1C, when the movable body 2 is stationary, the levitation force is Fs1, and the distance between the levitation force action point Qs1 and the center of gravity G of the movable body 2 is Xs1. Further, when the movable body 2 moves, the levitation force is Fd1, and the distance between the levitation force action point Qd1 and the center of gravity G of the movable body 2 is Xd1. The difference between Fs1 and Fd1 is ΔF1, and the difference between Xs1 and Xd1 is ΔX1. When the movable body 2 is stationary, the moment Ms1 around the center of gravity G of the movable body 2 that lifts the left side of the movable body 2 is:
Ms1 = Fs1 × Xs1 (1)
It is represented by

ここで、図5(a)に示したような比較例の液体静圧軸受を図1の構造に適用した場合を考える。比較例の場合、可動体2の静止時の浮上力と可動体2の移動時の浮上力が等しい。静止時の浮上力は液体供給点Pの位置に拘らず一定であるため、この浮上力はFs1となる。したがって、比較例の場合、可動体2の移動時における、可動体2の左側を持ち上げる可動体2の重心G周りのモーメントMdp1は、
Mdp1=Fs1×(Xs1−ΔX1)・・・(2)
で表される。
Here, the case where the liquid hydrostatic bearing of the comparative example as shown in FIG. 5A is applied to the structure of FIG. 1 is considered. In the case of the comparative example, the floating force when the movable body 2 is stationary is equal to the floating force when the movable body 2 is moved. Since the levitation force at rest is constant regardless of the position of the liquid supply point P, this levitation force is Fs1. Therefore, in the case of the comparative example, when the movable body 2 moves, the moment Mdp1 around the center of gravity G of the movable body 2 that lifts the left side of the movable body 2 is
Mdp1 = Fs1 × (Xs1−ΔX1) (2)
It is represented by

これに対し、本実施形態の構造で、可動体2の重心Gより左側に設けられた液体静圧軸受では、可動体2の移動時に浮上力が増加するため、Fd1=Fs1+ΔF1となる。したがって、可動体2の移動時における、可動体2の左側を持ち上げる可動体2の重心G周りのモーメントMd1は、
Md1=(Fs1+ΔF1)×(Xs1−ΔX1)・・・(3)
で表される。
On the other hand, in the structure of this embodiment, in the liquid hydrostatic bearing provided on the left side of the center of gravity G of the movable body 2, the levitation force increases when the movable body 2 moves, so Fd1 = Fs1 + ΔF1. Therefore, when the movable body 2 moves, the moment Md1 around the center of gravity G of the movable body 2 that lifts the left side of the movable body 2 is
Md1 = (Fs1 + ΔF1) × (Xs1−ΔX1) (3)
It is represented by

式(1)と式(2)を比較してわかるように、比較例の液体静圧軸受を有する液体静圧直動案内装置では、静止時と移動時とで浮上力が同じであるのに対して、静止時に比べて移動時の方が浮上力作用点と可動体2の重心Gとの距離が小さくなる。このため、移動時には、可動体2の左側を持ち上げるモーメントMdp1が小さくなる。   As can be seen from the comparison between the formula (1) and the formula (2), in the liquid hydrostatic linear motion guide device having the liquid hydrostatic bearing of the comparative example, the levitation force is the same when stationary and when moving. On the other hand, the distance between the levitation force action point and the center of gravity G of the movable body 2 is smaller when moving than when stationary. For this reason, at the time of movement, the moment Mdp1 for lifting the left side of the movable body 2 becomes small.

一方、本実施形態では、式(1)と式(3)を比較してわかるように、静止時に対して移動時は、浮上力作用点と可動体2の重心Gとの距離が小さくなると共に、浮上力自体が大きくなる。このため、静止時と移動時とでモーメントの変動を抑制することができる。   On the other hand, in this embodiment, as can be seen by comparing the equations (1) and (3), the distance between the point of action of the levitation force and the center of gravity G of the movable body 2 becomes smaller when moving relative to the stationary state. The levitation force itself increases. For this reason, the fluctuation | variation of a moment can be suppressed at the time of stationary and a movement.

次に、可動体2の重心Gより右側に設けられた液体静圧軸受について説明する。図1(c)に示したように、可動体2の静止時において、浮上力をFs2、浮上力作用点Qs2と可動体2の重心Gとの距離をXs2とする。また、可動体2の移動時において、浮上力をFd2、浮上力作用点Qd2と可動体2の重心Gとの距離をXd2とする。Fs2とFd2の差をΔF2、Xs2とXd2の差をΔX2とする。可動体2の静止時における、可動体2の右側を持ち上げる可動体重心周りのモーメントMs2は、
Ms2=Fs2×Xs2・・・(4)
で表される。
Next, the liquid hydrostatic bearing provided on the right side of the center of gravity G of the movable body 2 will be described. As shown in FIG. 1C, when the movable body 2 is stationary, the levitation force is Fs2, and the distance between the levitation force action point Qs2 and the center of gravity G of the movable body 2 is Xs2. Further, when the movable body 2 moves, the levitation force is Fd2, and the distance between the levitation force action point Qd2 and the center of gravity G of the movable body 2 is Xd2. The difference between Fs2 and Fd2 is ΔF2, and the difference between Xs2 and Xd2 is ΔX2. When the movable body 2 is stationary, a moment Ms2 around the center of gravity of the movable body that lifts the right side of the movable body 2 is:
Ms2 = Fs2 × Xs2 (4)
It is represented by

ここで、図5(a)に示したような比較例の液体静圧軸受を図1の構造に適用した場合を考える。比較例の場合、可動体2の静止時の浮上力と可動体2の移動時の浮上力が等しい。静止時の浮上力は液体供給点Pの位置に拘らず一定であるため、この浮上力はFs2となる。したがって、比較例の場合、可動体2の移動時における、可動体2の右側を持ち上げる可動体2の重心G周りのモーメントMdp2は、
Mdp2=Fs2×(Xs2+ΔX2)・・・(5)
で表される。
Here, the case where the liquid hydrostatic bearing of the comparative example as shown in FIG. 5A is applied to the structure of FIG. 1 is considered. In the case of the comparative example, the floating force when the movable body 2 is stationary is equal to the floating force when the movable body 2 is moved. Since the levitation force at rest is constant regardless of the position of the liquid supply point P, this levitation force is Fs2. Therefore, in the case of the comparative example, when the movable body 2 moves, the moment Mdp2 around the center of gravity G of the movable body 2 that lifts the right side of the movable body 2 is
Mdp2 = Fs2 × (Xs2 + ΔX2) (5)
It is represented by

これに対し、本実施形態の構造で、可動体2の重心Gより右側に設けられた液体静圧軸受では、可動体2の移動時に浮上力が減少するため、Fd2=Fs2−ΔF2となる。したがって、可動体2の移動時における、可動体2の右側を持ち上げる可動体2の重心G周りのモーメントMd2は、
Md2=(Fs2−ΔF2)×(Xs2+ΔX2)・・・(6)
で表される。
On the other hand, in the structure of the present embodiment, in the hydrostatic bearing provided on the right side of the center of gravity G of the movable body 2, the levitation force decreases when the movable body 2 moves, so Fd2 = Fs2-ΔF2. Therefore, when the movable body 2 moves, the moment Md2 around the center of gravity G of the movable body 2 that lifts the right side of the movable body 2 is
Md2 = (Fs2−ΔF2) × (Xs2 + ΔX2) (6)
It is represented by

式(4)と式(5)を比較してわかるように、比較例の液体静圧軸受を有する液体静圧直動案内装置では、静止時と移動時とで浮上力が同じであるのに対して、静止時に比べて移動時の方が浮上力作用点と可動体2の重心Gとの距離が大きくなる。このため、移動時には、可動体2の右側を持ち上げるモーメントMdp2が大きくなる。   As can be seen from the comparison between Equation (4) and Equation (5), the liquid hydrostatic linear motion guide device having the liquid hydrostatic bearing of the comparative example has the same levitation force when stationary and when moving. On the other hand, the distance between the point of action of the levitation force and the center of gravity G of the movable body 2 is greater when moving than when stationary. For this reason, during movement, the moment Mdp2 for lifting the right side of the movable body 2 increases.

一方、本実施形態では、式(4)と式(6)を比較してわかるように、静止時に対して移動時には、浮上力作用点と可動体2の重心Gとの距離が大きくなると共に、浮上力自体が小さくなる。このため、静止時と移動時とでモーメントの変動を抑制することができる。この結果、装置の大型化や複雑化を招くことなく、可動体2の移動時の姿勢変化を抑制できる。   On the other hand, in this embodiment, as can be seen by comparing the equations (4) and (6), the distance between the levitation force action point and the center of gravity G of the movable body 2 is increased when moving relative to the stationary state, The levitation force itself is reduced. For this reason, the fluctuation | variation of a moment can be suppressed at the time of stationary and a movement. As a result, it is possible to suppress the posture change during the movement of the movable body 2 without increasing the size and complexity of the apparatus.

以上で、可動体2の移動時には、各液体静圧軸受の浮上力作用点が移動するが、液体供給点Pの位置によって各液体静圧軸受の浮上力を変えることができ、それを利用して可動体2に働くモーメントの変動を抑えられるという効果を説明した。   As described above, when the movable body 2 is moved, the levitation force action point of each liquid hydrostatic bearing moves. However, the levitation force of each liquid hydrostatic bearing can be changed depending on the position of the liquid supply point P. The effect that the fluctuation of the moment acting on the movable body 2 can be suppressed has been described.

また、複数の液体供給点Pの位置が、可動体2の重心Gを通り移動方向に垂直な仮想平面Mについて対称となる位置に、液体供給孔7を配置するという条件を加えることによって、移動時の可動体2の傾斜を抑制することができる。これは、上記の配置方法により、図1(a)における可動体2の重心Gの左側で増加する浮上力ΔF1と右側で減少する浮上力ΔF2を等しくすることができ、可動体2に働く浮上力の総和を同じにできるためである。なお、この場合、複数の軸受面3及び複数の凹部4も、仮想平面Mについて対称とする。また、この場合、可動体2の移動方向が上述の場合と逆方向になっても、上述と同様の作用が得られる。   Further, the movement of the plurality of liquid supply points P is performed by adding the condition that the liquid supply holes 7 are arranged at positions symmetrical with respect to a virtual plane M that passes through the center of gravity G of the movable body 2 and is perpendicular to the movement direction. The inclination of the movable body 2 at the time can be suppressed. This is because the levitation force ΔF1 increasing on the left side of the center of gravity G of the movable body 2 in FIG. 1A and the levitation force ΔF2 decreasing on the right side in FIG. This is because the sum of forces can be made the same. In this case, the plurality of bearing surfaces 3 and the plurality of recesses 4 are also symmetric about the virtual plane M. In this case, even if the moving direction of the movable body 2 is opposite to the above-described case, the same action as described above can be obtained.

更に、移動方向の軸受面3の数は、図1(a)に示したように2個以外に、3個以上であっても良い。但し、上述のように、移動時の可動体2の重心G周りのモーメントを考慮して、各軸受面3の液体供給点Pの位置を設定する。また、軸受面3の数に限らず、移動時の可動体2の重心G周りのモーメントが釣り合うように、各軸受面3の液体供給点Pの位置を設定することが好ましい。   Further, the number of bearing surfaces 3 in the moving direction may be three or more in addition to two as shown in FIG. However, as described above, the position of the liquid supply point P on each bearing surface 3 is set in consideration of the moment around the center of gravity G of the movable body 2 during movement. In addition, the position of the liquid supply point P on each bearing surface 3 is preferably set so that the moments around the center of gravity G of the movable body 2 during movement are balanced, not limited to the number of the bearing surfaces 3.

[実施例]
上述の本実施形態の効果を確認するために行った数値解析の結果について説明する。ここで、可動体2としては、図1(a)に示した構造とし、軸受面3を50×50mm、軸受間距離を50mmとし、そのときの、可動体2の傾き角を求めた。なお、凹部4の中心Nと液体供給点Pの移動方向の離間距離をDとする。また、軸受間距離とは、移動方向に隣り合う軸受面3同士の、互いに対向する端部の距離である。
[Example]
The result of the numerical analysis performed in order to confirm the effect of this embodiment mentioned above is demonstrated. Here, the movable body 2 has the structure shown in FIG. 1A, the bearing surface 3 is 50 × 50 mm, the distance between the bearings is 50 mm, and the tilt angle of the movable body 2 at that time was obtained. Note that the distance in the moving direction between the center N of the recess 4 and the liquid supply point P is D. The inter-bearing distance is the distance between the end portions of the bearing surfaces 3 adjacent to each other in the moving direction that face each other.

Figure 2013130260
Figure 2013130260

表1に示した数値解析結果より、凹部4の中心Nと液体供給点Pの移動方向の離間距離Dが10mmから11mmの間で、傾き角の正負が変わっていることがわかる。したがって本実施例の条件においては、各凹部4における液体供給点Pの位置を、可動体2の移動方向に可動体2の重心Gから離す方向へ、凹部4の中心Nから10mm〜11mmの離間距離Dをもって配置すると良い。この場合、可動体2に生じる姿勢変化を極めて小さくできる。なお、この離間距離Dは供給圧力や液体静圧軸受の配置位置、及び軸受隙間等の条件変化によって変える必要がある。   From the numerical analysis results shown in Table 1, it can be seen that the sign of the tilt angle changes when the distance D in the moving direction of the center N of the recess 4 and the liquid supply point P is between 10 mm and 11 mm. Therefore, under the conditions of the present embodiment, the position of the liquid supply point P in each concave portion 4 is 10 mm to 11 mm apart from the center N of the concave portion 4 in the direction away from the center of gravity G of the movable body 2 in the moving direction of the movable body 2. It is good to arrange with the distance D. In this case, the posture change occurring in the movable body 2 can be made extremely small. The separation distance D needs to be changed according to changes in conditions such as supply pressure, liquid hydrostatic bearing arrangement, and bearing clearance.

<第2の実施形態>
本発明の第2の実施形態について、図6を用いて説明する。本実施形態の場合、可動体2の移動方向後方(図6の右側)の液体静圧軸受で、液体供給点Pの位置を凹部4の中心Nよりも移動方向前方に僅かにずらしている。可動体2の移動方向前方(図6の左側)の液体静圧軸受では、液体供給点Pの位置を凹部4の中心Nよりも移動方向前方に、移動方向後方の液体静圧軸受よりも大きくずらしている。そして、可動体2の移動方向に関して、各液体供給点Pと可動体2の重心Gとの離間距離の総和(Ls1+Ls2)が、その液体供給点P自身を有する凹部4の中心Nと可動体2の重心Gとの離間距離の総和(Lp1+Lp2)より大きくしている。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIG. In the case of the present embodiment, the position of the liquid supply point P is slightly shifted forward in the movement direction from the center N of the recess 4 in the liquid hydrostatic bearing at the rear of the movable body 2 in the movement direction (right side in FIG. 6). In the liquid hydrostatic bearing in front of the movable body 2 in the moving direction (left side in FIG. 6), the position of the liquid supply point P is larger in the moving direction forward than the center N of the recess 4 and larger than in the liquid hydrostatic bearing in the rearward moving direction. It is shifted. Then, with respect to the moving direction of the movable body 2, the sum (Ls1 + Ls2) of the separation distance between each liquid supply point P and the center of gravity G of the movable body 2 is the center N of the recess 4 having the liquid supply point P itself and the movable body 2. Is larger than the sum (Lp1 + Lp2) of the separation distance from the center of gravity G.

この場合、両方の液体静圧軸受は、図6(b)の形態となり、浮上力は両方で大きくなる。但し、移動方向前方の方が中心Nからのシフト量が大きいため浮上力も大きくなる。このため、全体として可動体2の重心G周りのモーメントの変動を抑えられる。その他の構造及び作用は上述の第1の実施形態と同様である。   In this case, both liquid hydrostatic bearings are in the form shown in FIG. 6B, and the levitation force increases in both. However, since the amount of shift from the center N is larger in the forward direction of movement, the levitation force is also increased. For this reason, the fluctuation | variation of the moment around the gravity center G of the movable body 2 can be suppressed as a whole. Other structures and operations are the same as those in the first embodiment.

<第3の実施形態>
本発明の第3の実施形態について、図7を用いて説明する。本実施形態では、凹部4内に複数の液体供給孔7を設けている。この場合、前述の図4で説明したように、同一凹部内にある複数の液体供給孔7の幾何的重心点を液体供給点Pとして扱う。そして、この液体供給点Pがその凹部4の中心Nよりも可動体2の外端側にシフトするように、その凹部4内の複数の液体供給孔7の位置を設定している。
<Third Embodiment>
A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, a plurality of liquid supply holes 7 are provided in the recess 4. In this case, the geometric gravity center point of the plurality of liquid supply holes 7 in the same recess is handled as the liquid supply point P as described with reference to FIG. The positions of the plurality of liquid supply holes 7 in the recess 4 are set so that the liquid supply point P is shifted from the center N of the recess 4 to the outer end side of the movable body 2.

このような本実施形態の場合も、液体供給点Pと可動体2の重心Gとの移動方向の距離の総和を、液体供給点P自身を有する凹部4の中心Nと可動体2の重心Gとの距離の総和より大きくでき、可動体2の重心G周りのモーメントの変動を抑えられる。その他の構造及び作用は、上述の第1の実施形態と同様である。   Also in this embodiment, the sum of the distances in the moving direction between the liquid supply point P and the center of gravity G of the movable body 2 is calculated as the center N of the recess 4 having the liquid supply point P itself and the center of gravity G of the movable body 2. The sum of the distances between the movable body 2 and the momentum G around the center of gravity G can be suppressed. Other structures and operations are the same as those in the first embodiment.

<他の実施形態>
上述の各実施形態は、適宜組み合わせて実施可能である。また、何れかの軸受面で液体供給点Pの位置が凹部4の中心Nと一致しても、他の軸受面で液体供給点Pの位置を凹部4の中心Nからシフトさせて、液体供給点Pと重心Gとの距離の総和を、中心Nと重心Gとの距離の総和よりも大きくする。これにより、上述したような可動体2のモーメントの変動を抑えられる。
<Other embodiments>
The above-described embodiments can be implemented in combination as appropriate. Further, even if the position of the liquid supply point P on any bearing surface coincides with the center N of the recess 4, the position of the liquid supply point P is shifted from the center N of the recess 4 on the other bearing surface to supply the liquid. The sum of the distances between the point P and the center of gravity G is made larger than the sum of the distances between the center N and the center of gravity G. Thereby, the fluctuation | variation of the moment of the movable body 2 as mentioned above can be suppressed.

1・・・案内面、1a・・・案内部材、2・・・可動体、3・・・軸受面、4・・・凹部、4a・・・底面、5・・・開口面、6・・・ランド、7・・・液体供給孔、8・・・軸受隙間、9・・・加圧液体供給装置、G・・・(可動体の)重心、N・・・(凹部の)中心、P・・・液体供給点、Q・・・浮上力作用点、Lp・・・凹部の中心と可動体の重心との、可動体の移動方向の距離、Ls・・・液体供給点と可動体の重心との、可動体の移動方向の距離   DESCRIPTION OF SYMBOLS 1 ... Guide surface, 1a ... Guide member, 2 ... Movable body, 3 ... Bearing surface, 4 ... Recessed part, 4a ... Bottom surface, 5 ... Opening surface, 6 ... Land, 7 ... Liquid supply hole, 8 ... Bearing gap, 9 ... Pressurized liquid supply device, G ... Center of gravity (of movable body), N ... Center of recess (recessed), P ... liquid supply point, Q ... levitation force acting point, Lp ... distance in the moving direction of the movable body between the center of the recess and the center of gravity of the movable body, Ls ... liquid supply point and movable body Distance in the moving direction of the movable body from the center of gravity

Claims (2)

案内面を有する案内部材と、
前記案内面との間で液体静圧軸受を構成する軸受面を有し、前記案内面に向けて与圧が付与された状態で配置され、前記案内部材に沿って移動する可動体と、
前記軸受面と前記案内面との間に液体を供給する液体供給手段と、を備えた液体静圧直動案内装置において、
前記可動体は、前記軸受面を移動方向に複数並べて配置し、
複数の前記軸受面は、それぞれ、前記案内面に向けて開口する凹部と、前記凹部の底面もしくは壁面に配置されて前記液体供給手段から液体が供給される液体供給孔とが形成され、
複数の前記液体供給孔は、それぞれの前記凹部内の前記液体供給孔の幾何学的重心となる液体供給点と前記可動体の重心とのそれぞれの前記移動方向の距離の総和が、前記凹部の中心と前記可動体の重心とのそれぞれの前記移動方向の距離の総和よりも、大きくなるように配置されている、
ことを特徴とする液体静圧直動案内装置。
A guide member having a guide surface;
A movable body that has a bearing surface that constitutes a hydrostatic bearing with the guide surface, is arranged in a state where a pressurized pressure is applied toward the guide surface, and moves along the guide member;
In a liquid static pressure linear motion guide device comprising: a liquid supply means for supplying a liquid between the bearing surface and the guide surface;
The movable body is arranged by arranging a plurality of the bearing surfaces in the moving direction,
Each of the plurality of bearing surfaces is formed with a recess that opens toward the guide surface, and a liquid supply hole that is disposed on the bottom surface or wall surface of the recess and is supplied with liquid from the liquid supply means.
The plurality of liquid supply holes have a total sum of distances in the moving direction between a liquid supply point that is a geometric center of gravity of the liquid supply hole in each recess and a center of gravity of the movable body. It is arranged to be larger than the sum of the distances in the moving direction between the center and the center of gravity of the movable body,
A hydrostatic linear motion guide device characterized by the above.
複数の前記軸受面と、複数の前記凹部と、複数の前記液体供給点とが、前記可動体の移動方向に垂直で、かつ前記可動体の重心を通る仮想平面について対称に配置されている、
ことを特徴とする、請求項1に記載の液体静圧直動案内装置。
The plurality of bearing surfaces, the plurality of recesses, and the plurality of liquid supply points are arranged symmetrically with respect to a virtual plane that is perpendicular to the moving direction of the movable body and passes through the center of gravity of the movable body.
The liquid static pressure linear motion guide device according to claim 1, wherein
JP2011281152A 2011-12-22 2011-12-22 Liquid static pressure linear motion guide device Pending JP2013130260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281152A JP2013130260A (en) 2011-12-22 2011-12-22 Liquid static pressure linear motion guide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281152A JP2013130260A (en) 2011-12-22 2011-12-22 Liquid static pressure linear motion guide device

Publications (2)

Publication Number Publication Date
JP2013130260A true JP2013130260A (en) 2013-07-04
JP2013130260A5 JP2013130260A5 (en) 2015-02-19

Family

ID=48907974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281152A Pending JP2013130260A (en) 2011-12-22 2011-12-22 Liquid static pressure linear motion guide device

Country Status (1)

Country Link
JP (1) JP2013130260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070151A1 (en) * 2016-10-13 2018-04-19 住友重機械工業株式会社 Stage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451241A (en) * 1987-08-20 1989-02-27 Toyoda Machine Works Ltd Hydrostatic supporting device for slider
JPH02209620A (en) * 1989-02-04 1990-08-21 Toyoda Mach Works Ltd Pivotally mounting device for angular slide static pressure
JP2004316755A (en) * 2003-04-15 2004-11-11 Canon Inc Stage unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451241A (en) * 1987-08-20 1989-02-27 Toyoda Machine Works Ltd Hydrostatic supporting device for slider
JPH02209620A (en) * 1989-02-04 1990-08-21 Toyoda Mach Works Ltd Pivotally mounting device for angular slide static pressure
JP2004316755A (en) * 2003-04-15 2004-11-11 Canon Inc Stage unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070151A1 (en) * 2016-10-13 2018-04-19 住友重機械工業株式会社 Stage device

Similar Documents

Publication Publication Date Title
US20190088507A1 (en) Gas floated workpiece supporting apparatus and noncontact workpiece support method
JP6860869B2 (en) High load-bearing guidance mechanism and multi-degree-of-freedom, large stroke, high-precision moving stage system
US20160115993A1 (en) Guide mechanism of machine tool and machine tool
CN107633868A (en) A kind of two degrees of freedom air supporting motion platform
KR20160049973A (en) Guide mechanism of machine tool and machine tool
JP6704658B2 (en) Stage equipment
JP2013130260A (en) Liquid static pressure linear motion guide device
TWI704972B (en) Positioning device
JP5678703B2 (en) Static pressure gas bearing linear guide device, precision shape measuring machine, machine tool and semiconductor manufacturing equipment
JP4494179B2 (en) Non-contact support device
JP6624487B2 (en) Air stage device
JP2006161898A (en) Air sliding device
CN102607628B (en) Wide-range tilt-adjusting and aligning workbench based on aerostatic bearing technology
JP7328975B2 (en) stage equipment
JP2013130260A5 (en) Liquid guide device
JP4586378B2 (en) Static pressure gas direct acting bearing mechanism
JP6831556B2 (en) Structure support structure
JP4323087B2 (en) XY stage device
JP2006084034A (en) Linear guide device with hydrostatic air bearing
CN114135649A (en) Arrangement method of medium-side triangular microtexture in asymmetric pressure difference two-way motion
JP2631396B2 (en) Static pressure gas bearing XY stage
JP2006132605A (en) Slider
EP4089294A1 (en) Negative-pressure adsorption static-pressure supporting guide rail of machining machine tool, and cylindrical grinding machine comprising negative-pressure adsorption static-pressure supporting guide rail
JP5200745B2 (en) Three-dimensional positioning device and atomic force microscope equipped with the same
JP2005093637A (en) Positioning device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719