JP2004298769A - 気相反応装置 - Google Patents
気相反応装置 Download PDFInfo
- Publication number
- JP2004298769A JP2004298769A JP2003095397A JP2003095397A JP2004298769A JP 2004298769 A JP2004298769 A JP 2004298769A JP 2003095397 A JP2003095397 A JP 2003095397A JP 2003095397 A JP2003095397 A JP 2003095397A JP 2004298769 A JP2004298769 A JP 2004298769A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- gas
- quench fluid
- quench
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
【課題】予め気化された原料を気相発熱反応させて目的物を得る気相反応装置において、副反応の進行を抑制すると共に、低コスト化を図ること。
【解決手段】触媒が充填された第1の反応領域と第2の反応領域とが設けられた反応塔に、更にクエンチ流体を液体状態で供給するためクエンチ流体供給部と、クエンチ流体を蒸発させるための充填物からなる充填物層を備えた構成とする。この場合、第1の反応領域からでた気体は、充填物表面で蒸発するクエンチ流体に冷却されて温度上昇が抑えられる。このため副反応が抑えられ、かつ冷媒等が不要な簡単な装置で反応を行うことができるので設備および運転のコストが抑えられる。また非定常状態時に触媒が濡れないように、未蒸発クエンチ流体を溜める機能を有する充填物支持部を設けて装置外に排出するようにしてもよい。
【選択図】 図1
【解決手段】触媒が充填された第1の反応領域と第2の反応領域とが設けられた反応塔に、更にクエンチ流体を液体状態で供給するためクエンチ流体供給部と、クエンチ流体を蒸発させるための充填物からなる充填物層を備えた構成とする。この場合、第1の反応領域からでた気体は、充填物表面で蒸発するクエンチ流体に冷却されて温度上昇が抑えられる。このため副反応が抑えられ、かつ冷媒等が不要な簡単な装置で反応を行うことができるので設備および運転のコストが抑えられる。また非定常状態時に触媒が濡れないように、未蒸発クエンチ流体を溜める機能を有する充填物支持部を設けて装置外に排出するようにしてもよい。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、予め気化された原料を気相発熱反応させて目的物を得る断熱型の気相反応装置に関する。
【0002】
【従来の技術】
従来、予め気化された原料を気相発熱反応させて目的物を得る気相反応装置は例えば連続流通式の断熱反応塔が用いられ、この反応塔の反応領域には反応を促進させるための触媒が充填されているのが一般的である。この場合、当該反応塔に予め気化された原料が気体状態で供給され、触媒の存在下で予定とする反応が進行することにより目的物が生成される。
【0003】
【発明が解決しようとする課題】
ところで上述の断熱反応塔においては、反応塔内のガス温度を、予定とする反応の進行に適した温度範囲内に維持させる必要があり、このため原料は予め所定の温度に調整されて反応塔に供給されるが、前記反応が発熱反応である場合には、反応が進行するに従って、つまりガスが反応塔内を流れるにつれてガス温度が上昇し、その温度が前記温度範囲を超えて高くなりすぎると、予定としない副反応が進行する。その結果、副生成物(不純物)の生成により原料をロスする懸念や、コーキングの促進により触媒活性が低下する懸念がある。更に温度上昇が著しい場合には熱衝撃により触媒が破壊、一部剥離(クラッキング)して目的物の反応収率(転化率)が低下する懸念がある。
【0004】
上述の反応熱による温度上昇を抑える手法の一つとして、予定とする反応収率を得るために必要な反応領域を複数に分割して設けると共に、ガスを冷却するための冷却手段を設ける手法が検討されている。図6はその一例を示すものであり、この反応装置は触媒層10を備えた2基の反応塔1と、その反応塔1間に冷媒による冷却手段11例えば熱交換器が設けられた構成である。このような構成においては多量の冷媒による冷却手段が別途必要となるとともに、複数の反応塔と熱交換器が必要となり、更に接続配管、計装機器の追加によって装置が大掛かりとなり設備コストが高くなる上、装置占有面積(プロットプラン)が大きくなる問題点がある。
【0005】
本発明はこのような事情に基づいてなされたものであり、その目的は予め気化された原料を気相発熱反応させて目的物を得る気相反応装置において、副反応の進行を抑制すると共に、低コスト化を図ることのできる技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明の気相反応装置は、予め気化された原料を気相発熱反応させて目的物を得る断熱型の気相反応装置において、
原料を反応させるための反応塔と、
この反応塔の中に設けられ、反応を促進する触媒が充填された第1の反応領域と、
前記反応塔内にて第1の反応領域の下流側に設けられ、反応を促進する触媒が充填された第2の反応領域と、
前記第1の反応領域と第2の反応領域との間に設けられ、第1の反応領域から出た反応気体を冷却するクエンチ領域と、を備え、
前記クエンチ領域には、少なくとも原料を含むクエンチ流体を液体状態で供給するためのクエンチ流体供給部と、前記気体との間で熱交換を行ってクエンチ流体を蒸発させるための充填物層と、を有することを特徴とする。
【0007】
前記クエンチ流体供給部は、例えばクエンチ流体を液体状態で前記気体に供給するスプレー部を備えていてもよい。また前記充填物の比表面積が300m2/m3以上であることが好ましい。さらに充填物層は、充填物を支持し、前記充填物層から出た気体を通過させる一方、未蒸発のクエンチ流体を溜める機能を有する充填物支持部を備えていてもよい。このクエンチ流体を溜める機能を有する充填物支持部は、支持板と、この支持板に形成され、気体が下方に通過するための通気孔を形成するチムニー部と、このチムニー部の上端を覆い、液体が通気孔内に入り込まないように構成されたキャップ部と、前記チムニーの高さに相当する液溜部と、を有していてもよい。更に充填物支持部に溜められた未蒸発のクエンチ流体を排出する排出手段を備えていてもよく、この充填物支持部内に溜められた液体の液面を検知する液面検知手段を備え、この液面検知手段の検知結果に基づいて未蒸発のクエンチ流体を排出するようにしてもよい。更にまた、前記充填物は、比表面積が400〜700m2/m3の充填物であることが好ましく、ラシヒリング、ポールリング、セラミックボールから選ばれる一つであることができる。
【0008】
本発明によれば、反応熱として生じる熱量をクエンチ流体が蒸発して第1の反応領域から出たガスの一部となるための熱量として用いることで反応容器内のガスを所定の温度に冷却することができる。当該クエンチ流体の蒸発潜熱を冷却に利用することの利点は、少流量のクエンチ流体で高い冷却効果が得られることであり、このため気相の反応装置では小容量でかつ複雑でない装置構成とすることができる。そして充填物層においてクエンチ液体と反応ガスとの熱交換を行っているので、反応ガスが効率よく冷却される。その結果、副反応による予定としない副生成物(不純物)の生成を抑制できると共に、設備および運転の低コスト化を図ることができる。
【0009】
【発明の実施の形態】
先ず本発明の気相反応装置の実施の形態について、図1を用いて説明する。気相反応装置2は例えば固定床流通式の断熱型の装置であり、反応器である反応塔20を備えている。この反応塔20は頂部に接続された原料ガス供給管21aを介して気化器30および予熱器40が接続され、更に底部には生成ガス排出管21bが接続されている。また反応塔20の内部には、予定とする反応収率を得るのに必要な反応領域例えば触媒層22が上流側(上部側)と下流側(下部側)とに分割して設けられており、上流側の反応領域は、第1の触媒層22aにより第1の反応領域として形成され、下流側の反応領域は、第2の触媒層22bにより第2の反応領域として形成されている。これら触媒層22(22a、22b)は触媒サポート23により上下両側から支持されている。前記触媒サポート23には、ガスが触媒層22を均一に流れるように分散されて通過し、かつ触媒を通過させない程度の大きさのガス通流孔が夫々多数形成されている。
【0010】
前記反応塔20の中段の第1の触媒層22aと第2の触媒層22bとの間にはクエンチゾーンQが設けられ、このクエンチゾーンQの上流側にはクエンチ流体を反応塔20内で均一に分散しながら供給するためのクエンチ流体供給部であるクエンチ流体供給管24が設けられている。このクエンチ流体供給管24は、図2にその一例を示すように、例えば反応塔20の径方向に伸びる主管24aを備え、この主管24aには横方向に交差するように分岐管24bが複数設けられており、その管の下面側にはクエンチ流体をクエンチゾーンQに対して全体に均一に分散供給するためのスプレー部24cが複数設けられている。
【0011】
またクエンチゾーンQの下流側には、充填物層25が装填される。この充填物層25に充填される充填物としては、目的とする気相反応に悪影響を与えず気液接触効率が大きなものであれば基本的に制限はないが、比表面積が300m2/m3以上のものが好ましく、より好ましくは400〜700m2/m3である。好ましい充填物としては、磁製、金属製、プラスチック製のラシヒリング、ポールリング、ベルルサドル、マクマホンパッキング、セラミックボール等が挙げられるが、本例では例えば直径6mmのセラミックボールで形成される充填物層25が、例えば充填高さ1mになるようにして設けられている。当該充填物層25は充填物支持部26、例えばバブルキャップトレイに支持されており、このバブルキャップトレイは図3に示すように、支持板26aの複数箇所に例えば円形状の通気孔を形成し、その孔縁を起立させてチムニー部である高さL例えば50〜100mmの堰部26bを形成すると共に、この堰部26bを囲むようにキャップ部26cを設けて構成される。このバブルキャップトレイは充填物を支持する機能だけでなく、気体は通過させるが液体は直接通過させずに溜める機能も有しており、支持板26aの上方領域はチムニーの高さに相当する液溜部を形成している。即ち、触媒劣化等による反応率の低下、その他の予期せぬ事態(非定常状態)によりクエンチ流体の一部が気化されず液体状態にある場合、その液体をバブルキャップトレイ上に溜めることで下流の第2の触媒層22bの触媒が濡れるのを防止する役割を有するものである。
【0012】
更にクエンチゾーンQには、例えば前記したような予期せぬ事態(非定常状態)が生じてバブルキャップトレイ上に溜まった液体をドレンとして排出するための排出手段であるドレン排出手段5が設けられている。当該ドレン排出手段5の一例を図4を用いて説明する。先ず既述の支持板26aにはドレン排出口50が設けられており、このドレン排出口50には排出路例えば配管51が接続されている。この配管51は反応塔20の側壁を貫通して図示しない処理設備に接続されており、その途中にはバルブ52が設けられている。また配管51には液面検知手段53が接続されている。
【0013】
この液面検知手段53には、充填物層25の上方空間と前記配管51との間を連通するように縦に設けられ、一部が光透過性部材で構成された連通管54と、この連通管54内の液面が所定の高さに達したことを検出するように当該連通管54の光透過性部材を挟んで相対向する発光部55aおよび受光部55bからなる光センサー55とを有している。この光センサー55の液面検知レベルは例えば前記支持板26aの表面から例えば20〜40mmの高さ位置に設定されている。即ち当該光センサー55が連通管54内の液面を検出することでバブルキャップトレイ内の液面を検知することとなる。また図中6は制御部6であり、この制御部6は光センサー55が液面を検知したときにバルブ52を開いてドレンを排出する制御機能を有する。
【0014】
説明を図1に戻し、前記クエンチ流体供給管24は流量調整部である流量調整バルブ60を介して、原料を気化器30に供給するための原料供給路例えば配管27と接続されている。また制御部6は上述の制御機能の他に温度検出部61が検知するクエンチゾーンQを出たガスの温度に基づいて、クエンチ流体の供給量を制御する機能を有する。
【0015】
続いて上述の気相反応装置2を用いて気相発熱反応を行ったときの反応塔20内のガスの温度変化の一例について図5を用いて説明する。なお気相発熱反応としては、各種の合成反応、酸化反応、水素化反応その他の気相発熱反応などが挙げられる。先ず反応原料は、上述のように前段に設けられた気化器30で気化され、予熱器40で所定の温度tTに加熱された後、反応塔20に供給される。当該原料ガスが第1の触媒層22aを通過する際、触媒の存在下で予定とする反応が進行し、原料ガスの一部が反応して生成物となり、当該生成物と未反応の原料を含んだ混合ガスが形成される。このとき生じる反応熱により混合ガスの温度は上昇して温度t1になる。
【0016】
一方、第1の反応領域の下部から出た前記混合ガスに対して、反応の原料を含んでいるクエンチ流体が流量制御されて液体状態で供給される。前記クエンチ流体は、クエンチ流体供給管24を介して混合ガスに対し均一に供給され、充填物層25に到達する前においても空間で前記混合ガスとの間で熱交換が行われ、一部は気化するが、大部分は積層された充填物の表面に付着して液膜となって広がりながら流れ落ちていく。そしてこの間に液膜と混合ガスとが接触し、両者の間で熱交換が行われてクエンチ流体が気化する一方、混合ガスが冷却される。こうしてクエンチ流体が気化して混合ガスを形成する成分の一部となる際において、クエンチ流体は、気化するのに必要な熱量およびクエンチ流体と前記混合ガスとの間で熱的に平衡になるための熱量を混合ガスから受け取ることになり、混合ガスは全体として温度が低下して温度t2となる。なお、クエンチ流体を形成する物質は予定とする反応原料を含むものであればその種類を問わないが、その一例としては例えばトルエンの脱アルキル反応によりベンゼンを生成する場合のトルエン、あるいはアセチレンと酢酸とを反応させて酢酸ビニルを生成する場合の酢酸などを挙げることができる。
【0017】
更にクエンチ流体を含む混合ガスは充填物支持部26を通過して第2の触媒層22bに供給され、第2の触媒層22bの触媒の存在下において上述と同様に予定とする反応が進行して生成物が生成する。この生成物からなる生成ガスは反応塔20から排出されるが、第2の触媒層22bを通過する際、上述の場合と同様に反応熱によりガス温度が上昇して温度tBとなる。ここで例えば前記したような予期せぬ事態(非定常状態)が生じ未蒸発のクエンチ液体が増えた場合は、図4に示すように、液面が光センサー55の設定高さに達すると、光センサー55が連通管54の液面を検知し、その検知結果に基づいてバルブ52を開いて反応塔20の外に排出する。
【0018】
このような実施の形態においては、第1の触媒層(第1の反応領域)22aで生じる反応熱であって、混合ガスの温度をtTからt1に上昇させる熱量の例えば全部あるいはその一部を、クエンチ流体が蒸発して第1の反応領域から出たガスの一部となるための熱量にいわば転化することにより、混合ガスの温度を全体としてt1からt2まで低下させることができる。このため後段の第2の触媒層(第2の反応領域)22bでガス温度が上昇しても、そのガス温度を予定とする温度範囲内に収めることができ、その結果予定としない副反応が進行するのを抑えることができる。
【0019】
本実施の形態においては上述の効果とともに、以下のような効果も得ることができる。即ち、反応塔20の上部側の第1の触媒層22aと下部側の第2の触媒層22bとの間でクエンチを行っているので、単一の反応塔20で反応を行わせることができる。このため反応塔20は小容量でかつ複雑でない構成とすることができ設備コストを抑えることができる。更に液体状態で供給するクエンチ流体の蒸発潜熱を利用することから、少量の供給量であっても高い冷却効果を得ることができ、かつクエンチ流体は原料の一部として用いられて後段の第2の触媒層22bにおいて生成物になるので、冷媒などの他の媒体を必要としない。このため運転コストを抑えることができる。これに対してクエンチ流体を気体状態で供給する場合には、蒸発潜熱を利用できないので供給量が数十倍にもなる。
【0020】
更に本実施の形態においては、液体のクエンチ流体が充填物層25の充填物表面に付着して広がるので、このクエンチ液体と混合ガスとの熱交換を広い接触面積で行うことができる。このためクエンチ液体と混合ガスの両者の間で高い効率で熱交換(ガスの冷却)をすることができる。また既述のように反応の定常状態ではクエンチ流体の供給量はその全量が気化されるように制御されるが、例えば前記したような予期せぬ事態(非定常状態)が生じてクエンチ流体の一部が気化されず液体状態にある場合であっても、前記混合ガスが充填物支持部26を通過するときに当該未蒸発のクエンチ流体を分離することができる。この分離されたクエンチ流体は充填物支持部26上でも蒸発して混合ガスの一部となるが、所定の液量に達すると既述のようにドレン排出手段5を介して、反応器の外に排出される。このため未蒸発のクエンチ液体が堰部26bを越えて下流に流下することはなく、第2の触媒層22bの触媒が濡れて活性が劣化することを抑えることができる。
【0021】
また本発明の気相反応装置2の反応塔20に設けられる触媒層22は、上述の2段に分割する構成に限られず、3段以上例えば3〜5段に分割されて、各々の触媒層22の間にクエンチ流体供給管24が設けられ、上流側例えば上段側の触媒層22から出たガスにクエンチ流体を液体状態で供給して冷却し、冷却されたガスを次段の反応領域に供給して目的物を生成する構成であってもよい。この場合も、クエンチ流体は次段の反応領域に到達する前に全量を蒸発させることが好ましく、またクエンチ流体およびガスを次段の上流側に位置する充填物層25を通過させてクエンチ流体を蒸発させることが好ましい。こうした実施の形態においても上述の場合と同様の効果が得られると共に、各々の触媒層でのガス温度の上昇を小さくすることができるので、反応塔20の各部位における温度差を小さくすることができる。
【0022】
更にまた、本発明の気相反応装置2は、原料ガスを反応塔20の下方側から供給して上方側から生成ガスを排出する構成としてもよい。このような構成であっても上述の場合と同様の効果が得られる。更にまた、クエンチ流体の供給手法はクエンチ流体供給管24に設けられたスプレー部24cから単に液体状態で噴霧する手法に限らず、他の場所例えば気化器30又は予熱器40から気体状態の流体を噴霧用のガスとしてクエンチ流体供給管24に供給し、スプレー部24cにおいて液体状態のクエンチ流体と混合させながら噴霧するようにしてもよい。この場合、液体状態のクエンチ流体を微細な粒子にして噴霧することができ、このためクエンチ流体が蒸発しやすくなり、ガス温度の制御性を良くすることができる。
【0023】
【実施例】
以下、本発明の効果を確認するために行った実施例について説明する。
【0024】
(実施例1)
以下の実施例では、液クエンチを供給する例として酢酸とアセチレンの反応による酢酸ビニルの合成を行った実施例1を示す。この反応は下式の反応式で進行する。
CH3COOH+CHCH → CH3COOCHCH2
この反応の反応熱は酢酸または酢酸ビニル1molあたりΔH=−118 kJ/mol(−28kcal/mol)であり、発熱反応である。
(1)主な反応器条件は以下の通り。
・反応器内径=83mm(材質:SUS304)
・触媒層長さ=500mm(第1及び第2の触媒層22a、22bの合計)
(2)反応器内のクエンチゾーンの条件は以下の通り。
▲1▼ 充填物:セラミックボール(サイズ:6mm、比表面積:590m2/m3)
▲2▼ クエンチ部スプレーゾーン=300mm
▲3▼ クエンチ部充填層全長=500mm
▲4▼ クエンチ液導入部:フルコーン型スプレー使用
(3) 反応条件
前述の主反応の他に、種々の副反応が起こり、アセトアルデヒド、クロトンアルデヒド、アセトン、エチリデンジアセテートなどの不純物が生成しやすい。これら不純物の生成量は反応温度が高くなりすぎると顕著である。下記のような反応条件で試験を行った。
▲1▼入り口ガス温度:172℃
▲2▼圧力:1.0kg/cm2G
▲3▼原料流量:酢酸=105mol/h、アセチレン=262mol/h
▲4▼クエンチ用酢酸流量=25mol/h(35℃液体)
▲5▼制御温度範囲:170〜200℃
酢酸は蒸発器を通してガス化され、アセチレンガスと混合されて予熱器を経て反応器に導入される。組成の分析はガスクロを用いて行った。
【0025】
(実施例1の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の触媒層温度(℃)の関係は表1に示す通りであった。
【表1】実施例1の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=15.0%、酢酸から酢酸ビニルへの選択率=96%、反応した酢酸の全不純物への選択率=4%。主な不純物はアセトアルデヒド(50%)、クロトンアルデヒド(30%)、アセトン(20%)であった。
【0026】
(比較例1)
本例は、クエンチゾーンに液体の酢酸を供給しなかったこと以外は上述の実施例1と同一の試験条件で行った比較例1である。
【0027】
(比較例1の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の温度(℃)の関係は表2に示す通りであった。
【表2】比較例1の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=38.8%、酢酸から酢酸ビニルへの選択率=66%、反応した酢酸の全不純物への選択率=34%。主な不純物はアセトアルデヒド(40%)、クロトンアルデヒド(30%)、アセトン(20%)、エチリデンジアセテート(10%)であった。本比較例1では、クエンチをしなかったために第2の触媒層22bで反応が急速に進みすぎて、酢酸の反応転化率としては大幅に上昇したものの、不純物の生成に消費されてしまい良好な反応成績は得られなかった。
【0028】
(実施例2)
本実施例は、クエンチゾーンに使用した充填物が比表面積が243m2/m3のラシヒリング(サイズ3/4インチ=19mm)に変更した以外の試験条件は上述の実施例1と同一である実施例2である。
【0029】
(実施例2の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の温度(℃)の関係は表3に示す通りであった。
【表3】実施例2の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=16.5%、酢酸から酢酸ビニルへの選択率=92%、反応した酢酸の全不純物への選択率=8%。主な不純物はアセトアルデヒド(55%)、クロトンアルデヒド(35%)、アセトン(8%)、エチリデンジアセテート(2%)であった。
本実施例の反応においては、クエンチゾーンに用いた充填物として比表面積が243m2/m3のラシヒリングを使用した場合であり、実施例1と比較すると充填物の及ぼす影響の差と考えられる。すなわち、実施例1で使用したセラミックボールの比表面積(590m2/m3)と比較して、本実施例で使用したラシヒリングの比表面積(243m2/m3)は小さく、充填物の表面を気液の接触面積として蒸発を起こさせるには不利であり、そのために反応ガスの冷却効率がやや悪かったとものと考えられる。また、第2の触媒層22bで反応は進んだものの、温度上昇が進みすぎて200℃を越えたために不純物の生成量が多くなったと考えられる。なお、本実施例では未蒸発のクエンチ液はクエンチゾーンの系外に排出される構造を備えており、少量の未蒸発クエンチ液が発生していたことを確認した。
【0030】
(実施例3)
本例では、クエンチ液ディストリビューターがスプレーでなく、単孔ノズル(内径6mmパイプ、先端孔径3mm)を用いたこと以外は実施例1と同一の試験条件である。
【0031】
(実施例3の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の温度(℃)の関係は表4に示す通りであった。
【表4】実施例3の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=18.6%、酢酸から酢酸ビニルへの選択率=92%、反応した酢酸の全不純物への選択率=8%。主な不純物はアセトアルデヒド(58%)、クロトンアルデヒド(22%)、アセトン(17%)、エチリデンジアセテート(3%)であった。
本実施例の反応試験においては、クエンチ液ディストリビューターが単孔ノズルでしかも、クエンチ液がクエンチゾーンのセラミックボール充填層の断面上端の中心部付近に集中的に供給された。その結果、中心部付近の充填物は比較的よく濡れているが、周辺部の充填物は乾いた状態となり、半径方向のガスの温度分布が大きくなる。最終的にクエンチされた反応ガスの冷却度合いは、充填物にラシヒリングを使用した実施例2の場合より悪い結果となった。第2の触媒層22bへ導入された供給ガス温度がやや高くなり過ぎたため、第2触媒層での反応はやや進み過ぎて、不純物の生成速度がやや加速される結果となった。なお、本実施例では未蒸発のクエンチ液をクエンチゾーン系外に排出できる構造を備えている。その結果、未蒸発クエンチ液の発生が確認され、その量は実施例2の場合より多かった。実施例1との比較からクエンチ流体の供給は分散して供給することが好ましいことが分かる。
【0032】
【発明の効果】
以上のように本発明によれば、気体状の原料を気相発熱反応させて目的物を得る気相反応装置において、反応器内に設置されたコンパクトな構造物からなるクエンチゾーンで、クエンチ液体の蒸発潜熱を利用して、反応ガスを効率的にかつ確実に冷却することができる。このため反応器内での副反応の進行を抑制すると共に、目的の反応生成物を高収率で得ることができ、必要とする設備および運転の低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明の気相反応装置を示す縦断面図である。
【図2】本発明の気相反応装置のクエンチ供給管の一例を示す説明図である。
【図3】本発明の気相反応装置の充填物支持部の一例を示す説明図である。
【図4】本発明の気相反応装置のドレン排出手段の一例を示す説明図である。
【図5】本発明の気相反応装置内のガスの温度を示す説明図である。
【図6】従来の反応装置を示す説明図である。
【符号の説明】
2 反応装置
20 反応塔
22a 第1の触媒層
22b 第2の触媒層
24 クエンチ流体供給管
25 充填物層
26 充填物支持部
30 気化器
40 予熱器
5 ドレン排出手段
53 液面検知手段
6 制御部
60 流量調整バルブ
Q クエンチゾーン
【発明の属する技術分野】
本発明は、予め気化された原料を気相発熱反応させて目的物を得る断熱型の気相反応装置に関する。
【0002】
【従来の技術】
従来、予め気化された原料を気相発熱反応させて目的物を得る気相反応装置は例えば連続流通式の断熱反応塔が用いられ、この反応塔の反応領域には反応を促進させるための触媒が充填されているのが一般的である。この場合、当該反応塔に予め気化された原料が気体状態で供給され、触媒の存在下で予定とする反応が進行することにより目的物が生成される。
【0003】
【発明が解決しようとする課題】
ところで上述の断熱反応塔においては、反応塔内のガス温度を、予定とする反応の進行に適した温度範囲内に維持させる必要があり、このため原料は予め所定の温度に調整されて反応塔に供給されるが、前記反応が発熱反応である場合には、反応が進行するに従って、つまりガスが反応塔内を流れるにつれてガス温度が上昇し、その温度が前記温度範囲を超えて高くなりすぎると、予定としない副反応が進行する。その結果、副生成物(不純物)の生成により原料をロスする懸念や、コーキングの促進により触媒活性が低下する懸念がある。更に温度上昇が著しい場合には熱衝撃により触媒が破壊、一部剥離(クラッキング)して目的物の反応収率(転化率)が低下する懸念がある。
【0004】
上述の反応熱による温度上昇を抑える手法の一つとして、予定とする反応収率を得るために必要な反応領域を複数に分割して設けると共に、ガスを冷却するための冷却手段を設ける手法が検討されている。図6はその一例を示すものであり、この反応装置は触媒層10を備えた2基の反応塔1と、その反応塔1間に冷媒による冷却手段11例えば熱交換器が設けられた構成である。このような構成においては多量の冷媒による冷却手段が別途必要となるとともに、複数の反応塔と熱交換器が必要となり、更に接続配管、計装機器の追加によって装置が大掛かりとなり設備コストが高くなる上、装置占有面積(プロットプラン)が大きくなる問題点がある。
【0005】
本発明はこのような事情に基づいてなされたものであり、その目的は予め気化された原料を気相発熱反応させて目的物を得る気相反応装置において、副反応の進行を抑制すると共に、低コスト化を図ることのできる技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明の気相反応装置は、予め気化された原料を気相発熱反応させて目的物を得る断熱型の気相反応装置において、
原料を反応させるための反応塔と、
この反応塔の中に設けられ、反応を促進する触媒が充填された第1の反応領域と、
前記反応塔内にて第1の反応領域の下流側に設けられ、反応を促進する触媒が充填された第2の反応領域と、
前記第1の反応領域と第2の反応領域との間に設けられ、第1の反応領域から出た反応気体を冷却するクエンチ領域と、を備え、
前記クエンチ領域には、少なくとも原料を含むクエンチ流体を液体状態で供給するためのクエンチ流体供給部と、前記気体との間で熱交換を行ってクエンチ流体を蒸発させるための充填物層と、を有することを特徴とする。
【0007】
前記クエンチ流体供給部は、例えばクエンチ流体を液体状態で前記気体に供給するスプレー部を備えていてもよい。また前記充填物の比表面積が300m2/m3以上であることが好ましい。さらに充填物層は、充填物を支持し、前記充填物層から出た気体を通過させる一方、未蒸発のクエンチ流体を溜める機能を有する充填物支持部を備えていてもよい。このクエンチ流体を溜める機能を有する充填物支持部は、支持板と、この支持板に形成され、気体が下方に通過するための通気孔を形成するチムニー部と、このチムニー部の上端を覆い、液体が通気孔内に入り込まないように構成されたキャップ部と、前記チムニーの高さに相当する液溜部と、を有していてもよい。更に充填物支持部に溜められた未蒸発のクエンチ流体を排出する排出手段を備えていてもよく、この充填物支持部内に溜められた液体の液面を検知する液面検知手段を備え、この液面検知手段の検知結果に基づいて未蒸発のクエンチ流体を排出するようにしてもよい。更にまた、前記充填物は、比表面積が400〜700m2/m3の充填物であることが好ましく、ラシヒリング、ポールリング、セラミックボールから選ばれる一つであることができる。
【0008】
本発明によれば、反応熱として生じる熱量をクエンチ流体が蒸発して第1の反応領域から出たガスの一部となるための熱量として用いることで反応容器内のガスを所定の温度に冷却することができる。当該クエンチ流体の蒸発潜熱を冷却に利用することの利点は、少流量のクエンチ流体で高い冷却効果が得られることであり、このため気相の反応装置では小容量でかつ複雑でない装置構成とすることができる。そして充填物層においてクエンチ液体と反応ガスとの熱交換を行っているので、反応ガスが効率よく冷却される。その結果、副反応による予定としない副生成物(不純物)の生成を抑制できると共に、設備および運転の低コスト化を図ることができる。
【0009】
【発明の実施の形態】
先ず本発明の気相反応装置の実施の形態について、図1を用いて説明する。気相反応装置2は例えば固定床流通式の断熱型の装置であり、反応器である反応塔20を備えている。この反応塔20は頂部に接続された原料ガス供給管21aを介して気化器30および予熱器40が接続され、更に底部には生成ガス排出管21bが接続されている。また反応塔20の内部には、予定とする反応収率を得るのに必要な反応領域例えば触媒層22が上流側(上部側)と下流側(下部側)とに分割して設けられており、上流側の反応領域は、第1の触媒層22aにより第1の反応領域として形成され、下流側の反応領域は、第2の触媒層22bにより第2の反応領域として形成されている。これら触媒層22(22a、22b)は触媒サポート23により上下両側から支持されている。前記触媒サポート23には、ガスが触媒層22を均一に流れるように分散されて通過し、かつ触媒を通過させない程度の大きさのガス通流孔が夫々多数形成されている。
【0010】
前記反応塔20の中段の第1の触媒層22aと第2の触媒層22bとの間にはクエンチゾーンQが設けられ、このクエンチゾーンQの上流側にはクエンチ流体を反応塔20内で均一に分散しながら供給するためのクエンチ流体供給部であるクエンチ流体供給管24が設けられている。このクエンチ流体供給管24は、図2にその一例を示すように、例えば反応塔20の径方向に伸びる主管24aを備え、この主管24aには横方向に交差するように分岐管24bが複数設けられており、その管の下面側にはクエンチ流体をクエンチゾーンQに対して全体に均一に分散供給するためのスプレー部24cが複数設けられている。
【0011】
またクエンチゾーンQの下流側には、充填物層25が装填される。この充填物層25に充填される充填物としては、目的とする気相反応に悪影響を与えず気液接触効率が大きなものであれば基本的に制限はないが、比表面積が300m2/m3以上のものが好ましく、より好ましくは400〜700m2/m3である。好ましい充填物としては、磁製、金属製、プラスチック製のラシヒリング、ポールリング、ベルルサドル、マクマホンパッキング、セラミックボール等が挙げられるが、本例では例えば直径6mmのセラミックボールで形成される充填物層25が、例えば充填高さ1mになるようにして設けられている。当該充填物層25は充填物支持部26、例えばバブルキャップトレイに支持されており、このバブルキャップトレイは図3に示すように、支持板26aの複数箇所に例えば円形状の通気孔を形成し、その孔縁を起立させてチムニー部である高さL例えば50〜100mmの堰部26bを形成すると共に、この堰部26bを囲むようにキャップ部26cを設けて構成される。このバブルキャップトレイは充填物を支持する機能だけでなく、気体は通過させるが液体は直接通過させずに溜める機能も有しており、支持板26aの上方領域はチムニーの高さに相当する液溜部を形成している。即ち、触媒劣化等による反応率の低下、その他の予期せぬ事態(非定常状態)によりクエンチ流体の一部が気化されず液体状態にある場合、その液体をバブルキャップトレイ上に溜めることで下流の第2の触媒層22bの触媒が濡れるのを防止する役割を有するものである。
【0012】
更にクエンチゾーンQには、例えば前記したような予期せぬ事態(非定常状態)が生じてバブルキャップトレイ上に溜まった液体をドレンとして排出するための排出手段であるドレン排出手段5が設けられている。当該ドレン排出手段5の一例を図4を用いて説明する。先ず既述の支持板26aにはドレン排出口50が設けられており、このドレン排出口50には排出路例えば配管51が接続されている。この配管51は反応塔20の側壁を貫通して図示しない処理設備に接続されており、その途中にはバルブ52が設けられている。また配管51には液面検知手段53が接続されている。
【0013】
この液面検知手段53には、充填物層25の上方空間と前記配管51との間を連通するように縦に設けられ、一部が光透過性部材で構成された連通管54と、この連通管54内の液面が所定の高さに達したことを検出するように当該連通管54の光透過性部材を挟んで相対向する発光部55aおよび受光部55bからなる光センサー55とを有している。この光センサー55の液面検知レベルは例えば前記支持板26aの表面から例えば20〜40mmの高さ位置に設定されている。即ち当該光センサー55が連通管54内の液面を検出することでバブルキャップトレイ内の液面を検知することとなる。また図中6は制御部6であり、この制御部6は光センサー55が液面を検知したときにバルブ52を開いてドレンを排出する制御機能を有する。
【0014】
説明を図1に戻し、前記クエンチ流体供給管24は流量調整部である流量調整バルブ60を介して、原料を気化器30に供給するための原料供給路例えば配管27と接続されている。また制御部6は上述の制御機能の他に温度検出部61が検知するクエンチゾーンQを出たガスの温度に基づいて、クエンチ流体の供給量を制御する機能を有する。
【0015】
続いて上述の気相反応装置2を用いて気相発熱反応を行ったときの反応塔20内のガスの温度変化の一例について図5を用いて説明する。なお気相発熱反応としては、各種の合成反応、酸化反応、水素化反応その他の気相発熱反応などが挙げられる。先ず反応原料は、上述のように前段に設けられた気化器30で気化され、予熱器40で所定の温度tTに加熱された後、反応塔20に供給される。当該原料ガスが第1の触媒層22aを通過する際、触媒の存在下で予定とする反応が進行し、原料ガスの一部が反応して生成物となり、当該生成物と未反応の原料を含んだ混合ガスが形成される。このとき生じる反応熱により混合ガスの温度は上昇して温度t1になる。
【0016】
一方、第1の反応領域の下部から出た前記混合ガスに対して、反応の原料を含んでいるクエンチ流体が流量制御されて液体状態で供給される。前記クエンチ流体は、クエンチ流体供給管24を介して混合ガスに対し均一に供給され、充填物層25に到達する前においても空間で前記混合ガスとの間で熱交換が行われ、一部は気化するが、大部分は積層された充填物の表面に付着して液膜となって広がりながら流れ落ちていく。そしてこの間に液膜と混合ガスとが接触し、両者の間で熱交換が行われてクエンチ流体が気化する一方、混合ガスが冷却される。こうしてクエンチ流体が気化して混合ガスを形成する成分の一部となる際において、クエンチ流体は、気化するのに必要な熱量およびクエンチ流体と前記混合ガスとの間で熱的に平衡になるための熱量を混合ガスから受け取ることになり、混合ガスは全体として温度が低下して温度t2となる。なお、クエンチ流体を形成する物質は予定とする反応原料を含むものであればその種類を問わないが、その一例としては例えばトルエンの脱アルキル反応によりベンゼンを生成する場合のトルエン、あるいはアセチレンと酢酸とを反応させて酢酸ビニルを生成する場合の酢酸などを挙げることができる。
【0017】
更にクエンチ流体を含む混合ガスは充填物支持部26を通過して第2の触媒層22bに供給され、第2の触媒層22bの触媒の存在下において上述と同様に予定とする反応が進行して生成物が生成する。この生成物からなる生成ガスは反応塔20から排出されるが、第2の触媒層22bを通過する際、上述の場合と同様に反応熱によりガス温度が上昇して温度tBとなる。ここで例えば前記したような予期せぬ事態(非定常状態)が生じ未蒸発のクエンチ液体が増えた場合は、図4に示すように、液面が光センサー55の設定高さに達すると、光センサー55が連通管54の液面を検知し、その検知結果に基づいてバルブ52を開いて反応塔20の外に排出する。
【0018】
このような実施の形態においては、第1の触媒層(第1の反応領域)22aで生じる反応熱であって、混合ガスの温度をtTからt1に上昇させる熱量の例えば全部あるいはその一部を、クエンチ流体が蒸発して第1の反応領域から出たガスの一部となるための熱量にいわば転化することにより、混合ガスの温度を全体としてt1からt2まで低下させることができる。このため後段の第2の触媒層(第2の反応領域)22bでガス温度が上昇しても、そのガス温度を予定とする温度範囲内に収めることができ、その結果予定としない副反応が進行するのを抑えることができる。
【0019】
本実施の形態においては上述の効果とともに、以下のような効果も得ることができる。即ち、反応塔20の上部側の第1の触媒層22aと下部側の第2の触媒層22bとの間でクエンチを行っているので、単一の反応塔20で反応を行わせることができる。このため反応塔20は小容量でかつ複雑でない構成とすることができ設備コストを抑えることができる。更に液体状態で供給するクエンチ流体の蒸発潜熱を利用することから、少量の供給量であっても高い冷却効果を得ることができ、かつクエンチ流体は原料の一部として用いられて後段の第2の触媒層22bにおいて生成物になるので、冷媒などの他の媒体を必要としない。このため運転コストを抑えることができる。これに対してクエンチ流体を気体状態で供給する場合には、蒸発潜熱を利用できないので供給量が数十倍にもなる。
【0020】
更に本実施の形態においては、液体のクエンチ流体が充填物層25の充填物表面に付着して広がるので、このクエンチ液体と混合ガスとの熱交換を広い接触面積で行うことができる。このためクエンチ液体と混合ガスの両者の間で高い効率で熱交換(ガスの冷却)をすることができる。また既述のように反応の定常状態ではクエンチ流体の供給量はその全量が気化されるように制御されるが、例えば前記したような予期せぬ事態(非定常状態)が生じてクエンチ流体の一部が気化されず液体状態にある場合であっても、前記混合ガスが充填物支持部26を通過するときに当該未蒸発のクエンチ流体を分離することができる。この分離されたクエンチ流体は充填物支持部26上でも蒸発して混合ガスの一部となるが、所定の液量に達すると既述のようにドレン排出手段5を介して、反応器の外に排出される。このため未蒸発のクエンチ液体が堰部26bを越えて下流に流下することはなく、第2の触媒層22bの触媒が濡れて活性が劣化することを抑えることができる。
【0021】
また本発明の気相反応装置2の反応塔20に設けられる触媒層22は、上述の2段に分割する構成に限られず、3段以上例えば3〜5段に分割されて、各々の触媒層22の間にクエンチ流体供給管24が設けられ、上流側例えば上段側の触媒層22から出たガスにクエンチ流体を液体状態で供給して冷却し、冷却されたガスを次段の反応領域に供給して目的物を生成する構成であってもよい。この場合も、クエンチ流体は次段の反応領域に到達する前に全量を蒸発させることが好ましく、またクエンチ流体およびガスを次段の上流側に位置する充填物層25を通過させてクエンチ流体を蒸発させることが好ましい。こうした実施の形態においても上述の場合と同様の効果が得られると共に、各々の触媒層でのガス温度の上昇を小さくすることができるので、反応塔20の各部位における温度差を小さくすることができる。
【0022】
更にまた、本発明の気相反応装置2は、原料ガスを反応塔20の下方側から供給して上方側から生成ガスを排出する構成としてもよい。このような構成であっても上述の場合と同様の効果が得られる。更にまた、クエンチ流体の供給手法はクエンチ流体供給管24に設けられたスプレー部24cから単に液体状態で噴霧する手法に限らず、他の場所例えば気化器30又は予熱器40から気体状態の流体を噴霧用のガスとしてクエンチ流体供給管24に供給し、スプレー部24cにおいて液体状態のクエンチ流体と混合させながら噴霧するようにしてもよい。この場合、液体状態のクエンチ流体を微細な粒子にして噴霧することができ、このためクエンチ流体が蒸発しやすくなり、ガス温度の制御性を良くすることができる。
【0023】
【実施例】
以下、本発明の効果を確認するために行った実施例について説明する。
【0024】
(実施例1)
以下の実施例では、液クエンチを供給する例として酢酸とアセチレンの反応による酢酸ビニルの合成を行った実施例1を示す。この反応は下式の反応式で進行する。
CH3COOH+CHCH → CH3COOCHCH2
この反応の反応熱は酢酸または酢酸ビニル1molあたりΔH=−118 kJ/mol(−28kcal/mol)であり、発熱反応である。
(1)主な反応器条件は以下の通り。
・反応器内径=83mm(材質:SUS304)
・触媒層長さ=500mm(第1及び第2の触媒層22a、22bの合計)
(2)反応器内のクエンチゾーンの条件は以下の通り。
▲1▼ 充填物:セラミックボール(サイズ:6mm、比表面積:590m2/m3)
▲2▼ クエンチ部スプレーゾーン=300mm
▲3▼ クエンチ部充填層全長=500mm
▲4▼ クエンチ液導入部:フルコーン型スプレー使用
(3) 反応条件
前述の主反応の他に、種々の副反応が起こり、アセトアルデヒド、クロトンアルデヒド、アセトン、エチリデンジアセテートなどの不純物が生成しやすい。これら不純物の生成量は反応温度が高くなりすぎると顕著である。下記のような反応条件で試験を行った。
▲1▼入り口ガス温度:172℃
▲2▼圧力:1.0kg/cm2G
▲3▼原料流量:酢酸=105mol/h、アセチレン=262mol/h
▲4▼クエンチ用酢酸流量=25mol/h(35℃液体)
▲5▼制御温度範囲:170〜200℃
酢酸は蒸発器を通してガス化され、アセチレンガスと混合されて予熱器を経て反応器に導入される。組成の分析はガスクロを用いて行った。
【0025】
(実施例1の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の触媒層温度(℃)の関係は表1に示す通りであった。
【表1】実施例1の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=15.0%、酢酸から酢酸ビニルへの選択率=96%、反応した酢酸の全不純物への選択率=4%。主な不純物はアセトアルデヒド(50%)、クロトンアルデヒド(30%)、アセトン(20%)であった。
【0026】
(比較例1)
本例は、クエンチゾーンに液体の酢酸を供給しなかったこと以外は上述の実施例1と同一の試験条件で行った比較例1である。
【0027】
(比較例1の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の温度(℃)の関係は表2に示す通りであった。
【表2】比較例1の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=38.8%、酢酸から酢酸ビニルへの選択率=66%、反応した酢酸の全不純物への選択率=34%。主な不純物はアセトアルデヒド(40%)、クロトンアルデヒド(30%)、アセトン(20%)、エチリデンジアセテート(10%)であった。本比較例1では、クエンチをしなかったために第2の触媒層22bで反応が急速に進みすぎて、酢酸の反応転化率としては大幅に上昇したものの、不純物の生成に消費されてしまい良好な反応成績は得られなかった。
【0028】
(実施例2)
本実施例は、クエンチゾーンに使用した充填物が比表面積が243m2/m3のラシヒリング(サイズ3/4インチ=19mm)に変更した以外の試験条件は上述の実施例1と同一である実施例2である。
【0029】
(実施例2の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の温度(℃)の関係は表3に示す通りであった。
【表3】実施例2の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=16.5%、酢酸から酢酸ビニルへの選択率=92%、反応した酢酸の全不純物への選択率=8%。主な不純物はアセトアルデヒド(55%)、クロトンアルデヒド(35%)、アセトン(8%)、エチリデンジアセテート(2%)であった。
本実施例の反応においては、クエンチゾーンに用いた充填物として比表面積が243m2/m3のラシヒリングを使用した場合であり、実施例1と比較すると充填物の及ぼす影響の差と考えられる。すなわち、実施例1で使用したセラミックボールの比表面積(590m2/m3)と比較して、本実施例で使用したラシヒリングの比表面積(243m2/m3)は小さく、充填物の表面を気液の接触面積として蒸発を起こさせるには不利であり、そのために反応ガスの冷却効率がやや悪かったとものと考えられる。また、第2の触媒層22bで反応は進んだものの、温度上昇が進みすぎて200℃を越えたために不純物の生成量が多くなったと考えられる。なお、本実施例では未蒸発のクエンチ液はクエンチゾーンの系外に排出される構造を備えており、少量の未蒸発クエンチ液が発生していたことを確認した。
【0030】
(実施例3)
本例では、クエンチ液ディストリビューターがスプレーでなく、単孔ノズル(内径6mmパイプ、先端孔径3mm)を用いたこと以外は実施例1と同一の試験条件である。
【0031】
(実施例3の試験結果)
(1)温度分布:
反応器入り口からの距離(mm)とその位置の温度(℃)の関係は表4に示す通りであった。
【表4】実施例3の反応器内温度分布
(2)反応成績:
酢酸の反応転化率=18.6%、酢酸から酢酸ビニルへの選択率=92%、反応した酢酸の全不純物への選択率=8%。主な不純物はアセトアルデヒド(58%)、クロトンアルデヒド(22%)、アセトン(17%)、エチリデンジアセテート(3%)であった。
本実施例の反応試験においては、クエンチ液ディストリビューターが単孔ノズルでしかも、クエンチ液がクエンチゾーンのセラミックボール充填層の断面上端の中心部付近に集中的に供給された。その結果、中心部付近の充填物は比較的よく濡れているが、周辺部の充填物は乾いた状態となり、半径方向のガスの温度分布が大きくなる。最終的にクエンチされた反応ガスの冷却度合いは、充填物にラシヒリングを使用した実施例2の場合より悪い結果となった。第2の触媒層22bへ導入された供給ガス温度がやや高くなり過ぎたため、第2触媒層での反応はやや進み過ぎて、不純物の生成速度がやや加速される結果となった。なお、本実施例では未蒸発のクエンチ液をクエンチゾーン系外に排出できる構造を備えている。その結果、未蒸発クエンチ液の発生が確認され、その量は実施例2の場合より多かった。実施例1との比較からクエンチ流体の供給は分散して供給することが好ましいことが分かる。
【0032】
【発明の効果】
以上のように本発明によれば、気体状の原料を気相発熱反応させて目的物を得る気相反応装置において、反応器内に設置されたコンパクトな構造物からなるクエンチゾーンで、クエンチ液体の蒸発潜熱を利用して、反応ガスを効率的にかつ確実に冷却することができる。このため反応器内での副反応の進行を抑制すると共に、目的の反応生成物を高収率で得ることができ、必要とする設備および運転の低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明の気相反応装置を示す縦断面図である。
【図2】本発明の気相反応装置のクエンチ供給管の一例を示す説明図である。
【図3】本発明の気相反応装置の充填物支持部の一例を示す説明図である。
【図4】本発明の気相反応装置のドレン排出手段の一例を示す説明図である。
【図5】本発明の気相反応装置内のガスの温度を示す説明図である。
【図6】従来の反応装置を示す説明図である。
【符号の説明】
2 反応装置
20 反応塔
22a 第1の触媒層
22b 第2の触媒層
24 クエンチ流体供給管
25 充填物層
26 充填物支持部
30 気化器
40 予熱器
5 ドレン排出手段
53 液面検知手段
6 制御部
60 流量調整バルブ
Q クエンチゾーン
Claims (7)
- 予め気化された原料を気相発熱反応させて目的物を得る断熱型の気相反応装置において、
原料を反応させるための反応塔と、
この反応塔の中に設けられ、反応を促進する触媒が充填された第1の反応領域と、
前記反応塔内にて第1の反応領域の下流側に設けられ、反応を促進する触媒が充填された第2の反応領域と、
前記第1の反応領域と第2の反応領域との間に設けられ、第1の反応領域から出た反応気体を冷却するクエンチ領域と、を備え、
前記クエンチ領域には、少なくとも原料を含むクエンチ流体を液体状態で供給するためのクエンチ流体供給部と、前記気体との間で熱交換を行ってクエンチ流体を蒸発させるための充填物層と、を有することを特徴とする気相反応装置。 - クエンチ流体供給部は、クエンチ流体を液体状態で前記反応気体に供給するスプレー部を備えていることを特徴とする請求項1記載の気相反応装置。
- 前記充填物は、その比表面積が300m2/m3以上である請求項1又は2記載の気相反応装置。
- 前記充填物層は、充填物を支持し、前記充填物層から出た反応気体を通過させる一方、未蒸発のクエンチ流体を溜める機能を有する充填物支持部を備えていることを特徴とする請求項1ないし3のいずれかに記載の気相反応装置。
- 未蒸発のクエンチ流体を溜める機能を有する充填物支持部は、支持板と、この支持板に形成され、反応気体が下流に通過するための通気孔を形成するチムニー部と、このチムニー部の上端を覆い、液体が通気孔内に直接入り込まないように構成されたキャップ部と、前記チムニーの高さに相当する液溜部と、を有することを特徴とする請求項4記載の気相反応装置。
- 液溜部に溜められた未蒸発のクエンチ流体を反応器の外に排出する排出手段を備えていることを特徴とする請求項5記載の気相反応装置。
- 液溜部に溜められた液体の液面を検知する液面検知手段を備え、この液面検知手段の検知結果に基づいて未蒸発のクエンチ流体を排出することを特徴とする請求項6記載の気相反応装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003095397A JP2004298769A (ja) | 2003-03-31 | 2003-03-31 | 気相反応装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003095397A JP2004298769A (ja) | 2003-03-31 | 2003-03-31 | 気相反応装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004298769A true JP2004298769A (ja) | 2004-10-28 |
Family
ID=33407737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003095397A Withdrawn JP2004298769A (ja) | 2003-03-31 | 2003-03-31 | 気相反応装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004298769A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157457A (ja) * | 2006-12-22 | 2008-07-10 | Man Diesel Se | 駆動機のためのガス供給装置 |
WO2009078490A1 (ja) * | 2007-12-18 | 2009-06-25 | Jgc Corporation | 反応器内部の温度制御方法、反応装置及びジメチルエーテルの製造方法 |
JP2014058440A (ja) * | 2008-02-27 | 2014-04-03 | Kellogg Brown & Root Llc | 分流の接触器 |
WO2018190318A1 (ja) * | 2017-04-13 | 2018-10-18 | 株式会社堀場エステック | 気化装置及び気化システム |
-
2003
- 2003-03-31 JP JP2003095397A patent/JP2004298769A/ja not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157457A (ja) * | 2006-12-22 | 2008-07-10 | Man Diesel Se | 駆動機のためのガス供給装置 |
WO2009078490A1 (ja) * | 2007-12-18 | 2009-06-25 | Jgc Corporation | 反応器内部の温度制御方法、反応装置及びジメチルエーテルの製造方法 |
JP2009149531A (ja) * | 2007-12-18 | 2009-07-09 | Jgc Corp | 反応器内部の温度制御方法、反応装置及びジメチルエーテルの製造方法。 |
AU2008339360B2 (en) * | 2007-12-18 | 2013-01-31 | Jgc Corporation | Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether |
KR101242251B1 (ko) | 2007-12-18 | 2013-03-11 | 미츠비시 가스 가가쿠 가부시키가이샤 | 반응기 내부의 온도 제어 방법, 반응 장치 및 디메틸에테르의 제조 방법 |
TWI421125B (zh) * | 2007-12-18 | 2014-01-01 | Jgc Corp | Reactor reaction speed control method, reaction device and dimethyl ether manufacturing method |
JP2014058440A (ja) * | 2008-02-27 | 2014-04-03 | Kellogg Brown & Root Llc | 分流の接触器 |
WO2018190318A1 (ja) * | 2017-04-13 | 2018-10-18 | 株式会社堀場エステック | 気化装置及び気化システム |
JPWO2018190318A1 (ja) * | 2017-04-13 | 2020-02-20 | 株式会社堀場エステック | 気化装置及び気化システム |
JP7129969B2 (ja) | 2017-04-13 | 2022-09-02 | 株式会社堀場エステック | 気化装置及び気化システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8181942B2 (en) | Liquid redistribution device for multibed reactors | |
ES2300491T3 (es) | Procedimiento para la preparacion en continuo de poliesteres de alto peso molecular y dispositivo para la realizacion del procedimiento. | |
JP5615812B2 (ja) | スプレーノズルを使用した改善された急冷ゾーン設計 | |
US7018591B2 (en) | High heat transfer tubular reactor | |
KR20100138884A (ko) | 메탄올의 제조를 위한 반응기 | |
KR20070059178A (ko) | 접촉 기상 반응용 다관식 반응 장치 | |
TWI421125B (zh) | Reactor reaction speed control method, reaction device and dimethyl ether manufacturing method | |
CN1208300C (zh) | 催化气相氧化制得马来酸酐的方法 | |
US6641700B1 (en) | Purifying apparatus possessing vapor dispersing device | |
JP4308372B2 (ja) | (メタ)アクリル酸および/または(メタ)アクロレインの吸収方法及びその装置 | |
KR20060015596A (ko) | 가스 냉각기를 지닌 유동화 베드 반응기 | |
UA61904C2 (en) | Method of vaporizing, vaporizer for vaporization of oxidation-sensitive compounds and cracking fractionator | |
JP2008546531A (ja) | 重合可能な材料を処理するための組立品 | |
JP2023100734A (ja) | 不飽和カルボン酸エステルの製造方法 | |
NO308947B1 (no) | FremgangsmÕte for acetoksylering av olefiner | |
JP2004298769A (ja) | 気相反応装置 | |
JP2018192446A (ja) | 流動層反応装置及びα,β−不飽和ニトリルの製造方法 | |
KR100781006B1 (ko) | 부분 산화에 의한 유기물질의 촉매적 제조방법 | |
JP2004298768A (ja) | 気相反応装置の運転方法 | |
JPS60225632A (ja) | 反応器 | |
CN101743045A (zh) | 蒸发器、蒸发方法以及甲基丙烯醛或(甲基)丙烯酸的制备方法 | |
CN1280263C (zh) | 腈化合物制造用反应装置及其工作方法 | |
US4256675A (en) | Method for generating super atmospheric pressures of sensitive materials in a gas stream | |
JP7180452B2 (ja) | 不飽和カルボン酸エステルの製造方法 | |
US4190620A (en) | Device for generating super atmospheric pressures of sensitive materials in a gas stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060606 |