JP2004308611A - 内燃機関の可変バルブ制御装置 - Google Patents

内燃機関の可変バルブ制御装置 Download PDF

Info

Publication number
JP2004308611A
JP2004308611A JP2003105714A JP2003105714A JP2004308611A JP 2004308611 A JP2004308611 A JP 2004308611A JP 2003105714 A JP2003105714 A JP 2003105714A JP 2003105714 A JP2003105714 A JP 2003105714A JP 2004308611 A JP2004308611 A JP 2004308611A
Authority
JP
Japan
Prior art keywords
cylinder
variable valve
valve control
amount
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003105714A
Other languages
English (en)
Other versions
JP4003182B2 (ja
Inventor
Wakichi Kondo
和吉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003105714A priority Critical patent/JP4003182B2/ja
Publication of JP2004308611A publication Critical patent/JP2004308611A/ja
Application granted granted Critical
Publication of JP4003182B2 publication Critical patent/JP4003182B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】気筒別可変バルブ制御精度の悪化による悪影響を回避する。
【解決手段】気筒別可変バルブ制御では、気筒間の吸入空気量ばらつきに基づいて各気筒の目標リフト量を設定し、所定タイミング毎に可変バルブリフト機構を次の吸気気筒の目標リフト量に相当する位置まで高速駆動する。この気筒別可変バルブ制御の実行中に、各気筒の実リフト量と目標リフト量との偏差に基づいて気筒別可変バルブ制御の制御精度を表す気筒別可変バルブ制御精度値を求め、この気筒別可変バルブ制御精度値が所定の許容範囲を越えて悪化した時に、筒別可変バルブ制御禁止フラグXSTOPがONされ、気筒別可変バルブ制御が禁止される。気筒別可変バルブ制御の禁止中は、リフト量制限モード可変バルブ制御を実行して、各気筒共通の目標リフト量を所定値以上に制限して可変バルブリフト機構を各気筒共通の目標リフト量に相当する位置に制御する。
【選択図】 図11

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気バルブ又は排気バルブのバルブ可変量(リフト量、作用角、バルブタイミング等)を制御する内燃機関の可変バルブ制御装置に関するものである。
【0002】
【従来の技術】
一般に、内燃機関の吸入空気量の制御はスロットルバルブによって行われるが、最近では、吸気バルブのリフト量を可変する可変バルブ機構を設け、アクセル開度やエンジン運転状態等に応じて吸気バルブのリフト量を可変することで吸入空気量を制御する技術が開発されている。この可変吸気バルブ制御による吸入空気量制御は、吸気バルブのリフト量を小さくすることによって、吸気通路をスロットルバルブで絞ることなく吸入空気量を少なくすることができるので、ポンピングロスを低減することができると共に、吸気バルブのリフト量を小さくすることによって、カム軸の駆動力も低減することができて、燃費を向上させることができるという利点がある。
【0003】
このような可変バルブリフト制御システムにおいては、特許文献1(特開2001−263110号公報)に示すように、各気筒毎に吸気バルブを駆動する電磁アクチュエータを設けたものがあるが、この構成では、気筒数と同数の電磁アクチュエータが必要になるため、システム構成が複雑化して高コストになる欠点がある。
【0004】
そこで、複数気筒の吸気バルブのリフト量を一括して1つの可変バルブ機構で制御するシステムが開発されている。
【0005】
しかし、この可変吸気バルブ制御による吸入空気量制御では、低負荷時に吸気バルブのリフト量が小さくなるため、各気筒で目標リフト量に対する実リフト量のばらつき(各気筒の部品公差や組付公差によるばらつき)の割合が大きくなって、気筒間の吸入空気量ばらつきが大きくなる傾向がある。このため、気筒間の吸入空気量ばらつきの影響を受けて各気筒のトルクや空燃比が変動し易く、気筒間のトルクばらつきや空燃比ばらつきが大きくなる傾向がある。
【0006】
このような気筒間のトルクばらつきや空燃比ばらつきを補正する方法が幾つか提案されている。例えば、特許文献2(特開昭62−17342号公報)に示すように、クランク軸に設けたトルクセンサで各気筒毎にトルクを検出して、各気筒のトルクが全気筒の平均トルクになるように各気筒毎に燃料噴射量を補正するようにしたものがある。
【0007】
或は、特許文献3(特開2000−220489号公報)に示すように、排気管に設置した空燃比センサの出力に基づいて各気筒の空燃比を推定し、気筒間の空燃比ばらつきが小さくなるように各気筒毎に燃料噴射量を補正するようにしたものがある。
【0008】
【特許文献1】
特開2001−263110号公報(第3頁〜第6頁等)
【特許文献2】
特開昭62−17342号公報(第2頁等)
【特許文献3】
特開2000−220489号公報(第2頁〜第3頁等)
【0009】
【発明が解決しようとする課題】
ところで、上記特許文献2、3では、各気筒毎にトルクや空燃比を検出して、その検出結果に基づいて各気筒毎に燃料噴射量を補正することで、各気筒のトルクばらつきや空燃比ばらつきを補正するようにしている。しかし、気筒間の吸入空気量ばらつきが大きくなると、単に燃料噴射量を補正するだけでは、各気筒のトルクばらつきや空燃比ばらつきを十分な精度で補正することは困難である。しかも、気筒間の吸入空気量ばらつきや吸入燃料量ばらつき等の複数の要因が絡み合って気筒間のトルクばらつきや空燃比ばらつきが発生している場合も、十分な精度で補正することは困難である。
【0010】
この対策として、各気筒の部品公差や組付公差を小さくして(つまり気筒間の吸気バルブリフト量のばらつきを小さくして)気筒間の吸入空気量のばらつきを小さくすることが考えられるが、これを実現するには、部品の加工精度を向上させたり、部品を選択して組み付けたりする必要があり、部品コストや製造コストが高くなってしまうという欠点がある。
【0011】
そこで、本発明者らは、複数気筒の吸気バルブのリフト量を一括して1つの可変バルブ機構で制御するシステムにおいて、各気筒の吸気行程毎(4気筒エンジンであれば180℃A毎)に可変バルブ機構を高速駆動することで、気筒間の吸気バルブリフト量のばらつき(又は吸入空気量のばらつき)を補正する“気筒別可変バルブ制御”を研究している。
【0012】
しかし、この気筒別可変バルブ制御では、可変バルブ機構を駆動するバッテリ電圧の低下(又は油圧の低下)や可変バルブ機構の経時劣化、故障等により可変バルブ機構の応答性が変化すると、各気筒の目標リフト量に対する実リフト量の収束性が悪化したり、或は、同一気筒における実リフト量のサイクル毎(720℃A毎)のばらつきが増大したりして、気筒別可変バルブ制御の制御精度が悪化する可能性がある。このように制御精度が悪化した状態で気筒別可変バルブ制御を続行すると、気筒間の吸入空気量ばらつきの低減効果が小さくなるだけては済まず、場合によっては、気筒間の吸入空気量ばらつきを増大させてしまう可能性がある。また、同一気筒のサイクル間の吸入空気量ばらつきも増大させてしまう可能性もある。その結果、気筒間のトルクばらつきや空燃比ばらつきが大きくなったり、或は、同一気筒のサイクル間のトルクばらつきや空燃比ばらつきが大きくなったり、燃焼圧変動が大きくなり、ドライバビリティ・排気エミッション等のエンジン諸性能が悪化してしまう可能性がある。
【0013】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、複数気筒のバルブ可変量を一括して1つの可変バルブ機構で制御するシステムにおいて、気筒別可変バルブ制御精度の悪化によるエンジン諸性能への悪影響を回避することができる内燃機関の可変バルブ制御装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1は、複数気筒の吸気バルブ又は排気バルブ(以下単に「バルブ」という)のバルブ可変量を一括して1つの可変バルブ機構で制御するシステムにおいて、気筒間ばらつき算出手段により気筒間の実バルブ可変量又は実吸入空気量のばらつきの情報(以下「気筒間ばらつき情報」という)を算出し、この気筒間ばらつき情報を考慮して、気筒別目標バルブ可変量設定手段により各気筒毎に目標バルブ可変量を設定し、気筒別可変バルブ制御手段により、所定タイミング毎に可変バルブ機構を次にバルブが開かれる気筒の目標バルブ可変量に相当する位置まで駆動することでバルブ可変量を気筒別に制御する気筒別可変バルブ制御を実行する。そして、制御精度算出手段により気筒別可変バルブ制御の制御精度を表す気筒別可変バルブ制御精度値を算出し、この気筒別可変バルブ制御精度値が所定の許容範囲を越えて悪化した場合に、気筒別可変バルブ制御禁止手段により気筒別可変バルブ制御を禁止するようにしたものである。
【0015】
このようにすれば、気筒別可変バルブ制御精度が悪化して、気筒別可変バルブ制御精度値が所定の許容範囲を越えると、気筒別可変バルブ制御が実行されなくなるため、気筒別可変バルブ制御精度の悪化による気筒間のバルブ可変量のばらつき(又は吸入空気量のばらつき)の悪化や同一気筒のサイクル間のバルブ可変量のばらつき(又は吸入空気量のばらつき)の悪化を未然に防止することができ、気筒別可変バルブ制御精度の悪化によるドライバビリティ・排気エミッション等のエンジン諸性能への悪影響を回避することができる。
【0016】
この場合、請求項2のように、各気筒又は所定気筒の実バルブ可変量と目標バルブ可変量との偏差に基づいて気筒別可変バルブ制御精度値を算出するようにすると良い。このようにすれば、気筒別可変バルブ制御精度として、各気筒又は所定気筒の目標バルブ可変量に対する実バルブ可変量の収束精度を評価することができ、目標バルブ可変量に対する実バルブ可変量の収束性が悪化したときに、気筒別可変バルブ制御を禁止することができる。
【0017】
また、請求項3のように、各気筒又は所定気筒の実バルブ可変量のサイクル間ばらつきに基づいて気筒別可変バルブ制御精度値を算出するようにしても良い。このようにすれば、気筒別可変バルブ制御精度として、各気筒又は所定気筒の実バルブ可変量のサイクル間ばらつき(繰り返し精度)を評価することができ、実バルブ可変量のサイクル間ばらつきが悪化したときに、気筒別可変バルブ制御を禁止することができる。
【0018】
更に、請求項4のように、可変バルブ機構の駆動時間のサイクル間ばらつきに基づいて気筒別可変バルブ制御精度値を算出するようにしても良い。このようにすれば、気筒別可変バルブ制御精度として、可変バルブ機構の駆動時間のサイクル間ばらつき(繰り返し精度)を評価することができ、可変バルブ機構の駆動時間のサイクル間ばらつきが悪化したときに、気筒別可変バルブ制御を禁止することができる。
【0019】
また、気筒別可変バルブ制御精度が悪化すると、各気筒のバルブを目標バルブ可変量に対応した適正なバルブプロフィール(バルブリフトカーブ)で開くことができなくなるため、各気筒の吸入空気量、吸気流速、筒内温度等が変動して燃焼状態が変動し、内燃機関の燃焼圧変動や回転速度変動が発生する。この燃焼圧変動や回転速度変動が大きくなると、ドライバビリティ等に悪影響を及ぼす。
【0020】
そこで、請求項5のように、気筒別可変バルブ制御精度値の許容範囲は、内燃機関の回転速度変動又は燃焼圧変動が所定値以下になる範囲に設定すると良い。このようにすれば、気筒別可変バルブ制御精度値が許容範囲を越えて回転速度変動や燃焼圧変動が著しく増大した場合に、気筒別可変バルブ制御を禁止することができるので、気筒別可変バルブ制御精度の悪化による回転速度変動や燃焼圧変動を所定値以下に抑えて、ドライバビリティ等への悪影響を未然に防止することができる。
【0021】
ところで、気筒別可変バルブ制御の禁止中に、通常の可変バルブ制御(つまり可変バルブ機構を各気筒共通の目標バルブ可変量に相当する位置に制御する可変バルブ制御)を行うと、気筒別可変バルブ制御によって抑えていたばらつきが再び増大する。つまり、目標バルブリフト量が小さい領域では、各気筒で目標バルブリフト量に対する実バルブリフト量のばらつき(各気筒の部品公差や組付公差によるばらつき)の割合が大きくなって、気筒間の吸入空気量ばらつきが大きくなる。
【0022】
この対策として、請求項6のように、気筒別可変バルブ制御の禁止中に、各気筒共通の目標バルブリフト量を所定値以上に制限して可変バルブ機構を各気筒共通の目標バルブ可変量に相当する位置に制御するリフト量制限モード可変バルブ制御を行うようにしても良い。このように、目標バルブリフト量を所定値以上に制限すれば、目標バルブリフト量に対する実バルブリフト量のばらつき(各気筒の部品公差や組付公差によるばらつき)の割合を小さくして、気筒間の吸入空気量ばらつきを許容範囲内に抑えることができる。従って、気筒別可変バルブ制御の禁止中に、リフト量制限モード可変バルブ制御を実行すれば、気筒間の吸入空気量ばらつきをドライバビリティや排気エミッションが悪化しない許容範囲内に抑えながら、可変バルブ制御を行うことができる。
【0023】
更に、可変バルブ機構を制御して吸入空気量を制御するシステムでは、請求項7のように、気筒別可変バルブ制御の禁止中に、内燃機関のスロットルバルブを制御して吸入空気量を制御するようにしても良い。このように、気筒別可変バルブ制御の禁止中に、リフト量制限モード可変バルブ制御を行って目標バルブリフト量を所定値以上に制限すると、可変バルブ制御による吸入空気量制御だけでは吸入空気量の制御領域の下限側が制限されて、アイドル等の低負荷時に吸入空気量を通常の最小空気量(アイドル時の目標空気量)付近に制御できなくなるが、スロットルバルブ制御による吸入空気量制御を併用することで、吸入空気量の制御領域の下限側を通常の最小空気量まで広げることができる。
【0024】
ところで、可変バルブ機構を駆動するバッテリ電圧の低下や可変バルブ機構の一時的な故障により気筒別可変バルブ制御精度が悪化した場合には、その後、気筒別可変バルブ制御の禁止中に、気筒別可変バルブ制御精度が回復する可能性がある。
【0025】
そこで、請求項8のように、気筒別可変バルブ制御の禁止中に所定の復帰条件が成立した場合に、気筒別可変バルブ制御を復帰させるようにしても良い。このようにすれば、所定の復帰条件が成立した場合に、気筒別可変バルブ制御精度が回復したと判断して、気筒別可変バルブ制御を再開することができる。
【0026】
例えば、請求項9のように、気筒別可変バルブ制御の禁止中に可変バルブ機構を駆動するバッテリ電圧が所定値よりも低下している場合、復帰条件は、該バッテリ電圧が所定値以上に回復したときに成立するようにすると良い。バッテリ電圧の低下によって気筒別可変バルブ制御精度が悪化した場合、バッテリ電圧が所定値以上に回復すると、気筒別可変バルブ制御精度が回復するため、バッテリ電圧が所定値以上に回復したときに、復帰条件が成立するようにすれば、気筒別可変バルブ制御精度が回復したときに、気筒別可変バルブ制御を再開することができる。
【0027】
また、請求項10のように、気筒別可変バルブ制御の禁止中の燃料カット中又は減速中に一時的に気筒別可変バルブ制御を試行し、復帰条件は、気筒別可変バルブ制御を一時的に試行したときの気筒別可変バルブ制御精度値が所定の許容範囲以内に回復したときに成立するようにしても良い。このようにすれば、気筒別可変バルブ制御精度が回復したことを実際に確認してから気筒別可変バルブ制御再開することができる。しかも、燃料カット中又は減速中に気筒別可変バルブ制御を試行するので、もし、気筒別可変バルブ制御精度が回復していない場合でも、気筒別可変バルブ制御の試行によるドライバビリティ等への悪影響を少なくすることができる。
【0028】
【発明の実施の形態】
《実施形態(1)》
以下、本発明の実施形態(1)を図1乃至図13に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関である例えば直列4気筒のエンジン11は、第1気筒#1〜第4気筒#4の4つの気筒を有し、このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
【0029】
更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。
【0030】
また、エンジン11の吸気バルブ28と排気バルブ29には、それぞれリフト量を可変する可変バルブリフト機構30,31(可変バルブ機構)が設けられている。更に、吸気バルブ28と排気バルブ29に、それぞれバルブタイミング(開閉タイミング)を可変する可変バルブタイミング機構を設けるようにしても良い。
【0031】
一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ25や、エンジン11のクランク軸が一定クランク角(例えば30℃A)回転する毎にパルス信号を出力するクランク角センサ26が取り付けられている。このクランク角センサ26の出力信号に基づいてクランク角やエンジン回転速度が検出される。
【0032】
これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。
【0033】
次に、図2に基づいて吸気バルブ28の可変バルブリフト機構30の構成を説明する。尚、排気バルブ29の可変バルブリフト機構31は、吸気バルブ28の可変バルブリフト機構30と実質的に同一構成であるため、説明を省略する。
【0034】
図2に示すように、吸気バルブ28を駆動するためのカムシャフト32とロッカーアーム33との間に、リンクアーム34が設けられ、このリンクアーム34の上方に、ステッピングモータ等のモータ41で回動駆動されるコントロールシャフト35が設けられている。モータ41の回動軸41aに連結されたウォーム42と、コントロールシャフト35と一体的に回動するように設けられたウォームホイール43とが噛み合うことで、モータ41の回転力がコントロールシャフト35に伝達されるようになっている。また、モータ41には、モータ41の回転角度(回動軸41aの回転角度)を検出するエンコーダ等のモータ回転角度センサ44(図1参照)が設けられている。
【0035】
コントロールシャフト35には、偏心カム36が一体的に回動可能に設けられ、この偏心カム36の軸心に対して偏心した位置に、リンクアーム34が支持軸(図示せず)を介して揺動可能に支持されている。このリンクアーム34の中央部には、揺動カム38が設けられ、この揺動カム38の側面が、カムシャフト32に設けられたカム37の外周面に当接している。また、リンクアーム34の下端部には、押圧カム39が設けられ、この押圧カム39の下端面が、ロッカーアーム33の中央部に設けられたローラ40の上端面に当接している。
【0036】
これにより、カムシャフト32の回転によってカム37が回転すると、そのカム37の外周面形状に追従してリンクアーム34の揺動カム38が左右に移動して、リンクアーム34が左右に揺動する。リンクアーム34が左右に揺動すると、押圧カム39が左右に移動するため、押圧カム39の下端面形状に応じてロッカーアーム33のローラ40が上下に移動して、ロッカーアーム33が上下に揺動する。このロッカーアーム33の上下動によって吸気バブル28が上下動するようになっている。
【0037】
一方、コントロールシャフト35の回転によって偏心カム36が回転すると、リンクアーム34の支持軸の位置が移動して、リンクアーム34の押圧カム39とロッカーアーム33のローラ40との初期の接触点位置が変化する。また、リンクアーム34の押圧カム39の下端面は、左側部分にロッカーアーム33の押圧量が0(吸気バルブ28のリフト量が0)となるような曲率でベース曲面39aが形成され、このベース曲面39aから右方に向かうに従ってロッカーアーム33の押圧量が大きくなる(吸気バルブ28のリフト量が大きくなる)ような曲率で押圧曲面39bが形成されている。
【0038】
吸気バルブ28の最大リフト量を大きくする高リフトモードの場合には、コントロールシャフト35の回転によってリンクアーム34の押圧カム39とロッカーアーム33のローラ40との初期の接触点位置を右方に移動させる。これにより、カム37の回転によって押圧カム39が左右に移動したときに押圧カム39の下端面のうちローラ40に接触する区間が右方に移動するため、ロッカーアーム33の最大押圧量が大きくなって吸気バルブ28の最大リフト量が大きくなると共に、ロッカーアーム33が押圧される期間が長くなって吸気バブル28の開弁期間が長くなる。
【0039】
一方、吸気バルブ28の最大リフト量を小さくする低リフトモードの場合には、コントロールシャフト35の回転によってリンクアーム34の押圧カム39とロッカーアーム33のローラ40との初期の接触点位置を左方に移動させる。これにより、カム37の回転によって押圧カム39が左右に移動したときに押圧カム39の下端面のうちローラ40に接触する区間が左方に移動するため、ロッカーアーム33の最大押圧量が小さくなって吸気バルブ28の最大リフト量が小さくなると共に、ロッカーアーム33が押圧される期間が短くなって吸気バブル28の開弁期間が短くなる。
【0040】
以上説明した可変バルブリフト機構30では、モータ41でコントロールシャフト35を回転させてリンクアーム34の押圧カム39とロッカーアーム33のローラ40との初期の接触点位置を連続的に移動させれば、例えば図3に示すように、直列4気筒エンジン11の全ての気筒(#1〜#4)の吸気バルブ28の最大リフト量と開弁期間(以下単に「リフト量」という)を一括して連続的に可変することができる。
【0041】
ECU27は、ROMに記憶された可変バルブ制御ルーチン(図示せず)を実行することで、アクセル開度やエンジン運転状態等に基づいて吸気バルブ28の可変バルブリフト機構30を制御して、吸気バルブ28のリフト量を連続的に可変して吸入空気量を制御する。尚、可変バルブリフト機構30と可変バルブタイミング機構を併用したシステムの場合には、リフト量とバルブタイミングの両方を連続的に可変して吸入空気量を制御するようにしても良い。
【0042】
その際、ECU27は、後述する図4乃至図9に示す可変バルブ制御用の各ルーチンを実行することで、次のようにして吸気バルブ28の可変バルブリフト機構30を制御する。
【0043】
ECU27は、エアフローメータ14の出力に基づいて各気筒の気筒間吸入空気量ばらつき率DEVを算出し、この気筒間吸入空気量ばらつき率DEVに基づいて気筒間の実吸入空気量のばらつきが小さくなるように各気筒毎に目標リフト量VVLMを設定する。そして、図12に示すように、全気筒の吸気バルブ28が閉弁している期間(以下「全吸気バルブ閉弁期間」という)になる毎に、可変バルブリフト機構30のモータ41を次の吸気気筒の目標リフト量VVLMに相当する位置まで高速駆動することで、吸入空気量を気筒別に制御して気筒間の吸入空気量ばらつきを補正する“気筒別可変バルブ制御”を実行する。
【0044】
一般に、可変吸気バルブ制御による吸入空気量制御では、吸気バルブ28のリフト量が小さくなるほど、気筒間の吸入空気量ばらつきが大きくなって、気筒間の目標リフト量VVLMの変化量が大きくなる傾向があるが、吸気バルブ28のリフト量が小さくなるほど、吸気バルブ28の開弁期間が短くなって、全吸気バルブ閉弁期間が長くなるため、全吸気バルブ閉弁期間内に可変バルブリフト機構30の駆動(目標リフト量VVLMへのリフト可変動作)を実行することが可能である。
【0045】
また、ECU27は、気筒別可変バルブ制御の実行中に、各気筒の吸気バルブ28の実リフト量と目標リフト量VVLMとの偏差を積算して各気筒の気筒別可変バルブ制御精度値ACCURAを求める。尚、本実施形態(1)では、気筒別可変バルブ制御精度値ACCURAを求める際に、吸気バルブ28の実リフト量と目標リフト量VVLMの代用情報として、可変バルブリフト機構30の実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTを用いる。そして、気筒別可変バルブ制御精度値ACCURAが所定の許容範囲を越えたときに、気筒別可変バルブ制御精度(目標リフト量に対する実リフト量の収束性)が悪化したと判断して、気筒別可変バルブ制御を禁止する。これにより、気筒別可変バルブ制御精度の悪化による気筒間のリフト量ばらつき(又は吸入空気量ばらつき)の悪化や同一気筒のサイクル間のリフト量ばらつき(又は吸入空気量ばらつき)の悪化を未然に防止する。
【0046】
更に、ECU27は、気筒別可変バルブ制御の禁止中に、アクセル開度やエンジン運転状態等に基づいて設定した各気筒共通の目標リフト量TGVVLを所定の下限リフト量VVLmin 以上に制限して、可変バルブリフト機構30のモータ41を各気筒共通の目標リフト量TGVVLに相当する位置に制御するリフト量制限モード可変バルブ制御を行う。この場合、目標リフト量TGVVLを下限リフト量VVLmin 以上に制限することで、目標リフト量TGVVLに対する実リフト量のばらつき(各気筒の部品公差や組付公差によるばらつき)の割合を所定のばらつき許容値(例えば5%)以下に抑えて、気筒間の吸入空気量ばらつきをドライバビリティや排気エミッションが悪化しない許容範囲内に抑えることができる。
【0047】
また、ECU27は、気筒別可変バルブ制御の禁止中に所定の復帰条件が成立したときには、気筒別可変バルブ制御精度が回復したと判断して、気筒別可変バルブ制御を再開する。
【0048】
以下、ECU27が実行する図4乃至図9に示す可変バルブ制御用の各ルーチンの処理内容を説明する。
【0049】
[気筒別可変バルブ制御実行・禁止ルーチン]
図4の気筒別可変バルブ制御実行・禁止ルーチンは、例えばイグニッションスイッチ(図示せず)のオン後に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、気筒別可変バルブ制御禁止フラグXSTOPのセット状態(ON/OFF)を読み込む。この気筒別可変バルブ制御禁止フラグXSTOPは、後述する図5の気筒別可変バルブ制御禁止判定ルーチンによって、気筒別可変バルブ制御の禁止条件が成立したときに「ON」にセットされる。
【0050】
この後、ステップ102に進み、気筒別可変バルブ制御の禁止条件が成立しているか否かを、気筒別可変バルブ制御禁止フラグXSTOPが「ON」か否かによって判定する。その結果、気筒別可変バルブ制御の禁止条件が不成立であると判定された場合には、ステップ110に進み、後述する図8の気筒別可変バルブ制御ルーチンを実行して、気筒別可変バルブ制御を実行する。
【0051】
一方、上記ステップ102で、気筒別可変バルブ制御の禁止条件が成立していると判定された場合には、気筒別可変バルブ制御を禁止したまま、ステップ103に進み、気筒別可変バルブ制御復帰フラグXREACTのセット状態(ON/OFF)を読み込む。この気筒別可変バルブ制御復帰フラグXREACTは、後述する図7の気筒別可変バルブ制御復帰判定ルーチンによって、気筒別可変バルブ制御の復帰条件成立が成立したときに「ON」にセットされる。
【0052】
この後、ステップ104に進み、気筒別可変バルブ制御の復帰条件が成立しているか否かを、気筒別可変バルブ制御復帰フラグXREACTが「ON」か否かによって判定する。その結果、気筒別可変バルブ制御の復帰条件が成立していると判定された場合には、ステップ110に進み、後述する図8の気筒別可変バルブ制御ルーチンを実行して、気筒別可変バルブ制御を再開する。
【0053】
一方、上記ステップ102で気筒別可変バルブ制御の禁止条件が成立していると判定され、且つ、上記ステップ104で気筒別可変バルブ制御の復帰条件が不成立であると判定された場合には、気筒別可変バルブ制御を禁止したまま、ステップ105以降のリフト量制限モード可変バルブ制御に関する処理を次のようにして実行する。
【0054】
まず、ステップ105で、アクセル開度やエンジン運転状態等に基づいて設定した各気筒共通の目標リフト量TGVVLを制限するための下限リフト量VVLmin を読み込む。この下限リフト量VVLmin は、目標リフト量TGVVLに対する実リフト量のばらつき(各気筒の部品公差や組付公差によるばらつき)の割合を所定のばらつき許容値以下にする目標リフト量TGVVLの下限値であり、例えば、ばらつき許容値が5%で、実リフト量の最大ばらつきが50μmの場合、下限リフト量VVLmin は1mmに設定される。
【0055】
この後、ステップ106に進み、各気筒共通の目標リフト量TGVVLが下限リフト量VVLmin よりも小さいか否かを判定する。その結果、各気筒共通の目標リフト量TGVVLが下限リフト量VVLmin 以上であると判定された場合には、ステップ107に進み、アクセル開度やエンジン運転状態等に基づいて設定した各気筒共通の目標リフト量TGVVLをそのまま採用して(目標リフト量TGVVL=TGVVL)、可変バルブリフト機構30のモータ41を該目標リフト量TGVVLに相当する位置に制御する。
【0056】
一方、上記ステップ106で、各気筒共通の目標リフト量TGVVLが下限リフト量VVLmin よりも小さいと判定された場合には、ステップ108に進み、目標リフト量TGVVLを下限リフト量VVLmin でガード処理して(目標リフト量TGVVL=VVLmin )、可変バルブリフト機構30のモータ41を該目標リフト量TGVVL(=VVLmin )に相当する位置に制御する。
【0057】
これらのステップ105〜108の処理により、気筒別可変バルブ制御の禁止中に、各気筒共通の目標リフト量TGVVLを下限リフト量VVLmin 以上に制限して、可変バルブリフト機構30のモータ41を各気筒共通の目標リフト量TGVVLに相当する位置に制御するリフト量制限モード可変バルブ制御を行う。これらのステップ105〜108の処理が特許請求の範囲でいうリフト量制限モード可変バルブ制御手段としての役割を果たす。
【0058】
また、ステップ108で、目標リフト量TGVVLを下限リフト量VVLmin でガード処理した場合には、ステップ109に進み、アクセル開度やエンジン運転状態等に基づいてスロットルバルブ15を制御して吸入空気量を制御する。このステップ109の処理が特許請求の範囲でいうスロットル制御手段としての役割を果たす。
【0059】
[気筒別可変バルブ制御禁止判定ルーチン]
図5の気筒別可変バルブ制御禁止判定ルーチンは、例えばイグニッションスイッチのオン後に所定周期で実行される。本ルーチンが起動されると、まず、ステップ201で、気筒別可変バルブ制御を実行中であるか否かを判定し、気筒別可変バルブ制御を実行していなければ、そのまま本ルーチンを終了する。
【0060】
一方、気筒別可変バルブ制御を実行中であると判定された場合には、ステップ202に進み、後述する図6の気筒別可変バルブ制御精度値算出ルーチンを実行して、各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を算出する。ここで、(#i)は気筒番号であり、(#1)〜(#4)のいずれかを意味する。
【0061】
この後、ステップ203に進み、気筒別可変バルブ制御の禁止条件が成立したか否かを、各気筒の気筒別可変バルブ制御精度値ACCURA(#i)のうちの少なくとも1つが所定の判定値よりも大きくなったか否かによって判定する。
【0062】
この判定値は、気筒別可変バルブ制御精度値ACCURA(#i)の許容範囲の上限値を設定する値であり、気筒別可変バルブ制御精度値ACCURA(#i)の許容範囲がエンジン11の回転速度変動又は燃焼圧変動を所定値以下にする範囲となるように判定値が設定されている。
【0063】
このステップ203で、気筒別可変バルブ制御の禁止条件が不成立と判定された場合、つまり、各気筒の気筒別可変バルブ制御精度値ACCURA(#i)が全て判定値以下であると判定された場合には、気筒別可変バルブ制御が精度良く行われていると判断して、そのまま本ルーチンを終了する。
【0064】
これに対して、気筒別可変バルブ制御の禁止条件が成立した場合、つまり、各気筒の気筒別可変バルブ制御精度値ACCURA(#i)のうちの少なくとも1つが判定値よりも大きいと判定された場合には、気筒別可変バルブ制御精度値ACCURA(#i)が許容範囲を越えて回転速度変動や燃焼圧変動が許容レベルを越えて悪化したと判断して、ステップ204に進み、気筒別可変バルブ制御禁止フラグXSTOPを「ON」にセットする。これにより、図4のステップ102で「Yes」と判定されて気筒別可変バルブ制御が禁止される。この機能が特許請求の範囲でいう気筒別可変バルブ制御禁止手段としての役割を果たす。
【0065】
この後、ステップ205に進み、気筒別可変バルブ制御復帰フラグXREACTを「OFF」にリセットして、本ルーチンを終了する。
【0066】
[気筒別可変バルブ制御精度値算出ルーチン]
図6の気筒別可変バルブ制御精度値算出ルーチンは、図5のステップ202で起動され、特許請求の範囲でいう制御精度算出手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ301で、モータ回転角度センサ44により検出した可変バルブリフト機構30の実モータ回転角度VVLACTを読み込む。
【0067】
この後、ステップ302に進み、可変バルブリフト機構30の目標モータ回転角度TGVVLACT(後述する気筒別目標リフト量VVLMに相当する回転角度)を読み込む。
【0068】
この後、ステップ303に進み、クランク角カウンタCCRNKのカウント値を読み込む。このクランク角カウンタCCRNKは、クランク角センサ26の出力信号に基づいて例えば30℃A毎に「1」ずつインクリメントされるため、クランク角カウンタCCRNKの24カウントが1サイクル(720℃A)に相当する。尚、クランク角カウンタCCRNKは、「24」になった時点で「0」にリセットされる。また、クランク角カウンタCCRNK=0のクランク回転位置が、第1気筒#1の圧縮上死点(圧縮TDC)に相当し、クランク角カウンタCCRNK=6、12、18のクランク回転位置が、それぞれ第3気筒#3、第4気筒#4、第2気筒#2の圧縮TDCに相当するように設定されている。
【0069】
この後、ステップ304に進み、各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を算出する。
この場合、クランク角カウンタCCRNK=12〜17の期間(つまり第1気筒#1の吸気行程に対応する期間)は、その期間の1点又は複数点で検出した実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差を積算して、第1気筒#1の吸気行程の実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差の積算値を更新し、その積算値を第1気筒#1の気筒別可変バルブ制御精度値ACCURA(#1)とする。
【0070】
クランク角カウンタCCRNK=6〜11の期間(つまり第2気筒#2の吸気行程に対応する期間)は、その期間の1点又は複数点で検出した実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差を積算して、第2気筒#2の吸気行程の実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差の積算値を更新し、その積算値を第2気筒#2の気筒別可変バルブ制御精度値ACCURA(#2)とする。
【0071】
クランク角カウンタCCRNK=18〜23の期間(つまり第3気筒#3の吸気行程に対応する期間)は、その期間の1点又は複数点で検出した実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差を積算して、第3気筒#3の吸気行程の実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差の積算値を更新し、その積算値を第3気筒#3の気筒別可変バルブ制御精度値ACCURA(#3)とする。
【0072】
クランク角カウンタCCRNK=0〜5の期間(つまり第4気筒#4の吸気行程に対応する期間)は、その期間の1点又は複数点で検出した実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差を積算して、第4気筒#4の吸気行程の実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差の積算値を更新し、その積算値を第4気筒#4の気筒別可変バルブ制御精度値ACCURA(#4)とする。
【0073】
[気筒別可変バルブ制御復帰判定ルーチン]
図7の気筒別可変バルブ制御復帰判定ルーチンは、例えばイグニッションスイッチのオン後に所定周期で実行される。本ルーチンが起動されると、まず、ステップ401で、燃料カット中又は減速中であるか否かを判定し、燃料カット中でも減速中でもなければ、そのまま本ルーチンを終了する。
【0074】
一方、燃料カット中又は減速中であると判定された場合には、ステップ402に進み、後述する図8の気筒別可変バルブ制御ルーチンを実行して、気筒別可変バルブ制御の禁止中に、一時的に気筒別可変バルブ制御を試行する。このステップ402の処理が特許請求の範囲でいう試行手段としての役割を果たす。
【0075】
この後、ステップ403に進み、前述した図6の気筒別可変バルブ制御精度値算出ルーチンを実行して、各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を算出する。
【0076】
この後、ステップ404に進み、気筒別可変バルブ制御の復帰条件が成立しているか否かを判定する。ここで、気筒別可変バルブ制御の復帰条件は、例えば、次の2つの条件▲1▼、▲2▼を両方とも満たすことである。
【0077】
▲1▼各気筒の気筒別可変バルブ制御精度値ACCURA(#i)が全て判定値以下であること
▲2▼バッテリ電圧が所定電圧(例えば12V)以上であること
これら2つの条件▲1▼、▲2▼を両方とも満たせば、気筒別可変バルブ制御の復帰条件が成立するが、いずれか一方でも満たさない条件があれば、気筒別可変バルブ制御の復帰条件が不成立となる。
【0078】
もし、気筒別可変バルブ制御の復帰条件が不成立と判定されれば、気筒別可変バルブ制御精度が回復していないと判断して、ステップ405に進み、気筒別可変バルブ制御復帰フラグXREACTを「OFF」にリセットしたまま、本ルーチンを終了する。
【0079】
一方、上記ステップ404で、気筒別可変バルブ制御の復帰条件が成立していると判定された場合には、気筒別可変バルブ制御精度が回復したと判断して、ステップ406に進み、気筒別可変バルブ制御復帰フラグXREACTを「ON」にセットする。これにより、図4のステップ104で「Yes」と判定されて気筒別可変バルブ制御が再開される。この機能が特許請求の範囲でいう復帰制御手段としての役割を果たす。
この後、ステップ407に進み、気筒別可変バルブ制御禁止フラグXREACTを「OFF」にリセットして、本ルーチンを終了する。
【0080】
[気筒別可変バルブ制御ルーチン]
図4のステップ110で、図8の気筒別可変バルブ制御ルーチンが起動されると、まず、ステップ501で、気筒別可変バルブ制御実行条件が成立しているか否かを判定する。ここで、気筒別可変バルブ制御実行条件は、例えば、次の2つの条件▲1▼、▲2▼を両方とも満たすことである。
▲1▼始動後所定時間以上が経過していること(つまり始動直後の不安定な運転状態でないこと)
▲2▼過渡運転状態でないこと(つまり定常運転状態であること)
【0081】
これら2つの条件▲1▼、▲2▼を両方とも満たせば、気筒別可変バルブ制御実行条件が成立するが、いずれか一方でも満たさない条件があれば、気筒別可変バルブ制御実行条件が不成立となる。もし、気筒別可変バルブ制御実行条件が不成立と判定されれば、ステップ502以降の気筒別可変バルブ制御に関する処理を実行することなく、本ルーチンを終了する。
【0082】
一方、上記ステップ501で、気筒別可変バルブ制御実行条件が成立していると判定された場合には、ステップ502以降の気筒別可変バルブ制御に関する処理を次のようにして実行する。まず、ステップ502で、後述する図9の気筒間吸入空気量ばらつき率算出ルーチンを実行して、各気筒の気筒間吸入空気量ばらつき率DEV(#i)を算出する。
【0083】
この後、ステップ503に進み、各気筒毎に気筒間吸入空気量ばらつき率DEV(#i)に応じたリフト補正量FVVL(#i)を図10のマップを用いて算出する。図10のマップは、気筒間吸入空気量ばらつき率DEV(#i)が1よりも大きい領域では、リフト補正量FVVL(#i)が減量値(マイナス値)となり、気筒間吸入空気量ばらつき率DEV(#i)が1よりも小さい領域では、リフト補正量FVVL(#i)が増量値(プラス値)となる。つまり、ある気筒の吸入空気量が全気筒の平均吸入空気量よりも多くなるほど、リフト補正量FVVL(#i)による減量補正量が大きくなり、反対に、ある気筒の吸入空気量が全気筒の平均吸入空気量よりも少なくなるほど、リフト補正量FVVL(#i)による増量補正量が大きくなって、気筒間の実吸入空気量のばらつきが小さくなるようにしている。尚、気筒間吸入空気量ばらつき率DEV(#i)が1付近の所定領域では、リフト補正量FVVL(#i)=0に設定され、吸気バルブリフト量VVLが補正されない。
【0084】
リフト補正量FVVL(#i)の算出後、ステップ504に進み、全気筒の吸気バルブ28が閉弁しているか否かを判定し、少なくとも1つの吸気バルブ28が開弁していると判定されれば、そのまま本ルーチンを終了する。
【0085】
その後、ステップ504で、全気筒の吸気バルブ28が閉弁していると判定されたときに、ステップ505に進み、補正前の全気筒の平均リフト量VVLに次の吸気気筒のリフト補正量FVVL(#i)を加算して、気筒別目標リフト量VVLMを求める。
【0086】
次の吸気気筒が第1気筒#1のとき(つまり第1気筒#1の吸気行程前)には、第1気筒#1のリフト補正量FVVL(#1)を全気筒の平均リフト量VVLに加算して気筒別目標リフト量VVLMを求める。
VVLM=VVL+FVVL(#1)
【0087】
次の吸気気筒が第2気筒#2のとき(つまり第2気筒#2の吸気行程前)には、第2気筒#2のリフト補正量FVVL(#2)を全気筒の平均リフト量VVLに加算して気筒別目標リフト量VVLMを求める。
VVLM=VVL+FVVL(#2)
【0088】
次の吸気気筒が第3気筒#3のとき(つまり第3気筒#3の吸気行程前)には、第3気筒#3のリフト補正量FVVL(#3)を全気筒の平均リフト量VVLに加算して気筒別目標リフト量VVLMを求める。
VVLM=VVL+FVVL(#3)
【0089】
次の吸気気筒が第4気筒#4のとき(つまり第4気筒#4の吸気行程前)には、第4気筒#4のリフト補正量FVVL(#4)を全気筒の平均リフト量VVLに加算して気筒別目標リフト量VVLMを求める。
VVLM=VVL+FVVL(#4)
【0090】
このようにして、全気筒の吸気バルブ28が閉弁している全吸気バルブ閉弁期間になる毎に、次の吸気気筒のリフト補正量FVVL(#i)を用いて、次の吸気気筒の目標リフト量VVLMを設定する。このステップ505の処理が特許請求の範囲でいう気筒別目標バルブ可変量設定手段としての役割を果たす。
【0091】
この後、ステップ506に進み、全吸気バルブ閉弁期間になる毎に、気筒別目標リフト量VVLMに応じて可変バルブリフト機構30のモータ41を高速駆動して、全吸気バルブ閉弁期間内に可変バルブリフト機構30を次の吸気気筒の目標リフト量VVLMに相当する位置まで駆動する。これにより、各気筒の吸気バルブ28の開弁タイミング前に可変バルブリフト機構30の駆動(目標リフト量VVLMへのリフト可変動作)を実行して吸入空気量を気筒別に制御して、気筒間の吸入空気量ばらつきを補正する。このステップ506の処理が特許請求の範囲でいう気筒別可変バルブ制御手段としての役割を果たす。
【0092】
[気筒間吸入空気量ばらつき率算出ルーチン]
図8のステップ502で、図9の気筒間ばらつき率算出ルーチンが起動されると、まず、ステップ601で、エアフローメータ14で検出した瞬時空気流量GAを読み込んだ後、ステップ602に進み、クランク角カウンタCCRNKのカウント値を読み込む。
【0093】
この後、ステップ603に進み、各気筒の吸入空気量平均値GAave(#i) を算出する。
この場合、クランク角カウンタCCRNK=12〜17の期間(つまり第1気筒#1の吸気行程に対応する期間)は、その期間の瞬時空気流量GAの平均値を第1気筒#1の吸入空気流量平均値GAave(#1) とする。
【0094】
クランク角カウンタCCRNK=6〜11の期間(つまり第2気筒#2の吸気行程に対応する期間)は、その期間の瞬時空気流量GAの平均値を、第2気筒#2の吸入空気流量平均値GAave(#2) とする。
【0095】
クランク角カウンタCCRNK=18〜23の期間(つまり第3気筒#3の吸気行程に対応する期間)は、その期間の瞬時空気流量GAの平均値を、第3気筒#3の吸入空気流量平均値GAave(#3) とする。
【0096】
クランク角カウンタCCRNK=0〜5の期間(つまり第4気筒#4の吸気行程に対応する期間)は、その期間の瞬時空気流量GAの平均値を、第4気筒#4の吸入空気流量平均値GAave(#4) とする。
この後、ステップ604で、各気筒の気筒間吸入空気量ばらつき率DEV(#i)を次式により算出する。
【0097】
【数1】
Figure 2004308611
【0098】
上式の分母は、全気筒の吸入空気流量平均値GAave(#1) 〜GAave(#4) の平均値である。
尚、図9の気筒間吸入空気量ばらつき率算出ルーチンでは、各気筒の吸入空気流量平均値GAave(#i) を用いて気筒間吸入空気量ばらつき率DEV(#i)を算出したが、各気筒の吸入空気流量極大値や吸入空気量積算値を用いて気筒間吸入空気量ばらつき率DEV(#i)を算出するようにしても良い。また、各気筒の吸入空気量に応じて発生する吸気脈動がエアフローメータ14で検出されるまでの時間遅れ等を考慮して、各気筒の吸入空気流量平均値の算出期間を適宜変更しても良い。
【0099】
また、吸気管圧力センサ18の出力に基づいて気筒間吸入空気量ばらつき率DEV(#i)を算出するようにしても良い。また、各気筒の筒内圧を検出する筒内圧センサや各気筒のバルブリフト量を検出するリフトセンサを備えたシステムでは、筒内圧センサの出力やリフトセンサの出力に基づいて気筒間吸入空気量ばらつき率DEV(#i)を算出するようにしても良い。
【0100】
以上説明した本実施形態(1)の実行例を図11乃至図13に示すタイムチャートを用いて説明する。図11に示すように、気筒別可変バルブ制御精度値ACCURA(#i)が許容範囲内にあり、気筒別可変バルブ制御禁止フラグXSTOPがOFFされている期間は、気筒別可変バルブ制御を実行して吸入空気量を制御する。この気筒別可変バルブ制御では、各気筒の気筒間吸入空気量ばらつき率DEV(#i)に基づいて各気筒の目標リフト量VVLMを設定し、図12に示すように、全吸気バルブ閉弁期間になる毎に、可変バルブリフト機構30のモータ41を次の吸気気筒の目標リフト量VVLMに相当する位置まで高速駆動することで、吸入空気量を気筒別に制御して気筒間の吸入空気量ばらつきを補正する。
【0101】
この気筒別可変バルブ制御の実行中は、各気筒の吸気バルブ28の実リフト量と目標リフト量VVLMとの偏差(各気筒の吸気行程の実モータ回転角度VVLACTと目標モータ回転角度TGVVLACTとの偏差)を積算して各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を求める。
【0102】
その後、図13に示すように、バッテリ電圧の低下等により各気筒の目標リフト量VVLMに対する実リフト量の収束性が悪化して、気筒別可変バルブ制御精度が悪化し、それによって、気筒別可変バルブ制御精度値ACCURA(#i)が許容範囲を越えたた時点(図11のt1 )で、気筒別可変バルブ制御禁止フラグXSTOPがONされて、気筒別可変バルブ制御が禁止される。
【0103】
これにより、気筒別可変バルブ制御精度の悪化による気筒間のリフト量のばらつき(又は吸入空気量のばらつき)の悪化や、同一気筒のサイクル間のリフト量のばらつき(又は吸入空気量のばらつき)の悪化を未然に防止することができ、ドライバビリティや排気エミッションへの悪影響を回避することができる。
【0104】
また、図11に示すように、気筒別可変バルブ制御の禁止中は、リフト量制限モード可変バルブ制御とスロットルバルブ制御により吸入空気量を制御する。リフト量制限モード可変バルブ制御では、各気筒共通の目標リフト量TGVVLを下限リフト量VVLmin (例えば1mm)以上に制限して可変バルブリフト機構30のモータ41を各気筒共通の目標リフト量TGVVLに相当する位置に制御する。
【0105】
目標リフト量TGVVLを下限リフト量VVLmin 以上に制限すれば、目標リフト量TGVVLに対する実リフト量のばらつき(各気筒の部品公差や組付公差によるばらつき)の割合を所定のばらつき許容値(例えば5%)以下に抑えて、気筒間の吸入空気量ばらつきをに許容範囲内に抑えることができる。従って、気筒別可変バルブ制御の禁止中に、リフト量制限モード可変バルブ制御を実行すれば、気筒間の吸入空気量ばらつきをドライバビリティや排気エミッションが悪化しない許容範囲内に抑えながら、可変バルブ制御による吸入空気量制御を行うことができ、気筒別可変バルブ制御の禁止中に、スロットルバルブ制御のみで吸入空気量制御を行う場合よりも燃費を少なくすることができる。
【0106】
また、気筒別可変バルブ制御の禁止中に、リフト量制限モード可変バルブ制御を行って目標リフト量TGVVLを下限リフト量VVLmin 以上に制限する場合、可変バルブ制御による吸入空気量制御だけでは吸入空気量の制御領域の下限側が制限されて、アイドル等の低負荷時に吸入空気量を通常の最小空気量(アイドル時の目標空気量)付近に制御できなくなるが、スロットルバルブ制御による吸入空気量制御を併用することで、吸入空気量の制御領域の下限側を通常の最小空気量まで広げることができる。
【0107】
更に、図11に示すように、気筒別可変バルブ制御の禁止中に、燃料カット(又は減速)が開始された時点t2 で、気筒別可変バルブ制御を試行し、そのときの気筒別可変バルブ制御精度値ACCURA(#i)が許容範囲以内で且つバッテリ電圧が所定値以上と判定されて復帰条件が成立した時点t3 で、気筒別可変バルブ制御復帰フラグXREACTがONされて、気筒別可変バルブ制御が再開される。
【0108】
これにより、気筒別可変バルブ制御精度が回復したことを実際に確認してから気筒別可変バルブ制御を再開することができる。しかも、燃料カット中又は減速中に気筒別可変バルブ制御を試行するので、もし、気筒別可変バルブ制御精度が回復していない場合でも、気筒別可変バルブ制御の試行によるドライバビリティ等への悪影響を少なくすることができる。
【0109】
《実施形態(2)》
前記実施形態(1)では、各気筒の吸気バルブ28の実リフト量と目標リフト量VVLMとの偏差に基づいて各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を求めたが、本発明の実施形態(2)では、図14に示す気筒別可変バルブ制御精度値算出ルーチンを実行することで、各気筒の吸気バルブ28の実リフト量のサイクル間ばらつきに基づいて各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を求めるようにしている。尚、本実施形態(2)では、気筒別可変バルブ制御精度値ACCURA(#i)を求める際に、吸気バルブ28の実リフト量の代用情報として、可変バルブリフト機構30の実モータ回転角度VVLACTを用いる。
【0110】
本実施形態(2)で実行する図14の気筒別可変バルブ制御精度値算出ルーチンでは、まず、ステップ701で、モータ回転角度センサ44により検出した可変バルブリフト機構30の実モータ回転角度VVLACTを読み込み、次のステップ702で、クランク角カウンタCCRNKのカウント値を読み込む。
【0111】
この後、ステップ703に進み、各気筒別に吸気行程毎(サイクル毎)に検出した実モータ回転角度の1番目の記憶値VVLACT(#i)(1) からn番目(例えば20番目)の記憶値VVLACT(#i)(n) を更新する。
【0112】
この場合、クランク角カウンタCCRNK=12〜17の期間(つまり第1気筒#1の吸気行程に対応する期間)は、その期間の1点で検出した実モータ回転角度VVLACTを記憶すると共に、第1気筒#1の吸気行程の実モータ回転角度の1番目の記憶値VVLACT(#1)(1) から(n−1)番目の記憶値VVLACT(#1)(n−1) を、それぞれ2番目の記憶値VVLACT(#1)(2) からn番目の記憶値VVLACT(#1)(n) で更新し、n番目の記憶値VVLACT(#1)(n) を今回の記憶値VVLACTで更新する。
【0113】
同じようにして、クランク角カウンタCCRNK=6〜11の期間(つまり第2気筒#2の吸気行程に対応する期間)は、第2気筒#2の吸気行程の実モータ回転角度の1番目の記憶値VVLACT(#2)(1) からn番目の記憶値VVLACT(#2)(n) を更新し、クランク角カウンタCCRNK=18〜23の期間(つまり第3気筒#3の吸気行程に対応する期間)は、第3気筒#3の吸気行程の実モータ回転角度の1番目の記憶値VVLACT(#3)(1) からn番目の記憶値VVLACT(#3)(n) を更新し、クランク角カウンタCCRNK=0〜5の期間(つまり第4気筒#4の吸気行程に対応する期間)は、第4気筒#4の吸気行程の実モータ回転角度の1番目の記憶値VVLACT(#4)(1) からn番目の記憶値VVLACT(#4)(n) を更新する。
【0114】
この後、ステップ704に進み、各気筒の吸気行程毎(サイクル毎)に検出した実モータ回転角度の1番目の記憶値VVLACT(#i)(1) からn番目の記憶値VVLACT(#i)(n) のばらつき度合(例えば標準偏差)を算出し、それを気筒別可変バルブ制御精度値ACCURA(#i)とする。
【0115】
以上説明した本実施形態(2)では、各気筒の吸気バルブ28の実リフト量(実モータ回転角度VVLACT)のサイクル間ばらつきに基づいて気筒別可変バルブ制御精度値ACCURAを算出するようにしたので、気筒別可変バルブ制御精度として、各気筒の吸気バルブ28の実リフト量のサイクル間ばらつき(繰り返し精度)を評価することができ、吸気バルブ28の実リフト量のサイクル間ばらつきが悪化したときに、気筒別可変バルブ制御を禁止することができる。
【0116】
《実施形態(3)》
本発明の実施形態(3)では、図15に示す気筒別可変バルブ制御精度値算出ルーチンを実行することで、可変バルブリフト機構30のモータ駆動時間TACT(図12、図13参照)のサイクル間ばらつきに基づいて各気筒の気筒別可変バルブ制御精度値ACCURA(#i)を求めるようにしている。
【0117】
本実施形態(3)で実行する図15の気筒別可変バルブ制御精度値算出ルーチンでは、まず、ステップ801で、モータ回転角度センサ44の出力に基づいて可変バルブリフト機構30のモータ41を次の吸気気筒の目標リフト量VVLMに相当する位置まで駆動するのに要したモータ駆動時間TACTを検出する。
【0118】
この後、ステップ802に進み、各気筒別に吸気行程を迎える毎(サイクル毎)に検出したモータ駆動時間の1番目の記憶値TACT(#i)(1) からn番目(例えば20番目)の記憶値TACT(#i)(n) を更新する。
【0119】
この場合、次の吸気気筒が第1気筒#1のときは、第1気筒#1の吸気行程前のモータ駆動時間の1番目の記憶値TACT(#1)(1) から(n−1)番目の記憶値TACT(#1)(n−1) を、それぞれ2番目の記憶値TACT(#1)(2) からn番目の記憶値TACT(#1)(n) で更新し、n番目の記憶値TACT(#1)(n) を今回の記憶値TACTで更新する。
【0120】
同じようにして、次の吸気気筒が第2気筒#2のときは、第2気筒#2の吸気行程前のモータ駆動時間の1番目の記憶値TACT(#2)(1) からn番目の記憶値TACT(#2)(n) を更新し、次の吸気気筒が第3気筒#3のときは、第3気筒#3の吸気行程前のモータ駆動時間の1番目の記憶値TACT(#3)(1) からn番目の記憶値TACT(#3)(n) を更新し、次の吸気気筒が第4気筒#4のときは、第4気筒#4の吸気行程前のモータ駆動時間の1番目の記憶値TACT(#4)(1) からn番目の記憶値TACT(#4)(n) を更新する。
【0121】
この後、ステップ803に進み、各気筒の吸気行程を迎える毎(サイクル毎)に検出したモータ駆動時間の1番目の記憶値TACT(#i)(1) からn番目の記憶値TACT(#i)(n) のばらつき度合(例えば標準偏差)を算出し、それを気筒別可変バルブ制御精度値ACCURA(#i)とする。
【0122】
以上説明した本実施形態(3)では、可変バルブリフト機構30のモータ駆動時間TACTのサイクル間ばらつきに基づいて気筒別可変バルブ制御精度値ACCURAを算出するようにしたので、気筒別可変バルブ制御精度として、可変バルブリフト機構30のモータ駆動時間TACTのサイクル間ばらつき(繰り返し精度)を評価することができ、可変バルブリフト機構30のモータ駆動時間TACTのサイクル間ばらつきが悪化したときに、気筒別可変バルブ制御を禁止することができる。
【0123】
尚、上記各実施形態(1)〜(3)では、各気筒の気筒別可変バルブ制御精度値ACCURAを算出するようにしたが、全気筒のうちの1つ又は2つ以上の気筒について気筒別可変バルブ制御精度値ACCURAを算出するようにしても良い。
【0124】
また、上記各実施形態(1)〜(3)では、気筒別可変バルブ制御の禁止中にリフト量制限モード可変バルブ制御による吸入空気量制御とスロットルバルブ制御による吸入空気量制御を併用するようにしたが、スロットルバルブ制御による吸入空気量制御のみを行うようにしても良い。
【0125】
また、上記各実施形態(1)〜(3)では、気筒別可変バルブ制御の禁止中に気筒別可変バルブ制御を試行し、そのときの気筒別可変バルブ制御精度値ACCURAが許容範囲以内で且つバッテリ電圧が所定電圧以上と判定されたときに復帰条件が成立するようにしたが、気筒別可変バルブ制御精度値ACCURAが許容範囲以内と判定されたときに復帰条件が成立するようにしても良い。
【0126】
勿論、バッテリ電圧が所定値以上と判定されたときに復帰条件が成立するようにしても良い。バッテリ電圧の低下によって気筒別可変バルブ制御精度が悪化した場合、バッテリ電圧が所定電圧以上に回復すると、気筒別可変バルブ制御精度が回復するため、バッテリ電圧が所定電圧以上に回復したときに、復帰条件が成立するようにすれば、気筒別可変バルブ制御精度が回復したときに、気筒別可変バルブ制御を再開することができる。
【0127】
また、本発明の適用範囲は、吸気バルブのリフト量を可変する可変バルブ制御システムに限定されず、吸気バルブのリフト量、作用角、バルブタイミングの少なくとも1つを可変する可変バルブ制御システムに広く適用することができる。また、排気バルブについても、本発明を適用して実施できる。
【0128】
更に、本発明は、気筒間の吸入空気量ばらつきに基づいて気筒別可変バルブ制御を行うシステムに限定されず、気筒間のバルブ可変量ばらつきに基づいて気筒別可変バルブ制御を行うシステムに適用しても良い。
【0129】
その他、本発明は、直列エンジンに限定されず、V型エンジン、水平対抗エンジン等、種々の複数気筒エンジンに適用でき、気筒数も適宜変更しても良いことは言うまでもない。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御システム全体の概略構成図
【図2】可変バルブリフト機構の正面図
【図3】可変バルブリフト機構によるバルブリフト量の連続可変動作を説明するためのバルブリフト特性図
【図4】実施形態(1)の気筒別可変バルブ制御実行・禁止ルーチンの処理の流れを示すフローチャート
【図5】実施形態(1)の気筒別可変バルブ制御禁止判定ルーチンの処理の流れを示すフローチャート
【図6】実施形態(1)の気筒別可変バルブ制御精度値算出ルーチンの処理の流れを示すフローチャート
【図7】実施形態(1)の気筒別可変バルブ制御復帰判定ルーチンの処理の流れを示すフローチャート
【図8】実施形態(1)の気筒別可変バルブ制御ルーチンの処理の流れを示すフローチャート
【図9】実施形態(1)の気筒間吸入空気量ばらつき率算出ルーチンの処理の流れを示すフローチャート
【図10】リフト補正量FVVLのマップを概念的に示す図
【図11】実施形態(1)の可変バルブ制御の実行例を示すタイムチャート
【図12】気筒別可変バルブ制御精度の正常時の気筒別可変バルブ制御の実行例を示すタイムチャート
【図13】気筒別可変バルブ制御精度の悪化時の気筒別可変バルブ制御の実行例を示すタイムチャート
【図14】実施形態(2)の気筒別可変バルブ制御精度値算出ルーチンの処理の流れを示すフローチャート
【図15】実施形態(3)の気筒別可変バルブ制御精度値算出ルーチンの処理の流れを示すフローチャート
【符号の説明】
11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、20…燃料噴射弁、21…点火プラグ、22…排気管、26…クランク角センサ、27…ECU(気筒間ばらつき算出手段,気筒別目標バルブ可変量設定手段,気筒別可変バルブ制御手段,制御精度算出手段,気筒別可変バルブ制御禁止手段,リフト量制限モード可変バルブ制御手段,スロットル制御手段,復帰制御手段,試行手段)、28…吸気バルブ、29…排気バルブ、30,31…可変バルブリフト機構(可変バルブ機構)、41…モータ、44…モータ回転角度センサ。

Claims (10)

  1. 内燃機関の複数気筒の吸気バルブ又は排気バルブ(以下単に「バルブ」という)のバルブ可変量を一括して1つの可変バルブ機構で制御する内燃機関の可変バルブ制御装置において、
    気筒間の実バルブ可変量又は実吸入空気量のばらつきの情報(以下「気筒間ばらつき情報」という)を算出する気筒間ばらつき算出手段と、
    前記気筒間ばらつき情報を考慮して各気筒毎に目標バルブ可変量を設定する気筒別目標バルブ可変量設定手段と、
    所定タイミング毎に前記可変バルブ機構を次にバルブが開かれる気筒の目標バルブ可変量に相当する位置まで駆動することでバルブ可変量を気筒別に制御する気筒別可変バルブ制御を行う気筒別可変バルブ制御手段と、
    前記気筒別可変バルブ制御の制御精度を表す気筒別可変バルブ制御精度値を算出する制御精度算出手段と、
    前記気筒別可変バルブ制御精度値が所定の許容範囲を越えて悪化した場合に、前記気筒別可変バルブ制御を禁止する気筒別可変バルブ制御禁止手段と
    を備えていることを特徴とする内燃機関の可変バルブ制御装置。
  2. 前記制御精度算出手段は、各気筒又は所定気筒の実バルブ可変量と目標バルブ可変量との偏差に基づいて前記気筒別可変バルブ制御精度値を算出することを特徴とする請求項1に記載の内燃機関の可変バルブ制御装置。
  3. 前記制御精度算出手段は、各気筒又は所定気筒の実バルブ可変量のサイクル間ばらつきに基づいて前記気筒別可変バルブ制御精度値を算出することを特徴とする請求項1に記載の内燃機関の可変バルブ制御装置。
  4. 前記制御精度算出手段は、前記可変バルブ機構の駆動時間のサイクル間ばらつきに基づいて前記気筒別可変バルブ制御御精度値を算出することを特徴とする請求項1に記載の内燃機関の可変バルブ制御装置。
  5. 前記気筒別可変バルブ制御精度値の許容範囲は、内燃機関の回転速度変動又は燃焼圧変動が所定値以下になる範囲に設定されていることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の可変バルブ制御装置。
  6. 前記気筒別可変バルブ制御の禁止中に、各気筒共通の目標バルブリフト量を所定値以上に制限して前記可変バルブ機構を各気筒共通の目標バルブ可変量に相当する位置に制御するリフト量制限モード可変バルブ制御を行うリフト量制限モード可変バルブ制御手段を備えていることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の可変バルブ制御装置。
  7. 前記可変バルブ機構を制御して吸入空気量を制御するシステムに適用され、
    前記気筒別可変バルブ制御の禁止中に、内燃機関のスロットルバルブを制御して吸入空気量を制御するスロットル制御手段を備えていることを特徴とする請求項1乃至6のいずれかに記載の内燃機関の可変バルブ制御装置。
  8. 前記気筒別可変バルブ制御の禁止中に所定の復帰条件が成立したときに前記気筒別可変バルブ制御を復帰させる復帰制御手段を備えていることを特徴とする請求項1乃至7のいずれかに記載の内燃機関の可変バルブ制御装置。
  9. 前記気筒別可変バルブ制御の禁止中に前記可変バルブ機構を駆動するバッテリ電圧が所定値よりも低下している場合、前記復帰条件は、該バッテリ電圧が所定電圧以上に回復したときに成立することを特徴とする請求項8に記載の内燃機関の可変バルブ制御装置。
  10. 前記気筒別可変バルブ制御の禁止中の燃料カット中又は減速中に一時的に前記気筒別可変バルブ制御を試行する試行手段を備え、
    前記復帰条件は、前記気筒別可変バルブ制御を一時的に試行したときの前記気筒別可変バルブ制御精度値が所定の許容範囲内に回復したときに成立することを特徴とする請求項8又は9に記載の内燃機関の可変バルブ制御装置。
JP2003105714A 2003-04-09 2003-04-09 内燃機関の可変バルブ制御装置 Expired - Fee Related JP4003182B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105714A JP4003182B2 (ja) 2003-04-09 2003-04-09 内燃機関の可変バルブ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105714A JP4003182B2 (ja) 2003-04-09 2003-04-09 内燃機関の可変バルブ制御装置

Publications (2)

Publication Number Publication Date
JP2004308611A true JP2004308611A (ja) 2004-11-04
JP4003182B2 JP4003182B2 (ja) 2007-11-07

Family

ID=33468142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105714A Expired - Fee Related JP4003182B2 (ja) 2003-04-09 2003-04-09 内燃機関の可変バルブ制御装置

Country Status (1)

Country Link
JP (1) JP4003182B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132187A (ja) * 2005-11-08 2007-05-31 Nissan Motor Co Ltd 内燃機関の吸気制御装置
JP2007239715A (ja) * 2006-03-13 2007-09-20 Toyota Motor Corp 可変動弁機構の制御装置
US7424874B2 (en) 2005-10-03 2008-09-16 Toyota Jidosha Kabushiki Kaisha Engine with intake valves operated by camshaft
JP2009144582A (ja) * 2007-12-13 2009-07-02 Toyota Motor Corp 内燃機関の制御装置
JP2010174744A (ja) * 2009-01-29 2010-08-12 Toyota Motor Corp 筒内圧センサの劣化判定装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424874B2 (en) 2005-10-03 2008-09-16 Toyota Jidosha Kabushiki Kaisha Engine with intake valves operated by camshaft
JP2007132187A (ja) * 2005-11-08 2007-05-31 Nissan Motor Co Ltd 内燃機関の吸気制御装置
JP4650219B2 (ja) * 2005-11-08 2011-03-16 日産自動車株式会社 内燃機関の吸気制御装置
JP2007239715A (ja) * 2006-03-13 2007-09-20 Toyota Motor Corp 可変動弁機構の制御装置
JP2009144582A (ja) * 2007-12-13 2009-07-02 Toyota Motor Corp 内燃機関の制御装置
JP2010174744A (ja) * 2009-01-29 2010-08-12 Toyota Motor Corp 筒内圧センサの劣化判定装置

Also Published As

Publication number Publication date
JP4003182B2 (ja) 2007-11-07

Similar Documents

Publication Publication Date Title
JP5673692B2 (ja) 内燃エンジンの始動制御方法及び始動制御装置
JP4321445B2 (ja) 内燃機関の制御装置
US8695568B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality determination device
JP4339572B2 (ja) 内燃機関の制御装置
JP5918702B2 (ja) エンジンの制御装置
JP4375271B2 (ja) 内燃機関の制御装置
JP3968705B2 (ja) 内燃機関の制御装置
US7447586B2 (en) Valve characteristic control apparatus for internal combustion engine
JP4003182B2 (ja) 内燃機関の可変バルブ制御装置
JP4424248B2 (ja) 筒内噴射式内燃機関の制御装置
JP2005146908A (ja) 内燃機関の振動低減制御装置
JP4075056B2 (ja) 内燃機関の可変バルブ制御装置
JP4168739B2 (ja) 内燃機関の気筒間ばらつき検出装置
JP2004316613A (ja) 内燃機関の可変バルブ制御装置
JP4032952B2 (ja) 内燃機関の可変バルブ制御装置
JP4033028B2 (ja) 内燃機関の可変バルブ制御装置
JP7439655B2 (ja) エンジンの制御方法及び制御装置
JP3613658B2 (ja) 多気筒内燃機関の燃料噴射制御装置
JP2007170198A (ja) 内燃機関のトルク制御装置
JPH1113493A (ja) エンジンの吸気制御装置
JP4238674B2 (ja) 内燃機関の気筒間ばらつき補正装置
JP2004204689A (ja) 内燃機関の可変バルブ制御装置
JP2006348789A (ja) 内燃機関の制御装置
JP2004332600A (ja) 内燃機関の可変バルブ制御装置
JP2011085064A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees