JP2004292714A - Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product - Google Patents

Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product Download PDF

Info

Publication number
JP2004292714A
JP2004292714A JP2003089530A JP2003089530A JP2004292714A JP 2004292714 A JP2004292714 A JP 2004292714A JP 2003089530 A JP2003089530 A JP 2003089530A JP 2003089530 A JP2003089530 A JP 2003089530A JP 2004292714 A JP2004292714 A JP 2004292714A
Authority
JP
Japan
Prior art keywords
group
borate
component
curable composition
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089530A
Other languages
Japanese (ja)
Inventor
Takanao Iwahara
孝尚 岩原
Katsuya Ouchi
克哉 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2003089530A priority Critical patent/JP2004292714A/en
Publication of JP2004292714A publication Critical patent/JP2004292714A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curable composition with good adhesion to various substrates and colorability under a high temperature condition and/or photoirradiation. <P>SOLUTION: This curable composition comprises (A) an oreganopolysiloxane having 2 or more aliphatic unsaturated hydrocarbon radicals linked to a silicon atom in a molecule, (B) an organohydrogenopolysiloxane having 2 or more hydrogen atoms linked to a silicon atom in a molecule, (C) a hydrosilylation catalyst, (D) a silane coupling agent and/or an epoxy group-containing compound and (D) a boric acid ester as essential ingredients. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は硬化性組成物に関するものであり、更に詳しくは各種基材に対して接着性が良好でありかつ高温条件及び/または光照射下での着色性が低い硬化性組成物、その製造方法、及びそれを硬化させてなる硬化物、及びそれを用いた発光ダイオードに関するものである。
【0002】
【従来の技術】
従来、付加反応硬化型(ヒドロシリル化)シリコーンにおいて、エポキシ基及びアルコキシ基がケイ素原子に結合した有機ケイ素化合物と有機アルミニウム化合物を含有した硬化性組成物が良好な密着性を有することが知られている(特許文献1)。しかしながら、接着性は良好なものの高温条件及び/または光照射下での着色性及びその低減方法に関しては何ら開示されていなかった。
【0003】
一方、縮合反応硬化型シリコーンにおいて建造物目地部のシーリング剤として使用する場合に、ホウ酸エステルを添加することにより目地深さが浅い場合でも被着体との良好な接着性を発現できることが開示されている(特許文献2)。しかし本系は室温硬化であり、加熱硬化での硬化発現や、反応形式が異なる付加型の系に適用した場合の効果発現に関しては何ら開示されていなかった。
【0004】
発光ダイオード(LED)封止用材料をはじめとする接着性が必要とされる光学用材料として、鉛フリー化に伴なっていっそう厳しくなった実装工程での高温条件下においても着色性が少ない材料、また照明用途への適用も睨んだ高出力下での発熱/高光照射下での着色性が少ない材料が強く望まれている。
【0005】
【特許文献1】特開平8−183934
【0006】
【特許文献2】特開昭59−155483
【0007】
【発明が解決しようとする課題】
従って、本発明の目的は、各種基材に対して接着性が良好でありかつ高温条件及び/または光照射下での着色性が低い硬化性組成物、その製造方法、及びそれを硬化させてなる硬化物、及びそれを用いた発光ダイオードを提供することである。
【0008】
【課題を解決するための手段】
かかる課題を解決するために本発明者らは鋭意研究の結果、(A)一分子中にケイ素原子に結合する脂肪族不飽和炭化水素基を2個以上有するオリガノポリシロキサン、(B)一分子中に珪素原子に結合する水素原子を2個以上有するオルガノハイドジェンポリシロキサン、(C)ヒドロシリル化触媒、(D)シランカップリング剤および/またはエポキシ基含有化合物、(E)ほう酸エステルを必須成分とする硬化性組成物とすることによって上記課題を解決できることを見出し、本発明に至った。
【0009】
すなわち、本発明は、(A)一分子中にケイ素原子に結合する脂肪族不飽和炭化水素基を2個以上有するオリガノポリシロキサン、(B)一分子中に珪素原子に結合する水素原子を2個以上有するオルガノハイドジェンポリシロキサン、(C)ヒドロシリル化触媒、(D)シランカップリング剤および/またはエポキシ基含有化合物、(E)ほう酸エステルを必須成分とする硬化性組成物(請求項1)であって、
(D)成分が分子中にエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基と加水分解性のケイ素基を有するシランカップリング剤である、請求項1記載の硬化性組成物(請求項2)であって、
(D)成分が分子中にエポキシ基と加水分解性のケイ素基を有するシランカップリング剤である、請求項1記載の硬化性組成物(請求項3)であって、
(E)成分がほう酸トリノルマルオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリエチル、ほう酸トリメチルから選ばれる少なくとも1種類であることを特徴とする請求項1乃至3のいずれか一項に記載の硬化性組成物(請求項4)であって、
(A)成分中の脂肪族不飽和炭化水素基の一部と(B)成分中の珪素−水素結合の一部とを、予め(C)成分の存在下、ヒドロシリル化反応により反応させたものである請求項1〜5のいずれか1項に記載の硬化性組成物(請求項5)であって、
請求項1〜5のいずれか1項に記載の硬化性組成物を硬化させてなる硬化物(請求項6)であって、
請求項6に記載した硬化物より封止された発光ダイオード(請求項7)である。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、本発明における(A)成分について説明する。(A)成分としては、一分子中にケイ素原子に結合する脂肪族不飽和炭化水素基を2個以上有するオリガノポリシロキサンであれば特に限定されない。具体的には、下記組成式(1)で示されるものを使用することができる。
SiO[4−(a+b)]/2 (1)
(但し、式中Rは一価の脂肪族不飽和炭化水素基、Rは脂肪族不飽和炭化水素基以外の置換又は非置換の一価炭化水素基であり、a、bはそれぞれ0<a≦1、1≦b<3、1<a+b≦3、好ましくは0.0005≦a≦0.1、1.8<b≦2.2、1.9≦a+b≦2.25を満たす数である。)
上記式(1)においてRは、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基等の炭素数2〜10、特に2〜4のアルケニル基などの脂肪族不飽和炭化水素基であり、特にビニル基が好ましい。また、Rは好ましくは炭素数1〜12のもの、より好ましくは炭素数1〜8のものであり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、これらの基の一部又は全部の水素原子を塩素、臭素、フッ素などのハロゲン原子やシアノ基で置換したクロロメチル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基などが挙げられるが、特にメチル基、フェニル基、トリフルオロプロピル基が好ましい。上記式(1)において、各置換基は異なっていても同一であってもよいが、一分子中に2個以上のアルケニル基などの脂肪族不飽和炭化水素基を含んでいることが必要である。なお、このオルガノポリシロキサンは、一般的には主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状ジオルガノポリシロキサンであるが、R1SiO3/2単位(T単位)、R2SiO2/2単位(D単位)又はSiO4/2単位(Q単位)を含んだ分岐状や環状であってもよい。たとえば、いわゆるMQレジンとして知られている構造であってもよい。また、分子中に含有される脂肪族不飽和炭化水素基は、分子鎖末端あるいは分子鎖途中のいずれの珪素原子に結合したものであってもよいが、少なくとも分子鎖両末端の珪素原子に結合した脂肪族不飽和基を有するものであることが、硬化速度あるいは硬化物の物性などの点から望ましい。なお、上記オルガノポリシロキサンの平均重合度(即ち、分子中の珪素原子の数)は20以上、通常20〜5,000程度が好適であり、25℃における粘度が、通常10〜1,000,000cs、特に100〜100,000cs程度のものが好適に使用される。また固体状のものはトルエン、アセトン、ヘキサン等の一般的な溶剤に溶解して用いてもよい。
【0011】
(A)成分を具体的に例示すると下記の成分をあげることができる。
【0012】
【化1】

Figure 2004292714
次に、本発明における(B)成分について説明する。(B)成分としては一分子中に珪素原子と結合する水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンであれば特に制限なく使用することができる。(B)成分は、(A)成分のオルガノポリシロキサンの架橋剤となる成分であり、下記組成式(2)で示されるものが好適に使用される。
SiO[4−(c+d)]/2 (2)
(式中Rは置換又は非置換の一価炭化水素基であり、c、dはそれぞれ1≦c≦2.2、0.002≦d≦1で1≦c+d≦3、好ましくは1<c≦2、0.01≦d<1で1.8≦c+d≦2.5を満たす数である。)
上記式(2)において、Rとしては、好ましくは炭素数1〜8、より好ましくは炭素数1〜4の脂肪族不飽和結合を有さない、前述Rとして例示したものと同様の一価炭化水素基であり、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、フェニル基、トリル基等のアリール基、これらの基の一部又は全部の水素原子をハロゲン原子やシアノ基で置換したクロロメチル基、トリフロロプロピル基、シアノエチル基などが挙げられる。このオルガノハイドロジェンポリシロキサンは、一般的には直鎖状であるが、部分的には分岐状や環状の骨格を有していてもよい。
【0013】
また、上記オルガノハイドロジェンポリシロキサンの平均重合度(即ち、分子中の珪素原子の数)は3〜300が好適である。このオルガノハイドロジェンポリシロキサンは一分子中に珪素原子に結合した水素原子(即ち、SiH基)を少なくとも2個、好ましくは3個以上(例えば、通常3〜100程度ほど)有するものであるが、この水素原子は分子鎖末端の珪素原子あるいは分子鎖途中の珪素原子のいずれに結合したものであっても、また両方に結合したものであってもよい。
【0014】
(B)成分を具体的に例示すると、下記の成分を上げることができる。
【0015】
【化2】
Figure 2004292714
【0016】
【化3】
Figure 2004292714
(B)成分としては、上記で説明したいわゆる一般的に知られているオルガノハイドロジェンポリシロキサン以外にも、各種基材への接着性や、親和性を考慮し有機成分で変性された各種のSiH基含有化合物を用いることができる。例えば国際公開WO96/15194、特開2002−327114に記載される化合物で、1分子中に少なくとも2個のSiH基を有するもの等が使用できる。
【0017】
本発明における(A)成分と(B)成分との混合比率は、(A)成分中の珪素原子に結合する脂肪族不飽和炭化水素基と(B)成分中の珪素原子に結合する水素原子とのモル比が、10:1〜1:10、特に3:1〜1:3となる範囲が好ましい。
【0018】
次に(C)成分であるヒドロシリル化触媒について説明する。
【0019】
ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH=CH(PPh、Pt(CH=CHCl)、白金−ビニルシロキサン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt[(MeViSiO))、白金−ホスフィン錯体(例えば、Pt(PPh、Pt(PBu)、白金−ホスファイト錯体(例えば、Pt[P(OPh)、Pt[P(OBu))(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。さらに、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
【0020】
また、白金化合物以外の触媒の例としては、RhCl(PPh)、RhCl、RhAl、RuCl、IrCl、FeCl、AlCl、PdCl・2HO、NiCl、TiCl、等が挙げられる。
【0021】
これらの中では、触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
【0022】
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(B)成分のSiH基1モルに対して10−8モル、より好ましくは10−6モルであり、好ましい添加量の上限は(B)成分のSiH基1モルに対して10−1モル、より好ましくは10−2モルである。
【0023】
また、上記触媒には助触媒を併用することが可能であり、例えばトリフェニルホスフィン等のリン系化合物、ジメチルマレエート等の1、2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10−2モル、より好ましくは10−1モルであり、好ましい添加量の上限は10モル、より好ましくは10モルである。
【0024】
次に(D)成分であるシランカップリング剤について説明する。
【0025】
シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。
【0026】
有機基と反応性のある官能基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
【0027】
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
【0028】
シランカップリング剤の添加量としては種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは0.5重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
【0029】
さらに、(D)成分であるエポキシ基含有化合物について説明する。エポキシ基含有化合物としては種々のエポキシ樹脂が例示される。エポキシ樹脂としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート等のエポキシ樹脂を、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物等の脂肪族酸無水物で硬化させるものが挙げられる。これらのエポキシ樹脂あるいは硬化剤はそれぞれ単独で用いても、複数のものを組み合わせてもよい。
【0030】
エポキシ基含有化合物の添加量としては種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは0.5重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
【0031】
次に(E)成分であるほう酸エステルについて説明する。ほう酸エステルはシラノール縮合触媒として用い、接着性の向上および/あるいは安定化が可能である。ほう酸エステルとしては下記一般式(3)、(4)で示されるものを好適に用いることが出来る。
B(OR (3)
B(OCOR (4)
(式中Rは炭素数1〜48の有機基を表す。)
(E)成分の具体例として、ほう酸トリ−2−エチルヘキシル、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ−sec−ブチル、ほう酸トリ−tert−ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう酸トリエチル、ほう酸トリメチル、ほう素メトキシエトキサイドを好適に用いることができる。(E)成分としては1種類のみを用いてもよく、2種類以上を混合して用いても良い。混合は事前に行なっても良く、また硬化物作成時に混合しても良い。
【0032】
入手性の点からほう酸トリメチル、ほう酸トリエチル、ほう酸トリノルマルブチルが好ましく、ほう酸トリメチルがさらに好ましい。
【0033】
硬化時の揮発性を抑制出来る点から、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ−sec−ブチル、ほう酸トリ−tert−ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう素メトキシエトキサイドが好ましく、ほう酸ノルマルトリオクタデシル、ほう酸トリ−tert−ブチル、ほう酸トリフェニル、ほう酸トリノルマルブチルがさらに好ましい。
【0034】
揮発性の抑制、作業性の点からほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピルが好ましく、ほう酸トリノルマルブチルがさらに好ましい。
【0035】
高温下での着色性が低い点からほう酸トリエチルが好ましく、ほう酸トリメチルがさらに好ましい。
【0036】
シラノール縮合触媒を用いる場合の使用量は種々設定できるが、カップリング剤100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは30重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
【0037】
また、本発明においては接着性改良効果をさらに高めるために、さらにシラノール源化合物を用いることができ、接着性の向上および/あるいは安定化が可能である。本明細書中におけるシラノール源化合物とはシラノール基もしくはアルコキシシリル基を1分子中に1個以上有する化合物を指す。このようなシラノール源としては、例えばトリフェニルシラノール、ジフェニルジヒドロキシシラン等のシラノール化合物、ジフェニルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン等のアルコキシシラン類等を挙げることができる。
【0038】
シラノール源化合物を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは30重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
【0039】
また、これらのシラノール源化合物は単独で使用してもよく、2種以上併用してもよい。
【0040】
本発明の組成物には特性を改質する等の目的で、種々の熱硬化性樹脂を添加することも可能である。熱硬化性樹脂としては、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ポリイミド樹脂、ウレタン樹脂、ビスマレイミド樹脂等が例示されるがこれに限定されるものではない。これらのうち、接着性等の実用特性に優れるという観点から、エポキシ樹脂が好ましい。
【0041】
エポキシ樹脂としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート等のエポキシ樹脂を、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物等の脂肪族酸無水物で硬化させるものが挙げられる。これらのエポキシ樹脂あるいは硬化剤はそれぞれ単独で用いても、複数のものを組み合わせてもよい。
【0042】
熱硬化性樹脂の添加量としては特に限定はないが、好ましい使用量の下限は硬化性組成物全体の5重量%、より好ましくは10重量%であり、好ましい使用量の上限は硬化性組成物中の50重量%、より好ましくは30重量%である。添加量が少ないと、接着性等目的とする効果が得られにくいし、添加量が多いと脆くなりやすい。
【0043】
これらの熱硬化性樹脂は単独で用いても、複数のものを組み合わせてもよい。
【0044】
熱硬化樹脂は樹脂原料あるいは/および硬化させたものを、(A)成分あるいは/および(B)成分に溶かして均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に溶かして混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、(A)成分あるいは/および(B)成分に溶かして均一な状態として混合することが好ましい。この場合も、熱硬化性樹脂を(A)成分あるいは/および(B)成分に直接溶解させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態あるいは/および混合状態としてもよい。
【0045】
熱硬化性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。
【0046】
本発明の組成物には特性を改質する等の目的で、種々の熱可塑性樹脂を添加することも可能である。熱可塑性樹脂としては種々のものを用いることができるが、例えば、メチルメタクリレートの単独重合体あるいはメチルメタクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリメチルメタクリレート系樹脂(例えば日立化成社製オプトレッツ等)、ブチルアクリレートの単独重合体あるいはブチルアクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリブチルアクリレート系樹脂等に代表されるアクリル系樹脂、ビスフェノールA、3,3,5−トリメチルシクロヘキシリデンビスフェノール等をモノマー構造として含有するポリカーボネート樹脂等のポリカーボネート系樹脂(例えば帝人社製APEC等)、ノルボルネン誘導体、ビニルモノマー等を単独あるいは共重合した樹脂、ノルボルネン誘導体を開環メタセシス重合させた樹脂、あるいはその水素添加物等のシクロオレフィン系樹脂(例えば、三井化学社製APEL、日本ゼオン社製ZEONOR、ZEONEX、JSR社製ARTON等)、エチレンとマレイミドの共重合体等のオレフィン−マレイミド系樹脂(例えば東ソー社製TI−PAS等)、ビスフェノールA、ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン等のビスフェノール類やジエチレングリコール等のジオール類とテレフタル酸、イソフタル酸、等のフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリエステル等のポリエステル系樹脂(例えば鐘紡社製O−PET等)、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂等の他、天然ゴム、EPDMといったゴム状樹脂が例示されるがこれに限定されるものではない。
【0047】
熱可塑性樹脂としては、分子中にSiH基と反応性を有する炭素−炭素二重結合あるいは/およびSiH基を有していてもよい。得られる硬化物がより強靭となりやすいという点においては、分子中にSiH基と反応性を有する炭素−炭素二重結合あるいは/およびSiH基を平均して1分子中に1個以上有していることが好ましい。
【0048】
熱可塑性樹脂としてはその他の架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。得られる硬化物の耐熱性が高くなりやすいという点においては、架橋性基を平均して1分子中に1個以上有していることが好ましい。
【0049】
熱可塑製樹脂の分子量としては、特に限定はないが、(A)成分や(B)成分との相溶性が良好となりやすいという点においては、数平均分子量が10000以下であることが好ましく、5000以下であることがより好ましい。逆に、得られる硬化物が強靭となりやすいという点においては、数平均分子量が10000以上であることが好ましく、100000以上であることがより好ましい。分子量分布についても特に限定はないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
【0050】
熱可塑性樹脂の配合量としては特に限定はないが、好ましい使用量の下限は硬化性組成物全体の5重量%、より好ましくは10重量%であり、好ましい使用量の上限は硬化性組成物中の50重量%、より好ましくは30重量%である。添加量が少ないと得られる硬化物が脆くなりやすいし、多いと耐熱性(高温での弾性率)が低くなりやすい。
【0051】
熱可塑性樹脂としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。
【0052】
熱可塑性樹脂は(A)成分あるいは/および(B)成分に溶かして均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に溶かして混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、(A)成分あるいは/および(B)成分に溶かして均一な状態として混合することが好ましい。この場合も、熱可塑性樹脂を(A)成分あるいは/および(B)成分に直接溶解させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態あるいは/および混合状態としてもよい。
【0053】
熱可塑性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。
【0054】
本発明の組成物には充填材を添加してもよい。
【0055】
充填材としては各種のものが用いられるが、例えば、石英、ヒュームシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系充填材、酸化チタン、酸化錫、酸化亜鉛、一酸化錫、酸化カルシウム、酸化マグネシウム、酸化ベリリウム、ITO等の酸化物、窒化硼素、窒化ケイ素、窒化アルミニウム等の金属窒化物、SiC等の金属炭化物、銀、金、アルミニウム、銅、ニッケル、マンガン、鉄、ケイ素、鉛、ビスマス、錫、ステンレス等の金属粉、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸マグネシウム、炭酸バリウム等の金属炭酸塩、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、ガラス繊維、炭素繊維、ほう酸アルミニウム、チタン酸バリウム、珪酸カルシウム、マイカ、カーボンブラック、グラファイト、アルミナ、ケイソウ土、白土、クレー、タルク、石膏、無機バルーン等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用あるいは/および提案されている充填材等を挙げることができる。
【0056】
上記で上げた充填材のうち、特に、銀、金、アルミニウム、銅、ニッケルなどは、放熱性を向上させると共に導電性を持たせることができる。また、アルミナ、シリカ、酸化チタン、窒化硼素、窒化アルミニウムなどは耐侯性に強く高反射率を維持させることもできる。形状も分散性や電気的導通などを考慮して球状、針状やフレーク状など種々の形状をとることができる。
【0057】
充填材としては、封止する半導体や電子材料へダメージを与え難いという観点からは、低放射線性であることが好ましい。
【0058】
充填材は適宜表面処理してもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられる。
【0059】
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
【0060】
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
【0061】
その他にも充填材を添加する方法が挙げられる。例えばアルコキシシラン、アシロキシシラン、ハロゲン化シラン等の加水分解性シランモノマーあるいはオリゴマーや、チタン、アルミニウム等の金属のアルコキシド、アシロキシド、ハロゲン化物等を、本発明の組成物に添加して、組成物中あるいは組成物の部分反応物中で反応させ、組成物中で充填材を生成させる方法も挙げることができる。
【0062】
以上のような充填材のうち硬化反応を阻害し難く、線膨張係数の低減化効果が大きいという観点からは、シリカ系充填材が好ましい。
【0063】
充填材の平均粒径としては、封止材の狭い隙間への浸透性が良好となりやすいという点においては、10μm以下であることが好ましく、5μm以下であることがより好ましい。
【0064】
充填材の粒径50μm以上の粒子の割合としては、封止材の狭い隙間への浸透性が良好となりやすいという点においては、1重量%以下であることが好ましく、0.1重量%以下であることがより好ましい。
【0065】
充填材の粒径分布については、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、各種設定できる。例えば、24μm以上の粒子が15重量%以上かつ1μm以下の粒子が3重量%以上となるようにしてもよい。
【0066】
充填材の平均粒子径、充填材の粒径50μm以上の粒子の割合はレーザー法マイクロトラック粒度分析計を用いて測定することができる。
【0067】
充填材の比表面積についても、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、各種設定できる。例えば、4m/g以上、4m/g以下、10m/g以下等、任意に設定できる。
【0068】
比表面積はBET法モノソーブ比表面積測定装置によって測定できる。
【0069】
充填材のガラス化率についても、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、各種設定できる。例えば、97%以上等、任意に設定できる。
【0070】
充填材の形状としては、封止材の粘度が低くなりやすい観点からは、球状の充填材であることが好ましい。
【0071】
充填材は単独で使用してもよく、2種以上併用してもよい。
【0072】
充填材の添加量はとくに限定されないが、線膨張係数の低減化効果が高く、かつ組成物の流動性が良好であるという観点から、好ましい添加量の下限は全組成物中の3重量%、より好ましくは20重量%であり、好ましい添加量の上限は全組成物中の90重量%、より好ましくは80重量%である。
【0073】
本発明の硬化性組成物を、たとえばダイボンディング用樹脂ペーストとして用いる場合には、該樹脂中に好適に含有される銀、金、アルミニウム、銅、ニッケル等の無機部材含有量は、放熱性や電気伝導性など所望に応じて種々調節させることができる。しかしながら、樹脂中の無機部材含有量を多くすると樹脂の劣化が少ないが、密着性が低下するため5重量%から80重量%が好ましく60重量%から80重量%がより好ましい。このようなダイボンディング用樹脂ペーストは、LEDチップと基板とを接着させるためにマウント機器を用いることによって簡単に塗布などすることができる。
【0074】
充填材・添加剤の混合の方法としては、各種方法をとることができるが、組成物の中間原料の貯蔵安定性が良好になりやすいという点においては、(A)成分に(C)成分および充填材を混合したものと、(B)成分を混合する方法が好ましい。(B)成分に(C)成分あるいは/および充填材を混合したものに(A)成分を混合する方法をとる場合は、(C)成分存在下あるいは/および非存在下において(B)成分が環境中の水分あるいは/および充填材のと反応性を有するため、貯蔵中等に変質することもある。
【0075】
本発明の組成物には老化防止剤を添加してもよい。老化防止剤としては、一般に用いられている老化防止剤、たとえばクエン酸やリン酸、硫黄系老化防止剤等が挙げられる。硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。
【0076】
また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。
【0077】
本発明の組成物にはラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、例えば、2,6−ジ−t−ブチル−3−メチルフェノール(BHT)、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、テトラキス(メチレン−3(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)メタン等のフェノール系ラジカル禁止剤や、フェニル−β−ナフチルアミン、α−ナフチルアミン、N,N’−第二ブチル−p−フェニレンジアミン、フェノチアジン、N,N’−ジフェニル−p−フェニレンジアミン等のアミン系ラジカル禁止剤等が挙げられる。
【0078】
また、これらのラジカル禁止剤は単独で使用してもよく、2種以上併用してもよい。
【0079】
本発明の組成物には紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば2(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジン)セバケート等が挙げられる。
【0080】
また、これらの紫外線吸収剤は単独で使用してもよく、2種以上併用してもよい。
【0081】
本発明の組成物には、その他、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、着色剤、離型剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、イオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を本発明の目的および効果を損なわない範囲において添加することができる。
【0082】
本発明の組成物は溶剤に溶解して用いることも可能である。使用できる溶剤は特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。
【0083】
溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。
【0084】
使用する溶媒量は適宜設定できるが、用いる硬化性組成物1gに対しての好ましい使用量の下限は0.1mLであり、好ましい使用量の上限は10mLである。使用量が少ないと、低粘度化等の溶媒を用いることの効果が得られにくく、また、使用量が多いと、材料に溶剤が残留して熱クラック等の問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。
【0085】
これらの、溶媒は単独で使用してもよく、2種類以上の混合溶媒として用いることもできる。
【0086】
さらに、本発明の組成物には種々の発光ダイオード特性改善のための添加剤を添加してもよい。添加剤としては例えば、発光素子からの光を吸収してより長波長の蛍光を出す、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体等の蛍光体や、特定の波長を吸収するブルーイング剤等の着色剤、光を拡散させるための酸化チタン、酸化アルミニウム、シリカ、石英ガラス等の酸化ケイ素、タルク、炭酸カルシウム、メラミン樹脂、CTUグアナミン樹脂、ベンゾグアナミン樹脂等のような各種無機あるいは有機拡散材、ガラス、アルミノシリケート等の金属酸化物、窒化アルミニウム、窒化ボロン等の金属窒化物等の熱伝導性フィラー等を挙げることができる。
【0087】
発光ダイオード特性改善のための添加剤は均一に含有させても良いし、含有量に傾斜を付けて含有させてもよい。この様なフィラー含有樹脂部は発光面前面のモールド部材用の樹脂を型に流した後、引き続いて、フィラーを含有させた樹脂を流し発光面後方のモールド部材として形成させることができる。また、モールド部材形成後リード端子を表裏両面からテープを張り付けることによって覆い、この状態でリードフレーム全体をフィラー含有樹脂を溜めたタンク内に発光ダイオードのモールド部材の下半分を浸漬した後、引き上げて乾燥させフィラー含有樹脂部を形成させても良い。
【0088】
本発明の組成物は、該組成物を構成する全ての成分を混合した上で硬化させることができるが、それ以外の方法でも硬化させることができる。先に述べた、熱硬化性樹脂、熱可塑性樹脂、充填材・添加材の混合方法の説明はその一例である。また本発明の組成物の必須成分である(A)、(B)および(C)成分を、(D)、(E)およびその他成分の存在及び/または不存在下に、予め一部反応させた後、次の工程に移ることも可能である。本手法のメリットはたとえば、低粘度過ぎる組成物の粘度調整(増粘)をした後、他の充填材などの成分を混合し,添加した充填材の沈降を抑制すること、予めシート状などに賦形した後、その形状を保持したまま接着させることができること、などの点である。本手法は、熱硬化性樹脂を用いる業界では、いわゆるBステージ化技術として一般に知られているものである。
【0089】
本発明の組成物を用いて発光ダイオードを製造することができる。この場合、発光ダイオードは上記したような組成物によって発光素子を被覆することによって製造することができる。
【0090】
この場合発光素子とは、特に限定なく従来公知の発光ダイオードに用いられる発光素子を用いることができる。このような発光素子としては、例えば、MOCVD法、HDVPE法、液相成長法といった各種方法によって、必要に応じてGaN、AlN等のバッファー層を設けた基板上に半導体材料を積層して作成したものが挙げられる。この場合の基板としては、各種材料を用いることができるが、例えばサファイヤ、スピネル、SiC、Si、ZnO、GaN単結晶等が挙げられる。これらのうち、結晶性の良好なGaNを容易に形成でき、工業的利用価値が高いという観点からは、サファイヤを用いることが好ましい。
【0091】
積層される半導体材料としては、GaAs、GaP、GaAlAs、GaAsP、AlGaInP、GaN、InN、AlN、InGaN、InGaAlN、SiC等が挙げられる。これらのうち、高輝度が得られるという観点からは、窒化物系化合物半導体(Inx GayAlz N)が好ましい。このような材料には付活剤等を含んでいてもよい。
【0092】
発光素子の構造としては、MIS接合、pn接合、PIN接合を有するホモ接合、ヘテロ接合やダブルへテロ構造等が挙げられる。また、単一あるいは多重量子井戸構造とすることもできる。
【0093】
発光素子はパッシベーション層を設けていてもよいし、設けなくてもよい。
【0094】
発光素子には従来知られている方法によって電極を形成することができる。
【0095】
発光素子上の電極は種々の方法でリード端子等と電気接続できる。電気接続部材としては、発光素子の電極とのオーミック性機械的接続性等が良いものが好ましいく、例えば、金、銀、銅、白金、アルミニウムやそれらの合金等を用いたボンディングワイヤーが挙げられる。また、銀、カーボン等の導電性フィラーを樹脂で充填した導電性接着剤等を用いることもできる。これらのうち、作業性が良好であるという観点からは、アルミニウム線或いは金線を用いることが好ましい。
【0096】
上記のようにして発光素子が得られるが、本発明の発光ダイオードにおいては発光素子の光度としては垂直方向の光度が1cd以上であれば任意のものを用いることができるが、垂直方向の光度が2cd以上の発光素子を用いた場合により本発明の効果が顕著であり、3cd以上の発光素子を用いた場合にさらに本発明の効果が顕著である。
【0097】
発光素子の発光出力としては特に限定なく任意のものを用いることができるが、20mAにおいて1mW以上の発光素子を用いた場合に本発明の効果が顕著であり、20mAにおいて4mW以上の発光素子を用いた場合により本発明の効果が顕著であり、20mAにおいて5mW以上の発光素子を用いた場合にさらに本発明の効果が顕著である。
【0098】
発光素子の発光波長は紫外域から赤外域まで種々のものを用いることができるが、主発光ピーク波長が550nm以下のものを用いた場合に特に本発明の効果が顕著である。
【0099】
用いる発光素子は一種類で単色発光させても良いし、複数用いて単色或いは多色発光させても良い。
【0100】
本発明の発光ダイオードに用いられるリード端子としては、ボンディングワイヤー等の電気接続部材との密着性、電気伝導性等が良好なものが好ましく、リード端子の電気抵抗としては、300μΩ−cm以下が好ましく、より好ましくは3μΩ−cm以下である。これらのリード端子材料としては、例えば、鉄、銅、鉄入り銅、錫入り銅や、これらに銀、ニッケル等をメッキしたもの等が挙げられる。これらのリード端子は良好な光の広がりを得るために適宜光沢度を調整してもよい。
【0101】
本発明の発光ダイオードは上記したような組成物によって発光素子を被覆することによって製造することができるが、この場合被覆とは、上記発光素子を直接封止するものに限らず、間接的に被覆する場合も含む。具体的には、発光素子を本発明の組成物で直接従来用いられる種々の方法で封止してもよいし、従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂やガラスで発光素子を封止した後に、その上あるいは周囲を本発明の組成物で被覆してもよい。また、発光素子を本発明の組成物で封止した後、従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等でモールディングしてもよい。以上のような方法によって屈折率や比重の差によりレンズ効果等の種々の効果をもたせることも可能である。
【0102】
封止の方法としても各種方法を適用することができる。例えば、底部に発光素子を配置させたカップ、キャビティ、パッケージ凹部等に液状の組成物をディスペンサーその他の方法にて注入して加熱等により硬化させてもよいし、固体状あるいは高粘度液状の組成物を加熱する等して流動させ同様にパッケージ凹部等に注入してさらに加熱する等して硬化させてもよい。この場合のパッケージは種々の材料を用いて作成することができ、例えば、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ABS樹脂、ポリブチレンテレフタレート樹脂、ポリフタルアミド樹脂等を挙げることができる。また、モールド型枠中に組成物をあらかじめ注入し、そこに発光素子が固定されたリードフレーム等を浸漬した後硬化させる方法も適用することができるし、発光素子を挿入した型枠中にディスペンサーによる注入、トランスファー成形、射出成形等により組成物による封止層を成形、硬化させてもよい。さらに、単に液状または流動状態とした組成物を発光素子状に滴下あるいはコーティングして硬化させてもよい。あるいは、発光素子上に孔版印刷、スクリーン印刷、あるいはマスクを介して塗布すること等により硬化性樹脂を成形させて硬化させることもできる。その他、あらかじめ板状、あるいはレンズ形状等に部分硬化あるいは硬化させた組成物を発光素子上に固定する方法によってもよい。さらには、発光素子をリード端子やパッケージに固定するダイボンド剤として用いることもできるし、発光素子上のパッシベーション膜として用いることもできる。また、パッケージ基板として用いることもできる。
【0103】
被覆部分の形状も特に限定されず種々の形状をとることができる。例えば、レンズ形状、板状、薄膜状、特開平6−244458記載の形状等が挙げられる。これらの形状は組成物を成形硬化させることによって形成してもよいし、組成物を硬化した後に後加工により形成してもよい。
【0104】
本発明の発光ダイオードは、種々のタイプとすることができ、例えば、ランプタイプ、SMDタイプ、チップタイプ等いずれのタイプでもよい。SMDタイプ、チップタイプのパッケージ基板としては、種々のものが用いられ、例えば、エポキシ樹脂、BTレジン、セラミック等が挙げられる。
【0105】
その他、本発明の発光ダイオードには従来公知の種々の方式が適用できる。例えば、発光素子背面に光を反射あるいは集光する層を設ける方式、封止樹脂の黄変に対応して補色着色部を底部に形成させる方式、主発光ピークより短波長の光を吸収する薄膜を発光素子上に設ける方式、発光素子を軟質あるいは液状の封止材で封止した後周囲を硬質材料でモールディングする方式、発光素子からの光を吸収してより長波長の蛍光を出す蛍光体を含む材料で発光素子を封止した後周囲をモールディングする方式、蛍光体を含む材料をあらかじめ成形してから発光素子とともにモールドする方式、特開平6−244458に記載のとおりモールディング材を特殊形状として発光効率を高める方式、輝度むらを低減させるためにパッケージを2段状の凹部とする方式、発光ダイオードを貫通孔に挿入して固定する方式、発光素子表面に主発光波長より短い波長の光を吸収する薄膜を形成する方式、発光素子をはんだバンプ等を用いたフリップチップ接続等によってリード部材等と接続して基板方向から光を取出す方式、等を挙げることができる。
【0106】
本発明の発光ダイオードは従来公知の各種の用途に用いることができる。具体的には、例えばバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。
【0107】
本発明の硬化性組成物は種々の光学材料に適用可能である。本発明で言う光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。
【0108】
本発明で言う光学材料とは、可視光、赤外線、紫外線、X線、レーザー等の光をその材料中を通過させる用途に用いる材料一般を示す。
【0109】
例えば、カラーフィルター保護膜、TFT平坦化膜、基板材料のような液晶表示装置に用いられる材料や、封止剤、ダイボンド剤等の発光ダイオード(LED)に用いられる材料が挙げられる。
【0110】
さらに、液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、偏光子保護フィルム、カラーフィルター等やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0111】
また、LED表示装置に使用されるLED素子のモールド剤、LEDの封止剤、前面ガラスの保護フィルム、前面ガラス代替材料やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0112】
また、カラーPDP(プラズマディスプレイ)の反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料等やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、プラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、偏光子保護フィルムやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、フィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0113】
その他、光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルムやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0114】
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、ビデオカメラの撮影レンズ、ファインダーやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、プロジェクションテレビの投射レンズ、保護フィルムやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。光センシング機器のレンズ用材料、各種フィルムやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0115】
光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。光コネクタ周辺の光ファイバー材料、フェルールやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。光受動部品、光回路部品ではレンズ、導波路やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0116】
光ファイバー分野では、装飾ディスプレイ用照明・ライトガイド等、工業用途のセンサー類、表示・標識類等、また通信インフラ用及び家庭内のデジタル機器接続用の光ファイバーやそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0117】
半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料も挙げられる。
【0118】
自動車・輸送機分野では、自動車用ヘッドランプ・テールランプ・室内ランプ等のランプ材料、ランプリフレクタ、ランプレンズ、外装板・インテリアパネル等の各種内外装品、ガラス代替品やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、鉄道車輌用の外装部品、ガラス代替品やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。また、航空機の外装部品、ガラス代替品やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0119】
建築分野では、ガラス中間膜、ガラス代替品、太陽電池周辺材料やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0120】
農業用では、ハウス被覆用フィルムも挙げられる。
【0121】
次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止剤やそれらに用いられる各種コーティング剤、保護膜、封止剤、接着剤等も挙げられる。
【0122】
本発明の硬化性組成物を硬化させる方法としては、単に混合するだけで反応させることもできるし、加熱して反応させることもできる。反応が速く、一般に耐熱性の高い材料が得られやすいという観点から加熱して反応させる方法が好ましい。
【0123】
反応温度としては種々設定できるが、例えば30〜300℃の温度が適用でき、100〜250℃がより好ましく、150〜200℃がさらに好ましい。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと成形加工が困難となりやすい。
【0124】
反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が歪のない均一な硬化物が得られやすいという点においてので好ましい。
【0125】
反応時間も種々設定できるが、高温短時間で反応させるより比較的低温長時間で反応させた方が歪のない均一な硬化物が得られやすいという点においてので好ましい。
【0126】
反応時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で反応させることもできる。加水分解縮合により発生する揮発分を除きやすいという点においては、減圧状態で反応させることが好ましい。
【0127】
硬化させて得られる光学用材料の形状も用途に応じて種々とりうるので特に限定されないが、例えばフィルム状、シート状、チューブ状、ロッド状、塗膜状、バルク状などの形状とすることができる。
【0128】
成形する方法も従来の熱硬化性樹脂の成形方法をはじめとして種々の方法をとることができる。例えば、キャスト法、プレス法、注型法、トランスファー成形法、コーティング法、RIM法などの成形方法を適用することができる。成形型は研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を適用することができる。また、成形型との離型性を向上させるためポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム等を適用することができる。
【0129】
成形時に必要に応じ各種処理を施すこともできる。例えば、成形時に発生するボイドの抑制のために組成物あるいは一部反応させた組成物を遠心、減圧などにより脱泡する処理、プレス時に一旦圧力を開放する処理などを適用することもできる。
【0130】
【実施例】
以下に本発明の実施例及び比較例を示すが、本発明はこれらにより限定されるものではない。
(実施例1)
(比較例1)
表1の配合表に従って、各成分を上から順番に10mLサンプル管に計量した。成分を追加する毎によく振り混ぜ均一とした後、次の成分を添加し配合物を調製した。大佑機材(株)製SUS304冷間圧延ステンレス鋼板150x70x0.8mmの上部端に鐘淵化学(株)製ポリイミドフィルムアピカルAH350x30x0.025mmの一端を耐熱粘着テープで固定したものを準備した。固定したフィルム近傍に配合物数滴を約40mmの帯状にのせ、大佑機材(株)製バーコーター#8を用いて、該アピカルフィルムを鋼板に接着する様に1回掃引した。はみ出した配合物は、予めスコットタオルを敷いておき吸収させた。アピカルフィルムが剥がれない様にステンレス鋼板の下部端でステンレス鋼板と該フィルムとを耐熱粘着テープで固定した。作製した接着力測定用サンプルを150℃/2h(パーフェクトオーブン)加熱硬化させた。
【0131】
硬化後のサンプルから、耐熱粘着テープを剥がし、180℃ピール試験を島津製作所(株)製オートグラフを用いて50mm.min.の速度で実施した(表2)。接着力は測定中変動したので、特異点を除いた安定領域の範囲を示した。
【0132】
【表1】
Figure 2004292714
【0133】
【表2】
Figure 2004292714
(実施例2)
(比較例2)
表3の配合表にしたがって組成物を調製した以外は、実施例1および比較例1の方法と同様に接着力測定用サンプルを作製し、測定を実施した。表4に結果を示す。
【0134】
【表3】
Figure 2004292714
【0135】
【表4】
Figure 2004292714
(実施例3)
(比較例3)
表5の配合表にしたがって組成物を調製し、実施例1および比較例1の方法と同様に接着力測定用サンプルを作製した。ただしここで使用した配合物は、低粘度過ぎたので、全量を30mL広口ナスフラスコに移し溶剤約0.5gを減圧エバポレートして除去し適切な粘度に調整した。その後は実施例1及び比較例1の方法と同一の要領で接着力測定用サンプルを準備し、接着力の測定を実施した。表6に結果を示す。
【0136】
【表5】
Figure 2004292714
【0137】
【表6】
Figure 2004292714
(実施例4)
(比較例4)
表7の配合表に従って、各成分を上から順番に10mLサンプル感に計量した。成分を追加する毎によく振り混ぜ均一とした後、次の成分を添加し配合物を調製した。配合物を内径44mmの軟膏缶に流し込み、フタをして100℃/1.5hさらに150℃/1hで硬化させた。厚み約1mm程度の脆さのある弾性硬化物が得られた。硬化物の一部を取り出し、別の軟膏缶に入れフタをし、200℃/24h加熱処理をした。加熱処理前後の硬化物の外観を表8にまとめた。表8から分かるように、本発明の(E)成分としてB(OMe)を使用した場合には加熱後の着色はほとんど観察されないが、B(OMe)の代わりにAl(Etacac)を用いた場合には、明らかな着色が見られた。
【0138】
【表7】
Figure 2004292714
【0139】
【表8】
Figure 2004292714
(実施例5)
実施例1と同様にして作製して得られるシート状硬化物を適当な形状に切断し、キャンタイプ用の金属キャップに設けた光透過用窓の部分に固定する。一方で、MOCVD(有機金属気相成長)法によりサファイア基板上に形成した、SiとZnがドープされたInGaN活性層をn型とp型のAlGaNクラッド層で挟んだダブルへテロ構造の発光素子を用意する。続いて、この発光素子をキャンタイプ用の金属のステムに載置した後、p電極、n電極をそれぞれのリードにAu線でワイヤーボンディングする。これを上記のキャンタイプ用の金属キャップで気密封止する。この様にしてキャンタイプの発光ダイオードを作成することができる。
(実施例6)
洗浄したサファイヤ基板上にMOCVD(有機金属気相成長)法により、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層(量子井戸構造)、発光層上にMgがドープされたp型クラッド層としてAlGaN層、Mgがドープされたp型コンタクト層であるGaN層を順次積層させる。エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。各コンタクト層上に、スパッタリング法を用いてAlを蒸着し、正負各電極をそれぞれ形成させる。出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ発光素子である発光素子を形成させる。
【0140】
表面に銀でメッキされた鉄入り銅から構成されるマウントリードのカップ底面上に、ダイボンド樹脂としてエポキシ樹脂組成物を利用して上記発光素子をダイボンドする。これを170℃で75分加熱しエポキシ樹脂組成物を硬化させ発光素子を固定する。次に、発光素子の正負各電極と、マウントリード及びインナーリードとをAu線によりワイヤーボンディングさせ電気的導通を取る。
【0141】
実施例1と同様にして調製した硬化性組成物を砲弾型の型枠であるキャスティングケース内に注入させる。上記の発光素子がカップ内に配置されたマウントリード及びインナーリードの一部をキャスティングケース内に挿入し100℃2時間の初期硬化を行う。キャスティングケースから発光ダイオードを抜き出し、窒素雰囲気下において150℃1時間で硬化を行う。これにより砲弾型等のランプタイプの発光ダイオードを作成することができる。
(実施例7)
実施例5に記載の方法で硬化性組成物および発光素子を作成する。
【0142】
エッチングにより一対の銅箔パターンをガラスエポキシ樹脂上に形成させることによって、リード電極を持った基板を形成する。発光素子をエポキシ樹脂を用いてガラスエポキシ樹脂上にダイボンドする。発光素子の各電極と、各リード電極とをそれぞれAu線でワイヤボンディングし電気的導通を取る。基板上にマスク兼側壁としてとして貫通孔があいたガラスエポキシ樹脂をエポキシ樹脂により固定配置させる。この状態で真空装置内に配置させると共に発光素子が配置されたガラスエポキシ樹脂基板上に硬化性組成物をディスペンスし、貫通孔を利用したキャビティ内に硬化性組成物を充填する。この状態で、100℃1時間、さらに150℃1時間硬化させる。各発光ダイオードチップごとに分割させることでチップタイプ発光ダイオードを作成することができる。
(実施例8)
実施例5に記載の方法で硬化性組成物および発光素子を作成する。
【0143】
インサート成形によりPPS樹脂を用いてチップタイプ発光ダイオードのパッケージを形成させる。パッケージ内は、発光素子が配される開口部を備え、銀メッキした銅板を外部電極として配置させる。パッケージ内部で発光素子をエポキシ樹脂を用いてダイボンドして固定する。導電性ワイヤーであるAu線を発光素子の各電極とパッケージに設けられた各外部電極とにそれぞれワイヤーボンディングし電気的に接続させる。パッケージ開口部内にモールド部材として硬化性組成物を充填する。この状態で、100℃1時間、さらに150℃1時間硬化させる。この様にして、チップタイプ発光ダイオードを作成することができる。
【0144】
【発明の効果】
本発明の硬化性組成物は各種基材に対して接着性が良好でありかつ高温条件及び/または光照射下での着色性が低いため発光ダイオード用封止剤として用いることが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a curable composition, and more particularly, to a curable composition having good adhesion to various substrates and low colorability under high-temperature conditions and / or light irradiation, and a method for producing the same. And a cured product obtained by curing the same, and a light-emitting diode using the same.
[0002]
[Prior art]
Conventionally, it has been known that in addition reaction-curable (hydrosilylation) silicone, a curable composition containing an organosilicon compound in which an epoxy group and an alkoxy group are bonded to a silicon atom and an organoaluminum compound has good adhesion. (Patent Document 1). However, although the adhesiveness was good, there was no disclosure about the colorability under high-temperature conditions and / or light irradiation and a method for reducing the coloring.
[0003]
On the other hand, when the condensation reaction-curable silicone is used as a sealing agent for joints of a building, it is disclosed that by adding a borate ester, good adhesion to an adherend can be exhibited even when the joint depth is small. (Patent Document 2). However, this system was cured at room temperature, and there was no disclosure about the manifestation of cure by heat curing or the manifestation of effects when applied to an addition type system having a different reaction mode.
[0004]
As an optical material that requires adhesiveness, such as a light-emitting diode (LED) encapsulating material, a material that has less coloring even under high-temperature conditions in the mounting process, which has become more severe as lead-free is used In addition, a material having low heat generation under high output / coloring under high light irradiation is strongly desired in view of application to lighting applications.
[0005]
[Patent Document 1] JP-A-8-183934
[0006]
[Patent Document 2] JP-A-59-155483
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a curable composition having good adhesion to various substrates and low colorability under high-temperature conditions and / or light irradiation, a method for producing the same, and curing the same. And a light-emitting diode using the same.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present inventors have made intensive studies and found that (A) an organopolysiloxane having two or more aliphatic unsaturated hydrocarbon groups bonded to a silicon atom in one molecule; Essentially an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to a silicon atom in the molecule, (C) a hydrosilylation catalyst, (D) a silane coupling agent and / or an epoxy group-containing compound, and (E) a borate ester The inventors have found that the above problems can be solved by using a curable composition as a component, and have accomplished the present invention.
[0009]
That is, the present invention provides (A) an organopolysiloxane having two or more aliphatic unsaturated hydrocarbon groups bonded to a silicon atom in one molecule, and (B) a hydrogen atom bonded to a silicon atom in one molecule. A curable composition comprising two or more organohydrogenpolysiloxanes, (C) a hydrosilylation catalyst, (D) a silane coupling agent and / or an epoxy group-containing compound, and (E) a borate ester as essential components. )
(D) A silane coupling in which a component has at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group and a hydrolyzable silicon group in a molecule. The curable composition according to claim 1, which is an agent (claim 2),
The curable composition (Claim 3) according to claim 1, wherein the component (D) is a silane coupling agent having an epoxy group and a hydrolyzable silicon group in a molecule.
The component (E) is at least one selected from trinormal octadecyl borate, trinormal octyl borate, trinormal butyl borate, triisopropyl borate, trinormal propyl borate, triethyl borate, and trimethyl borate. The curable composition according to any one of claims 1 to 3 (claim 4),
A part of the aliphatic unsaturated hydrocarbon group in the component (A) and a part of the silicon-hydrogen bond in the component (B) previously reacted by a hydrosilylation reaction in the presence of the component (C). The curable composition (Claim 5) according to any one of claims 1 to 5, which is
A cured product obtained by curing the curable composition according to any one of claims 1 to 5 (claim 6),
A light-emitting diode sealed with the cured product according to claim 6 (claim 7).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the component (A) in the present invention will be described. The component (A) is not particularly limited as long as it is an organopolysiloxane having two or more aliphatic unsaturated hydrocarbon groups bonded to a silicon atom in one molecule. Specifically, those represented by the following composition formula (1) can be used.
R1 aR2 bSiO[4- (a + b)] / 2  (1)
(Where R1Is a monovalent aliphatic unsaturated hydrocarbon group, R2Is a substituted or unsubstituted monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon group, and a and b are each 0 <a ≦ 1, 1 ≦ b <3, 1 <a + b ≦ 3, preferably 0. 0005 ≦ a ≦ 0.1, 1.8 <b ≦ 2.2, 1.9 ≦ a + b ≦ 2.25. )
In the above formula (1), R1Is an aliphatic unsaturated hydrocarbon group such as a C2 to C10, especially a C2 to C4 alkenyl group such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, and a hexenyl group; Particularly, a vinyl group is preferable. Also, R2Preferably has 1 to 12 carbon atoms, and more preferably has 1 to 8 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, and hexyl group. An alkyl group such as cyclohexyl group, octyl group, and decyl group; an aryl group such as phenyl group and tolyl group; an aralkyl group such as benzyl group and phenylethyl group; And a chloromethyl group, a bromoethyl group, a trifluoropropyl group and a cyanoethyl group substituted with a halogen atom such as fluorine or a cyano group, and a methyl group, a phenyl group and a trifluoropropyl group are particularly preferable. In the formula (1), each substituent may be different or the same, but it is necessary that one molecule contains two or more aliphatic unsaturated hydrocarbon groups such as alkenyl groups. is there. In addition, this organopolysiloxane is generally a linear diorganopolysiloxane in which a main chain portion basically consists of repeating diorganosiloxane units, and both ends of a molecular chain are blocked with a triorganosiloxy group. But R1SiO3/2Unit (T unit), R2SiO2/2Unit (D unit) or SiO4/2It may be branched or cyclic containing a unit (Q unit). For example, a structure known as a so-called MQ resin may be used. The aliphatic unsaturated hydrocarbon group contained in the molecule may be bonded to any silicon atom at the terminal of the molecular chain or in the middle of the molecular chain. It is desirable that the compound has a modified aliphatic unsaturated group from the viewpoint of the curing speed and the physical properties of the cured product. The average degree of polymerization of the organopolysiloxane (i.e., the number of silicon atoms in the molecule) is preferably 20 or more, usually about 20 to 5,000, and the viscosity at 25C is usually 10 to 1,000, 000 cs, especially about 100 to 100,000 cs is preferably used. Further, the solid substance may be used by dissolving it in a general solvent such as toluene, acetone and hexane.
[0011]
Specific examples of the component (A) include the following components.
[0012]
Embedded image
Figure 2004292714
Next, the component (B) in the present invention will be described. As the component (B), any organohydrogenpolysiloxane having at least two hydrogen atoms bonded to silicon atoms in one molecule can be used without particular limitation. The component (B) is a component serving as a crosslinking agent for the organopolysiloxane of the component (A), and those represented by the following composition formula (2) are preferably used.
R3 cHdSiO[4- (c + d)] / 2  (2)
(Where R3Is a substituted or unsubstituted monovalent hydrocarbon group, c and d are respectively 1 ≦ c ≦ 2.2, 0.002 ≦ d ≦ 1, 1 ≦ c + d ≦ 3, preferably 1 <c ≦ 2, 0 It is a number that satisfies 1.8 ≦ c + d ≦ 2.5 when .01 ≦ d <1. )
In the above formula (2), R3The above-mentioned R preferably has no aliphatic unsaturated bond having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.2Monovalent hydrocarbon groups similar to those exemplified as, for example, methyl groups, ethyl groups, propyl groups, alkyl groups such as butyl groups, phenyl groups, aryl groups such as tolyl groups, a part or all of these groups A chloromethyl group, a trifluoropropyl group, a cyanoethyl group, etc., in which a hydrogen atom of the above is substituted with a halogen atom or a cyano group. The organohydrogenpolysiloxane is generally linear, but may have a partially branched or cyclic skeleton.
[0013]
The average degree of polymerization of the organohydrogenpolysiloxane (that is, the number of silicon atoms in the molecule) is preferably from 3 to 300. This organohydrogenpolysiloxane has at least two, preferably at least three, hydrogen atoms (ie, SiH groups) bonded to silicon atoms in one molecule (for example, usually about 3 to 100). The hydrogen atom may be bonded to either the silicon atom at the terminal of the molecular chain or the silicon atom in the middle of the molecular chain, or may be bonded to both.
[0014]
Specific examples of the component (B) include the following components.
[0015]
Embedded image
Figure 2004292714
[0016]
Embedded image
Figure 2004292714
As the component (B), in addition to the so-called generally known organohydrogenpolysiloxane described above, various types modified with an organic component in consideration of adhesiveness to various substrates and affinity. An SiH group-containing compound can be used. For example, compounds described in International Publication WO 96/15194 and JP-A-2002-327114 having at least two SiH groups in one molecule can be used.
[0017]
In the present invention, the mixing ratio of the component (A) and the component (B) is such that an aliphatic unsaturated hydrocarbon group bonded to a silicon atom in the component (A) and a hydrogen atom bonded to a silicon atom in the component (B) are mixed. Is preferably in the range of 10: 1 to 1:10, particularly 3: 1 to 1: 3.
[0018]
Next, the hydrosilylation catalyst as the component (C) will be described.
[0019]
The hydrosilylation catalyst is not particularly limited as long as it has the catalytic activity of the hydrosilylation reaction, and examples thereof include simple platinum, alumina, silica, carbon black, and the like on which solid platinum is supported, chloroplatinic acid, platinum chloride Complexes of acids with alcohols, aldehydes, ketones, etc., platinum-olefin complexes (for example, Pt (CH2= CH2)2(PPh3)2, Pt (CH2= CH2)2Cl2), A platinum-vinylsiloxane complex (for example, Pt (ViMe2SiOSiMe2Vi)n, Pt [(MeViSiO)4]m), A platinum-phosphine complex (for example, Pt (PPh3)4, Pt (PBu3)4), A platinum-phosphite complex (eg, Pt [P (OPh)3]4, Pt [P (OBu)3]4(Wherein Me represents a methyl group, Bu represents a butyl group, Vi represents a vinyl group, Ph represents a phenyl group, and n and m each represent an integer.), Dicarbonyldichloroplatinum, Karstedt's catalyst, and The platinum-hydrocarbon complexes described in U.S. Pat. Nos. 3,159,601 and 3,159,662 to Ashby, and the platinum alcoholate catalyst described in U.S. Pat. No. 3,220,972 to Lamoreaux, were used. No. Further, the platinum chloride-olefin complexes described in Modic U.S. Pat. No. 3,516,946 are also useful in the present invention.
[0020]
Examples of catalysts other than platinum compounds include RhCl (PPh)3, RhCl3, RhAl2O3, RuCl3, IrCl3, FeCl3, AlCl3, PdCl2・ 2H2O, NiCl2, TiCl4And the like.
[0021]
Among them, chloroplatinic acid, platinum-olefin complex, platinum-vinylsiloxane complex and the like are preferable from the viewpoint of catalytic activity. These catalysts may be used alone or in combination of two or more.
[0022]
The addition amount of the catalyst is not particularly limited, but the lower limit of the preferable addition amount is 1 mol of the SiH group of the component (B) in order to have sufficient curability and to keep the cost of the curable composition relatively low. 10-8Mole, more preferably 10-6And the preferred upper limit of the addition amount is 10 to 1 mol of the SiH group of the component (B).-1Mole, more preferably 10-2Is a mole.
[0023]
In addition, a co-catalyst can be used in combination with the above-mentioned catalyst. For example, phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl maleate, and 2-hydroxy-2-methyl-1- Examples include acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine. The addition amount of the cocatalyst is not particularly limited, but the preferable lower limit of the addition amount per 1 mol of the hydrosilylation catalyst is 10-2Mole, more preferably 10-1Mol, and the preferable upper limit of the addition amount is 102Mole, more preferably 10 mole.
[0024]
Next, the silane coupling agent as the component (D) will be described.
[0025]
The silane coupling agent is not particularly limited as long as it has at least one functional group reactive with an organic group and at least one hydrolyzable silicon group in the molecule.
[0026]
As a functional group reactive with an organic group, at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group is preferable from the viewpoint of handleability, From the viewpoint of curability and adhesiveness, an epoxy group, a methacryl group, and an acryl group are particularly preferable. As the hydrolyzable silicon group, an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
[0027]
Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Alkoxysilanes having an epoxy functional group such as epoxycyclohexyl) ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, and acryloxymethyltriethoxysilane Alkoxysilanes having can be exemplified.
[0028]
The addition amount of the silane coupling agent can be variously set, but the lower limit of the preferable addition amount relative to 100 parts by weight of [(A) component + (B) component] is 0.1 part by weight, more preferably 0.5 part by weight. Parts by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably 25 parts by weight. When the amount is small, the effect of improving the adhesiveness is not exhibited, and when the amount is large, the physical properties of the cured product may be adversely affected.
[0029]
Further, the epoxy group-containing compound as the component (D) will be described. Various epoxy resins are exemplified as the epoxy group-containing compound. As the epoxy resin, for example, novolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) Propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinylcyclohexenedionoxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2-cyclopropanedicarboxylic acid bisglycidyl ester, triglycidyl isocyanurate, monoallyldiglycidyl isocyanate Curing epoxy resins such as nurate and diallyl monoglycidyl isocyanurate with aliphatic acid anhydrides such as hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and hydrogenated methylnadic anhydride. Is mentioned. These epoxy resins or curing agents may be used alone or in combination.
[0030]
Although the addition amount of the epoxy group-containing compound can be variously set, the lower limit of the preferable addition amount to 100 parts by weight of [(A) component + (B) component] is 0.1 part by weight, more preferably 0.5 part by weight. Parts by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably 25 parts by weight. When the amount is small, the effect of improving the adhesiveness is not exhibited, and when the amount is large, the physical properties of the cured product may be adversely affected.
[0031]
Next, the borate ester as the component (E) will be described. A borate ester is used as a silanol condensation catalyst, and can improve and / or stabilize adhesiveness. As the borate ester, those represented by the following general formulas (3) and (4) can be suitably used.
B (OR4)3                        (3)
B (OCOR4)3                (4)
(Where R4Represents an organic group having 1 to 48 carbon atoms. )
Specific examples of the component (E) include tri-2-ethylhexyl borate, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, trinormal butyl borate, and tri-sec-borate. Butyl, tri-tert-butyl borate, triisopropyl borate, trinormal propyl borate, triallyl borate, triethyl borate, trimethyl borate, and boron methoxy ethoxide can be suitably used. As the component (E), only one type may be used, or two or more types may be mixed and used. The mixing may be performed in advance, or may be performed at the time of preparing a cured product.
[0032]
From the viewpoint of availability, trimethyl borate, triethyl borate, and trinormal butyl borate are preferred, and trimethyl borate is more preferred.
[0033]
From the viewpoint that volatility at the time of curing can be suppressed, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, trinormal butyl borate, tri-sec-butyl borate, tri-borate borate Tert-butyl, triisopropyl borate, trinormal propyl borate, triallyl borate, and boron methoxy ethoxide are preferred, and normal trioctadecyl borate, tri-tert-butyl borate, triphenyl borate, and trinormal butyl borate are more preferred.
[0034]
From the viewpoints of suppression of volatility and workability, trinormal butyl borate, triisopropyl borate, and trinormal propyl borate are preferable, and trinormal butyl borate is more preferable.
[0035]
Triethyl borate is preferred from the viewpoint of low colorability at high temperatures, and trimethyl borate is more preferred.
[0036]
The amount used when the silanol condensation catalyst is used can be variously set, but the lower limit of the preferable addition amount relative to 100 parts by weight of the coupling agent is 0.1 part by weight, more preferably 1 part by weight. The upper limit is 50 parts by weight, more preferably 30 parts by weight. When the amount is small, the effect of improving the adhesiveness is not exhibited, and when the amount is large, the physical properties of the cured product may be adversely affected.
[0037]
Further, in the present invention, in order to further enhance the effect of improving the adhesiveness, a silanol source compound can be further used, and the adhesiveness can be improved and / or stabilized. In the present specification, a silanol source compound refers to a compound having one or more silanol groups or alkoxysilyl groups in one molecule. Examples of such a silanol source include silanol compounds such as triphenylsilanol and diphenyldihydroxysilane, and alkoxysilanes such as diphenyldimethoxysilane, tetramethoxysilane and methyltrimethoxysilane.
[0038]
The amount used when the silanol source compound is used can be variously set, but the lower limit of the preferable addition amount to 100 parts by weight of the coupling agent and / or the epoxy compound is 0.1 part by weight, more preferably 1 part by weight. And the upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight. When the amount is small, the effect of improving the adhesiveness is not exhibited, and when the amount is large, the physical properties of the cured product may be adversely affected.
[0039]
These silanol source compounds may be used alone or in combination of two or more.
[0040]
Various thermosetting resins can be added to the composition of the present invention for the purpose of modifying properties and the like. Examples of the thermosetting resin include, but are not limited to, an epoxy resin, a cyanate ester resin, a phenol resin, a polyimide resin, a urethane resin, a bismaleimide resin, and the like. Among these, epoxy resins are preferred from the viewpoint of excellent practical properties such as adhesiveness.
[0041]
As the epoxy resin, for example, novolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) Propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinylcyclohexenedionoxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2-cyclopropanedicarboxylic acid bisglycidyl ester, triglycidyl isocyanurate, monoallyldiglycidyl isocyanate Curing epoxy resins such as nurate and diallyl monoglycidyl isocyanurate with aliphatic acid anhydrides such as hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and hydrogenated methylnadic anhydride. Is mentioned. These epoxy resins or curing agents may be used alone or in combination.
[0042]
The addition amount of the thermosetting resin is not particularly limited, but the lower limit of the preferable use amount is 5% by weight, more preferably 10% by weight of the whole curable composition, and the upper limit of the preferable use amount is the curable composition. 50% by weight, more preferably 30% by weight. If the amount is small, it is difficult to obtain the desired effect such as adhesiveness, and if the amount is large, the material tends to be brittle.
[0043]
These thermosetting resins may be used alone or in combination.
[0044]
The thermosetting resin may be obtained by dissolving the resin raw material or / and the cured resin in the component (A) and / or the component (B) and mixing them in a uniform state, or may be pulverized and mixed in a particle state. It may be in a dispersed state by dissolving in a solvent and mixing. From the viewpoint that the obtained cured product tends to be more transparent, it is preferable to dissolve in the component (A) and / or the component (B) and mix them in a uniform state. Also in this case, the thermosetting resin may be directly dissolved in the component (A) and / or the component (B), may be uniformly mixed using a solvent or the like, and may be thereafter uniformly removed by removing the solvent. It may be in a dispersed state or / and a mixed state.
[0045]
When the thermosetting resin is dispersed and used, the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 μm. The particle system may have a distribution, may have a single dispersion or may have a plurality of peak particle diameters, but from the viewpoint that the viscosity of the curable composition tends to be low and the moldability is good, the particle diameter is small. Is preferably 10% or less.
[0046]
Various thermoplastic resins can be added to the composition of the present invention for the purpose of modifying properties and the like. Various thermoplastic resins can be used. For example, polymethyl methacrylate resins such as a homopolymer of methyl methacrylate or a random, block, or graft polymer of methyl methacrylate and another monomer (for example, Hitachi Chemical Co., Ltd.) Acryl resin represented by polybutyl acrylate resin such as butyl acrylate homopolymer or random, block, or graft polymer of butyl acrylate and other monomer, bisphenol A, 3, Polycarbonate resins such as polycarbonate resins containing 3,5-trimethylcyclohexylidenebisphenol or the like as a monomer structure (for example, APEC manufactured by Teijin Ltd.), norbornene derivatives, vinyl monomers, etc. were homo- or copolymerized. Cycloolefin resins such as resins obtained by ring-opening metathesis polymerization of fats and norbornene derivatives or hydrogenated products thereof (for example, APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Nippon Zeon, ARTON manufactured by JSR, etc.), ethylene and Olefin-maleimide resins such as maleimide copolymers (eg, TI-PAS manufactured by Tosoh Corporation), bisphenols such as bisphenol A and bis (4- (2-hydroxyethoxy) phenyl) fluorene, and diols such as diethylene glycol. Polyester resins such as polyester obtained by polycondensation of phthalic acids such as terephthalic acid and isophthalic acid and aliphatic dicarboxylic acids (for example, O-PET manufactured by Kanebo Co., Ltd.), polyether sulfone resins, polyarylate resins, polyvinyl acetal resins, Polyethylene resin Polypropylene resins, polystyrene resins, polyamide resins, silicone resins, other like fluorine resin, not natural rubber, but the rubber-like resin is exemplified such EPDM is not limited thereto.
[0047]
The thermoplastic resin may have a carbon-carbon double bond or / and a SiH group reactive with a SiH group in the molecule. In terms of the fact that the obtained cured product is more likely to be tough, it has, on average, one or more carbon-carbon double bonds or / and SiH groups reactive with SiH groups in one molecule. Is preferred.
[0048]
The thermoplastic resin may have another crosslinkable group. Examples of the crosslinkable group in this case include an epoxy group, an amino group, a radically polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the obtained cured product is likely to be high, it is preferable that one or more crosslinkable groups are included in one molecule on average.
[0049]
The molecular weight of the thermoplastic resin is not particularly limited, but from the viewpoint that the compatibility with the component (A) or the component (B) tends to be good, the number average molecular weight is preferably 10,000 or less, and preferably 5,000. It is more preferred that: Conversely, the number average molecular weight is preferably 10,000 or more, more preferably 100,000 or more, from the viewpoint that the obtained cured product tends to be tough. Although there is no particular limitation on the molecular weight distribution, the molecular weight distribution is preferably 3 or less, more preferably 2 or less, from the viewpoint that the viscosity of the mixture is low and moldability is easily improved. It is more preferred that:
[0050]
The amount of the thermoplastic resin is not particularly limited, but the lower limit of the preferable amount is 5% by weight, more preferably 10% by weight of the whole curable composition, and the upper limit of the preferable amount is in the curable composition. 50% by weight, more preferably 30% by weight. If the amount is small, the obtained cured product tends to be brittle, and if it is large, the heat resistance (elastic modulus at high temperature) tends to be low.
[0051]
A single thermoplastic resin may be used, or a plurality of thermoplastic resins may be used in combination.
[0052]
The thermoplastic resin may be dissolved in the component (A) and / or the component (B) and mixed in a uniform state, may be pulverized and mixed in a particle state, or may be dissolved in a solvent and mixed. And may be in a dispersed state. From the viewpoint that the obtained cured product tends to be more transparent, it is preferable to dissolve in the component (A) and / or the component (B) and mix them in a uniform state. Also in this case, the thermoplastic resin may be directly dissolved in the component (A) and / or the component (B), may be uniformly mixed using a solvent or the like, or may be uniformly dispersed after removing the solvent. It may be in a state or / and a mixed state.
[0053]
When the thermoplastic resin is dispersed and used, the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 μm. The particle system may have a distribution, may have a single dispersion or may have a plurality of peak particle diameters, but from the viewpoint that the viscosity of the curable composition tends to be low and the moldability is good, the particle diameter is small. Is preferably 10% or less.
[0054]
A filler may be added to the composition of the present invention.
[0055]
Various fillers are used, for example, silica-based fillers such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine amorphous silica, titanium oxide, and oxidized silica. Oxides such as tin, zinc oxide, tin monoxide, calcium oxide, magnesium oxide, beryllium oxide, ITO, metal nitrides such as boron nitride, silicon nitride, aluminum nitride, metal carbides such as SiC, silver, gold, aluminum, Metal powders such as copper, nickel, manganese, iron, silicon, lead, bismuth, tin and stainless steel, metal carbonates such as calcium carbonate, potassium carbonate, sodium carbonate, magnesium carbonate, barium carbonate, aluminum hydroxide, magnesium hydroxide, etc. Metal hydroxide, glass fiber, carbon fiber, aluminum borate, barium titanate, calcium silicate, Generally used and / or proposed as a filler for conventional sealants such as squid, carbon black, graphite, alumina, diatomaceous earth, clay, clay, talc, gypsum, inorganic balloons, and other epoxy-based sealants And the like.
[0056]
Among the above-listed fillers, silver, gold, aluminum, copper, nickel, and the like, in particular, can improve heat dissipation and have conductivity. Further, alumina, silica, titanium oxide, boron nitride, aluminum nitride, and the like have high weather resistance and can maintain high reflectance. Various shapes such as a spherical shape, a needle shape, and a flake shape can be adopted in consideration of dispersibility, electrical conduction, and the like.
[0057]
It is preferable that the filler has low radiation properties from the viewpoint of not easily damaging the semiconductor or electronic material to be sealed.
[0058]
The filler may be appropriately surface-treated. Examples of the surface treatment include an alkylation treatment, a trimethylsilylation treatment, a silicone treatment, and a treatment with a coupling agent.
[0059]
Examples of the coupling agent in this case include a silane coupling agent. The silane coupling agent is not particularly limited as long as it has at least one functional group reactive with an organic group and at least one hydrolyzable silicon group in the molecule. The group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acryl group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handleability. From the viewpoints of properties and adhesiveness, an epoxy group, a methacryl group, and an acryl group are particularly preferable. As the hydrolyzable silicon group, an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
[0060]
Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Alkoxysilanes having an epoxy functional group such as epoxycyclohexyl) ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, and acryloxymethyltriethoxysilane Alkoxysilanes having can be exemplified.
[0061]
Other methods include adding a filler. For example, alkoxysilanes, acyloxysilanes, hydrolyzable silane monomers or oligomers such as halogenated silanes, and titanium, alkoxides of metals such as aluminum, acyloxides, halides and the like are added to the composition of the present invention to form a composition. A method in which the filler is formed in the composition by reacting in the composition or a partial reactant of the composition can also be used.
[0062]
Among the above-mentioned fillers, a silica-based filler is preferable from the viewpoint that the curing reaction is hardly hindered and the effect of reducing the linear expansion coefficient is large.
[0063]
The average particle size of the filler is preferably 10 μm or less, more preferably 5 μm or less, in that the permeability into the narrow gap of the sealing material tends to be good.
[0064]
The proportion of the filler having a particle diameter of 50 μm or more is preferably 1% by weight or less, and more preferably 0.1% by weight or less, in that the permeability into the narrow gap of the sealing material is easily improved. More preferably, there is.
[0065]
The particle size distribution of the filler can be set in various ways, including those that have been used or / and have been proposed as fillers for conventional sealing materials such as epoxy. For example, particles of 24 μm or more may be 15% by weight or more and particles of 1 μm or less may be 3% by weight or more.
[0066]
The average particle diameter of the filler and the ratio of the particles having a particle diameter of 50 μm or more can be measured using a laser method Microtrac particle size analyzer.
[0067]
The specific surface area of the filler can also be set in various ways, including those that have been used or / and have been proposed as fillers for conventional sealing materials such as epoxy. For example, 4m2/ G or more, 4m2/ G or less, 10m2/ G or less.
[0068]
The specific surface area can be measured by a BET method monosorb specific surface area measuring device.
[0069]
The vitrification rate of the filler can also be set in various ways, including those that have been used or / and have been proposed as fillers for conventional sealing materials such as epoxy. For example, it can be set arbitrarily, such as 97% or more.
[0070]
The shape of the filler is preferably a spherical filler from the viewpoint that the viscosity of the sealing material tends to be low.
[0071]
The filler may be used alone or in combination of two or more.
[0072]
The addition amount of the filler is not particularly limited, but from the viewpoint that the effect of reducing the coefficient of linear expansion is high and the fluidity of the composition is good, the preferable lower limit of the addition amount is 3% by weight of the total composition, The content is more preferably 20% by weight, and the upper limit of the added amount is preferably 90% by weight, more preferably 80% by weight in the whole composition.
[0073]
When the curable composition of the present invention is used, for example, as a resin paste for die bonding, the content of inorganic members such as silver, gold, aluminum, copper, and nickel suitably contained in the resin is determined by heat dissipation and Various adjustments such as electrical conductivity can be made as desired. However, when the content of the inorganic member in the resin is increased, the deterioration of the resin is small, but the adhesion is reduced. Therefore, the content is preferably 5% by weight to 80% by weight, more preferably 60% by weight to 80% by weight. Such a die bonding resin paste can be easily applied by using a mounting device for bonding the LED chip and the substrate.
[0074]
Various methods can be used as a method for mixing the filler and the additive. However, from the viewpoint that the storage stability of the intermediate raw material of the composition is easily improved, the component (A) may be added to the component (A). A method in which the mixture of the filler and the component (B) is mixed is preferable. When the component (A) is mixed with the component (B) mixed with the component (C) or / and the filler, the component (B) may be mixed in the presence or absence of the component (C). Due to its reactivity with moisture and / or filler in the environment, it may deteriorate during storage and the like.
[0075]
An antioxidant may be added to the composition of the present invention. Examples of the anti-aging agent include generally used anti-aging agents such as citric acid, phosphoric acid, and sulfur-based anti-aging agents. Examples of the sulfur-based antioxidants include mercaptans, salts of mercaptans, sulfide carboxylate esters, sulfides including hindered phenol sulfides, polysulfides, dithiocarboxylates, thioureas, thiophosphates, and sulfonium. Examples include compounds, thioaldehydes, thioketones, mercaptals, mercaptols, monothio acids, polythio acids, thioamides, sulfoxides and the like.
[0076]
These antioxidants may be used alone or in combination of two or more.
[0077]
A radical inhibitor may be added to the composition of the present invention. Examples of the radical inhibitor include 2,6-di-t-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), and tetrakis (methylene- Phenolic radical inhibitors such as 3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane, phenyl-β-naphthylamine, α-naphthylamine, N, N′-sec-butyl-p- Examples include amine-based radical inhibitors such as phenylenediamine, phenothiazine, N, N'-diphenyl-p-phenylenediamine.
[0078]
These radical inhibitors may be used alone or in combination of two or more.
[0079]
An ultraviolet absorber may be added to the composition of the present invention. Examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole and bis (2,2,6,6-tetramethyl-4-piperidine) sebacate. No.
[0080]
These ultraviolet absorbers may be used alone or in combination of two or more.
[0081]
In the composition of the present invention, in addition to those used or / and proposed as a filler for a conventional sealing material such as an epoxy resin, a coloring agent, a release agent, a flame retardant, a flame retardant auxiliary, Surfactants, defoamers, emulsifiers, leveling agents, anti-repellents, ion traps, thixotropic agents, tackifiers, storage stability improvers, ozone deterioration inhibitors, light stabilizers, thickeners, plastics Agents, reactive diluents, antioxidants, heat stabilizers, conductivity-imparting agents, antistatic agents, radiation blocking agents, nucleating agents, phosphorus-based peroxide decomposers, lubricants, pigments, metal deactivators, A thermal conductivity imparting agent, a physical property modifier and the like can be added within a range that does not impair the purpose and effect of the present invention.
[0082]
The composition of the present invention can be used after being dissolved in a solvent. The solvent that can be used is not particularly limited, and specific examples thereof include hydrocarbon solvents such as benzene, toluene, hexane, and heptane, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolan, and diethyl ether. Ether solvents, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane can be suitably used.
[0083]
As the solvent, toluene, tetrahydrofuran, 1,3-dioxolan, and chloroform are preferred.
[0084]
The amount of the solvent to be used can be appropriately set, but the lower limit of the preferable amount of use for 1 g of the curable composition to be used is 0.1 mL, and the upper limit of the preferable amount of use is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as lowering the viscosity, and if the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also in terms of cost. It is disadvantageous and reduces the industrial value.
[0085]
These solvents may be used alone or as a mixed solvent of two or more types.
[0086]
Furthermore, various additives for improving the characteristics of light emitting diodes may be added to the composition of the present invention. Examples of the additive include a phosphor such as cerium-activated yttrium-aluminum-garnet-based phosphor that absorbs light from a light-emitting element and emits longer-wavelength fluorescence, and a blue that absorbs a specific wavelength. Inorganic or organic such as coloring agents such as ing agents, silicon oxides such as titanium oxide, aluminum oxide, silica and quartz glass for diffusing light, talc, calcium carbonate, melamine resin, CTU guanamine resin, benzoguanamine resin, etc. Thermal conductive fillers such as diffusion materials, glass, metal oxides such as aluminosilicate, and metal nitrides such as aluminum nitride and boron nitride can be used.
[0087]
The additive for improving the light emitting diode characteristics may be uniformly contained, or may be contained with a gradient in the content. Such a filler-containing resin portion can be formed as a mold member behind the light emitting surface by flowing a resin containing a filler after flowing the resin for the mold member on the front surface of the light emitting surface into the mold. Also, after forming the mold member, cover the lead terminals by applying tape from both front and back surfaces. In this state, immerse the lower half of the mold member of the light emitting diode in the tank containing the filler-containing resin, and then pull it up. And dried to form a filler-containing resin portion.
[0088]
The composition of the present invention can be cured after mixing all components constituting the composition, but can also be cured by other methods. The above description of the method of mixing the thermosetting resin, the thermoplastic resin, and the filler / additive is an example. The components (A), (B) and (C), which are essential components of the composition of the present invention, are partially reacted in advance in the presence and / or absence of (D), (E) and other components. After that, it is also possible to move to the next step. The merit of this method is that, for example, after adjusting the viscosity (thickening) of a composition that is too low in viscosity, mixing other components such as fillers to suppress the sedimentation of the added fillers. After shaping, it can be bonded while maintaining its shape. This technique is generally known as a so-called B-stage technology in the industry using a thermosetting resin.
[0089]
A light emitting diode can be manufactured using the composition of the present invention. In this case, the light emitting diode can be manufactured by coating the light emitting element with the composition as described above.
[0090]
In this case, the light emitting element is not particularly limited, and a light emitting element used for a conventionally known light emitting diode can be used. Such a light emitting element was prepared by, for example, laminating a semiconductor material on a substrate provided with a buffer layer such as GaN or AlN by various methods such as MOCVD, HDVPE, and liquid phase growth as needed. Things. Various materials can be used for the substrate in this case, and examples thereof include sapphire, spinel, SiC, Si, ZnO, and GaN single crystal. Of these, sapphire is preferably used from the viewpoint that GaN with good crystallinity can be easily formed and the industrial utility value is high.
[0091]
Examples of the semiconductor material to be laminated include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaN, InGaAlN, and SiC. Among them, a nitride-based compound semiconductor (InxGayAlzN) is preferable from the viewpoint of obtaining high luminance. Such a material may contain an activator or the like.
[0092]
Examples of the structure of the light emitting element include a MIS junction, a pn junction, a homo junction having a PIN junction, a hetero junction, a double hetero structure, and the like. Also, a single or multiple quantum well structure can be used.
[0093]
The light emitting element may or may not be provided with a passivation layer.
[0094]
An electrode can be formed on the light emitting element by a conventionally known method.
[0095]
The electrodes on the light emitting element can be electrically connected to lead terminals and the like by various methods. As the electric connection member, those having good ohmic mechanical connection with the electrode of the light emitting element are preferable, and examples thereof include a bonding wire using gold, silver, copper, platinum, aluminum, or an alloy thereof. . Alternatively, a conductive adhesive or the like in which a conductive filler such as silver or carbon is filled with a resin can be used. Of these, from the viewpoint of good workability, it is preferable to use an aluminum wire or a gold wire.
[0096]
The light-emitting element is obtained as described above. In the light-emitting diode of the present invention, any light-emitting element having a vertical luminous intensity of 1 cd or more can be used. The effect of the present invention is more remarkable when a light emitting element of 2 cd or more is used, and the effect of the present invention is more remarkable when a light emitting element of 3 cd or more is used.
[0097]
The light-emitting output of the light-emitting element can be arbitrarily selected without particular limitation. However, when a light-emitting element of 1 mW or more at 20 mA is used, the effect of the present invention is remarkable, and a light-emitting element of 4 mW or more at 20 mA is used. In some cases, the effect of the present invention is remarkable, and when a light emitting element of 5 mW or more at 20 mA is used, the effect of the present invention is further remarkable.
[0098]
Various light emission wavelengths from the ultraviolet region to the infrared region can be used for the light-emitting element, and the effect of the present invention is particularly remarkable when a light-emitting device having a main emission peak wavelength of 550 nm or less is used.
[0099]
A single type of light emitting element may be used to emit monochromatic light, or a plurality of light emitting elements may be used to emit monochromatic or multicolor light.
[0100]
As the lead terminal used in the light emitting diode of the present invention, those having good adhesion to an electric connection member such as a bonding wire, and electric conductivity are preferable, and the electric resistance of the lead terminal is preferably 300 μΩ-cm or less. , More preferably 3 μΩ-cm or less. Examples of these lead terminal materials include iron, copper, copper with iron, copper with tin, and those plated with silver, nickel, or the like. The glossiness of these lead terminals may be appropriately adjusted in order to obtain good light spread.
[0101]
The light emitting diode of the present invention can be manufactured by coating a light emitting element with the composition as described above. In this case, the coating is not limited to directly sealing the light emitting element, but indirectly coating the light emitting element. Includes cases where Specifically, the light emitting device may be directly sealed with the composition of the present invention by various methods conventionally used, or a conventionally used epoxy resin, silicone resin, acrylic resin, urea resin, imide resin or the like may be sealed. After sealing the light emitting element with a sealing resin or glass, the light emitting element may be coated on or around it with the composition of the present invention. After the light emitting element is sealed with the composition of the present invention, it may be molded with a conventionally used epoxy resin, silicone resin, acrylic resin, urea resin, imide resin, or the like. By the above method, various effects such as a lens effect can be provided by the difference in the refractive index and the specific gravity.
[0102]
Various methods can be applied as a sealing method. For example, a liquid composition may be injected into a cup, cavity, package recess, or the like in which a light emitting element is disposed at the bottom by a dispenser or other method and cured by heating or the like, or a solid or high-viscosity liquid composition may be used. The material may be flowed by heating or the like, and similarly may be injected into a concave portion of the package and cured by heating or the like. The package in this case can be made using various materials, and examples thereof include polycarbonate resin, polyphenylene sulfide resin, epoxy resin, acrylic resin, silicone resin, ABS resin, polybutylene terephthalate resin, and polyphthalamide resin. be able to. Further, a method of injecting the composition into the mold in advance, immersing a lead frame or the like in which the light emitting element is fixed therein, and then curing the composition can be applied. Of the composition may be molded and cured by injection, transfer molding, injection molding, or the like. Furthermore, the composition in a liquid or fluid state may be dropped or coated on a light emitting element and cured. Alternatively, the curable resin can be molded and cured by stencil printing, screen printing, or application through a mask on the light emitting element. Alternatively, a method in which a composition that has been partially cured or cured in advance into a plate shape, a lens shape, or the like may be fixed on a light emitting element. Further, it can be used as a die bonding agent for fixing the light emitting element to a lead terminal or a package, or can be used as a passivation film on the light emitting element. Further, it can be used as a package substrate.
[0103]
The shape of the covering portion is not particularly limited, and can take various shapes. For example, a lens shape, a plate shape, a thin film shape, a shape described in JP-A-6-244458, and the like are exemplified. These shapes may be formed by molding and curing the composition, or may be formed by post-processing after curing the composition.
[0104]
The light emitting diode of the present invention can be of various types, for example, any type such as a lamp type, an SMD type, and a chip type. Various types of SMD type and chip type package substrates are used, and examples thereof include epoxy resin, BT resin, and ceramic.
[0105]
In addition, various conventionally known methods can be applied to the light emitting diode of the present invention. For example, a method of providing a layer for reflecting or condensing light on the back of the light emitting element, a method of forming a complementary colored portion on the bottom corresponding to yellowing of the sealing resin, a thin film absorbing light having a wavelength shorter than the main emission peak On the light-emitting element, sealing the light-emitting element with a soft or liquid sealing material and then molding the surroundings with a hard material, absorbing fluorescent light from the light-emitting element to emit longer-wavelength fluorescent light A method of molding the surroundings after sealing the light emitting element with a material containing, a method of molding a material containing a phosphor in advance and then molding the material together with the light emitting element, and using a molding material having a special shape as described in JP-A-6-244458. A method to increase the luminous efficiency, a method to make the package a two-step concave part to reduce uneven brightness, a method to insert and fix a light emitting diode in a through hole, a light emitting element A method of forming a thin film on the surface that absorbs light having a wavelength shorter than the main emission wavelength, a method of connecting a light emitting element to a lead member by flip chip connection using solder bumps, etc., and extracting light from the substrate direction, etc. Can be mentioned.
[0106]
The light emitting diode of the present invention can be used for various known applications. Specifically, for example, a backlight, an illumination, a sensor light source, an instrument light source for a vehicle, a signal light, an indicator light, a display device, a light source of a planar light emitter, a display, a decoration, various lights, and the like can be given.
[0107]
The curable composition of the present invention is applicable to various optical materials. The term “optical material” as used in the present invention generally indicates a material used for the purpose of transmitting light such as visible light, infrared light, ultraviolet light, X-ray, and laser through the material.
[0108]
The optical material referred to in the present invention generally indicates a material used for the purpose of transmitting light such as visible light, infrared light, ultraviolet light, X-ray, and laser through the material.
[0109]
For example, a material used for a liquid crystal display device such as a color filter protective film, a TFT flattening film, and a substrate material, and a material used for a light emitting diode (LED) such as a sealing agent and a die bonding agent are exemplified.
[0110]
Furthermore, substrate materials, light guide plates, prism sheets, polarizing plates, retardation plates, viewing angle correction films, polarizer protective films, color filters, etc. in the liquid crystal display field, and various coating agents, protective films, sealing agents used for them, etc. And an adhesive.
[0111]
In addition, a molding agent for an LED element used in an LED display device, a sealing agent for an LED, a protective film for a front glass, a substitute material for a front glass, and various coating agents, protective films, sealing agents, adhesives and the like used for them. Are also mentioned.
[0112]
In addition, anti-reflection films for color PDPs (plasma displays), optical correction films, housing materials, protective films for front glass, alternative materials for front glass, and various coating agents, protective films, sealants, adhesives and the like used for them. Are also mentioned. Also, a substrate material, a light guide plate, a prism sheet, a deflecting plate, a retardation plate, a viewing angle correcting film, a polarizer protective film for a plasma addressed liquid crystal (PALC) display, a polarizer protective film, and various coating agents, protective films, and sealants used therein. And an adhesive. Further, a protective film for a front glass in an organic EL (electroluminescence) display, a substitute material for the front glass, and various coating agents, protective films, sealing agents, adhesives and the like used for them are also included. In addition, various film substrates in a field emission display (FED), a protective film for a front glass, a substitute material for a front glass, and various coating agents, protective films, sealing agents, adhesives, and the like used for them.
[0113]
In addition, in the optical recording field, disk substrates for VD (video disk), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disk), optical card Examples include materials, pickup lenses, protective films, and various coating agents, protective films, sealants, and adhesives used for them.
[0114]
In the field of optical equipment, there are also materials for lenses of steel cameras, finder prisms, target prisms, finder covers, light-receiving sensors, and various coating agents, protective films, sealants, adhesives and the like used for them. In addition, a photographic lens and a finder of a video camera and various coating agents, protective films, sealing agents, adhesives, and the like used for them are also included. In addition, a projection lens and a protective film of a projection television and various coating agents, a protective film, a sealing agent, an adhesive and the like used for them are also included. Examples also include materials for lenses of optical sensing devices, various films and various coating agents, protective films, sealing agents, adhesives and the like used for them.
[0115]
In the field of optical components, fiber materials, lenses, waveguides, elements around the optical switches in optical communication systems, and various coating agents, protective films, sealing agents, adhesives, and the like used for them are also included. Optical fiber materials and ferrules around the optical connector and various coating agents, protective films, sealing agents, adhesives and the like used for them are also included. In the case of optical passive components and optical circuit components, examples include lenses, waveguides, and various coating agents, protective films, sealants, and adhesives used for them. Substrate materials and fiber materials around an optoelectronic integrated circuit (OEIC) and various coating agents, protective films, sealing agents, adhesives and the like used for them are also included.
[0116]
In the optical fiber field, lighting and light guides for decorative displays, sensors for industrial use, displays and signs, etc., optical fibers for communication infrastructure and for connecting digital devices in the home, and various coating agents and protective films used for them , A sealant, an adhesive and the like.
[0117]
Examples of peripheral materials for semiconductor integrated circuits include resist materials for microlithography for LSI and VLSI materials.
[0118]
In the field of automobiles and transport equipment, lamp materials such as headlamps, tail lamps, and interior lamps for automobiles, lamp reflectors, lamp lenses, various interior and exterior products such as exterior panels and interior panels, glass substitutes, and various coating agents used for them , A protective film, a sealant, an adhesive and the like. Also, there are exterior parts for railway vehicles, glass substitutes and various coating agents, protective films, sealants, adhesives and the like used for them. In addition, exterior parts of aircraft, glass substitutes, and various coating agents, protective films, sealants, adhesives, and the like used for them are also included.
[0119]
In the architectural field, there are glass interlayers, glass substitutes, solar cell peripheral materials, and various coating agents, protective films, sealing agents, adhesives and the like used for them.
[0120]
For agricultural use, a film for covering a house is also included.
[0121]
Next-generation organic materials for optical and electronic functions include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, and elements. And various coating agents, protective films, sealing agents, adhesives and the like used therefor.
[0122]
As a method for curing the curable composition of the present invention, the reaction can be carried out simply by mixing, or the reaction can be carried out by heating. From the viewpoint that the reaction is quick and a material having high heat resistance is generally easily obtained, a method of reacting by heating is preferable.
[0123]
Although various reaction temperatures can be set, for example, a temperature of 30 to 300 ° C can be applied, 100 to 250 ° C is more preferable, and 150 to 200 ° C is further preferable. When the reaction temperature is low, the reaction time for causing a sufficient reaction is prolonged, and when the reaction temperature is high, molding tends to be difficult.
[0124]
The reaction may be performed at a constant temperature, but the temperature may be changed in multiple stages or continuously as needed. It is preferable to carry out the reaction while increasing the temperature stepwise or continuously, rather than to carry out the reaction at a constant temperature, since a uniform cured product without distortion is easily obtained.
[0125]
The reaction time can be variously set, but it is preferable to carry out the reaction at a relatively low temperature for a long time rather than at a high temperature for a short time since a uniform cured product without distortion can be easily obtained.
[0126]
The pressure during the reaction can be variously set as required, and the reaction can be performed at normal pressure, high pressure, or reduced pressure. The reaction is preferably carried out under reduced pressure from the viewpoint that volatile components generated by hydrolysis and condensation are easily removed.
[0127]
The shape of the optical material obtained by curing is not particularly limited because it can take various shapes depending on the application, but for example, a film shape, a sheet shape, a tube shape, a rod shape, a coating film shape, a bulk shape, etc. it can.
[0128]
Various molding methods can be used, including a conventional thermosetting resin molding method. For example, a molding method such as a casting method, a pressing method, a casting method, a transfer molding method, a coating method, and a RIM method can be applied. As a molding die, a polishing glass, a hard stainless steel polishing plate, a polycarbonate plate, a polyethylene terephthalate plate, a polymethyl methacrylate plate, or the like can be used. Further, a polyethylene terephthalate film, a polycarbonate film, a polyvinyl chloride film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polyimide film, or the like can be applied to improve the releasability from a mold.
[0129]
Various processes can be performed as needed at the time of molding. For example, a process of defoaming the composition or a partially reacted composition by centrifugation or depressurization for suppressing voids generated during molding, a process of once releasing the pressure at the time of pressing, and the like can be applied.
[0130]
【Example】
Hereinafter, Examples and Comparative Examples of the present invention will be described, but the present invention is not limited thereto.
(Example 1)
(Comparative Example 1)
According to the composition table in Table 1, each component was weighed into a 10 mL sample tube in order from the top. Each time a component was added, it was shaken well to make it uniform, and then the following components were added to prepare a blend. One prepared by fixing one end of a polyimide film apical AH350 × 30 × 0.025 mm manufactured by Kaneka Chemical Co., Ltd. to the upper end of a SUS304 cold-rolled stainless steel plate 150 × 70 × 0.8 mm manufactured by Daisuke Kiki Co., Ltd. with a heat-resistant adhesive tape. A few drops of the compound were placed in a band of about 40 mm in the vicinity of the fixed film, and the apical film was swept once using a bar coater # 8 manufactured by Daisuke Kiki Co., Ltd. so as to adhere to the steel plate. The extruded composition was absorbed by placing a Scott towel in advance. The stainless steel plate and the film were fixed with a heat-resistant adhesive tape at the lower end of the stainless steel plate so that the apical film did not peel off. The prepared adhesive force measurement sample was cured by heating at 150 ° C./2 h (perfect oven).
[0131]
The heat-resistant adhesive tape was peeled off from the cured sample, and a 180 ° C peel test was performed using an autograph manufactured by Shimadzu Corporation at 50 mm. min. (Table 2). Since the adhesive force fluctuated during the measurement, the range of the stable region excluding the singular point was shown.
[0132]
[Table 1]
Figure 2004292714
[0133]
[Table 2]
Figure 2004292714
(Example 2)
(Comparative Example 2)
Except that the composition was prepared according to the composition table in Table 3, a sample for measuring adhesive force was prepared and measured in the same manner as in Example 1 and Comparative Example 1. Table 4 shows the results.
[0134]
[Table 3]
Figure 2004292714
[0135]
[Table 4]
Figure 2004292714
(Example 3)
(Comparative Example 3)
The composition was prepared according to the composition table in Table 5, and samples for measuring the adhesive force were prepared in the same manner as in Example 1 and Comparative Example 1. However, since the viscosity of the formulation used here was too low, the whole amount was transferred to a 30 mL wide-mouthed eggplant flask, and about 0.5 g of the solvent was removed by evaporation under reduced pressure to adjust the viscosity to an appropriate level. Thereafter, a sample for measuring the adhesive force was prepared in the same manner as in Example 1 and Comparative Example 1, and the adhesive force was measured. Table 6 shows the results.
[0136]
[Table 5]
Figure 2004292714
[0137]
[Table 6]
Figure 2004292714
(Example 4)
(Comparative Example 4)
According to the composition table in Table 7, each component was weighed in order from the top to a 10 mL sample feel. Each time a component was added, it was shaken well to make it uniform, and then the following components were added to prepare a blend. The mixture was poured into an ointment can having an inner diameter of 44 mm, covered with a lid, and cured at 100 ° C./1.5 h and further at 150 ° C./1 h. A brittle elastic cured product having a thickness of about 1 mm was obtained. A part of the cured product was taken out, placed in another ointment can, covered, and heat-treated at 200 ° C. for 24 hours. Table 8 summarizes the appearance of the cured product before and after the heat treatment. As can be seen from Table 8, B (OMe) was used as the component (E) in the present invention.3In the case where is used, coloring after heating is hardly observed, but B (OMe)3Al (Etacac) instead of3When was used, clear coloring was observed.
[0138]
[Table 7]
Figure 2004292714
[0139]
[Table 8]
Figure 2004292714
(Example 5)
A sheet-like cured product produced in the same manner as in Example 1 is cut into an appropriate shape, and fixed to a light-transmitting window provided on a can-type metal cap. On the other hand, a light emitting device having a double hetero structure in which an InGaN active layer doped with Si and Zn formed on a sapphire substrate by MOCVD (metal organic chemical vapor deposition) is sandwiched between n-type and p-type AlGaN cladding layers. Prepare. Subsequently, after mounting this light emitting element on a metal stem for a can type, the p-electrode and the n-electrode are wire-bonded to the respective leads with an Au wire. This is hermetically sealed with the above-mentioned metal cap for can type. In this manner, a can-type light emitting diode can be manufactured.
(Example 6)
An n-type GaN layer as an undoped nitride semiconductor, a GaN layer on which an Si-doped n-type electrode is formed and an n-type contact layer are formed on the cleaned sapphire substrate by MOCVD (metal organic chemical vapor deposition), and undoped nitridation. N-type GaN layer as a semiconductor, then a GaN layer as a barrier layer constituting a light emitting layer, an InGaN layer as a well layer, a GaN layer as a barrier layer (quantum well structure), and Mg doped on the light emitting layer An AlGaN layer as a doped p-type cladding layer and a GaN layer as a p-type contact layer doped with Mg are sequentially laminated. The surface of each pn contact layer is exposed on the same side of the nitride semiconductor on the sapphire substrate by etching. Al is deposited on each contact layer by a sputtering method to form positive and negative electrodes. After a scribe line is drawn on the completed semiconductor wafer, the wafer is divided by an external force to form a light emitting element which is a light emitting element.
[0140]
The light emitting device is die-bonded on the bottom surface of the cup of the mount lead made of iron-containing copper plated with silver on the surface using an epoxy resin composition as a die-bonding resin. This is heated at 170 ° C. for 75 minutes to cure the epoxy resin composition and fix the light emitting element. Next, each of the positive and negative electrodes of the light emitting element is wire-bonded to the mount lead and the inner lead with an Au wire to establish electrical continuity.
[0141]
The curable composition prepared in the same manner as in Example 1 is injected into a casting case which is a shell-shaped mold. A part of the mount lead and the inner lead, in which the above-mentioned light emitting element is arranged in the cup, is inserted into a casting case, and is initially cured at 100 ° C. for 2 hours. The light emitting diode is extracted from the casting case and cured at 150 ° C. for 1 hour under a nitrogen atmosphere. Thereby, a lamp type light emitting diode such as a shell type can be produced.
(Example 7)
A curable composition and a light emitting device are prepared by the method described in Example 5.
[0142]
A substrate having lead electrodes is formed by forming a pair of copper foil patterns on a glass epoxy resin by etching. The light emitting element is die-bonded on a glass epoxy resin using an epoxy resin. Each electrode of the light emitting element and each lead electrode are wire-bonded with an Au wire to establish electrical continuity. A glass epoxy resin having a through hole as a mask and a side wall is fixedly arranged on the substrate with the epoxy resin. In this state, the curable composition is dispensed on a glass epoxy resin substrate on which a light emitting element is disposed, and the curable composition is filled in a cavity using a through hole. In this state, it is cured at 100 ° C. for 1 hour and further at 150 ° C. for 1 hour. By dividing each light emitting diode chip, a chip type light emitting diode can be produced.
(Example 8)
A curable composition and a light emitting device are prepared by the method described in Example 5.
[0143]
A package of a chip type light emitting diode is formed using PPS resin by insert molding. The inside of the package is provided with an opening where the light emitting element is arranged, and a silver-plated copper plate is arranged as an external electrode. The light emitting element is fixed inside the package by die bonding using epoxy resin. An Au wire, which is a conductive wire, is wire-bonded to each electrode of the light-emitting element and each external electrode provided on the package to be electrically connected. The curable composition is filled as a mold member in the package opening. In this state, it is cured at 100 ° C. for 1 hour and further at 150 ° C. for 1 hour. In this manner, a chip type light emitting diode can be manufactured.
[0144]
【The invention's effect】
Since the curable composition of the present invention has good adhesiveness to various substrates and low coloring property under high temperature conditions and / or light irradiation, it can be used as a sealing agent for light emitting diodes.

Claims (7)

(A)一分子中にケイ素原子に結合する脂肪族不飽和炭化水素基を2個以上有するオリガノポリシロキサン、(B)一分子中に珪素原子に結合する水素原子を2個以上有するオルガノハイドジェンポリシロキサン、(C)ヒドロシリル化触媒、(D)シランカップリング剤及び/又はエポキシ基含有化合物、(E)ほう酸エステルを必須成分とする硬化性組成物。(A) an organopolysiloxane having two or more aliphatic unsaturated hydrocarbon groups bonded to a silicon atom in one molecule, and (B) an organohydride having two or more hydrogen atoms bonded to a silicon atom in one molecule. A curable composition comprising genpolysiloxane, (C) a hydrosilylation catalyst, (D) a silane coupling agent and / or an epoxy group-containing compound, and (E) a borate ester as essential components. (D)成分が分子中にエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基と加水分解性のケイ素基を有するシランカップリング剤である、請求項1記載の硬化性組成物。(D) a silane coupling in which the component has at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group and a hydrolyzable silicon group in a molecule; The curable composition according to claim 1, which is an agent. (D)成分が分子中にエポキシ基と加水分解性のケイ素基を有するシランカップリング剤である、請求項1記載の硬化性組成物。The curable composition according to claim 1, wherein the component (D) is a silane coupling agent having an epoxy group and a hydrolyzable silicon group in the molecule. (E)成分がほう酸トリノルマルオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリエチル、ほう酸トリメチルから選ばれる少なくとも1種類であることを特徴とする請求項1乃至3のいずれか一項に記載の硬化性組成物。The component (E) is at least one selected from trinormal octadecyl borate, trinormal octyl borate, trinormal butyl borate, triisopropyl borate, trinormal propyl borate, triethyl borate, and trimethyl borate. 4. The curable composition according to any one of claims 1 to 3. (A)成分中の脂肪族不飽和炭化水素基の一部と(B)成分中の珪素−水素結合の一部とを、予め(C)成分の存在下、ヒドロシリル化反応により反応させたものである請求項1〜5のいずれか1項に記載の硬化性組成物。A component obtained by reacting a part of the aliphatic unsaturated hydrocarbon group in the component (A) with a part of the silicon-hydrogen bond in the component (B) by a hydrosilylation reaction in the presence of the component (C) in advance. The curable composition according to any one of claims 1 to 5, wherein 請求項1〜5のいずれか1項に記載の硬化性組成物を硬化させてなる硬化物。A cured product obtained by curing the curable composition according to claim 1. 請求項6に記載した硬化物より封止された発光ダイオード。A light-emitting diode sealed with the cured product according to claim 6.
JP2003089530A 2003-03-28 2003-03-28 Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product Pending JP2004292714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089530A JP2004292714A (en) 2003-03-28 2003-03-28 Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089530A JP2004292714A (en) 2003-03-28 2003-03-28 Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product

Publications (1)

Publication Number Publication Date
JP2004292714A true JP2004292714A (en) 2004-10-21

Family

ID=33403352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089530A Pending JP2004292714A (en) 2003-03-28 2003-03-28 Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product

Country Status (1)

Country Link
JP (1) JP2004292714A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194474A (en) * 2004-01-09 2005-07-21 Shin Etsu Chem Co Ltd Curable resin composition for optical recording medium and optical recording medium
JP2005343984A (en) * 2004-06-02 2005-12-15 Kaneka Corp Curable composition and semiconductor device encapsulated with the curable composition
JP2006216824A (en) * 2005-02-04 2006-08-17 Pioneer Electronic Corp Photodetecting semiconductor device
JP2006265274A (en) * 2005-03-22 2006-10-05 Shin Etsu Chem Co Ltd Epoxy-silicone hybrid resin composition and method for producing the same composition and light-emitting semiconductor device
JP2006328102A (en) * 2005-05-23 2006-12-07 Shin Etsu Chem Co Ltd Silicone resin composition for molding lens and silicone lens
JP2007002233A (en) * 2005-05-24 2007-01-11 Shin Etsu Chem Co Ltd Epoxy/silicone resin composition, its cured product and light-emitting semiconductor device encapsulated and protected with the composition
WO2006093702A3 (en) * 2005-03-02 2007-02-15 3M Innovative Properties Co Moisture-reactive composition and organic electroluminescent element having same
JP2007084766A (en) * 2005-09-26 2007-04-05 Shin Etsu Chem Co Ltd Addition-curable silicone composition excellent in crack resistance
JP2008031190A (en) * 2006-07-26 2008-02-14 Shin Etsu Chem Co Ltd Curable silicone composition containing phosphor for led, and led light-emitting device using the composition
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP2008179694A (en) * 2007-01-24 2008-08-07 Momentive Performance Materials Japan Kk Primer composition and photosemiconductor device by using the same
JP2008222828A (en) * 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk Silicone rubber composition for forming convex lens, and optical semiconductor apparatus obtained using the same
CN100448905C (en) * 2006-03-17 2009-01-07 中国科学院广州化学研究所 High-polymer molecular hybrid luminescent materials containing 8-hydroxyquinoline metal complex and production thereof
WO2009008452A1 (en) * 2007-07-10 2009-01-15 Kaneka Corporation Silicone composition containing silicone polymer particle and method for producing the same
WO2010010841A1 (en) * 2008-07-22 2010-01-28 電気化学工業株式会社 Resin composition
JP2010065161A (en) * 2008-09-11 2010-03-25 Momentive Performance Materials Inc Self-adhesive polyorganosiloxane composition
KR20100086955A (en) 2009-01-23 2010-08-02 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
JP2010274540A (en) * 2009-05-29 2010-12-09 Mitsubishi Plastics Inc White film, metal laminate, substrate for mounting led, and light source device
US7851564B2 (en) 2007-03-05 2010-12-14 Kabushiki Kaisha Toshiba Silicone resin composition
JP2012059868A (en) * 2010-09-08 2012-03-22 Sekisui Chem Co Ltd Sealant for optical semiconductor device and optical semiconductor device using it
CN103739848A (en) * 2013-12-25 2014-04-23 北京化工大学 Tackifier for addition type organosilicone packaging glue and preparation method thereof
JP2014094970A (en) * 2011-09-08 2014-05-22 Sekisui Chem Co Ltd Curable composition for optical semiconductor device
KR20140093632A (en) 2013-01-18 2014-07-28 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and photosemiconductor device using the same
KR20140095983A (en) 2013-01-25 2014-08-04 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
JP2015110694A (en) * 2013-12-06 2015-06-18 サンユレック株式会社 Silicone resin composition
JP2018060856A (en) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Coating composition and optical semiconductor device
KR20180120594A (en) 2017-04-27 2018-11-06 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition, method for producing the composition, cured silicone, and optical element
KR20180123973A (en) 2017-05-10 2018-11-20 신에쓰 가가꾸 고교 가부시끼가이샤 Curable silicone resin composition, optical semiconductor element sealing material, and optical semiconductor device
KR20190050283A (en) 2017-11-02 2019-05-10 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition, cured product, and optical element
KR20190129001A (en) 2018-05-09 2019-11-19 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
CN111073297A (en) * 2018-10-22 2020-04-28 信越化学工业株式会社 Addition-curable silicone composition, silicone cured product, and optical element
KR20200138039A (en) 2019-05-31 2020-12-09 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
KR20200144491A (en) 2019-06-18 2020-12-29 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone coating composition, cured silicone and optical semiconductor device
KR20210027139A (en) 2019-08-29 2021-03-10 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition and optical element
CN113174009A (en) * 2020-01-24 2021-07-27 信越化学工业株式会社 Radically curable composition and cured product
CN115746699A (en) * 2022-11-24 2023-03-07 杭州之江有机硅化工有限公司 Transparent organic silicon coating adhesive composition and preparation method and application thereof
JP2023531148A (en) * 2021-04-27 2023-07-21 ダウ シリコーンズ コーポレーション Hydrosilylation-curable compositions that form silicone pressure-sensitive adhesives that adhere to optical silicone elastomers and methods of preparation and use in flexible displays

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715990B2 (en) * 2004-01-09 2011-07-06 信越化学工業株式会社 Curable resin composition for optical recording medium and optical recording medium
JP2005194474A (en) * 2004-01-09 2005-07-21 Shin Etsu Chem Co Ltd Curable resin composition for optical recording medium and optical recording medium
JP2005343984A (en) * 2004-06-02 2005-12-15 Kaneka Corp Curable composition and semiconductor device encapsulated with the curable composition
JP2006216824A (en) * 2005-02-04 2006-08-17 Pioneer Electronic Corp Photodetecting semiconductor device
US8034467B2 (en) * 2005-03-02 2011-10-11 3M Innovative Properties Company Moisture-reactive composition and organic electroluminescent element having same
KR101300970B1 (en) 2005-03-02 2013-08-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Hygroscopic laminate containing film-like substrate formed out of moisture-reactive composition and organic electroluminescent element having same
WO2006093702A3 (en) * 2005-03-02 2007-02-15 3M Innovative Properties Co Moisture-reactive composition and organic electroluminescent element having same
JP2006265274A (en) * 2005-03-22 2006-10-05 Shin Etsu Chem Co Ltd Epoxy-silicone hybrid resin composition and method for producing the same composition and light-emitting semiconductor device
JP4614075B2 (en) * 2005-03-22 2011-01-19 信越化学工業株式会社 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP2006328102A (en) * 2005-05-23 2006-12-07 Shin Etsu Chem Co Ltd Silicone resin composition for molding lens and silicone lens
US8440776B2 (en) 2005-05-23 2013-05-14 Shin-Etsu Chemical Co., Ltd. Lens-forming silicone resin composition and silicone lens
JP2007002233A (en) * 2005-05-24 2007-01-11 Shin Etsu Chem Co Ltd Epoxy/silicone resin composition, its cured product and light-emitting semiconductor device encapsulated and protected with the composition
JP2007084766A (en) * 2005-09-26 2007-04-05 Shin Etsu Chem Co Ltd Addition-curable silicone composition excellent in crack resistance
JP4648146B2 (en) * 2005-09-26 2011-03-09 信越化学工業株式会社 Addition-curing silicone composition with excellent crack resistance
CN100448905C (en) * 2006-03-17 2009-01-07 中国科学院广州化学研究所 High-polymer molecular hybrid luminescent materials containing 8-hydroxyquinoline metal complex and production thereof
JP4520437B2 (en) * 2006-07-26 2010-08-04 信越化学工業株式会社 A curable silicone composition containing a fluorescent material for LED and an LED light emitting device using the composition.
JP2008031190A (en) * 2006-07-26 2008-02-14 Shin Etsu Chem Co Ltd Curable silicone composition containing phosphor for led, and led light-emitting device using the composition
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP2008179694A (en) * 2007-01-24 2008-08-07 Momentive Performance Materials Japan Kk Primer composition and photosemiconductor device by using the same
US7851564B2 (en) 2007-03-05 2010-12-14 Kabushiki Kaisha Toshiba Silicone resin composition
JP2008222828A (en) * 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk Silicone rubber composition for forming convex lens, and optical semiconductor apparatus obtained using the same
JPWO2009008452A1 (en) * 2007-07-10 2010-09-09 株式会社カネカ Silicone composition containing silicone polymer particles and method for producing the same
WO2009008452A1 (en) * 2007-07-10 2009-01-15 Kaneka Corporation Silicone composition containing silicone polymer particle and method for producing the same
CN102105537B (en) * 2008-07-22 2013-04-10 电气化学工业株式会社 Resin composition
KR101263905B1 (en) 2008-07-22 2013-05-13 덴끼 가가꾸 고교 가부시키가이샤 Resin composition
JP5559688B2 (en) * 2008-07-22 2014-07-23 電気化学工業株式会社 Resin composition
CN102105537A (en) * 2008-07-22 2011-06-22 电气化学工业株式会社 Resin composition
US8278408B2 (en) 2008-07-22 2012-10-02 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition
WO2010010841A1 (en) * 2008-07-22 2010-01-28 電気化学工業株式会社 Resin composition
JP2010065161A (en) * 2008-09-11 2010-03-25 Momentive Performance Materials Inc Self-adhesive polyorganosiloxane composition
KR20100086955A (en) 2009-01-23 2010-08-02 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
CN101792632B (en) * 2009-01-23 2014-10-15 信越化学工业株式会社 Primer composition and optical semiconductor device using the same
JP2010274540A (en) * 2009-05-29 2010-12-09 Mitsubishi Plastics Inc White film, metal laminate, substrate for mounting led, and light source device
JP2012059868A (en) * 2010-09-08 2012-03-22 Sekisui Chem Co Ltd Sealant for optical semiconductor device and optical semiconductor device using it
JP2014094970A (en) * 2011-09-08 2014-05-22 Sekisui Chem Co Ltd Curable composition for optical semiconductor device
KR20140093632A (en) 2013-01-18 2014-07-28 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and photosemiconductor device using the same
US9070846B2 (en) 2013-01-25 2015-06-30 Shin-Etsu Chemical Co., Ltd. Primer composition and optical semiconductor apparatus using same
KR20140095983A (en) 2013-01-25 2014-08-04 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
JP2015110694A (en) * 2013-12-06 2015-06-18 サンユレック株式会社 Silicone resin composition
CN103739848B (en) * 2013-12-25 2016-06-01 北京化工大学 Additional organosilicon packaging plastic tackifier and its preparation method
CN103739848A (en) * 2013-12-25 2014-04-23 北京化工大学 Tackifier for addition type organosilicone packaging glue and preparation method thereof
JP2018060856A (en) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Coating composition and optical semiconductor device
KR20180120594A (en) 2017-04-27 2018-11-06 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition, method for producing the composition, cured silicone, and optical element
KR20180123973A (en) 2017-05-10 2018-11-20 신에쓰 가가꾸 고교 가부시끼가이샤 Curable silicone resin composition, optical semiconductor element sealing material, and optical semiconductor device
KR20190050283A (en) 2017-11-02 2019-05-10 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition, cured product, and optical element
KR20190129001A (en) 2018-05-09 2019-11-19 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
CN111073297A (en) * 2018-10-22 2020-04-28 信越化学工业株式会社 Addition-curable silicone composition, silicone cured product, and optical element
KR20200045410A (en) 2018-10-22 2020-05-04 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition, cured silicone, and optical element
KR20200138039A (en) 2019-05-31 2020-12-09 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and optical semiconductor device using the same
KR20200144491A (en) 2019-06-18 2020-12-29 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone coating composition, cured silicone and optical semiconductor device
KR20210027139A (en) 2019-08-29 2021-03-10 신에쓰 가가꾸 고교 가부시끼가이샤 Addition-curable silicone composition and optical element
CN113174009A (en) * 2020-01-24 2021-07-27 信越化学工业株式会社 Radically curable composition and cured product
KR20210095805A (en) 2020-01-24 2021-08-03 신에쓰 가가꾸 고교 가부시끼가이샤 Radical curable composition and cured product
JP2023531148A (en) * 2021-04-27 2023-07-21 ダウ シリコーンズ コーポレーション Hydrosilylation-curable compositions that form silicone pressure-sensitive adhesives that adhere to optical silicone elastomers and methods of preparation and use in flexible displays
JP7359523B2 (en) 2021-04-27 2023-10-11 ダウ シリコーンズ コーポレーション Hydrosilylation reaction curable compositions to form silicone pressure sensitive adhesives that adhere to optical silicone elastomers and methods of preparation and use in flexible display devices
CN115746699A (en) * 2022-11-24 2023-03-07 杭州之江有机硅化工有限公司 Transparent organic silicon coating adhesive composition and preparation method and application thereof
CN115746699B (en) * 2022-11-24 2023-10-31 杭州之江有机硅化工有限公司 Transparent organic silicon coating adhesive composition and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2004292714A (en) Curable composition, cured product, its manufacturing method and light emitting diode encapsulated by cured product
EP1505121B1 (en) Hardenable composition, hardening product, process for producing the same and light emitting diode sealed with the hardening product
JP4611617B2 (en) Light emitting diode
JP4685690B2 (en) Curable composition, cured product and method for producing the same
JP4066229B2 (en) Curing agent, curable composition, composition for optical material, optical material, method for producing the same, and liquid crystal display device and LED using the same
WO2004076585A1 (en) Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
JP3909826B2 (en) Light emitting diode
JP2006241462A (en) Composition for optical material, optical material, manufacturing method thereof, and liquid crystal display device using the same
JP4988123B2 (en) Light emitting diode
JP2003313438A (en) Method for producing cured product for optical material, cured product, and light-emitting diode sealed therewith
JP4280449B2 (en) Light emitting diode
JP5676068B2 (en) Curable composition, cured product, method for producing the same, and light-emitting diode sealed with the cured product
JP2005232463A (en) Composition for optical material, optical material, method for producing the same and liquid crystal display device using the same
JP5000072B2 (en) Light emitting diode
JP2002314140A (en) Light emitting diode and manufacturing method thereof
JP2003262701A (en) Composition for optical material, optical material, liquid crystal display device and light emitting diode obtained by using the same, and method for manufacturing them
JP2004002784A (en) Composition for electronic material, electronic material and electronic product produced by using the same
JP2003113310A (en) Composition for optical material, composition for electronic material, optical material, electronic material, light-emitting diode and method for producing the same
JP2004266134A (en) Resin paste for die bonding and light emitting diode using it
JP2006183061A (en) Composition for electronic material, and electronic material
JP2005200657A (en) Composition for optical material, the optical material, its producing method, and liquid crystal display using the optical material
JP4880907B2 (en) Composition for optical material, optical material, method for producing the same, and liquid crystal display device using the same
JP2004131519A (en) Encapsulant for light-emitting diode and light-emitting diode using the same
JP2004002810A (en) Curable composition for optical material, optical material, method for preparing optical material and light emitting diode using the optical material
JP2003147204A (en) Curable composition for optical material, optical material, method for producing the same and light- emitting diode using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624