JP2004288825A - Member for heat dissipation and connecting structure - Google Patents

Member for heat dissipation and connecting structure Download PDF

Info

Publication number
JP2004288825A
JP2004288825A JP2003078203A JP2003078203A JP2004288825A JP 2004288825 A JP2004288825 A JP 2004288825A JP 2003078203 A JP2003078203 A JP 2003078203A JP 2003078203 A JP2003078203 A JP 2003078203A JP 2004288825 A JP2004288825 A JP 2004288825A
Authority
JP
Japan
Prior art keywords
heat
weight
heating element
styrene
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003078203A
Other languages
Japanese (ja)
Other versions
JP4119287B2 (en
Inventor
Kenichi Azuma
賢一 東
Atsushi Hasegawa
淳 長谷川
Shunji Hyozu
俊司 俵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003078203A priority Critical patent/JP4119287B2/en
Priority to US10/523,409 priority patent/US20050155751A1/en
Priority to EP03784597A priority patent/EP1542281A1/en
Priority to PCT/JP2003/010112 priority patent/WO2004015768A1/en
Priority to CNB038186071A priority patent/CN100339983C/en
Publication of JP2004288825A publication Critical patent/JP2004288825A/en
Application granted granted Critical
Publication of JP4119287B2 publication Critical patent/JP4119287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for a heat dissipation which has excellent handling properties at a normal temperature, is interposed between a heating element and a heat sinking body, can conduct a heat generated from the heating element efficiently by a close adhesion on the heating element and the heat sinking body by a high flexibility to the heat sinking body, and can keep the closely attached state even when a temperature is increased; and to provide a connecting structure in which the heating element and the heat sinking body are connected by the member for the heat dissipation. <P>SOLUTION: In the member for the heat dissipation containing a thermoplastic resin and thermal conductive minute particles and being composed of a thermoplastic resin composition containing no compound having the melting temperature at 40 to 80°C, a storage elastic modulus in the case of 0.1 Hz at 23°C is 50,000 Pa or more, a fixed form is held, the storage elastic modulus in the case of 0.1 Hz at 50 to 80°C is 400 to 10,000 Pa, the storage elastic modulus in the case of 0.1 Hz at 100°C is 5,000 Pa or less and an amorphous shape is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、常温においては優れた取り扱い性を有し、発熱体と放熱体との間に介在し、高い柔軟性を有することにより発熱体及び放熱体に密着して効率よく発熱体から発生した熱を放熱体に伝導することができ、かつ、温度が上昇しても密着した状態を保つことができる放熱用部材、及び、該放熱用部材により発熱体と放熱体とを接続してなる接続構造体に関する。
【0002】
【従来の技術】
電気・電子部品等の発熱体と放熱体の間に介在させ、発熱体から発生する熱を放散させる目的で、放熱シート等の放熱用部材が利用されている。しかし、電気・電子部品に限らず、多くの発熱体や放熱体の表面は平滑でないため放熱用部材が発熱体及び放熱体に密着できず、発熱体や放熱体と放熱用部材との間の接触面積が減少すると、発熱体から放熱体への熱伝達効率が低下し、放熱用部材が有する放熱性能が充分に発揮できない。
【0003】
発熱体と放熱体の間の熱的な抵抗は熱抵抗と呼ばれ、熱抵抗が小さいほど、発熱体から放熱体への熱伝達が優れ、高い放熱効果が得られる。そのため熱抵抗を小さくするためには、放熱用部材に対して優れた柔軟性が要求されている。そこで、従来は、放熱用部材として熱伝導性徴粒子を含有した放熱グリース;シリコンゴムやアクリル酸エステル系樹脂等の柔軟かつ復元力のある樹脂に熱伝導性徴粒子を分散させた放熱シート等が用いられていた。
【0004】
放熱グリースとしては、例えば、下記の特許文献1にシリコンオイルをベースとし、亜鉛華、アルミナ、窒化アルミニウム等の熱伝導性徴粒子を含有させたものが開示されている。このような放熱グリースは流動性のある粘稠な物質であるため、発熱体と放熱体の間に介在させた際に大きな接触面積が得られることから優れた熱抵抗性能を発現可能である。しかしながら、発熱体や放熱体に塗布させる際に、周辺部位の汚れなどが生じて作業性が低いことや、作業のばらつきが生じて熱抵抗性能が変化する可能性が高い等の問題があった。
【0005】
放熱シートとしては、例えば、下記の特許文献2にアクリル酸エステル系樹脂に熱伝導性徴粒子をランダムに分散させた熱伝導テープが開示されている。このような放熱シートは定形のシートであるため、発熱体や放熱体に容易に貼り付けることができ、発熱体と放熱体の間に介在させる際に一定の間隙にすることができるため、安定した熱抵抗性能を発現することができる。しかしながら、流動性がないため、放熱グリースほどの高い柔軟性が得られず、高い熱抵抗性能を発現することが困難であった。
【0006】
これに対し、下記の特許文献3にはアクリル系感圧性粘着成分に対し、約50〜60℃に融解温度を有するαオレフィン系熱可塑性成分や約60〜70℃の融解温度を有するパラフィン系ロウ成分等の化合物を混合した放熱用部材が開示されている。これらの放熱用部材は、電圧を印加することで発熱体の温度が上がり、混合しているαオレフィン系熱可塑性成分やパラフィン系ロウ成分の融解温度に達すると急激に軟化し、柔軟性が向上して熱抵抗性能が向上するというものである。
【0007】
しかしながら、このような融解温度を持つ化合物は、発熱体や放熱体への貼付作業を行う23℃付近の温度では接着性のない固体であるため、これを含有するアクリル系感圧性粘着成分の粘着性が損なわれ、貼付作業性か低下する。また、発熱体の温度が上がって融解温度を超える際に、化合物がすべて融解するまでに若干の時間がかかることから、発熱体の温度がいったんは急上昇する。そして、融解温度を有する化合物が溶けて放熱用部材の柔軟性が向上し、発熱体と放熱体の間が密着して熱伝達率が向上すると発熱体の温度は急降下する。そのため短時間ではあるが、発熱体に温度負荷がかかるという問題があった。
【0008】
また、発熱体の温度が上がり化合物が溶けて放熱用部材の柔軟性が向上し、発熱体と放熱体の間が密着して熱伝達率が向上したとしても、更に温度がかかり続けた場合には、溶融粘度の低い溶融した化合物が放熱用部材から流れ出してしまい、その結果、密着性が損なわれ熱伝達率も悪化して、発熱体の温度が上昇してしまうことがあるという問題もあった。
【0009】
【特許文献1】
特公平6−39591号公報
【特許文献2】
特開平6−88061号公報
【特許文献3】
特表2000−509209号公報
【0010】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、常温においては優れた取り扱い性を有し、発熱体と放熱体との間に介在し、高い柔軟性を有することにより発熱体及び放熱体に密着して効率よく発熱体から発生した熱を放熱体に伝導することができ、かつ、温度が上昇しても密着した状態を保つことができる放熱用部材、及び、該放熱用部材により発熱体と放熱体とを接続してなる接続構造体を提供することを目的とする。
【0011】
【課題を解決するための手段】
本願発明は、熱可塑性樹脂と熱伝導性微粒子とを含有し、40〜80℃に融解温度を有する化合物を含有しない熱可塑性樹脂組成物からなる放熱用部材であって、23℃においては、0.1Hz時の貯蔵弾性率が5万Pa以上であり、かつ、定形を保持しており、50〜80℃における0.1Hz時の貯蔵弾性率が400〜10000Pa、100℃においては、0.1Hz時の貯蔵弾性率が5000Pa以下であり、かつ、不定形であることを特徴とする放熱用部材である。
【0012】
以下に本発明を詳述する。
本発明の放熱部材は、23℃においては、0.1Hz時の貯蔵弾性率が5万Pa以上であり、かつ、定形を保持している。従って、発熱体や放熱体への貼付作業を行う23℃付近の温度では定形のシート状にして用いることができ優れた貼付作業性を示す。
【0013】
本発明では、50〜80℃における0.1Hz時の貯蔵弾性率が400〜10000Pa、100℃においては、0.1Hz時の貯蔵弾性率が5000Pa以下であり、かつ、不定形である。従って、本発明では、電圧を印加することにより発熱体の温度が上がると放熱用部材は急速に軟化し、50℃〜80℃の温度に達すると柔軟性が向上するため発熱体と放熱体に対する接触面積が向上し、優れた熱抵抗性能を発現するが、50〜80℃の温度になっても貯蔵弾性率が400Pa以上あるため、放熱用部材が流れ出して発熱体及び放熱体から離れてしまうことはない。さらに、100℃においては貯蔵弾性率が5000Pa以下であるため、シート加工が優れている。
【0014】
なお、貯蔵弾性率は、例えばレオメトリックス社製のダイナミック・アナライザーRDAII等の動的粘弾性測定装置で測定することができる。
23℃の温度における0.1Hz時の貯蔵弾性率が5万Pa未満であると、柔らかすぎて取り扱いにくくなり、貼付作業も行いにくくなる。また、50〜80℃の温度における0.1Hz時の貯蔵弾性率が1万Paを超えると、放熱用部材の柔軟性が低く発熱体や放熱体に密着できず、充分な熱抵抗性能が得られない。更に、50〜80℃の温度における0.1Hz時の貯蔵弾性率が400Pa未満であると、放熱用部材は柔らかくなりすぎて流れ出し発熱体及び放熱体から離れてしまう。また、100℃の温度における0.1Hz時の貯蔵弾性率が5000Paを超えると、放熱用部材が硬くなり、シート加工が困難となる。
【0015】
本発明では40℃と60℃との間に、相転移現象を伴わずにかかる急速な貯蔵弾性率の変化が起こることから、発熱体の温度の上昇にあわせて放熱用部材がしだいに密着していき、発熱体の温度の上昇と、放熱用部材が軟化して発熱体と放熱体に対する接触面積が向上し優れた熱抵抗性能を発現するまでの間に時間の遅れが生じないため、発熱体の温度が急上昇してしまうことがなく、発熱体に温度負荷がかかることがない。
【0016】
また、相転移現象を伴わない熱可塑性樹脂組成物では、室温や室温よりわずかに加熱しただけで柔らかくなったり、樹脂表面に粘着性が現れたりすることがあり放熱用部材として取り扱いにくいことが多いが、低温において定形を保持することができ取扱い性にも優れる。
【0017】
本発明に係る熱可塑性樹脂組成物では、温度が、60℃を超えると、貯蔵弾性率の減少は緩やかになり、柔らかくなりすぎて発熱体及び放熱体から離れて流れ出てしまうことがなく、発熱体及び放熱体に密着し続け、発熱体から発生する熱を放熱体に効率よく伝え続けることができる。
【0018】
本発明の放熱用部材は、23℃における対アルミニウム接着力が0.5N/cm以上であることが好ましい。これにより、発熱体及び放熱体に対して高い接着性を有することとなり、発熱体及び放熱体に放熱用部材を貼り付ける際の貼付作業性が向上する。
【0019】
本発明の放熱用部材は、特に限定されないが、シート状に加工して用いることが好ましい。シート状にすることにより、貼付作業性が著しく向上する。
シート状にして用いる場合、シートが薄くなりすぎると取り扱い性が低下するとともに、発熱体と放熱体との間に介在させた際に、隙間を充分に埋めることが難しくなり、また、シートが厚すぎると熱抵抗性能が低下する傾向にある。したがって、本発明の放熱用部材の厚さは下限が20μm、上限が400μmであることが好ましい。
【0020】
本発明の放熱用部材は、熱可塑性樹脂と熱伝導性微粒子とを含有する熱可塑性樹脂組成物からなる。
上記熱可塑性樹脂としては、(メタ)アクリル酸エステル系共重合体;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体等のスチレン系ブロック共重合体;エチレン−酢酸ビニル樹脂、ブタジエン系樹脂、イソブチレン系樹脂、オレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、ブチラ−ル系樹脂、ポリビニルアルコール系樹脂、シリコン系樹脂;これらの変性樹脂等が挙げられる。これらは単独で用いられてもよいし、2種類以上を併用してもよい。なかでも、上述の貯蔵弾性率を実現できる設計が比較的容易であることから、アクリル酸エステル系共重合体、スチレン系ブロック共重合体、ブチルゴム系樹脂が好適である。例えば、アクリル酸エステル系共重合体であれば、共重合体の重量平均分子量を20万以下にすれば、上述の貯蔵弾性率を発現することができる。
【0021】
また、スチレン−イソプレン−スチレンブロック共重合体の場合は、スチレン−イソプレンのジブロック比率が50重量%以上、スチレン含有量が25重量%以下であれば、上述の貯蔵弾性率を発現することができる。SISであれば、これらのジブロック比率とスチレン含有量により23℃から50℃に至る弾性率の急激な変化の制御を行いやすい。
【0022】
なお、上記熱可塑性樹脂はIC等の電子部品等の発熱体における高温側の動作限界温度付近に融点を有する樹脂ではないことが好ましい。また、ガラス転移温度を有する樹脂の場合においても、示差熱量計を用いて測定されるガラス転移温度がIC等の電子部品等の発熱体における高温側の最大適正動作温度付近にないことが好ましい。これらの樹脂の融解やガラス転移現象における潜熱吸収もまた、発熱体や放熱体と放熱用部材との間が密着するまでに時間の遅れを生じさせる原因となることがある。
【0023】
また、上記熱可塑性樹脂として、スチレン系ブロック共重合体等の23℃において固形状の芳香族熱可塑性樹脂を用いる場合には、更に23℃において粘稠体であるキシレン樹脂を含有することが好ましい。このようなキシレン樹脂を添加することによって、23℃と50℃との間の貯蔵弾性率の挙動においてより急激な変化が生じ、更に、50℃以上では緩やかな貯蔵弾性率の変化を実現することができる。これは、23℃において固形状の芳香族熱可塑性樹脂と23℃において粘稠体であるキシレン樹脂とを混合して使用すると、それぞれの芳香環同士の相互作用によって23℃では固形状態を保つが、温度を上昇させるとしだいに相互作用が弱まり、ある温度領域で相転移現象を伴うことなく相互作用が急激に弱まり軟化し、一方、一定の温度に達しても芳香環同士の擬似架橋的な相互作用が残存していることによりそれ以上の流動化が抑えられるためであると考えられる。ただし、熱伝導性微粒子の配合量が増えると、種類によっては高温での弾性率が低下する傾向にあるので、本発明の放熱用部材の弾性率挙動は、熱可塑性樹脂、キシレン樹脂の種類及び配合量により適当に調整する必要がある。
【0024】
また、上記キシレン樹脂は、粘着性付与剤としても働くものであることから、上記キシレン樹脂を配合することにより本発明の放熱用部材を発熱体及び放熱体に貼り付ける際の作業性が向上する。
【0025】
上記熱可塑性樹脂組成物における上記キシレン樹脂の配合量の好ましい下限は10体積%、上限は90体積%である。10体積%未満であると、放熱用部材の柔軟性が低く発熱体や放熱体に密着できず、充分な熱抵抗性能が得られない。90体積%を超えると、23℃で定形のシートを得ることが困難となることがある。
【0026】
上記熱伝導性微粒子としては、例えば、窒化ホウ素、窒化アルミニウム、アルミナ、アルミニウム、炭化珪素、酸化亜鉛、銅、金属水酸化物、黒鉛、酸化マグネシウム、シリカから選ばれる少なくとも1種類以上の熱伝導性微粒子が挙げられる。上記金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。また、これらの熱伝導性微粒子は、高い配合割合で均一に混合できるように表面処理されていることが好ましい。
【0027】
上記熱可塑性樹脂組成物における上記熱伝導性微粒子の配合量の好ましい下限は10体積%、上限は90体積%である。10体積%未満であると、充分な熱伝導率が得られないことがあり、90体積%を超えると、得られる放熱用部材の対アルミニウム接着力が低下して貼付作業性が低下することがある。
【0028】
上記熱可塑性樹脂組成物は、所望の弾性率と対アルミニウム接着力を損なわない鞄囲であれば、必要に応じて、ハロゲン系化合物、リン酸エステル系化合物、金属水酸化物、酸化チタン等の難燃材;カーボンブラック、ホワイトカーボン等の着色剤;シラン系、チタネート系カップリング剤等の粉体表面改質剤;グリセリン脂肪酸系の分散剤;ビスフェノール系、ヒンダード・フェノール系等の酸化防止剤;クロマン樹脂、テルペンフェノール樹脂、フェノール樹脂、ロジン、テルペン樹脂、脂肪族炭化水素、脂環式炭化水素等の粘着付与剤等を含有してもよい。
【0029】
本発明の放熱用部材の製造方法としては特に限定されず、例えば、所定量の熱可塑性樹脂と熱伝導性徴粒子とを、2本ロール、3本ロール、プラストミル、ニーダー、プラネタリーミキサー、バンバリーミキサー等を用いて混合し、それをコーティング成形、押し出し成形、プレス成形等によって所望の厚さのシート状に成形する方法等が挙げられる。
【0030】
本発明の放熱用部材は、23℃付近の常温においては定形であり極めて取り扱い性に優れ、効率よく発熱体と放熱体とを接続した接続構造体を作製することができる。この接続構造体の発熱体の温度を上昇させると、一定温度以上になった時点で、ガラス転移現象や融解等の潜熱吸収を伴う相転移現象を伴うことなく急速に本発明の放熱用部材が軟化して発熱体及び放熱体との接触面積が大きくなり、更にそれに伴って放熱用部材の厚みが減少して、優れた熱抵抗性能を発現することができる。しかも、かかる放熱用部材の変化は急速であり、発熱体の温度が発熱体にとって負荷となる温度に達するまで上昇してしまう前に起こることから、発熱体に温度負荷がかかることがない。更に、温度が上昇した場合であっても、本発明の放熱用部材はそれ以上流動化することなく、発熱体及び放熱体に密着し続け、発熱体に温度負荷がかかることがない。
【0031】
このような、本発明の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、上記放熱用部材は、発熱体の発熱により、上記発熱前よりも厚みが減少することが可能である接続構造体もまた、本発明の1つである。
【0032】
また、本発明の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、上記放熱用部材は、発熱体が発熱したことにより、上記発熱前よりも既に厚みが減少しているものである接続構造体もまた、本発明の1つである。
【0033】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0034】
(実施例1)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体20重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)80重量部、及び、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)140重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は30%であった。
【0035】
次いで、プレス板の上に離型PETフィルムを敷き、その上に厚みが100μmの金属枠を載せ、金属枠内に得られたスラリー状物を流し込んだ。次いで、離型PETフィルムをその上に載せ上下からプレス板で挟み込み、室温下でプレス成形を行った。これにより、両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0036】
(実施例2)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体20重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)80重量部、及び、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)330重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は50%であった。
このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0037】
(実施例3)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレン−スチレンブロック共重合体20重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)40重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールLL」)25重量部、液状ポリイソプレン(クラレ社製、商品名「LIR30」)15重量部及び、アルミナ(昭和電工社製、商品名「CB−A20S」)400重量部、アルミナ(昭和電工社製、商品名「CB−A05S」)200重量部をプラストミルで混合し、スラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は60%であった。このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0038】
(実施例4)
スチレン含量55重量%、ジブロック比率16重量%のスチレン−イソプレン−スチレンブロック共重合体10重量部、スチレン含有量22重量%、ジブロック比率66重量%のスチレン−イソプレン−スチレンブロック共重合体10重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)65重量部、液状ポリイソプレン(クラレ社製、商品名「LIR403」)15重量部及び、アルミナ(昭和電工社製、商品名「CB−A20S」)400重量部、アルミナ(昭和電工社製、商品名「CB−A05S」)200重量部をプラストミルで混合し、スラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は60%であった。このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0039】
(比較例1)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体30重量部、ドデシルベンゼン70重量部、及び、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)760重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は70%であった。
このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0040】
(比較例2)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体50重量部、ドデシルベンゼン50重量部、及び、窒化ホウ素(電気化学工業社製、商品名「グレードSGP」)226重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化ホウ素の体積比率は50%であった。このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0041】
(比較例3)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体20重量部の代わりにアクリル酸エステル系共重合体(根上工業社製、商品名「S−2022改2」:重量平均分子量27万)100重量部を、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)140重量部の代わりに窒化ホウ素(電気化学工業社製、商品名「グレードSGP」)226重量部を用いたこと以外は実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0042】
(比較例4)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体20重量部、ドデシルベンゼン80重量部、アルミナ(昭和電工社製、商品名「CB−A20S」)400重量部、アルミナ(昭和電工社製、商品名「CB−A05S」)200重量部、このスラリー状物において窒化アルミニウムの体積比率は60%であった。このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0043】
(比較例5)
スチレン含量22重量%、ジブロック比率66重量%のスチレン−イソプレンブロック共重合体22重量部、スチレン含有量30重量%、ジブロック比率30重量%のスチレン−イソプレンブロック共重合体8重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)45重量部、液状ポリイソプレン系ブロック共重合体(クラレ社製、商品名「KL230」)25重量部及び、アルミナ(昭和電工社製、商品名「CB−A20S」)400重量部、アルミナ(昭和電工社製、商品名「CB−A05S」)200重量部、このスラリー状物において窒化アルミニウムの体積比率は60%であった。このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0044】
(比較例6)
市販のシリコングリースであるDow Corning社製、商品名「#340」を用いた。熱抵抗の評価の際には、放熱体の上に、中央を35mm角にくり抜いた厚さ50μmのPETフィルムを置き、そのくり抜いた中央部にシリコングリースを流し込み、へらで余分なシリコングリースをかき落とすことにより、厚さ50μmのシリコングリースの層を形成した。
【0045】
<評 価>
実施例1〜4及び比較例1〜6で得られた放熱用部材について、以下の方法により、熱抵抗、貯蔵弾性率及び高温流動性を評価した。
【0046】
(熱抵抗の測定)
熱抵抗は、図1に示す測定装置により測定した。すなわち、アルミニウム製の冷却器1の上に離型PETフィルムを剥がした放熱用部材2を貼り付け、更にその上に熱源となるICを積層し、ボルト3により締め付けトルク1N・mで締め付けた。
【0047】
ICに電源を入れて80W/hの電力を供給し、60分後に、ICの温度T1と、冷却器1の放熱用部材の近傍温度T2を測定した。なお、冷却器1は、内部に恒温水槽4から23℃の水が供給循環されるようになっている。測定結果から熱抵抗を下記式で求めた。
【0048】
【数1】

Figure 2004288825
【0049】
(貯蔵弾性率の測定)
ダイナミック・アナライザーRDAII(レオメトリックス社製)を用い、0.1Hzの条件で、23℃、60℃及び80℃における放熱用部材の貯蔵弾性率を測定した。
【0050】
(高温流動性の評価)
図2に示したように、アルミニウムからなる正立方体のブロックの側面に片面の離型PETフィルムを剥がした放熱用部材を貼り付けた。このアルミニウムブロックを80℃の恒温槽に保管し、1週間経過後に放熱用部材の流れ落ちの有無を目視にて観察した。
【0051】
【表1】
Figure 2004288825
【0052】
【発明の効果】
本発明によれば、常温においては優れた取り扱い性を有し、発熱体と放熱体との間に介在し、高い柔軟性を有することにより発熱体及び放熱体に密着して効率よく発熱体から発生した熱を放熱体に伝導することができ、かつ、温度が上昇しても密着した状態を保つことができる放熱用部材、及び、該放熱用部材により発熱体と放熱体とを接続してなる接続構造体を提供できる。
【図面の簡単な説明】
【図1】放熱用部材の熱抵抗の測定に用いた測定装置を示す模式図である。
【図2】実施例における高温流動性の評価の方法を説明する模式図である。
【符号の説明】
1 冷却器
2 放熱用部材
3 ボルト
4 恒温水槽
5 アルミニウムブロック[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has excellent handleability at room temperature, is interposed between the heating element and the heat radiator, and has a high flexibility, so that it is closely adhered to the heating element and the heat radiator and efficiently generated from the heating element. A heat dissipating member that can conduct heat to the heat dissipating body and maintain a close contact state even when the temperature rises, and a connection formed by connecting the heat dissipating member and the heat dissipating member by the heat dissipating member Related to the structure.
[0002]
[Prior art]
BACKGROUND ART A heat-dissipating member such as a heat-dissipating sheet is used for the purpose of interposing between a heat-generating element such as an electric / electronic component and a heat-dissipating element and dissipating heat generated from the heat-generating element. However, not only electric and electronic parts, but also the surfaces of many heat generating elements and heat radiating elements are not smooth, so that the heat radiating element cannot be in close contact with the heat generating element and the heat radiating element. When the contact area is reduced, the heat transfer efficiency from the heat generating element to the heat radiating element is reduced, and the heat radiating performance of the heat radiating member cannot be sufficiently exhibited.
[0003]
The thermal resistance between the heating element and the heat radiator is called thermal resistance. The smaller the thermal resistance, the better the heat transfer from the heating element to the heat radiator, and the higher the heat radiation effect. Therefore, in order to reduce the thermal resistance, the heat dissipating member is required to have excellent flexibility. Therefore, conventionally, a heat-dissipating grease containing heat-conducting particles as a heat-dissipating member; a heat-dissipating sheet or the like in which the heat-conducting particles are dispersed in a flexible and resilient resin such as silicone rubber or an acrylate resin are used. Had been.
[0004]
As a heat radiation grease, for example, Patent Literature 1 listed below discloses a silicone oil-based grease containing thermally conductive particles such as zinc white, alumina, and aluminum nitride. Since such a heat radiation grease is a fluid viscous substance, a large contact area can be obtained when the heat radiation grease is interposed between the heating element and the heat radiation element, so that excellent heat resistance performance can be exhibited. However, when applied to a heating element or a heat radiating element, there is a problem that dirt or the like in a peripheral portion is generated and workability is low, and there is a high possibility that a variation in work occurs and thermal resistance performance is changed. .
[0005]
As a heat radiation sheet, for example, Patent Document 2 below discloses a heat conductive tape in which thermally conductive particles are randomly dispersed in an acrylate resin. Since such a heat radiation sheet is a fixed sheet, it can be easily attached to a heating element or a heat radiating body, and can have a constant gap when interposed between the heating element and the heat radiating body. It is possible to exhibit the improved heat resistance performance. However, since there is no fluidity, it is not possible to obtain high flexibility like heat radiation grease, and it is difficult to exhibit high heat resistance performance.
[0006]
On the other hand, Patent Document 3 listed below discloses an α-olefin-based thermoplastic component having a melting temperature of about 50 to 60 ° C. and a paraffin-based wax having a melting temperature of about 60 to 70 ° C. with respect to an acrylic pressure-sensitive adhesive component. A heat dissipating member in which compounds such as components are mixed is disclosed. These heat-dissipating members increase the temperature of the heating element by applying a voltage, and when they reach the melting temperature of the mixed alpha-olefin-based thermoplastic component and paraffin-based wax component, they soften rapidly, improving their flexibility. Thus, the heat resistance performance is improved.
[0007]
However, since a compound having such a melting temperature is a solid having no adhesive property at a temperature around 23 ° C. at which the compound is attached to a heating element or a heat radiating element, the pressure of the acrylic pressure-sensitive adhesive component containing the compound is low. The workability is impaired, and the workability of application is reduced. Further, when the temperature of the heating element rises and exceeds the melting temperature, it takes some time until all the compounds are melted, so that the temperature of the heating element once rises rapidly. Then, when the compound having a melting temperature is melted and the flexibility of the heat radiating member is improved, and the heat generating body and the heat radiating body are in close contact with each other to improve the heat transfer coefficient, the temperature of the heat generating body rapidly drops. For this reason, there is a problem that the heat load is applied to the heating element for a short time.
[0008]
In addition, even if the temperature of the heating element rises and the compound melts, the flexibility of the heat dissipating member improves, and the heat transfer coefficient improves due to the close contact between the heating element and the heat dissipating element, even if the temperature continues to increase. However, there is also a problem that a molten compound having a low melt viscosity flows out of the heat radiating member, and as a result, the adhesiveness is impaired, the heat transfer coefficient is deteriorated, and the temperature of the heating element may increase. Was.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 6-39591 [Patent Document 2]
JP-A-6-88061 [Patent Document 3]
Japanese Patent Publication No. 2000-509209
[Problems to be solved by the invention]
In view of the above situation, the present invention has excellent handleability at room temperature, intervenes between the heating element and the heat radiator, and has high flexibility to adhere to the heating element and the heat radiator efficiently. A heat-dissipating member that can conduct heat generated from the heat-emitting element to the heat-dissipating element and maintain a close contact state even when the temperature rises; An object of the present invention is to provide a connection structure formed by connection.
[0011]
[Means for Solving the Problems]
The present invention is a heat-dissipating member comprising a thermoplastic resin composition containing a thermoplastic resin and heat conductive fine particles, and not containing a compound having a melting temperature of 40 to 80 ° C. The storage elastic modulus at 1 Hz is 50,000 Pa or more, and the shape is maintained. The storage elastic modulus at 0.1 Hz at 50 to 80 ° C. is 400 to 10000 Pa, and at 100 ° C., 0.1 Hz. The heat radiating member has a storage elastic modulus at the time of 5000 Pa or less and is indefinite.
[0012]
Hereinafter, the present invention will be described in detail.
The heat-dissipating member of the present invention has a storage elastic modulus at 0.1 Hz of not less than 50,000 Pa at 23 ° C. and has a fixed shape. Therefore, at a temperature of around 23 ° C. at which the work of sticking to the heating element or the heat radiator is performed, the sheet can be used in the form of a fixed sheet, and excellent sticking workability is exhibited.
[0013]
In the present invention, the storage elastic modulus at 0.1 Hz at 50 to 80 ° C. is 400 to 10000 Pa, and the storage elastic modulus at 0.1 Hz at 100 ° C. is 5000 Pa or less and is amorphous. Therefore, in the present invention, when the temperature of the heating element is increased by applying a voltage, the heat dissipation member is rapidly softened, and when the temperature reaches 50 ° C. to 80 ° C., the flexibility is improved. The contact area is improved, and excellent heat resistance performance is exhibited. However, since the storage elastic modulus is 400 Pa or more even at a temperature of 50 to 80 ° C., the heat dissipation member flows out and separates from the heating element and the heat dissipation element. Never. Further, since the storage elastic modulus at 100 ° C. is 5000 Pa or less, sheet processing is excellent.
[0014]
The storage elastic modulus can be measured by a dynamic viscoelasticity measuring device such as a dynamic analyzer RDAII manufactured by Rheometrics.
If the storage elastic modulus at 0.1 Hz at a temperature of 23 ° C. is less than 50,000 Pa, it will be too soft and difficult to handle, and it will be difficult to perform the sticking operation. On the other hand, if the storage elastic modulus at 0.1 Hz at a temperature of 50 to 80 ° C. exceeds 10,000 Pa, the flexibility of the heat-radiating member is low and the heat-radiating member cannot adhere to the heat-generating body or the heat-radiating body. I can't. Further, if the storage elastic modulus at 0.1 Hz at a temperature of 50 to 80 ° C. is less than 400 Pa, the heat radiating member becomes too soft and flows out and separates from the heat generating element and the heat radiating element. If the storage elastic modulus at 0.1 Hz at a temperature of 100 ° C. exceeds 5000 Pa, the heat-dissipating member becomes hard, and sheet processing becomes difficult.
[0015]
In the present invention, since the storage elastic modulus changes rapidly between 40 ° C. and 60 ° C. without a phase transition phenomenon, the heat dissipating member gradually adheres as the temperature of the heating element rises. As the temperature of the heating element rises and the heat dissipating member softens, the contact area between the heating element and the heat dissipating body increases, and there is no time delay until the heat resistance performance is developed. There is no sudden rise in body temperature, and no temperature load is applied to the heating element.
[0016]
Further, in a thermoplastic resin composition that does not involve a phase transition phenomenon, it is often difficult to handle it as a heat-radiating member because it may be softened by heating slightly at room temperature or slightly higher than room temperature, or adhesiveness may appear on the resin surface. However, it can maintain a fixed shape at low temperature and is excellent in handleability.
[0017]
In the thermoplastic resin composition according to the present invention, when the temperature exceeds 60 ° C., the decrease in the storage elasticity becomes gentle, and the storage resin becomes too soft and does not flow away from the heat generating body and the heat radiating body. The heat generating body can be kept in close contact with the body and the heat radiating body, and the heat generated from the heating body can be efficiently transmitted to the heat radiating body.
[0018]
The heat-dissipating member of the present invention preferably has an adhesive strength to aluminum at 23 ° C. of 0.5 N / cm 2 or more. Thereby, it has high adhesiveness to the heating element and the heat radiator, and the sticking workability when attaching the heat radiating member to the heating element and the heat radiator is improved.
[0019]
The heat-dissipating member of the present invention is not particularly limited, but is preferably processed into a sheet and used. By making it into a sheet shape, the sticking workability is remarkably improved.
When used in the form of a sheet, if the sheet is too thin, the handleability will be reduced, and it will be difficult to sufficiently fill the gap when interposed between the heating element and the heat radiating element. If too large, the thermal resistance performance tends to decrease. Therefore, it is preferable that the lower limit of the thickness of the heat radiation member of the present invention is 20 μm and the upper limit is 400 μm.
[0020]
The heat dissipating member of the present invention is made of a thermoplastic resin composition containing a thermoplastic resin and heat conductive fine particles.
Examples of the thermoplastic resin include (meth) acrylate ester copolymers; styrene block copolymers such as styrene-butadiene-styrene block copolymer and styrene-isoprene-styrene block copolymer; ethylene-vinyl acetate Resin, butadiene resin, isobutylene resin, olefin resin, urethane resin, epoxy resin, vinyl acetate resin, styrene resin, butyral resin, polyvinyl alcohol resin, silicon resin; modified resins of these And the like. These may be used alone or in combination of two or more. Among them, acrylic ester-based copolymers, styrene-based block copolymers, and butyl rubber-based resins are preferable because they are relatively easy to design to realize the above storage elastic modulus. For example, in the case of an acrylate-based copolymer, if the weight average molecular weight of the copolymer is 200,000 or less, the above-mentioned storage modulus can be exhibited.
[0021]
In the case of a styrene-isoprene-styrene block copolymer, if the styrene-isoprene diblock ratio is 50% by weight or more and the styrene content is 25% by weight or less, the above-mentioned storage modulus can be exhibited. it can. With SIS, it is easy to control a sudden change in the elastic modulus from 23 ° C. to 50 ° C. based on the diblock ratio and the styrene content.
[0022]
It is preferable that the thermoplastic resin is not a resin having a melting point near the operating limit temperature on the high temperature side of a heating element such as an electronic component such as an IC. Further, even in the case of a resin having a glass transition temperature, it is preferable that the glass transition temperature measured using a differential calorimeter is not close to the maximum proper operating temperature on the high temperature side of a heating element such as an electronic component such as an IC. The melting of these resins and the latent heat absorption in the glass transition phenomenon may also cause a delay in the time until the heating element or the heat dissipating member and the heat dissipating member come into close contact with each other.
[0023]
In addition, when a solid aromatic thermoplastic resin at 23 ° C. such as a styrene-based block copolymer is used as the thermoplastic resin, it is preferable to further include a xylene resin that is a viscous body at 23 ° C. . By adding such a xylene resin, a more rapid change occurs in the behavior of the storage modulus between 23 ° C. and 50 ° C., and furthermore, a gradual change in the storage modulus above 50 ° C. is realized. Can be. This is because when an aromatic thermoplastic resin solid at 23 ° C. and a xylene resin that is viscous at 23 ° C. are mixed and used, the solid state is maintained at 23 ° C. due to the interaction between the respective aromatic rings. As the temperature rises, the interaction weakens and the interaction rapidly weakens and softens without a phase transition phenomenon in a certain temperature range, while the pseudo-crosslinking of aromatic rings occurs even when a certain temperature is reached. This is probably because the remaining interaction suppresses further fluidization. However, when the blending amount of the heat conductive fine particles increases, the elastic modulus at a high temperature tends to decrease depending on the type, the elastic modulus behavior of the heat dissipation member of the present invention, the thermoplastic resin, the type of xylene resin and It is necessary to adjust appropriately according to the compounding amount.
[0024]
In addition, since the xylene resin also functions as a tackifier, the workability when attaching the heat-dissipating member of the present invention to the heat-generating body and the heat-radiating body is improved by blending the xylene resin. .
[0025]
The preferable lower limit of the amount of the xylene resin in the thermoplastic resin composition is 10% by volume, and the upper limit is 90% by volume. If the content is less than 10% by volume, the heat-radiating member has low flexibility and cannot be adhered to the heat-generating body or the heat-radiating body, so that sufficient heat resistance cannot be obtained. If the content exceeds 90% by volume, it may be difficult to obtain a sheet having a fixed shape at 23 ° C.
[0026]
Examples of the heat conductive fine particles include, for example, at least one kind of heat conductivity selected from boron nitride, aluminum nitride, alumina, aluminum, silicon carbide, zinc oxide, copper, metal hydroxide, graphite, magnesium oxide, and silica. Fine particles. Examples of the metal hydroxide include magnesium hydroxide and aluminum hydroxide. Further, it is preferable that these heat conductive fine particles have been subjected to a surface treatment so as to be uniformly mixed at a high blending ratio.
[0027]
The preferred lower limit of the amount of the heat conductive fine particles in the thermoplastic resin composition is 10% by volume, and the upper limit is 90% by volume. If the content is less than 10% by volume, sufficient thermal conductivity may not be obtained. If the content is more than 90% by volume, the resulting heat-radiating member may have low adhesive strength to aluminum and may have poor sticking workability. is there.
[0028]
If the thermoplastic resin composition is a bag that does not impair the desired elastic modulus and adhesive strength to aluminum, if necessary, a halogen compound, a phosphate compound, a metal hydroxide, titanium oxide, etc. Flame retardants; Colorants such as carbon black and white carbon; Powder surface modifiers such as silane-based and titanate-based coupling agents; Dispersants based on glycerin fatty acids; Antioxidants based on bisphenols, hindered phenols, etc. A tackifier such as a chroman resin, a terpene phenol resin, a phenol resin, a rosin, a terpene resin, an aliphatic hydrocarbon, or an alicyclic hydrocarbon may be contained.
[0029]
The method for producing the heat-dissipating member of the present invention is not particularly limited. For example, a predetermined amount of a thermoplastic resin and thermally conductive particles are rolled in two rolls, three rolls, a plast mill, a kneader, a planetary mixer, and a banbury mixer. And the like, and forming the mixture into a sheet having a desired thickness by coating molding, extrusion molding, press molding, or the like.
[0030]
The heat-dissipating member of the present invention has a fixed shape at room temperature around 23 ° C., is extremely excellent in handleability, and can efficiently produce a connection structure in which the heat-generating element and the heat-dissipating element are connected. When the temperature of the heating element of the connection structure is increased, when the temperature reaches a certain temperature or higher, the heat-radiating member of the present invention can be rapidly cooled without a phase transition phenomenon involving latent heat absorption such as a glass transition phenomenon and melting. It softens and the contact area between the heat generating element and the heat radiating element increases, and further, the thickness of the heat radiating member decreases, thereby exhibiting excellent heat resistance performance. Moreover, such a change of the heat radiating member is rapid, and occurs before the temperature of the heating element rises until it reaches a temperature that becomes a load on the heating element, so that no temperature load is applied to the heating element. Furthermore, even when the temperature rises, the heat-dissipating member of the present invention does not flow any more and keeps in close contact with the heating element and the heat-dissipating element, so that no temperature load is applied to the heating element.
[0031]
In such a connection structure in which the heat-generating member and the heat-radiating member are connected by the heat-radiating member of the present invention, the heat-radiating member has a thickness smaller than that before the heat generation due to the heat generated by the heat-generating member. A connection structure that is capable of being also a part of the present invention.
[0032]
Further, a connection structure formed by connecting the heating element and the heat radiating body by the heat radiating member of the present invention, wherein the heat radiating member has a thickness already reduced than before the heat generation due to the heating element generating heat. The connecting structure is also one of the present invention.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0034]
(Example 1)
20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, 80 parts by weight of a xylene resin (manufactured by Mitsubishi Gas Chemical Company, trade name "Nicanol KL-05"), and aluminum nitride 140 parts by weight (trade name “grade F”, manufactured by Tokuyama Corporation) were mixed with a plastmill to obtain a slurry. In this slurry, the volume ratio of aluminum nitride was 30%.
[0035]
Next, a release PET film was laid on the press plate, a metal frame having a thickness of 100 μm was placed thereon, and the obtained slurry was poured into the metal frame. Next, the release PET film was placed thereon, sandwiched by press plates from above and below, and press-formed at room temperature. As a result, a sheet-shaped heat-dissipating member having a thickness of 100 μm and having a release PET film on both sides was obtained.
[0036]
(Example 2)
20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, 80 parts by weight of a xylene resin (manufactured by Mitsubishi Gas Chemical Company, trade name "Nicanol KL-05"), and aluminum nitride 330 parts by weight (trade name “grade F”, manufactured by Tokuyama Corporation) were mixed with a plastmill to obtain a slurry. The volume ratio of aluminum nitride in this slurry was 50%.
Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0037]
(Example 3)
20 parts by weight of a styrene-isoprene-styrene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, xylene resin (manufactured by Mitsubishi Gas Chemical Company, trade name "Nicanol KL-05") 40 parts by weight, xylene resin 25 parts by weight (manufactured by Mitsubishi Gas Chemical Company, trade name "Nicanol LL"), 15 parts by weight of liquid polyisoprene (manufactured by Kuraray, trade name "LIR30") and alumina (manufactured by Showa Denko KK, trade name "CB-A20S") )) And 200 parts by weight of alumina (trade name “CB-A05S” manufactured by Showa Denko KK) were mixed with a plast mill to obtain a slurry. In this slurry, the volume ratio of aluminum nitride was 60%. Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0038]
(Example 4)
10 parts by weight of a styrene-isoprene-styrene block copolymer having a styrene content of 55% by weight and a diblock ratio of 16% by weight, and a styrene-isoprene-styrene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight. Parts by weight, 65 parts by weight of xylene resin (manufactured by Mitsubishi Gas Chemical Company, trade name "Nicanol KL-05"), 15 parts by weight of liquid polyisoprene (manufactured by Kuraray, trade name "LIR403"), and alumina (manufactured by Showa Denko KK) CB-A20S) and 200 parts by weight of alumina (trade name: CB-A05S, manufactured by Showa Denko KK) were mixed with a plast mill to obtain a slurry. In this slurry, the volume ratio of aluminum nitride was 60%. Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0039]
(Comparative Example 1)
30 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, 70 parts by weight of dodecylbenzene, and 760 parts by weight of aluminum nitride (trade name “grade F” manufactured by Tokuyama Corporation) The mixture was mixed by a plast mill to obtain a slurry. In this slurry, the volume ratio of aluminum nitride was 70%.
Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0040]
(Comparative Example 2)
50 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, 50 parts by weight of dodecylbenzene, and 226 parts by weight of boron nitride (trade name “Grade SGP” manufactured by Denki Kagaku Kogyo Co., Ltd.) The parts were mixed with a plastmill to obtain a slurry. In this slurry, the volume ratio of boron nitride was 50%. Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0041]
(Comparative Example 3)
Instead of 20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, an acrylate-based copolymer (manufactured by Negami Kogyo Co., Ltd., trade name "S-2022 Kai 2"): weight 226 parts by weight of boron nitride (trade name “grade SGP” manufactured by Denki Kagaku Kogyo Kogyo Co., Ltd.) instead of 140 parts by weight of aluminum nitride (trade name “grade F”) manufactured by Tokuyama Corporation A heat-dissipating sheet-like member having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1 except that the heat-dissipating member was used.
[0042]
(Comparative Example 4)
20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, 80 parts by weight of dodecylbenzene, 400 parts by weight of alumina (trade name "CB-A20S" manufactured by Showa Denko KK), alumina 200 parts by weight (trade name “CB-A05S” manufactured by Showa Denko KK), and the volume ratio of aluminum nitride in this slurry was 60%. Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0043]
(Comparative Example 5)
22 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight and a diblock ratio of 66% by weight, 8 parts by weight of a styrene-isoprene block copolymer having a styrene content of 30% by weight and a diblock ratio of 30% by weight, xylene 45 parts by weight of resin (manufactured by Mitsubishi Gas Chemical Company, trade name "Nicanol KL-05"), 25 parts by weight of liquid polyisoprene-based block copolymer (manufactured by Kuraray, trade name "KL230"), and alumina (Showa Denko Corporation) (CB-A20S), 200 parts by weight of alumina (manufactured by Showa Denko KK, "CB-A05S"), and the volume ratio of aluminum nitride in this slurry was 60%. Using this slurry, a heat-dissipating member in the form of a sheet having a thickness of 100 μm and having a release PET film on both sides was obtained in the same manner as in Example 1.
[0044]
(Comparative Example 6)
A commercially available silicon grease manufactured by Dow Corning, trade name “# 340” was used. When evaluating the thermal resistance, place a 50-μm-thick PET film whose center is hollowed out into a 35 mm square on the radiator, pour silicone grease into the hollowed-out center, and scrape excess silicon grease with a spatula. By dropping, a layer of silicon grease having a thickness of 50 μm was formed.
[0045]
<Evaluation>
The heat-dissipating members obtained in Examples 1 to 4 and Comparative Examples 1 to 6 were evaluated for thermal resistance, storage elastic modulus, and high-temperature fluidity by the following methods.
[0046]
(Measurement of thermal resistance)
The thermal resistance was measured by the measuring device shown in FIG. That is, a heat-dissipating member 2 from which a release PET film was peeled was adhered onto a cooler 1 made of aluminum, and an IC serving as a heat source was further laminated thereon, and tightened with a bolt 3 with a tightening torque of 1 N · m.
[0047]
Power was supplied to the IC to supply 80 W / h, and after 60 minutes, the temperature T1 of the IC and the temperature T2 near the heat dissipating member of the cooler 1 were measured. The cooler 1 is configured such that water at 23 ° C. is supplied and circulated from the thermostatic water tank 4 inside. From the measurement results, the thermal resistance was determined by the following equation.
[0048]
(Equation 1)
Figure 2004288825
[0049]
(Measurement of storage modulus)
Using a dynamic analyzer RDAII (manufactured by Rheometrics), the storage elastic modulus of the heat-dissipating member at 23 ° C., 60 ° C. and 80 ° C. was measured at 0.1 Hz.
[0050]
(Evaluation of high temperature fluidity)
As shown in FIG. 2, a heat-dissipating member from which a release PET film was peeled off on one side was attached to the side surface of a cubic block made of aluminum. The aluminum block was stored in a constant temperature bath at 80 ° C., and after one week, it was visually observed whether or not the heat-dissipating member had run off.
[0051]
[Table 1]
Figure 2004288825
[0052]
【The invention's effect】
According to the present invention, it has excellent handleability at room temperature, intervenes between the heating element and the heat radiating body, and has high flexibility, so that it is in close contact with the heating element and the heat radiating element, and efficiently from the heating element. A heat dissipating member capable of conducting generated heat to the heat dissipating member and maintaining a close contact state even when the temperature rises, and connecting the heat dissipating member and the heat dissipating member by the heat dissipating member. Connection structure can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a measuring device used for measuring the thermal resistance of a heat radiating member.
FIG. 2 is a schematic diagram illustrating a method for evaluating high-temperature fluidity in an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooler 2 Heat dissipation member 3 Bolt 4 Constant temperature water bath 5 Aluminum block

Claims (6)

熱可塑性樹脂と熱伝導性微粒子とを含有し、40〜80℃に融解温度を有する化合物を含有しない熱可塑性樹脂組成物からなる放熱用部材であって、23℃においては、0.1Hz時の貯蔵弾性率が5万Pa以上であり、かつ、定形を保持しており、50〜80℃における0.1Hz時の貯蔵弾性率が400〜10000Pa、100℃においては、0.1Hz時の貯蔵弾性率が5000Pa以下であり、かつ、不定形であることを特徴とする放熱用部材。A heat dissipating member comprising a thermoplastic resin composition containing a thermoplastic resin and heat conductive fine particles and not containing a compound having a melting temperature of 40 to 80 ° C. The storage elastic modulus is 50,000 Pa or more, and the shape is kept. The storage elasticity at 0.1 Hz at 50 to 80 ° C. is 400 to 10000 Pa, and the storage elasticity at 0.1 Hz at 100 ° C. A heat dissipating member having a modulus of 5000 Pa or less and an irregular shape. 熱可塑性樹脂は、アクリル酸エステル系共重合体、スチレン系ブロック共重合体、ブチルゴム系樹脂からなる群より選ばれる少なくとも1種類以上の樹脂であることを特徴とする請求項1に記載の放熱用部材。The heat-dissipating material according to claim 1, wherein the thermoplastic resin is at least one resin selected from the group consisting of an acrylate-based copolymer, a styrene-based block copolymer, and a butyl rubber-based resin. Element. スチレン−イソプレンのジブロック比率が50重量%以上、スチレン含有量が25重量%以下のスチレン−イソプレン−スチレンブロック共重合体を用いた請求項2記載の放熱用部材。The heat dissipating member according to claim 2, wherein a styrene-isoprene-styrene block copolymer having a styrene-isoprene diblock ratio of 50% by weight or more and a styrene content of 25% by weight or less is used. 熱可塑性樹脂組成物は、23℃において固形状の芳香族熱可塑性樹脂を主成分とし、更に23℃において粘稠体であるキシレン樹脂を含有するとすることを特徴とする請求項1〜3のいずれかに記載の放熱用部材。The thermoplastic resin composition according to any one of claims 1 to 3, wherein the main component is a solid aromatic thermoplastic resin at 23 ° C, and further contains a viscous xylene resin at 23 ° C. A heat-dissipating member according to any of the claims. 請求項1〜4のいずれかに記載の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、前記放熱用部材は、発熱体の発熱により、前記発熱前よりも厚みが減少することが可能であることを特徴とする接続構造体。It is a connection structure which connects a heat generating body and a heat radiating body by the heat radiating member according to any one of claims 1 to 4, wherein the heat radiating member is generated by the heat generating body more than before the heat generation. A connection structure, wherein the thickness can be reduced. 請求項1〜4のいずれかに記載の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、前記放熱用部材は、発熱体が発熱したことにより、前記発熱前よりも既に厚みが減少しているものであることを特徴とする接続構造体。It is a connection structure which connects a heat generating body and a heat radiating body by the heat radiating member according to any one of claims 1 to 4, wherein the heat radiating member is heated before the heat is generated by the heat generating body generating heat. A connection structure characterized in that the thickness has already been reduced.
JP2003078203A 2002-08-09 2003-03-20 Heat dissipation member and connection structure Expired - Fee Related JP4119287B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003078203A JP4119287B2 (en) 2003-03-20 2003-03-20 Heat dissipation member and connection structure
US10/523,409 US20050155751A1 (en) 2002-08-09 2003-08-08 Heat-dissipating member and joined structure
EP03784597A EP1542281A1 (en) 2002-08-09 2003-08-08 Heat-dissipating member and joined structure
PCT/JP2003/010112 WO2004015768A1 (en) 2002-08-09 2003-08-08 Heat-dissipating member and joined structure
CNB038186071A CN100339983C (en) 2002-08-09 2003-08-08 Heat radiating member and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078203A JP4119287B2 (en) 2003-03-20 2003-03-20 Heat dissipation member and connection structure

Publications (2)

Publication Number Publication Date
JP2004288825A true JP2004288825A (en) 2004-10-14
JP4119287B2 JP4119287B2 (en) 2008-07-16

Family

ID=33292751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078203A Expired - Fee Related JP4119287B2 (en) 2002-08-09 2003-03-20 Heat dissipation member and connection structure

Country Status (1)

Country Link
JP (1) JP4119287B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274094A (en) * 2005-03-30 2006-10-12 Kaneka Corp Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the same
JP2007070595A (en) * 2004-12-21 2007-03-22 Tokai Rubber Ind Ltd Highly damping elastomer composition and seismic-control damper obtained by the same
JP2012158695A (en) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd Heat conductive sheet and heat dissipation plate
WO2015151604A1 (en) * 2014-03-31 2015-10-08 デクセリアルズ株式会社 Heat conductive sheet and method for producing heat conductive sheet
WO2020039561A1 (en) * 2018-08-23 2020-02-27 日立化成株式会社 Semiconductor device production method and thermally conductive sheet
WO2020039560A1 (en) * 2018-08-23 2020-02-27 日立化成株式会社 Semiconductor device production method, thermally conductive sheet, and thermally conductive sheet production method
US11456229B2 (en) 2017-07-24 2022-09-27 Sekisui Chemical Co., Ltd. Thermally conductive sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070595A (en) * 2004-12-21 2007-03-22 Tokai Rubber Ind Ltd Highly damping elastomer composition and seismic-control damper obtained by the same
JP2006274094A (en) * 2005-03-30 2006-10-12 Kaneka Corp Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the same
JP4629475B2 (en) * 2005-03-30 2011-02-09 株式会社カネカ Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the composition
JP2012158695A (en) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd Heat conductive sheet and heat dissipation plate
WO2015151604A1 (en) * 2014-03-31 2015-10-08 デクセリアルズ株式会社 Heat conductive sheet and method for producing heat conductive sheet
US11456229B2 (en) 2017-07-24 2022-09-27 Sekisui Chemical Co., Ltd. Thermally conductive sheet
KR20210046672A (en) * 2018-08-23 2021-04-28 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method and thermal conductive sheet
KR20210046671A (en) * 2018-08-23 2021-04-28 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method, thermal conductive sheet, and thermal conductive sheet manufacturing method
WO2020039560A1 (en) * 2018-08-23 2020-02-27 日立化成株式会社 Semiconductor device production method, thermally conductive sheet, and thermally conductive sheet production method
JPWO2020039561A1 (en) * 2018-08-23 2021-08-10 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method and heat conductive sheet
JPWO2020039560A1 (en) * 2018-08-23 2021-08-10 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method, heat conductive sheet, and heat conductive sheet manufacturing method
WO2020039561A1 (en) * 2018-08-23 2020-02-27 日立化成株式会社 Semiconductor device production method and thermally conductive sheet
JP7160101B2 (en) 2018-08-23 2022-10-25 昭和電工マテリアルズ株式会社 Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
JP7160102B2 (en) 2018-08-23 2022-10-25 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method and thermally conductive sheet
KR102530044B1 (en) 2018-08-23 2023-05-08 가부시끼가이샤 레조낙 Semiconductor device manufacturing method and thermal conductive sheet
KR102550135B1 (en) 2018-08-23 2023-06-30 가부시끼가이샤 레조낙 Manufacturing method of semiconductor device, thermal conductive sheet, and thermal conductive sheet manufacturing method

Also Published As

Publication number Publication date
JP4119287B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP2004315663A (en) Acrylic heat-conductive composition and heat-conductive sheet
JP2000509209A (en) Compatible thermal interface materials for electronic components
JPWO2017208341A1 (en) Thermally conductive member, thermally conductive composition, and method for producing thermally conductive composition
JP2022033201A (en) Thermally conductive composition
JP2006241333A (en) Heat conductive composition and heat conductive sheet
JP4119287B2 (en) Heat dissipation member and connection structure
JP2008143975A (en) Heat-conductive hot melt adhesive composition
JP4829482B2 (en) Thermally conductive composition and thermal conductive sheet
JP2004075760A (en) Heat-conductive resin composition and phase-change type heat radiation member
WO2004015768A1 (en) Heat-dissipating member and joined structure
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP3978056B2 (en) Heat dissipation member and connection structure
JP2005203735A (en) Thermally conductive composite sheet
JP3976642B2 (en) Heat dissipation member and connection structure
JP2004079641A (en) Heat radiating member and connection structure
JP4027807B2 (en) Phase change type multilayer sheet
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body
JP2009120841A (en) Acrylic thermally conductive composition and article including the same
JP2000211055A (en) Sheet equipped with electrical conductivity and thermal conductivity
JP4312046B2 (en) Thermally conductive resin composition, thermally conductive sheet, and thermally conductive composite sheet
JP2004131540A (en) Heat-radiating resin sheet
WO2008053785A1 (en) Phase-change heat dissipating member
JP4729266B2 (en) Thermally conductive composition and thermal conductive sheet
JP2005281346A (en) Phase change heat-conductive molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees