JP2004304628A - パワーアンプモジュール用多層基板及びパワーアンプモジュール - Google Patents
パワーアンプモジュール用多層基板及びパワーアンプモジュール Download PDFInfo
- Publication number
- JP2004304628A JP2004304628A JP2003096642A JP2003096642A JP2004304628A JP 2004304628 A JP2004304628 A JP 2004304628A JP 2003096642 A JP2003096642 A JP 2003096642A JP 2003096642 A JP2003096642 A JP 2003096642A JP 2004304628 A JP2004304628 A JP 2004304628A
- Authority
- JP
- Japan
- Prior art keywords
- power amplifier
- amplifier module
- power
- multilayer substrate
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Amplifiers (AREA)
Abstract
【解決手段】出力インピーダンス整合回路215に含まれるキャパシタC3、C4、C5を構成するキャパシタ電極C31、C41、C51は、機能層72―73間に備えられている。直流バイアス回路216に含まれるインダクタL5、L6を構成する導体パターンは、機能層74−75間に備えられている。接地電極GND2は、機能層74−73間に配置されている。
【選択図】 図4
Description
【発明の属する技術分野】
本発明は、マイクロ波帯を利用した通信機器等において、主に、送信回路部に用いられるパワーアンプモジュール及びその構成要素たる多層基板に関する。
【0002】
【従来の技術】
近年、携帯電話などのデジタル移動体通信機器の普及によりマイクロ波帯の送信部に用いられるパワーアンプモジュールへの需要が高まっている。パワーアンプモジュールは移動体通信機器の1部品であり、近年、通信機器、特に携帯電話の形状の小型化、高機能化と共に、低電圧動作化、高効率化及び軽量化の要望が強くなっている。
【0003】
デジタル移動体通信機器では、アンテナで受信された信号は、ローノイズアンプ部へ伝達され、ローノイズアンプ部からミキサ部へ供給されて、変調され、更にIF部を経てベースバンド部へ送られる。また、ベースバンド部で生成された送信信号は、ミキサ部で変調され、電力増幅素子部へ伝えられ、電力増幅素子部にて増幅された信号が、デュプレクサを経て送信用アンテナヘ伝えられる。電力増幅素子部では、ミキサ部から供給された信号を、必要な電力レベルまで増幅する。電力増幅素子部から出力された信号は、通常、電力検出部を通過させ、その電力レベルが検出される。そして、電力制御部から電力増幅素子部に、送信される電力が常に一定となるように、自動電力制御(Auto Power Control、以下APCと称する)が加わる。このため、電力増幅素子部からの出力信号が、必要以上に増加したり、必要以下に減少したりすることなく、必要とされる電力レベルに常に制御される。電力検出部を通過した信号は、ローパスフィルタにより、高次高調波成分が除去され、非可逆回路部へ供給される。
【0004】
非可逆回路部は、アイソレータとして動作するものであって、電力増幅素子部から供給された信号を、送信用アンテナ側へ伝達するが、送信用アンテナ側から電力増幅素子部ヘ戻る信号をカットする。この非可逆回路部の働きにより、出力側負荷インピーダンスの変化等に起因する電力の反射、それによる信号品質劣化(ノイズレベルの増加)、効率劣化、及び、電力増幅素子部内部の回路の破壊等が回避される。
【0005】
非可逆回路部から出力された信号は、デュプレクサ(Duplexer)へ伝えられ、更に送信アンテナに伝達される。
【0006】
パワーアンプモジュールは多層基板を含んでいる。パワーアンプモジュールを構成する多層基板の材料としては、一般に、ガラスエポキシ基板に見られるように、有機樹脂が用いられる。また、多層基板上に形成されるストリップラインの波長短縮効果による形状小型化と、マイクロ波の伝送損失低減化のため、高誘電率で、かつ、低誘電正接の特性を有する材料が用いられる。
【0007】
パワーアンプモジュールに含まれる電力増幅素子は、多層基板の一面上に搭載され、電力増幅素子の入力インピーダンス整合回路、出力インピーダンス整合回路及び直流バイアス回路に必要な受動素子の幾つかは、この多層基板内に形成される。
【0008】
ところが、入力インピーダンス整合回路及び出力インピーダンス整合回路のキャパシタと、直流バイアス回路のインダクタとを多層基板内に形成した場合、信号伝送路となる入力インピーダンス整合回路及び出力インピーダンス整合回路のキャパシタと、同じく多層基板内に形成された直流バイアス回路のインダクタとの間に電気的干渉が発生し、発振や信号歪を生じてしまうという問題を生じる。特に、最近は、小型化、薄型化の要求に応えるため、多層基板を構成する各層の層厚が薄型化されており、キャパシタと、インダクタとの間に電気的干渉が生じ易い電極配置構造になっているため、この問題が一層生じ易くなっている。このため、従来は、外形寸法を、5.0(mm)×5.0(mm)×1.8(mm)程度に小型化するのが精一杯であった。
【0009】
特許文献1には、信号伝送線路と増幅用トランジスタの電圧供給線路間にGND部を設けることにより、両者間に高周波的なアイソレーションをとる技術が開示されている。
【0010】
しかし、特許文献1には、信号伝送路となる入力インピーダンス整合回路及び出力インピーダンス整合回路のキャパシタと、同じく多層基板内に形成された直流バイアス回路のインダクタとの間の電気的干渉を防止する手段は開示されていない。
【0011】
【特許文献1】
特開平10−322141号公報
【0012】
【発明が解決しようとする課題】
本発明の課題は、信号伝送路となる入出力インピーダンス整合回路のキャパシタと、直流バイアス回路のインダクタとの間の電気的干渉を抑制し、特性劣化のない小型、かつ、薄型のパワーアンプモジュール用多層基板及びパワーアンプモジュールを提供することである。
【0013】
【課題を解決するための手段】
上述した課題を解決するため、本発明に係るパワーアンプモジュール用多層基板は、入力インピーダンス整合回路と、出力インピーダンス整合回路と、直流バイアス回路とを有し、接地電極を含む。この多層基板は、複数の機能層を積層して構成されている。
【0014】
前記入力インピーダンス整合回路は、キャパシタを含み、パワーアンプモジュールに含まれる電力増幅素子の信号入力段を構成し、前記キャパシタを構成するキャパシタ電極の少なくとも1つは、機能層に備えられている。
【0015】
前記出力インピーダンス整合回路は、キャパシタを含み、パワーアンプモジュールに含まれる前記電力増幅素子の信号出力段を構成し、前記キャパシタを構成するキャパシタ電極の少なくとも1つは、機能層間に備えられている。
【0016】
前記直流バイアス回路は、インダクタを含み、パワーアンプモジュールに含まれる前記電力増幅素子のバイアス回路を構成しており、前記インダクタを構成する導体パターンは、他の機能層間に備えられている。
【0017】
前記接地電極は、前記キャパシタ電極と前記導体パターンとの間に存在する機能層間に配置されている。
【0018】
本発明に係るパワーアンプモジュール用多層基板は、入力インピーダンス整合回路と、出力インピーダンス整合回路と、直流バイアス回路とを含み、入力インピーダンス整合回路に含まれるキャパシタを構成するキャパシタ電極の少なくとも1つは、機能層に備えられている。また、出力インピーダンス整合回路に含まれるキャパシタを構成するキャパシタ電極の少なくとも1つは、機能層間に備えられている。更に、直流バイアス回路に含まれるインダクタを構成する導体パターンは、他の機能層間に備えられている。
【0019】
この構造によれば、入力インピーダンス整合回路、出力インピーダンス整合回路及び直流バイアス回路の回路要素であるキャパシタ電極及び導体パターンを、多層基板の面上または内部に配置し、全体形状を、小型化、薄型化した多層基板を実現することができる。
【0020】
しかも、本発明に係るパワーアンプモジュール用多層基板は、接地電極を含み、接地電極はキャパシタ電極と、導体パターンとの間に存在する機能層間に配置され、キャパシタ電極と導体パターンとを電気的に分離するから、信号伝送路となる入力インピーダンス整合回路及び出力インピーダンス整合回路のキャパシタと、直流バイアス回路のインダクタとの間の電気的干渉を、接地電極によって抑制し、特性劣化のないパワーアンプモジュール用多層基板を得ることができる。
【0021】
本発明に係る多層基板は、電力増幅素子と組み合わされ、パワーアンプモジュールを構成する。電力増幅素子は多層基板の上に搭載される。
【0022】
本発明に係るパワーアンプモジュールは、上述した本発明に係る多層基板を用いるので、多層基板による作用効果をそのまま得ることができる。
【0023】
【発明の実施の形態】
図1はデジタル移動体通信機器(W−CDMA対応)における高周波回路部の構成を示すブロック図である。受信アンテナANT2で受信された信号は、ローノイズアンプ部AMPへ伝達され、ミキサ部MIXRで変調され、更にIF部を経由してベースバンド部BSBへ送られる。
【0024】
また、ベースバンド部BSBで生成された送信信号は、ミキサ部MIXTで変調される。ミキサ部MIXTによる変調は、フェーズロックループPLLからミキサ部MIXTに供給される信号に基づいて行われる。送信信号は、ミキサ部MIXTで変調された後、電力増幅回路部PWAへ供給される。電力増幅回路部PWAは、送信用アンテナANT1から出力される送信信号を、受信者に届く電力になるまで増幅する役割を担う。電力増幅回路部PWAにて増幅された信号は、デュプレクサDUPを経て送信用アンテナANT1ヘ伝えられ、送信用アンテナANT1から空中に放射される。
【0025】
図2は電力増幅回路部PWAの詳細を示すブロック図である。図示された電力増幅回路部PWAは、バンドパスフィルタ1、パワーアンプモジュール2、電力検出部31、ローパスフィルタ32、及び、非可逆回路部33を含んでいる。ミキサ部MIXTから電力増幅回路部PWAへ供給された変調信号は、バンドパスフィルタ1により、必要な周波数成分のみが抽出され、パワーアンプモジュール2ヘ伝えられる。バンドパスフィルタ1を通過した信号は、パワーアンプモジュール2に供給される。
【0026】
パワーアンプモジュール2では、バンドパスフィルタ1を通過した信号を増幅する。パワーアンプモジュール2から出力された信号は、電力検出部31に供給される。そして、電力検出部31を通過するとき、信号の電力レペルが検出される。電力検出信号は、電力制御部34に供給される。電力制御部34は電力検出部31から供給される電力検出信号に基づき、パワーアンプモジュール2にAPC制御を加え、出力電力を一定化する。
【0027】
電力検出部31を通過した信号は、ローパスフィルタ32により、高次高調波成分が除去され、非可逆回路部33へ供給される。
【0028】
非可逆回路部33は、アイソレータを構成し、パワーアンプモジュール2から供給された信号を送信用アンテナANT1側へは伝達するが、送信用アンテナANT1(図1参照)側からパワーアンプモジュール2ヘ戻る信号をカットする。非可逆回路部33がないと、動作環境等に起因して出力側負荷インピーダンスが変化した場合、パワーアンプモジュール2で増幅された電力が反射され、パワーアンプモジュール2ヘ戻り、パワーアンプモジュール2から出力される信号の品質劣化(ノイズレベルの増加)、効率劣化、パワーアンプモジュール2の内部回路の破壊等を招く。非可逆回路部33は、このような反射による不具合を防止するために備えられている。
【0029】
非可逆回路部33を通過した信号は、デュプレクサDUPへ伝えられ、更に、送信用アンテナANT1に伝達される。そして、送信用アンテナANT1から、空中へ信号が放射される。
【0030】
図1、図2に示す例は、W−CDMA対応のもであり、パワーアンプモジュール2に要求される主な特性は以下のとおりである。
【0031】
周波数(fin)=1920〜1980MHz
出力電力(Pout)=27dBm
電力付加効率(PAE)=40%以上
隣接チャンネル漏洩電力比(ACPR)
ACPR1=−38dBc以下(at 5MHz)
ACPR2=−48d8c以下(at 10MHz)
隣接チャンネル漏洩電力比(ACPR)とは、送信信号の中心周波数から5.0MHz、または、10.0MHz離れた周波数におけるノイズレベルを、中心周波数の電力レベルに対する相対比で表した値である。電力付加効率(PAE)とは、出力電力と消費電力との割合をパーセントで表示したもので、高いほど好ましい。
【0032】
パワーアンプモジュール2は、その出力負荷インピーダンスZIoが50Ωの場合に、上記特性が得られるように設計される。実際には、50Ωの状態が定常的に持続することはなく、アンテナの角度や、温度条件などにより30〜70Ω程度は充分に変化しえる。パワーアンプモジュール2は非可逆回路部を含むことができる。
【0033】
図3はパワーアンプモジュール2の主要部をなす電力増幅部21のブロック図を示している。図示実施例において、電力増幅部21は、入力インピーダンス整合回路211、前段の電力増幅素子212、後段の電力増幅素子214、出力インピーダンス整合回路215及び直流バイアス回路216を含んでいる。パワーアンプモジュール2は電力増幅部21の他にも、追加的、または、付加的な回路部分を有する。
【0034】
電力増幅素子212、214は例えばHBT(ヘテロジャンクション・バイポーラ・トランジスタ)やFET(電界効果型トランジスタ)から構成される。
【0035】
バンドパスフィルタ1(図2参照)に接続されたPin端子から、入力インピーダンス整合回路211を経て、電力増幅素子212に供給された信号は、電力増幅素子212によって電力増幅される。電力増幅素子212によって電力増幅された信号は、電力増幅素子214に供給され、電力増幅作用を受ける。
【0036】
電力増幅素子214によって電力増幅を受けた信号は、電力増幅素子214を経て、出力インピーダンス整合回路215に供給される。電力増幅素子212、214には、Vreg端子に入力された基準信号が、キャパシタC7、及び、インダクタL4を介して供給される。
【0037】
図3に示された回路において、電力増幅素子212及び電力増幅素子214は、1パッケージ化されたMMIC(Microwave Monolithic IC)20を構成する。実施例では、2つの電力増幅素子212、214を用いているが、1つの場合もあるし、3つ以上の場合もある。MMIC20の出力インピーダンスは、出力インピーダンス整合回路215及び非可逆回路部33によって、負荷インピーダンスである50Ωに変換される。
【0038】
入力インピーダンス整合回路211は、Pin端子からバンドパスフィルタ1(図2参照)の側を見たときのインピーダンス50Ωを、MMIC20の入力インピーダンスに整合させるもので、インダクタL1及びキャパシタC1、C2を含むLC回路より構成される。Pin端子に供給された信号は、理想的には、無反射にてMMIC20に入力される。
【0039】
MMIC20に入力された信号は、電力増幅素子212及び電力増幅素子214により、所望の電力まで増幅される。
【0040】
MMIC20の出力側に備えられた出力インピーダンス整合回路215は、インダクタL2及びキャパシタC3のL型回路と、キャパシタC4、インダクタL3及びキャパシタC5のπ型回路と、直流阻止用キャパシタC6とを含んでいる。
【0041】
直流バイアス回路216は、電力増幅素子212、214を動作させるための直流バイアスを印加し、かつ、増幅電力を外部に漏洩させるのを防ぐ役割をもつ。従って、直流バイアス回路216に含まれるインダクタL5、L6には、電力増幅素子212、214で増幅された信号をVcc端子へ漏洩させないよう、理想的にはインピーダンスを無限大にすることが求められる。このため、インダクタL5、L6は、波長λに関して、(λ/4)長パターンのストリップライン、または、(λ/4)長パターンに相当するインピーダンスを持つインダクタ素子により構成することができる。
【0042】
図4は本発明に係るパワーアンプモジュールの層構成の一例を示す部分断面図である。図示されたパワーアンプモジュールは、多層基板7と、MMIC20を含んでいる。MMIC20は、既に述べたように、電力増幅素子212及び電力増幅素子214を含んでいる(図2、3参照)。
【0043】
多層基板7は、7つの機能層71〜77を積層した構造となっている。これらの機能層71〜77は、シート積層法(スタック法)、ビルドアップ法または塗布法によって形成される。
【0044】
機能層74はコア層である。コア層を構成する機能層74は、ガラス繊維を含有する有機質層である。機能層74は、具体的には、ガラス繊維入りであり、選択された有機樹脂材料と誘電体粉末との混合材料層で構成され、厚みが、例えば、160μm、比誘電率εrが10程度である。
【0045】
機能層71〜73は、有機樹脂材料と誘電体粉末とを混合した混合材料からなり、電力増幅部21に含まれる回路要素の一部を構成している。機能層71〜73は、機能層74と異なって、ガラス繊維を含んでおらず、選択された有機樹脂材料と誘電体粉末との混合材料層で構成されている。機能層71〜73について、一例であるが、機能層71は、厚みが40μm以下、比誘電率εrが10程度、機能層72は、厚みが40μm以下、比誘電率εrが10程度、機能層73は厚みが40μm以下、比誘電率εrが10程度に選定する。比誘電率εrは有機樹脂材料及び誘電体粉末の選択、並びに、それらの含有量をコントロールすることによって、所望の値に設定できる。
【0046】
機能層75〜77は、有機樹脂材料と誘電体粉末とを混合した混合材料からなり、電力増幅部21に含まれる回路要素の一部を構成している。機能層75〜77においても、一例として、機能層75は、厚みが40μm以下、比誘電率εrが10程度、機能層76は、厚みが40μm以下、比誘電率εrが10程度、機能層77は厚みが40μm以下、比誘電率εrが10程度となるように選定する。比誘電率εrは有機樹脂材料及び誘電体粉末の選択、並びに、それらの含有量のコントロールによって、所望の値に設定できることは、機能層71〜73の場合と同様である。なお、機能層71〜77の上記厚みは、何れも、上下の導体パターン同士の間における厚みである。
【0047】
図5〜図12は機能層71〜機能層77のパターンを示す図である。図5は、多層基板71の最上層を構成する機能層71を表面からみた平面図である。機能層71の表面には、入力インピーダンス整合回路211のキャパシタC2が備えられると共に、インダクタL1を構成する導体パターン、及び、キャパシタC1のキャパシタ電極C11が備えられている。
【0048】
また、直流バイアス回路216については、キャパシタC8、C9が備えられている。更に、出力インピーダンス整合回路215については、インダクタL2、L3を構成する導体パターン、及び、キャパシタC6が備えられている。Vreg端子と電力増幅素子212、214との間に接続され、かつ、接地されたキャパシタC7も備えられている。図示のキャパシタC2、C6〜C9は、何れもチップタイプである。
【0049】
図6は機能層71と隣接する機能層72の表面を示す平面図である。機能層71と機能層72との間には、接地電極GND1が形成されている。機能層71の表面に形成されたキャパシタ電極C11(図5参照)は、機能層71を介して接地電極GND1と対向するので、キャパシタ電極C11と接地電極GND1との間で、機能層71を容量層とするキャパシタC1が構成される。
【0050】
図7は機能層72と隣接する機能層73の表面を示す平面図である。機能層72と機能層73との間には、出力インピーダンス整合回路215のキャパシタC3、C4、C5を構成する各キャパシタ電極C31、C41、C51が形成されている。これらのキャパシタ電極C31、C41、C51と、機能層72に形成された接地電極GND1とにより、機能層72を容量層とするキャパシタが得られる。
【0051】
図8は機能層73と隣接する機能層74の表面を示す平面図である。機能層73と機能層74との間には、第2の接地電極GND2が形成されている。第2の接地電極GND2と、キャパシタ電極C31、C41、C51によっても、機能層73を容量層とするキャパシタが得られる。
【0052】
結局、出力インピーダンス整合回路215のキャパシタC3、C4、C5のキャパシタンス値は、キャパシタ電極C31、C41、C51と、接地電極GND1及び第2の接地電極GND2との間で得られたキャパシタとを並列接続した合成容量値となる。
【0053】
図9は機能層74と隣接する機能層75の表面を示す平面図である。機能層74と機能層75との間には、Vreg端子と電力増幅素子212、214との間に接続されているインダクタL4を構成する導体パターン、直流バイアス回路216のインダクタL5及びL6を構成する導体パターンが形成されている。インダクタL5及びL6は、第2の接地電極GND2と共に、(λ/4)長パターンのストリップラインとして機能する構成とすることができる。
【0054】
図10は機能層75と隣接する機能層76の表面を示す平面図、図11は機能層76と隣接する機能層77の表面を示す平面図、図12は機能層77の裏面図である。機能層77の裏面には、接地電極GND3が形成されている。インダクタL5及びL6は、この接地電極GND3と共に、(λ/4)長パターンのストリップラインとして機能する構成とすることができる。
【0055】
上述したように、本発明に係るパワーアンプモジュール用多層基板7では、入力インピーダンス整合回路211の回路要素であるキャパシタ電極C11、及び、出力インピーダンス整合回路215のインダクタL2、L3を構成する導体パターンを、機能層71の表面に形成するとともに、出力インピーダンス整合回路215及び直流バイアス回路216の回路要素であるキャパシタ電極C31、C41、C51及びインダクタL5、L6を構成する導体パターンを、多層基板7の内部に配置し、全体形状を、小型化、薄型化した多層基板7を実現することができる。実施例の場合、インダクタL4も多層基板7の内部に配置してあるので、より一層の小型化、薄型化を達成できる。具体的には、上述した多層基板7を用いた製品形状は、
4.0(mm)×4.0(mm)×1.5(mm)
であり、従来の
5.0(mm)×5.0(mm)×1.8(mm)
よりも著しく小型化された。
【0056】
しかも、本発明に係るパワーアンプモジュール用多層基板7は、第2の接地電極GND2を含み、第2の接地電極GND2はキャパシタ電極C31、C41、C51と、インダクタL5、L6を構成する導体パターンとの間に存在する機能層74−73間に配置され、キャパシタ電極C31、C41、C51とインダクタL5、L6を構成する導体パターンとを電気的に分離するから、信号伝送路となる出力インピーダンス整合回路215のキャパシタC3、C4、C5と、同じく多層基板7内に形成された直流バイアス回路216のインダクタL5、L6との間の電気的干渉を、第2の接地電極GND2によって抑制し、特性劣化のないパワーアンプモジュール用多層基板7を得ることができる。
【0057】
入力インピーダンス整合回路211については、キャパシタC1を構成するキャパシタ電極C11が、第1の接地電極GND1及び第2の接地電極GND2の2層によって、インダクタL5、L6を構成する導体パターンから、電気的に分離される。このため、入力インピーダンス整合回路211のキャパシタC1と、直流バイアス回路216のインダクタL5、L6との間の電気的干渉を、確実に抑制し、特性劣化のないパワーアンプモジュール用多層基板7を得ることができる。
【0058】
また、入力インピーダンス整合回路211のインダクタL1も、機能層71の表面に形成されていて、第1の接地電極GND1及び第2の接地電極GND2の2層によって、インダクタL5、L6を構成する導体パターンから、電気的に分離される。このため、入力インピーダンス整合回路211のインダクタL1と、直流バイアス回路216のインダクタL5、L6との間の電気的干渉をも、確実に抑制し、特性劣化のないパワーアンプモジュール用多層基板7を得ることができる。
【0059】
更に、出力インピーダンス整合回路215のインダクタL2、L3も、機能層71の表面に形成されていて、第1の接地電極GND1及び第2の接地電極GND2の2層によって、インダクタL5、L6を構成する導体パターンから、電気的に分離される。このため、出力インピーダンス整合回路215のインダクタL2、L3と、直流バイアス回路216のインダクタL5、L6との間の電気的干渉をも、確実に抑制し、特性劣化のないパワーアンプモジュール用多層基板7を得ることができる。
【0060】
実施例において、多層基板7は、機能層71〜77とを含んでおり、機能層71〜77は、有機樹脂材料と誘電体粉末とを混合した混合材料からなるから、セラミック多層基板と異なって、反りを発生することがなく、曲げ強度が大きく、破損、割れ等を生じにくい。
【0061】
機能層71〜73及び機能層75〜77は、有機樹脂材料と誘電体粉末とを混合した混合材料からなり、ガラス繊維等の補強成分を含まないから、例えば、一層当り、40μm以下まで、著しく薄くすることができる。従って、薄型化が可能であると共に、信頼性向上にも寄与し得る。機能層71〜73及び機能層75〜77は、誘電体粉末を含むから、誘電率の高い誘電体セラミック粉末を選択し、有機樹脂多層基板に比較して、優れた電気的特性を確保することができる。
【0062】
また、多層基板7は、ガラス繊維を含有する有機質層である機能層74を、コア層として有しており、機能層74の一面に機能層71〜73を順次に隣接させ、機能層74の他面に機能層75〜77を順次に隣接させ、ビルドアップ層として構成してあるから、機能層71〜73及び機能層75〜77の層厚を薄くして薄型化を図りつつ、機能層74により機械的強度を確保し、全体として、薄型で、機械的強度の大きな高信頼度のパワーアンプモジュールを得ることができる。
【0063】
例えば、曲げ強度を例にとると、セラミック多層基板の場合は、曲げ強度は30〜40kg/mm2であるが、ガラスエポキシ多層基板の曲げ強度は45〜52kg/mm2である。本発明に係る多層基板7は、有機樹脂材料と誘電体粉末とを混合した混合材料からなる機能層71〜73、75〜77と、ガラス繊維入りの機能層74との組み合わせになるから、セラミック多層基板とガラスエポキシ多層基板の間の曲げ強度を確保することができる。
【0064】
機能層71〜73及び機能層75〜77を構成するのに用いられる誘電体粉末は、比誘電率が5〜1000の範囲にあり、誘電正接が0.00002〜0.01の範囲にあるセラミック材料から選択することができる。具体例としては、チタン−バリウム−ネオジウム系セラミックス、チタン−バリウム−スズ系セラミックス等を挙げることができる。
【0065】
有機樹脂材料は、成形性、加工性、積層接着性、及び電気特性に優れた材料の中から、適宜選択して用いることができる。有機樹脂材料の含有量は30〜80vol%の範囲であることが好ましい。有機樹脂材料の具体例としては、熱硬化性樹脂または熱可塑性樹脂等を挙げることができる。更に具体的には、エポキシ樹脂、フェノール樹脂、低誘電率エポキシ樹脂、ポリブタジエン樹脂、BTレジン、ポリビニルベンジルエーテル化合物等を挙げることができる。これらの樹脂は、単独で用いてもよいし、2種以上を混合して用いてもよい。2種以上を混合して用いる場合、混合比は任意である。
【0066】
有機樹脂材料の好ましい一例は、ポリビニルベンジルエーテル化合物である。図5〜図12に示した積層構造において、機能層71〜73は、キャパシタ形成層であり、高誘電率、低誘電正接であることが好ましい。そこで、これらの層を構成する有機樹脂材料として、ポリビニルベンジルエーテル化合物を用いる。ポリビニルベンジルエーテル化合物としては、比誘電率が2.5〜3.5の範囲にあり、誘電正接が0.0025〜0.005の範囲にあるものを用いることが好ましい。
【0067】
この場合、ポリビニルベンジルエーテル化合物の含有率をa(vol%)とし、セラミックス粉末の含有率をb(vol%)としたとき、a+b=100(vol%)として、40(vol%)≦b≦60(vol%)を満たすように混合する。この混合材料によれば、比誘電率7〜14、誘電正接0.01〜0.002を実現することができる。
【0068】
機能層71〜73、75〜77において、更に、難燃剤を添加してもよい。難燃剤の具体例としては、テトラプロモジフェノールA変形ポリビニルベンジルエーテル化合物を挙げることができる。
【0069】
次に、機能層74に用いられるガラスクロス材料は、SiO2を主成分とするもので、多層基板7の骨格を形成する役割を担う。機能層74は、このガラスクロス材を核とし、これに上述した有機樹脂材料を含浸させて構成することができる。利用できるガラスクロスの組成例を下に示す。
<ガラスクロスの組成例>
SiO2:56wt%
MgB2O3:10wt%
Al2O3:17wt%
CaO:17wt%
機能層74においても、難燃剤を添加することができる。難燃剤の具体例としては、上述したテトラプロモジフェノールA変形ポリビニルベンジルエーテル化合物を挙げることができる。
【0070】
図示はしていないが、MMICの放熱性向上を考慮した放熱パターンを有する場合もある。例えば、各機能層71〜77において、MMICの直下に、MMICの平面積と同程度の面積を持ち、GND電位となる放熱用導体パターンを配置してもよい。これらの放熱用導体パターンはスルーホール導体によって接続する。
【0071】
以上、実施の形態について説明してきたが、本発明は、これに限定されるものではなく、特許請求の範囲の記載内において、種々の変形、変更が可能である。
【0072】
【発明の効果】
以上述べたように、本発明によれば、信号伝送路となる入出力インピーダンス整合回路のキャパシタと、直流バイアス回路のインダクタとの間の電気的干渉を抑制し、特性劣化のない小型、かつ、薄型のパワーアンプモジュール用多層基板及びパワーアンプモジュールを提供することができる。
【図面の簡単な説明】
【図1】本発明に係るパワーアンプモジュールが用いられるデジタル移動体通信機器(W−CDMA対応)における高周波回路部の構成を示すブロック図である。
【図2】本発明に係るパワーアンプモジュールが用いられる電力増幅回路部PWAの詳細を示すブロック図である。
【図3】本発明に係るパワーアンプモジュールの具体的な回路構成を示す回路図である。
【図4】図2、3に示したパワーアンプモジュールの構成を示す部分断面図である。
【図5】図4に示したパワーアンプモジュールにおいて、多層基板の最上層を表面からみた平面図である。
【図6】図5に示した層と隣接する次の機能層の表面を示す平面図である。
【図7】図6に示した層と隣接する次の機能層の表面を示す平面図である。
【図8】図7に示した層と隣接する次の機能層の表面を示す平面図である。
【図9】図8に示した層と隣接する次の機能層の表面を示す平面図である。
【図10】図9に示した層と隣接する次の機能層の表面を示す平面図である。
【図11】図10に示した層と隣接する最下層の表面を示す平面図である。
【図12】図11に示した最下層の裏面を示す平面図である。
【符号の説明】
2 パワーアンプモジュール
71〜73 機能層
74 コア層となる機能層
75〜77 機能層
Claims (2)
- 入力インピーダンス整合回路と、出力インピーダンス整合回路と、直流バイアス回路とを有し、接地電極を含み、複数の機能層を積層して構成されたパワーアンプモジュール用多層基板であって、
前記入力インピーダンス整合回路は、キャパシタを含み、パワーアンプモジュールに含まれる電力増幅素子の信号入力段を構成し、前記キャパシタを構成するキャパシタ電極の少なくとも1つは、機能層に備えられており、
前記出力インピーダンス整合回路は、キャパシタを含み、パワーアンプモジュールに含まれる前記電力増幅素子の信号出力段を構成し、前記キャパシタを構成するキャパシタ電極の少なくとも1つは、機能層間に備えられており、
前記直流バイアス回路は、インダクタを含み、パワーアンプモジュールに含まれる前記電力増幅素子のバイアス回路を構成しており、前記インダクタを構成する導体パターンは、他の機能層間に備えられており、
前記接地電極は、前記キャパシタ電極と前記導体パターンとの間に存在する機能層間に配置されている
パワーアンプモジュール用多層基板。 - 多層基板と、電力増幅素子とを含むパワーアンプモジュールであって、
前記多層基板は、請求項1に記載されたものでなり、
前記電力増幅素子は、前記多層基板の上に搭載されている
パワーアンプモジュール。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003096642A JP2004304628A (ja) | 2003-03-31 | 2003-03-31 | パワーアンプモジュール用多層基板及びパワーアンプモジュール |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003096642A JP2004304628A (ja) | 2003-03-31 | 2003-03-31 | パワーアンプモジュール用多層基板及びパワーアンプモジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004304628A true JP2004304628A (ja) | 2004-10-28 |
Family
ID=33408638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003096642A Pending JP2004304628A (ja) | 2003-03-31 | 2003-03-31 | パワーアンプモジュール用多層基板及びパワーアンプモジュール |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004304628A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101003587B1 (ko) | 2008-10-13 | 2010-12-22 | 삼성전기주식회사 | Cmos rf ic |
CN104408272A (zh) * | 2014-12-19 | 2015-03-11 | 国网上海市电力公司 | 一种山区环境下的直流偏磁影响评价系统及方法 |
US11418158B2 (en) | 2019-04-03 | 2022-08-16 | Murata Manufacturing Co., Ltd. | Radio-frequency module and communication device |
JPWO2022176947A1 (ja) * | 2021-02-18 | 2022-08-25 |
-
2003
- 2003-03-31 JP JP2003096642A patent/JP2004304628A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101003587B1 (ko) | 2008-10-13 | 2010-12-22 | 삼성전기주식회사 | Cmos rf ic |
CN104408272A (zh) * | 2014-12-19 | 2015-03-11 | 国网上海市电力公司 | 一种山区环境下的直流偏磁影响评价系统及方法 |
CN104408272B (zh) * | 2014-12-19 | 2018-05-22 | 国网上海市电力公司 | 一种山区环境下的直流偏磁影响评价系统及方法 |
US11418158B2 (en) | 2019-04-03 | 2022-08-16 | Murata Manufacturing Co., Ltd. | Radio-frequency module and communication device |
JPWO2022176947A1 (ja) * | 2021-02-18 | 2022-08-25 | ||
WO2022176947A1 (ja) * | 2021-02-18 | 2022-08-25 | ヌヴォトンテクノロジージャパン株式会社 | 高周波電力増幅装置 |
JP7351036B2 (ja) | 2021-02-18 | 2023-09-26 | ヌヴォトンテクノロジージャパン株式会社 | 高周波電力増幅装置 |
CN116918248A (zh) * | 2021-02-18 | 2023-10-20 | 新唐科技日本株式会社 | 高频功率放大器件 |
CN116918248B (zh) * | 2021-02-18 | 2024-03-19 | 新唐科技日本株式会社 | 高频功率放大器件 |
US11942911B2 (en) | 2021-02-18 | 2024-03-26 | Nuvoton Technology Corporation Japan | Radio-frequency power amplifier device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7253702B2 (en) | High-frequency switch module | |
JP4320122B2 (ja) | デュアル・モード・ディジタル・システム用電力増幅出力モジュール | |
JP5168146B2 (ja) | 高周波部品 | |
JP4784791B2 (ja) | 高周波複合部品及びこれを用いた無線通信装置 | |
US6937845B2 (en) | High-frequency module and radio device using the same | |
US6838956B2 (en) | Packaging methodology for duplexers using FBARs | |
KR20090035480A (ko) | 분기 회로, 고주파 회로 및 고주파 모듈 | |
EP1796276A1 (en) | High frequency switch module and method for controlling the same | |
JP2004297456A (ja) | 高周波モジュール | |
JP2004304628A (ja) | パワーアンプモジュール用多層基板及びパワーアンプモジュール | |
JP3851184B2 (ja) | フロントエンドモジュール | |
JP2005039263A (ja) | 回路モジュール用多層基板及び回路モジュール | |
JP2004297455A (ja) | 高周波モジュール | |
JP2005210074A (ja) | 多層基板及びパワーアンプモジュール | |
JP2002359321A (ja) | 電力増幅モジュール、回路要素集合基板及び回路要素特性調整方法 | |
Kim et al. | An LTCC power amplifier module integrated with a SAW duplexer | |
JP2005260878A (ja) | 高周波モジュール及び無線通信装置 | |
JP2001339260A (ja) | パワーアンプモジュール | |
JP2002290174A (ja) | 電力増幅モジュール | |
JP2002290170A (ja) | 電力増幅モジュール | |
JP2002190714A (ja) | 電力増幅モジュール及び電力増幅モジュール用基板 | |
JP2004282087A (ja) | 電力増幅モジュール用基板 | |
JP2002141757A (ja) | パワーアンプモジュール、パワーアンプモジュール用誘電体基板及び通信端末装置 | |
JP2003188307A (ja) | 電力増幅モジュール及び電力増幅モジュール用基板 | |
JP2003197805A (ja) | モジュール部品及びその調整方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051130 |