JP2004288310A - ディジタルデータ記録再生装置及び再生方法 - Google Patents

ディジタルデータ記録再生装置及び再生方法 Download PDF

Info

Publication number
JP2004288310A
JP2004288310A JP2003080519A JP2003080519A JP2004288310A JP 2004288310 A JP2004288310 A JP 2004288310A JP 2003080519 A JP2003080519 A JP 2003080519A JP 2003080519 A JP2003080519 A JP 2003080519A JP 2004288310 A JP2004288310 A JP 2004288310A
Authority
JP
Japan
Prior art keywords
synchronization detection
digital data
address
data
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080519A
Other languages
English (en)
Other versions
JP4143452B2 (ja
Inventor
Kenji Akaboshi
健司 赤星
Hiroshi Hoshisawa
拓 星沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi LG Data Storage Inc
Original Assignee
Hitachi Ltd
Hitachi LG Data Storage Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi LG Data Storage Inc filed Critical Hitachi Ltd
Priority to JP2003080519A priority Critical patent/JP4143452B2/ja
Publication of JP2004288310A publication Critical patent/JP2004288310A/ja
Application granted granted Critical
Publication of JP4143452B2 publication Critical patent/JP4143452B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

【課題】再生データの誤りや欠落などによって誤り訂正のためのデータの記憶手段での書込みアドレスが誤っても、その誤り位置を確定できるようにする。
【解決手段】検出手段8で再生データからSYNCフレーム毎のSYNCコードが検出され、これをもとに生成手段13,12が再生データを誤り訂正するために一時記憶するための記憶手段18の書込みアドレスが生成される。ディスク欠陥等により検出手段8でSYNCコードの検出に欠落があると、生成手段13は、この欠落期間、書込み用アドレスを補間する。欠落期間が経過して所定回数SYNCコードが検出されるまでの期間、フラグ生成手段15はフラグ714を生成し、生成手段16は、このフラグ714の正否を示すフラグ717を生成する。これらフラグ714,717をもとに、誤り訂正手段19は、記憶手段18で誤ったアドレスに記憶されたSYNCフレームを誤り位置として検出する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスクなどの記録媒体からデータ再生を行なうディジタルデータ記録再生装置及び再生方法に関する。
【0002】
【従来の技術】
現在の代表的な光ディスクとして、CD(Compact Disc)やDVD(Digital Versatile Disc)が挙げられる。かかる記録媒体の記録再生装置においては、ディジタルデータが同期検出用符号が付加された複数の同期検出フレームからなるセクタ単位で記録されているが、かかる記録媒体からのデータ再生に際しては、再生信号の同期検出フレーム毎に付加されている同期検出用符号の検出結果からセクタ内におけるデータの再生位置を特定するシステム構成をなしている。以下では、DVDの記録再生装置を例として、かかるシステムについて説明する。
【0003】
DVDでは、セクタ内のアドレス(フレーム位置)を確定するために、同期検出符号(以下、SYNCコードともいう)が一定間隔で付加されており、復調処理時にバースト誤り後にSYNCコードを検出した場合、復調データを誤り訂正配列の正しい位置に格納できるようにしている(例えば、非特許文献1参照)。
【0004】
例えば、DVD規格におけるセクタの論理フォーマットでは、図6に示すように、1456ビットのユーザデータ毎に32ビットのSYNCコード601が付加されたビット列をSYNCフレームとして、1行2SYNCフレーム×13行=26個のSYNCフレームからセクタ208が構成されている。
【0005】
DVDでは、SY0〜SY7の8種類のSYNCコード601が設定されており、連続する4個のSYNCフレームの各々の先頭に付加される4個のSYNCコードの配列順序により、これら4個のSYNCフレームの内の先頭のSYNCフレームの同期検出フレームアドレスが決定される。
【0006】
即ち、SYNCコードとしては、図6に示すように、セクタ208内の左列に配列して示す奇数番目のSYNCフレームには、SY0〜SY4のSYNCコード601が、右列に配列して示す偶数番目のSYNCフレームには、SY5〜SY7のSYNCコード601が夫々付加されており、連続する4個のSYNCフレームで4個のSYNCコード601が「SY7−SY4−SY7−SY0」の順序で出現すれば、その先頭のSY7のSYNCコードが付与されているSYNCフレームの同期検出フレームアドレスを「0」で表わし、これより1SYNCフレームだけずれた「SY4−SY7−SY0−SY5」の順序で出現すれば、その先頭のSY4のSYNCコードが付与されているSYNCフレームの同期検出フレームアドレスを「1」で表わす。「2」〜「25」の同期検出フレームアドレスも、同様に決定される。この同期検出フレームアドレスは、セクタ内のSYNCフレームのアドレスを表わすものであり、セクタ内アドレスともいう。
【0007】
また、データ復調処理後に行なわれる誤り訂正処理は、図6に示すセンタ208の1行に相当する2SYNCフレームをPIフレームということにすると、8PIフレームまでは、PI(Parity of Inner−Code:内符号パリティ)訂正の結果に拘らず、訂正可能であり、PI訂正の結果からPO(Parity of Outer−Code:外符号パリティ)符号に含まれるエラーの位置を特定して消失訂正を行なうことにより、最大16PIフレームまでのエラー訂正が可能となる(例えば、特許文献1参照)。
【0008】
しかし、実際には、ディスクの形状や傷,埃などにより、ディスクから読み出されたディジタルデータに誤りが含まれたり、データが一部欠落してデータ欠落が発生することによるPLL(Phase−Locked Loop)回路の暴走により、データ再生クロックの乱れも発生する。PLL回路などの位相同期ループ回路から抽出されるデータ再生クロックは再生データと同期し、データ復調部の動作クロックとして供給されており、再生データの復調処理を行なうためには欠かせないものであって、データ再生クロックが乱れると、正しくデータ処理を行なえない可能性がある。
【0009】
従って、復調処理時にこのような状況下にあっても、問題なくデータ処理を行なうもしくは被害を最低限に抑える必要があるが、先に挙げた文献には、こうした問題に対しての対策方法や手段について具体的には記されてはいない。
【0010】
【特許文献1】
特開2002−74861号公報
【0011】
【非特許文献1】
DVD技術 鍋島大樹 監修、トリケップス社 p.31
【0012】
【発明が解決しようとする課題】
ディスクの形状や傷,埃などにより、ディスクから読み出されたディジタルデータに誤りが含まれたり、データが一部欠落してデータ欠落が発生したりすることにより、データ再生クロックのPLL回路回路が暴走した場合を考える。
【0013】
例えば、データが欠落した場合には、図7(b),(c)のように、SYNCフレーム抜けが発生し、SYNCコードの検出を正常に行なうことができない。このような場合でも、データ再生クロックが乱れずにデータ再生が通常通り行なわれていれば、SYNCコードは一定周期で検出されるため、このデータ再生クロックを用いて次の検出タイミングを正しく予測して同期検出フレームアドレスを補間することが可能である。
【0014】
しかし、例えば、データ再生クロックの周波数が通常よりも高くなり、その周期が短くなった場合には、かかるデータ再生クロックを基に予測されて補間される同期検出フレームアドレスは、(図7(g)に斜線塗り潰し部分として示すように、正規のSYNCコードの検出タイミングよりも速いタイミングで更新されてしまう。
【0015】
その後、データの欠落が終わって再びデータ再生クロックが正常に生成され、正規のタイミングでSYNCコードが検出され始めても、所定回数以上連続したSYNCコードが検出されるまでは、同期検出フレームアドレスを更新できない(セクタアドレスの信頼性を得るため)。この所定回数以上連続したSYNCコードが検出されるまで間、(図7(g)に点塗り潰し部分で示すように、正規のSYNCコードの検出タイミングよりも速いタイミングで同期検出フレームアドレスを補間(+1インクリメント)し続けることになる。
【0016】
従って、この誤って補間された同期検出フレームアドレスを基に、一時記憶手段への書込みアドレスを生成すると、図7(n)に示すように、16個のセクタにPO符号とPI符号とが付加されてなる図4に示す構成のECCブロック403において、行単位でのデータの格納ずれが発生し、PI訂正結果はOKであるが、実際とは異なる行にデータが書き込まれる状況が生じてしまう。
【0017】
誤り位置が正しく指定されていないときには、高い確率で誤訂正が生じるため、消失訂正での誤り位置の指定は正確に行なわなければならない。そのため、再生後のデータの信頼性の点で、PO消失訂正の誤りの位置をPI訂正の結果のみで決定することは問題があり、対策が必要となる。
【0018】
本発明の目的は、かかる問題を解消し、再生データの誤りや欠落などによってPLL回路が暴走し、データ再生クロックに乱れが発生しても、同期検出フレームアドレスの補間を正しく行なうことができるようにしたディジタルデータ記録再生装置及び再生方法を提供することにある。
【0019】
【課題を解決するための手段】
上記目的を達成するために、本発明は、所定のデータ量毎に同期検出符号が付加されて同期検出フレームを形成し、2つの該同期検出フレームを単位として第1,第2の誤り訂正符号が付加されてなるディジタルデータを記録再生するディジタルデータ記録再生装置であって、再生されたディジタルデータから同期検出符号を検出する第1の検出手段と、第1の検出手段で同期検出符号が連続して未検出であることを検出する第2の検出手段と、同期検出符号に基づいて同期検出フレームアドレスを生成し、第2の検出手段で検出される同期検出符号の連続した未検出期間、同期検出フレームアドレスを生成補間するアドレス生成手段と、第2の検出手段の検出結果に基づいて、アドレス生成手段で生成される同期検出フレームアドレスが誤っている可能性があるディジタルデータの同期検出フレームに第1のフラグを付与するフラグ付与手段と、アドレス生成手段がデジタルデータの同期検出符号でのみ生成される同期検出フレームアドレスと補間がなされた同期検出フレームアドレスとが一致しないことを示す第2のフラグを生成するフラグ生成手段と、アドレス生成手段で生成される同期検出フレームに応じてアドレスに再生されたディジタルデータの同期検出フレームを記憶する一時記憶手段と、一時記憶手段に記憶された該ディジタルデータを第1,第2の誤り訂正符号を用いて誤り訂正する誤り訂正手段とを備え、誤り訂正手段は、第2のフラグが有効であるとき、第1のフラグが付与された同期検出フレームを、その一時記憶手段での書込みアドレスに誤りの可能性があるとして、第2の誤り訂正符号による消失訂正の処理の対象として処理する処理手段を有するものである。
【0020】
また、アドレス生成手段は、第2の検出手段で検出される同期検出符号の連続した未検出期間、ディジタルデータから等間隔に検出される前記同期検出符号を基準にし、補間する前記同期検出フレームアドレスをデータ再生クロックを用いて等間隔にインクリメントして生成するものである。
【0021】
さらに、フラグ付与手段は、第2の検出手段で検出される同期検出符号の連続した未検出期間経過後に第1の検出手段で最初に検出される同期検出符号のタイミングで第1のフラグに有効とし、同期検出符号が予め規定された回数連続して検出されたタイミングで無効とするものである。
【0022】
さらに、フラグ生成手段は、第1のフラグが無効となるタイミングでデジタルデータから検出される同期検出符号でのみ生成される同期検出フレームアドレスと補間がなされた同期検出フレームアドレスとを比較し、両者が相違するとき、第2のフラグを有効にするものである。
【0023】
さらに、同期検出フレームでデータセクタが形成され、データセレクタの複数個でデータブロックが形成されるものであって、フラグ生成手段は、データセクタの末尾のタイミング、またはデータブロック末尾のタイミングで第2のフラグを無効にするものである。
【0024】
上記目的を達成するために、本発明は、PI及びPO符号が付加された同期検出フレームからするディジタルデータを記録再生するディジタルデータ記録再生装置であって、再生されたディジタルデータを記憶する記憶手段と、記憶手段に記憶されたディジタルデータを誤り訂正処理する誤り訂正手段と、記憶手段へのディジタルデータの書込み用アドレスを生成し、ディジタルデータが欠落したときに、書込み用アドレスの補間を行なう書込み用アドレス生成手段と、書込み用アドレス生成手段で補間される書込み用アドレスの良否を判定するためのフラグを生成する手段とを設け、誤り訂正手段は、フラグに基づいて、記憶手段で誤ったアドレスに書き込まれた同期検出フレームを誤り位置としてPO符号による誤り訂正を行なうものである。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は本発明によるディジタルデータ記録再生装置及び再生方法の第1の実施形態を示すブロック図であって、1は光ディスク、2はピックアップ、3はスピンドルモータ、4はサーボ手段、5はリードチャネル手段、6はデータ再生処理部、7はデータ復調部、8は同期検出符号(SYNC)検出手段、9は8/16復調手段、10は復調出力手段、11はID検出手段、12はアドレス生成手段、13はセクタ内アドレス生成手段、14は同期検出符号連続未検出検出手段、15はグレーフラグ生成手段、16はセクタ内(SYNCフレーム/PIフレーム)アドレス不一致フラグ生成手段、17は一時記憶制御手段、18は一時記憶手段、19は誤り訂正(PI/PO)手段、20は出力手段、21はシステムコントローラ、22はホストである。
【0026】
同図において、光ディスク1には、記録するデータにID(IDentification)番号を付加されたセクタ単位のデータに対し、データ変調やSYNCコード付加が行なわれてフレームデータが構成されたディジタル信号が記録されている。この光ディスク1はサーボ手段4によって回転制御されるスピンドルモータ3によって回転駆動され、ピックアップ2によってこのディジタル信号が読み取られる。ピックアップ2からの再生ディジタル信号は、リードチャンネル手段5で所定の処理がなされて、データ再生処理部6のデータ復調部7に供給されるとともに、回転信号が検出されてサーボ手段4に供給される。サーボ手段4は、この回転検出信号に基づいて、スピンドルモータ3の回転を制御する。
【0027】
データ復調部7では、リードチャンネル手段5から供給される再生ディジタル信号が、同期検出符号検出手段8を介し、8/16復調手段9に供給されて復調され、復調された再生ディジタル信号が、復調出力手段10により、データ復調部7から出力される。また、8/16復調手段9で復調された再生ディジタルデータはID検出手段11にも供給され、この再生ディジタルデータからセンタの先頭に付加されているIDが検出される。
【0028】
また、同期検出符号検出手段8では、リードチャンネル手段5から供給される再生ディジタル信号から、SYNCフレーム毎にその先頭に付加されている同期検出符号(即ち、SYNCコード:SY0〜SY7)が検出され、セクタ内アドレス生成手段13と同期検出符号連続未検出検出手段14とグレーフラグ生成手段15とセクタ内アドレス不一致フラグ生成手段16とに供給される。
【0029】
同期検出符号連続未検出検出手段14は、SYNCコードの検出状況から同期検出符号連続未検出状態を検出するものであり、同期検出フレームアドレス生成手段121は、同期検出符号連続未検出検出手段14の検出結果と同期検出符号検出手段で検出されたSYNCコードとに基づいて、セクタ内のSYNCフレーム毎に同期検出フレームアドレスを生成する。アドレス生成手段12は、ID検出手段11からのセクタの先頭を示すIDをもとに、この同期検出フレームアドレスからセクタ内のSYNCフレーム毎に一時記憶手段18の転送アドレスを生成する。
【0030】
グレーフラグ生成手段15は、同期検出符号検出手段で検出されたSYNCコードと同期検出符号連続未検出検出手段14の検出結果とからグレーフラグを生成するものである。このグレーフラグは、セクタ内アドレス生成手段13で生成される同期検出フレームアドレスが誤っている可能性があるSYNCフレームに対して生成されるフラグである。
【0031】
セクタ内アドレス不一致フラグ生成手段16は、そのグレーフラグが本当に誤っているかどうかを判断し、同期検出符号(SYNC)から検出した同期検出フレームアドレスとデータ再生クロックを使用して生成した補間用の同期検出フレームアドレスとが一致しなかったときには、そのことを示す同期検出フレームアドレス不一致フラグを生成する。
【0032】
データ復調部7から出力されるディジタルデータは、一時記憶制御制御手段17の書込み,読出し制御のもとに、一時記憶手段18に一時的に記憶され、また、読み出されて、誤り訂正手段19により、データの誤りが訂正される。誤り訂正されたディジタルデータは、データ入出力制御を行なう出力手段20により、ホスト22に出力される。なお、以上の動作は、システムコントローラ21によって制御される。
【0033】
光ディスク1に記録されるディジタル信号の記録単位であるセクタの構成例について、図2〜図6を用いて説明する。
【0034】
ディスク上の情報領域でのトラックで独立にアクセスできる最小のアドレスを「セクタ」という。セクタは、図2に示すように、信号処理過程に応じて“データセクタ”205,“記録セクタ”207、そして、“物理セクタ”208と呼ばれる。
【0035】
ディジタルデータの信号処理過程では、4バイトのID(Identification Data:識別データ)201に2バイトのIED(ID Error Detection Code)が付加されて(ID+IED)202が形成され、これを6バイトのCPR_MAI(Copyrighte Management Information)とともに2048バイトのメインデータに付加してデータ203を形成し、このデータ203にEDC(Error DetectingCode:誤り検出符号)を付加してデータセクタ204を形成し、このデータセクタ204でのメインデータのみをスクランブル処理して上記のデータセクタ205が形成される。
【0036】
図3(a),(b)はID201の構成を、同図(c)はデータセクタ205の構成を夫々示すものである。
【0037】
ID201は、図3(b)に示すように、図3(a)に示す構成の1バイト(8ビット)のセクタ情報(Data Field Information)301と3バイトのセクタ番号(Data Field Number)302とから構成されている。
【0038】
データセクタ205は、図3(c)に示すように、2048バイト(=160バイト+172×10バイト+168バイト)のメインデータの先端に、4バイトのID201,2バイトのIED及び6バイトのCPR_MAIからなる12バイトのデータが、終端に4バイトの誤り検出符号(EDC)が夫々付加された2064バイトのデータ列であって、メインデータのみがスクランブル処理される。
【0039】
かかるデータセクタ205を172バイト×12行の形式として、図4に示すように、16個のデータセクタ205を重ねた172バイト×192行形式のデータブロック206(図2)とし、このデータブロック206に、連続するデータの並び(図4では、横方向)に直交する垂直方向(図4では、縦方向)に並ぶデータの列がRS(208,192,17:リード ソロモン符号)となるように、かかるデータの列毎に16バイトの誤り訂正符号(外符号:PO)402を加え、さらに、このPO402が付加されてなる208行(=192行+16行)のデータの各行のデータ列(図4で横方向)がRS(182,172,11)となるように、10バイトの誤り訂正符号(内符号:PI)401を加えて、ECC(Error Correction Code)エンコーディング(図2)した182バイト×208行のデータブロック403を得る。このように、RS(208,192,17)×RS(182,172,11)の積符号となっているデータブロック403をECCブロックという。
【0040】
なお、かかるECCブロック403において、以下、横方向にみた各行の符号をPI符号といい、縦方向にみた各列の符号をPO符号という。
【0041】
このような構成のECCブロック403について、16行のPO402を1行ずつ各データセクタ205に挿み込むインターリーブを行ない(図2)、図5に示す構成のECCブロックを得る。このECCデータブロックでは、各データセクタ205が1行のPO符号402が付加されて13行×182バイトのセクタ構成(即ち、12行のデータセクタ205からなるPI符号と1行のPO402からなるPI符号)とされており、この13行のセクタが図2での記録セクタ207と呼ばれるものである。かかる記録セクタ207はSYNCコードが付加されながら8/16変調され、物理セクタ208(図2)が形成される。
【0042】
図6は8/16変調された記録セクタ208の構成を示すものであって、図示するように、13行からなり、各行が8/16変調前の1バイト(8/16変調後では、16ビット)を1データとして、182データからなっている。また、8/16変調後の各行は1456×2=2912チャンネルビットからなっている。
【0043】
かかる物理セクタ208では、各行毎に、その先頭(1番目)のデータ(上記のように、8/16変調前では1バイト、8/16変調後では16チャンネルビット)の前と同じく92番目のデータの前とに夫々32ビットのSYNCコード601が付加されている。SYNCコード601で始まる32+1456=1488チャンネルビットのビット列が、上記のSYNCフレームである。従って、8/16変調された物理セクタ208は、13行×2SYNCフレームから構成された38688チャネルビットのビット列である。
【0044】
1物理セクタ208に用いられるSYNCコード601はSY0〜SY7と8種類であり、各行毎にこれらSYNCコード601の組み合わせが異なる。
【0045】
即ち、SY0は物理セクタ208の第1行の先頭にのみ用いられ、これにより、物理セクタ208の先頭の識別ができるようにしている。また、SY1〜SY4は第2行〜第13行の先頭に順に繰り返して用いられ、SY5は第1行〜第5行の92番目(8/16変調前の92バイト目)のデータの前に、SY6は第6行〜第9行の92番目のデータの前に、SY7は第10行〜第13行の92番目のデータの前に夫々用いられる。このようにして、各行毎に用いられる2つのSYNCコード601の組み合わせを異にしており、言い換えれば、物理セクタ208での行のアドレスに相当する行番号に応じてSYNCコード601の組み合わせが異なることになる。
【0046】
以上のようなSYNCコード601の配置は全ての物理セクタ208で同じである。
【0047】
DVD再生装置は、以上のように記録されたディジタルデータをディスクから読み出し、変調過程とは逆の処理を行なうことにより、元のデータに復元する。
【0048】
DVDなどのディジタルデータ再生装置において、再生するディジタルデータに多くの誤りが含まれたり、一部データが欠落した場合においても、復調や誤り訂正の処理を確実に行なうことができるようにして、再生データの信頼性を向上させることが必要である。
【0049】
上記のような積符号を構成する変調が施されているディジタルデータの場合、バースト訂正長を確保するために、PO402(図4)による訂正(以下、PO訂正という)では、PI401(図4)による訂正(以下、PI訂正という)時に誤りが検出された位置を誤り位置と指定し、この誤り位置での誤りの値のみを求める消失訂正が行なわれる。
【0050】
また、この消失訂正は、誤り位置が正しく指定されていないときには、高い確率で誤訂正が生じるため、消失訂正での誤り位置の指定は正確に行なわなければならない。
【0051】
ところで、従来のディジタルデータ再生装置においては、図1に示す実施形態も同様であるが、誤り訂正回路、またはPO訂正回路の前に一時的にデータを保持する一時記憶手段(図1での一時記憶手段18に相当する)を設け、この一時記憶手段上に繰り返し書き込まれるECCブロックからデータを読み出して誤り訂正処理を行なう回路構成が採られているが、このような場合、図4,図5に示す積符号のデータ構成では、PI符号の並び(図5の横方向)がディスクに記録されて読み出されるデータの並びと同一となるが、ディスク欠陥などによって再生データが欠落することにより、データ再生クロックのPLL回路が暴走すると、ECCブロック403で行単位のデータずれが発生し、一時記憶手段では、書き込むデータがこれに該当する行とは異なる行に書き込まれる可能性が生じる。
【0052】
以下、この点について、図7を用いて説明する。
【0053】
図7は、上記のように、ディスクの形状や傷,埃などのディスク欠陥による再生データの欠落によってデータ再生クロックのPLL回路が暴走し、SYNCコードの抜けが発生したために、一時記憶手段への書込みアドレスに誤りが生ずる様子と、この実施形態によるその解決方法を示したものである。
【0054】
図7(a)はディスクに書き込まれているECCブロックの図6に示す構成の物理セクタ701の配列順序を示しており、「4」(図示で4番目)の物理セクタ701にディスクの形状や傷,埃などによるディスク欠陥702があるものとする。図7(b)はディスクから読み取られた図7(a)に示すディジタルデータから検出されるSYNCコード(同期検出符号)を示し、図7(a)に示すディスク欠陥702に対する部分では、ディジタルデータに含まれるSYNCフレームの先頭を示すSYNCコード(SY0〜SY7)が検出できず、SYNCコード抜け703が生じている。かかるSYNCコード抜け703の部分では、ディスク欠陥によるデータ再生の欠落によってデータ再生クロックのPLL回路が暴走したために、データ再生クロックは乱れる。
【0055】
図7(c)は図7(b)に示すSYNCコード抜け703を拡大して示したものであって、垂直線はSYNCコード704を示している。図示するように、SYNCコード704が未検出状態(SYNCコード抜け)となってから数SYNCフレームが経過してディスク欠陥702(図7(a))を過ぎると、再びSYNCコード704が検出される。
【0056】
図7(d)はSYNCコードの検出状況に応じて有効・無効にされるSYNCコード704の検出状況を示すSYNCコード検出状況フラグ705を示すものである。このSYNCコード検出状況フラグ705は同期検出符号連続未検出検出手段14(図1)で生成されるものであって、SYNCコードの連続未検出回数が所定の回数に到達すると、SYNCコード検出状況フラグ705が無効にされて立ち下がり、再びSYNCコードが検出され始めてからその連続検出回数が所定の回数に到達すると、SYNCコード検出状況フラグ705が有効になって立ち上がる。図7(d)に図示する例では、SYNCコードが5回連続して未検出の場合、無効となり、SYNCコードが4回連続して検出の場合、有効になる。以下では、SYNCコードが連続して所定回数(ここでは、5回)未検出となることによってSYNCコード検出状況フラグ705が無効にされることを、SYNCロックアウトといい、SYNCコードが連続して所定回数(ここでは、4回)検出されることによってSYNCコード検出状況フラグ705が有効になることを、SYNCロックインということにする。
【0057】
図7(e)はディスクから読み出されたディジタルデータから検出されたSYNCコードをもとに、上記のようにして生成された同期検出フレームアドレス(セクタ内アドレス)706を示すものであり、図6に示す各SYNCフレームのセクタ208内の位置(アドレス)を表わしている。なお、図6に示す物理セクタ208では、SYNCコード601が「SY0」のSYNCフレームを0フレーム目とし、これと同じ行の右側に示すSYNCコードが「SY5」のSYNCフレームを1フレーム目とし、次の行の左側に示す最初のSYNCコードが「SY1」のSYNCフレームを2フレーム目とし、以下、順に3フレーム目,4フレーム目,……として、最後の行の右側に示すSYNCコードが「SY7」のSYNCフレームを25フレーム目としており、物理センタ208は計26フレームで構成されている。
【0058】
なお、図7(c)に示すようにSYNCコード704が検出されている状態でも、直ぐには、同期検出フレームアドレス(セクタ内アドレス)706は確定できない。このことについて、図7(f)により説明する。
【0059】
SYNCコードは、上記のように、各SYNCフレームがセクタ内のどの位置にあるものかを示すために用いられものである。連続する4個のSYNCフレームの各々の先頭に付加されるSYNCコードの配列順序により、SYNCフレームのセクタ内での位置(アドレス)が表わされる。SYNCコードのかかる組合せとセクタ内でのSYNCの位置との関係を図6で説明すると、SYNCコードが「SY7−SY4−SY7−SY0」の順序で出現すれば、この最後の「SY0」が付与されたSYNCフレームの同期検出フレームアドレス706が「0」と表わされ、「SY4−SY7−SY0−SY5」の順序で出現すれば、この最後の「SY5」が付与されたSYNCフレームの同期検出フレームアドレス706は「1」と表わされる。「2」〜「25」の同期検出フレームアドレス706も、同様にして決定される。
【0060】
図7(e)は、3フレーム目の同期検出フレームアドレス「3」までは検出されたが、SYNCコード704が検出されなくなったことにより、その後のSYNCフレームの同期検出フレームアドレス706が生成できず、その後SYNCコードが検出されてSYNCロックインとなると、上記の4個のSYNCコードのパターンから13フレーム目の同期検出フレームアドレス「13」から同期検出フレームアドレス706が生成され始めたことを示している。
【0061】
また、SYNCコードの出現パターンは、図6から明らかなように、4個の連続したSYNCコードのうちの1番目から3番目までの連続する3個のSYNCコードの組合せが全て異なるパターンとなっており、4番目のSYNCコードがデータ読取りエラーによってコード化けした場合でも、他のSYNCコードの配列パターンに化けることがなく、アドレス検出不可となって誤ったアドレス検出が行なわれることがないようにしている。しかし、ある程度連続した回数でSYNCコードの検出が行なわれないと、同期検出フレームアドレス706の精度が上がらず、信頼性がなくなる。
【0062】
図7(f)は所定回数以上連続してSYNCコードを検出したときに得られる同期検出フレームアドレスロード信号707を示すものである。この同期検出フレームアドレスロード信号707は、所定回数以上連続してSYNCコードが検出されないと出力されないため、信頼性がある同期検出フレームアドレスのみをロードすることが可能である。この例では、図7(c)も参照して、SYNCロックアウト後、連続して4個SYNCコードが検出されると、信頼性がある同期検出フレームアドレスが確定したと判断できたため、同期検出フレームアドレスロード信号707が出力されていることになる。
【0063】
図7(g)は図7(e)に示す同期検出フレームアドレス706よりも+1の値だけ先行してインクリメントされる補間用の同期検出フレームアドレス708を示すものである。
【0064】
ディスクから読み出されるディジタルデータからSYNCコードが正しく検出されている場合には、図7(f)に示す同期検出フレームアドレスロード信号707のタイミングで図7(e)に示す同期検出フレームアドレス706を値+1だけ更新して同期検出フレームアドレス708(図7(g))を生成し、突発的なSYNCコード抜けに対応する。
【0065】
ディスクから読み出されるディジタルデータからSYNCコードが正しく読み出せない場合、即ち、図7(f)のように、同期検出フレームアドレスロード信号707が出力されるべきタイミングで出力されていない場合には、SYNCコードが周期的に検出されることに着目して、ディスクから読み出されるディジタルデータから再生されるデータ再生クロックを基にSYNCコードの出力タイミングを予測し、図7(e)で同期検出フレームアドレス706の補間を行なう方法が考えられる。
【0066】
このような補間は、データ再生クロックに乱れがなく、ディジタルデータが正しく再生されている場合には問題ないが、図7(a)に示すように、データ部分の欠陥702などが原因でPLL回路が暴走した場合には、データ再生クロックが乱れてしまう。
【0067】
PLL回路の暴走により、データ再生クロックが通常よりも速くなって(周波数が高くなって)しまった場合には、図7(g)に斜線で塗りつぶして示す同期検出フレームアドレス708(SYNCフレーム5〜11)のように、通常よりも狭い時間間隔(速いタイミング)で同期検出フレームアドレスの補間が行なわれる。その後、PLL回路が正常な動作状態になってデータ再生クロックも正しく再生されるようになると、図7(g)に点で塗りつぶして示す同期検出フレームアドレス708(SYNCフレーム12〜15)のように、正常なタイミングで同期検出フレームアドレスの補間が始まるが、図7(f)に示す同期検出フレームアドレスロード信号707が出力されるまで、データ再生クロックの異常時に補間された値に+1インクリメントする形で補間が行なわれる。
【0068】
そして、同期検出フレームアドレスロード信号707(図7(f))が出力されると、図7(g)に示すように、検出された同期検出フレームアドレス706(図7(e))に+1インクリメントした同期検出フレームアドレス708(SYNCフレーム14,15,……)がロードされ、正しい同期検出フレームアドレスが生成される。
【0069】
図7(n)は図7(g)に示す同期検出フレームアドレス708を基に生成されたPIフレーム(図6に示す1行2SYNCフレーム)の一時記憶手段への書込アドレス715を示すものであって、斜線と点で塗りつぶしたPIフレーム5〜7に対して生成された一時記憶手段への書込アドレスは間違ったアドレスとなる。
【0070】
さらに、この点について図8を用いて説明する。
【0071】
図8(a)は図7(a)と同様のディスクに書き込まれているECCブロックの一部の物理セクタ701の配列順序を示すものである。かかるECCブロックでの第4番目「4」の物理セクタ701にディスク欠陥702が存在しており、このディスク欠陥702の部分に対応する一時記憶手段への書込アドレスの部分を拡大して図8(b)に示す。この図8(b)は図7(n)に相当するものであって、PIフレーム単位での一時記憶手段への書込み用のアドレスを示している。この書込み用のアドレスは図7(g)に示す同期検出フレームアドレス708をもとに生成される。
【0072】
そして、上記のように、図8(b)での斜線と点で塗りつぶしたPIフレーム2〜7では、暴走したPLL回路から生成される周波数が高いデータ再生クロックをもとに同期検出フレームアドレスが生成されて補間されるから、かかるPIフレーム2〜7では、誤った同期検出フレームアドレスが生成されており、一時記憶手段への書込み用のアドレスは誤っている。図8(c)はディスク欠陥がなく同期検出フレームアドレス(セクタ内アドレス)が正しく生成された場合の一時記憶手段への書込み用のアドレスを示すものであり、PIフレーム単位で示している。図8(b)での、特に、斜線で塗りつぶしたPIフレーム2〜5では、高い周波数のデータ再生クロックで同期検出フレームアドレスが生成され、これに基づいて一時記憶手段への書込み用のアドレスが生成されたものであるから、図8(c)に示す正常なPIフレーム2〜5に比べ、図8(b)に示すPIフレーム2〜5は夫々、時間長が短くなっており、正常の場合の4PIフレーム期間に5PIフレームが補間されていることになる。このために、最後に補間される点で塗りつぶしたPIフレーム7の書込み用のアドレスが(7)とすると、これに続いたタイミングでディスクから正しく検出されたPIフレームの書込み用のアドレスも(7)となる、といったようなことも生ずることになる。
【0073】
図8(d)は図8(a)に示した「1」,「2」,「3」,……の物理セクタ701の一時記憶手段18への書込み状態を摸式的に示す図であって、「1」,「2」,「3」,……の物理セクタ701の書込アドレスを夫々セクタアドレス(1),(2),(3),……で表わしている。
【0074】
図8(e),(f)は一時記憶手段に書き込まれた「4」物理セクタ701を示すものであって、PIフレーム単位804で示している。斜線で塗りつぶしたPIフレーム2〜5はデータがNG(no good)のPIフレームであり、点で塗りつぶしたPIフレーム6,7は、データがOKであるが、一時記憶手段の誤った位置(アドレス)に書き込まれたPIフレームである。
【0075】
図8(b)に示す先頭のPIフレーム1から順に一時記憶手段のアドレス(1),(2),……へと書き込まれ、点で塗りつぶしたPICフレーム7まで書き込んだ状態を図8(e)が示しており、次の塗りつぶしのない(ディスクから正常に読み出された)PIフレーム7であるフレーム803以降のPIフレームが順番に書き込まれた状態を図8(f)が示している。なお、点で塗りつぶしたPICフレーム7であるフレーム802の一時記憶手段への書込みアドレスと塗りつぶしのないPIフレーム7であるフレーム803の一時記憶手段への書込みアドレスとは、同じ書込み用アドレス(7)であるから、塗りつぶしのないPIフレーム7であるフレーム803を一時記憶手段のアドレス(7)へ書き込むことにより、一時記憶手段のアドレス(7)に既に書き込まれている誤った(点で塗りつぶした)PIフレーム7に正しい(塗りつぶしのない)PIフレーム7が上書きされることになるが、その1つ前のアドレス(6)には、誤ってこのアドレス(6)に書き込まれたPIフレーム6がそのまま残ってしまうことになる。
【0076】
一時記憶手段に書き込まれたディジタルデータを誤り訂正(PI/PO)手段(図1での誤り訂正(PI/PO)手段19に相当する)でPI訂正する場合、この一時記憶手段に書き込まれたディジタルデータを行毎に(PIデータ単位で)誤り訂正して、これで訂正しきれなかった誤りの位置を検出し、この検出された誤りの位置に基づいて、PO符号により、消失訂正をする。しかし、図8(f)で示すアドレス(6)には、既に誤り訂正処理がなされたPIフレーム6が書き込まれるが、このPIフレーム6は、誤りの行であるにもかかわらず、この誤りの行であることが検出されない場合が多い。即ち、かかる行をPO消失訂正時に誤りの位置とするだけの多くの誤りが、かかるPIフレーム6のPI符号から検出される可能性は低いことになる。
【0077】
以上のことからして、従来のディジタルデータ再生装置では、再生後のデータの信頼性の点で、PO消失訂正の誤りの位置をPI訂正の結果のみから決定することは問題があり、その対策が必要となる。
【0078】
図1に示すこの実施形態は、かかる問題を解消するものであって、以下、図7を用いてこれを説明する。
【0079】
図1において、同期検出符号検出手段8から出力されるSYNCコードを基に、同期検出符号連続未検出検出手段14はこのSYNCコードの検出状況を検出する。
【0080】
これを図7で説明すると、同期検出符号連続未検出検出手段14は、同期検出符号検出手段8からのSYNCコードを基に図7(d)に示すSYNCコード検出状況フラグ705を生成しており、それが立ち下がってロックアウトしたのと同期して、図7(h)に示すように、ロックアウトフラグ709を発生し、さらに、図7(i)に示すように、このロックアウトフラグ709によってトリガされて立ち上がるロックアウト期間信号710を発生する。このロックアウト期間信号710は、SYNCコード704が検出されると、無効となり(立ち下がり)、従って、ロックアウト中であって、SYNCコードも検出できない状態であることを示している。
【0081】
セクタ内アドレス生成手段13では、同期検出符号検出手段8からのSYNCコードに基づいて同期検出フレームアドレスを生成するが、SYNCコードが検出されなくなって同期検出符号連続未検出検出手段14からロックアウト期間信号710が供給されると、その期間、図示しないPLL回路からのデータ再生クロックに基づいて同期検出フレームアドレスの補間を行ない、図7(g)で示す同期検出フレームアドレス708を生成する。アドレス生成手段12は、この同期検出フレームアドレス708をもとに、図7(n)に示すようなPIフレーム毎の一時記憶手段18への書込み用アドレス715を生成する。
【0082】
また、同期検出符号連続未検出検出手段14で生成されたロックアウト期間信号710はグレーフラグ生成手段15(図1)に供給され、図7(j)に示すように、ロックアウト期間信号710が無効にされる(立ち下がる)と同時に有効となる(立ち上がる)グレーフラグ711が生成される。このグレーフラグ711は、同期検出符号検出手段8からのSYNCコード704を基に、同期検出フレームアドレスが確定する(即ち、図7(f)に示す同期検出フレームアドレスロード信号707が検出され始めるタイミング)まで有効であって、SYNCコード704(図7(c))がロックアウトしてから同期検出フレームアドレスが確定するまでの期間、つまり、図7(g)に示す点で塗りつぶした同期検出フレームアドレス708(SYNCフレーム12〜15)のように、信頼性のある同期検出フレームアドレスがロードされるまでの間、誤った値で同期検出フレームアドレスが補間された可能性があるSYNCフレームに対し、かかるSYNCフレームに対応するデータは一時記憶手段18で誤った位置(アドレス)に書き込まれている可能性がある、ということを誤り訂正(PI/PO)手段19に通知するものである。
【0083】
セクタ内アドレス不一致フラグ生成手段16は、グレーフラグ生成手段15で生成されたグレーフラグ711、即ち、誤った書込み用のアドレスが付加される可能性があるSYNCフレームに対して生成されるグレーフラグ711が本当に誤った書込み用のアドレスが付加されるSYNCフレームを表わしているのかどうかを判断するための信号、即ち、同期検出フレームアドレス不一致フラグを生成する。
【0084】
これを図7で説明すると、セクタ内アドレス不一致フラグ生成手段16は、同期検出符号検出手段8で同期検出符号(SYNCコード)704が検出されて信頼性の高いセクタ内アドレスがロードされた時点t(即ち、同期検出フレームアドレスロード信号707のタイミング)で、その時点tでの図7(e)に示すSYNCフレームの同期検出フレームアドレス706と図7(g)に示すSYNCフレームの同期検出フレームアドレス708の値とを比較する。図7では、同期検出フレームアドレス706の値は3、同期検出フレームアドレス708の値は15である。このようにこれら同期検出フレームアドレス706,708との値が異なる場合には、セクタ内アドレス不一致フラグ生成手段16は、PLL回路の暴走などによりデータ再生クロックが乱れ、正しくSYNCコードの補間がされてない可能性が高いと判断し、図7(k)に示すように、同期検出フレームアドレス不一致フラグ712を出力する。このフラグ712は、同期検出符号検出手段8からのSYNCコードをもとに生成される同期検出フレームアドレスロード信号707によって立ち下がる。
【0085】
この同期検出フレームアドレス不一致フラグ712が、図7(j)に示すグレーフラグ711が付与されたSYNCフレームが一時記憶手段18の正しい位置(アドレス)に書き込まれているのかどうかを判断するためのフラグである。つまり、同期検出フレームアドレス不一致フラグ712が立ち上がったときには、そのときまでに発生していたグレーフラグ711が正しい内容を示しており、このグレーフラグ711が付与されるSYNCフレーム12〜15(図7(g))は一時記憶手段の正しいアドレスに書き込まれていないことを示している。グレーフラグ711が発生しても、同期検出フレームアドレス不一致フラグ712が立ち上がらないときには、このグレーフラグ711が付与されるSYNCフレーム12〜15(図7(g))は一時記憶手段の正しいアドレスに書き込まれていまれていることになる。
【0086】
図7(l)〜図7(p)は誤り訂正(PO/PI)手段19に出力する信号を示すものである。
【0087】
図1におけるデータ復調部7は、光ディスク1から再生されたディジタルデータを処理するために、この再生データに同期したデータ再生クロックを使用しているが、誤り訂正(PO/PI)手段19は、装置全体で使用されている基本クロックを用いて処理をする場合が多い。従って、データ再生クロックから基本クロックへの乗り換えが必要であり、データ復調部7から誤り訂正(PO/PI)手段19へ上記のグレーフラグ711(図7(j))と同期検出フレームアドレス不一致フラグ712(図7(k))とを渡す際の動作を図7(l)〜図7(p)により説明する。
【0088】
図7(l)は誤り訂正(PO/PI)手段19がPIフレームの同期検出フレームアドレス(セクタ内アドレス:図7(n))を取り込むためのPI同期検出フレームアドレスロード信号713を示すものであり、このPI同期検出フレームアドレスロード信号713のタイミングでPI同期検出フレームアドレス(図7(n))を取り込む。
【0089】
図7(o)はPIフレーム単位の末尾を表わす信号716を示すものである。
【0090】
図7(m)はグレーフラグ711(図7(j))の立ち上がりを基本クロックで捉えて有効にされ、PI同期検出フレームアドレスロード信号713(図7(l))のタイミングでグレーフラグ711(図7(j))をラッチして立ち下がり、無効にされるグレーフラグ714を示すものであって、グレーフラグ生成手段15で生成される。このグレーフラグ714が誤り訂正(PO/PI)手段19に供給される。
【0091】
図7(p)は同期検出フレームアドレス不一致フラグ712(図7(k))の立ち上がりを基本クロックで捉えて有効にされるPIフレームのセクタ内アドレス不一致フラグ717を示すものであり、ここでは、図示してはいないが、セクタ末尾を示す信号で無効にされる。このセクタ内アドレス不一致フラグ信号717も、セクタ内アドレス不一致フラグ生成手段16で生成され、誤り訂正(PO/PI)手段19に供給される。
【0092】
以上の処理により、PIフレーム単位で付与されたグレーフラグ714に対応するSYNCコードが白(正しく補間されているSYNCコード)か、黒(誤生成されたSYNCコード)かを判断することが可能である。なお、セクタ内アドレス不一致フラグ717(図7(p))をセクタ末尾単位でクリアをせずに、ECCブロック単位でクリアするようにしてもよい。
【0093】
ここで、以上の処理を誤り訂正(PO/PI)手段19の処理の面から具体的に説明する。
【0094】
図9は図1における誤り訂正(PO/PI)手段19の一具体例を示すブロック図であって、30は入力手段、31はアドレス生成手段、32は出力手段、33は誤り位置・値演算手段、34,35は誤り位置ポインタ生成手段、36は誤り位置ポインタ格納手段、37は消失訂正用誤り位置デコード手段である。
【0095】
同図において、一時記憶手段18(図1)から読み出されたECCブロック403(図4)は入力手段30に入力され、PI訂正を行なうために、その1行毎にPI符号401(図4)に相当するデータを誤り位置・値演算手段33に供給する。誤り位置・値演算手段33では、このデータに対してシンドローム演算を始めとする誤りの位置と値とを求める誤り演算が行なわれる。誤り位置・値演算手段33での誤りの演算によって検出されるPI符号に含まれていた誤りの個数は、誤り位置ポインタ生成(誤り個数)手段35に供給され、この誤りの個数をもとに、所定のアルゴリズムに従って、PI訂正に続くPO訂正での誤りの位置として、また、PO訂正で誤り訂正が不可能であった場合に誤りデータを特定するために使用する2ビットの誤り位置ポインタP1が生成される。
【0096】
図10は以上の誤り位置ポインタP1の生成のためのアルゴリズムを示すフローチャートである。
【0097】
同図において、誤り位置・値演算手段33での上記の演算処理によるPI訂正の結果(ステップ1000)、得られる誤りの個数iが判定され(ステップ1001)、その個数iに応じた2ビットの誤り位置ポインタP1が設定される。
【0098】
いま、PI訂正では、j個までの誤りを訂正可能とし、h<j<kとすると、
0≦i<hのとき、P1=00(ステップ1002)
h≦i<jのとき、P1=01(ステップ1003)
j≦i<kのとき、P1=10(ステップ1004)
k≦i のとき、P1=11(ステップ1005)
とする。ここで、上記のように、182バイトの行からなるPI符号(図4)の誤りは、最大5バイトまで訂正処理が可能とする場合には、
h=4 j=5 k=6
などとなる。
【0099】
かかる処理は1行のPI符号毎に行なわれ、得られた誤り位置ポインタP1は、誤り位置ポインタ格納手段36でECCブロック単位でまとめられて格納される。
【0100】
また、誤り位置ポインタ生成(復調情報)手段34では、図11が示すアルゴリズムに従って、グレーフラグ生成手段15(図1)から供給されるPIフレームのグレーフラグ714とセクタ内アドレス不一致フラグ生成手段16から供給されるPIフレームのセクタ内アドレス不一致フラグ717とを用いて1ビットの誤り位置ポインタP2を生成する。
【0101】
図11はかかる誤り位置ポインタP2の生成のためのアルゴリズムを示すフローチャートである。
【0102】
同図において、グレーフラグ711と同期検出フレームアドレス不一致不ラグ712を用いて誤り位置ポインタP2を決定する(ステップ1100)。即ち、
グレーフラグ714=0、かつセクタ内アドレス不一致フラグ717=0の
とき、誤り位置ポインタP2=0(ステップ1101)
グレーフラグ714=1、かつセクタ内アドレス不一致フラグ714=0の
とき、誤り位置ポインタP2=0(ステップ1102)
グレーフラグ714=1、かつセクタ内アドレス不一致フラグ717=1
のとき、誤り位置ポインタP2=1(ステップ1103)
とする。かかる処理は誤りの位置・値演算手段33で演算されている同じ行のPI符号に対するものであり、得られた誤り位置ポインタP2も、誤り位置ポインタ格納手段36で誤り位置ポインタP1と関連付けて格納される。
【0103】
ここで、誤り位置ポインタP2=0(ステップ1101,1102)は、これに対するPIフレームが一時記憶手段18(図1)で正しいアドレスに書き込まれており、特に、グレーフラグ714=1、かつセクタ内アドレス不一致フラグ714=0で誤り位置ポインタP2=0の場合には、図7で説明したSYNCコード抜けがあっても、それが終了して正規の同期検出フレームアドレスが生成されるまでのPIフレーム(図7(n)のPIフレーム6,7)も、一時記憶手段18で正しいアドレスに書き込まれたことを示している。また、誤り位置ポインタP2=1(ステップ1103)は、PIフレームが一時記憶手段18で誤ったアドレスに書き込まれていることを示すものである。
【0104】
PI訂正が終了すると、次に、誤り訂正(PO/PI)手段19には、一時記憶手段18から読み出されたPO符号が入力手段30から誤りの位置・値演算手段33に供給され、PO訂正が行なわれる。このPO符号は、ECCブロック403(図4)の各行から同じ列の1バイトのデータが抽出されて組み合わされた208バイトの符号であって(かかる1バイトのデータを、以下、消失訂正位置データという)、図12に示すアルゴリズムに従ってPO訂正が行なわれる。
【0105】
図12において、このPO訂正は、まず、誤りの位置・値演算手段33でPO符号での誤りが検出され、検出される誤りの個数i(バイト)に応じて誤り訂正処理が切り替えられるものである(ステップ1200)。そして、誤りが検出されない場合には(i=0)、誤り訂正処理は行なわれない。PO符号から8バイトまでの誤りが検出された場合(1≦i≦8)には、PI訂正と同様、誤りの位置・値演算手段33でシンドロームのみからこれら誤りの位置と値とを求める演算方法によって誤り訂正処理を行なうか、PI訂正で得られて誤り位置ポインタ格納手段36(図9)に格納されている2つの誤り位置ポインタP1,P2から誤り位置を算出して、その位置の誤りを消失訂正によって誤り訂正処理を行なうかを選択可能とし(ステップ1201)、夫々の訂正処理を行なう(ステップ1202,1203)。
【0106】
誤りの検出個数が9〜16バイト(9≦i≦16)の場合には、PI訂正で得られて誤り位置ポインタ格納手段36(図9)に格納されている2つの誤り位置ポインタP1,P2から誤り位置を算出して、その位置の誤りを消失訂正により誤り訂正処理する(ステップ1203)。
【0107】
誤りの検出個数が17バイト以上(17≦i)の場合には、訂正不能とする。
【0108】
以上により、PO訂正では、16バイトまでの誤りを訂正することができるが、誤り位置ポインタP1,P2を用いる誤り訂正(ステップ1203)の場合、一時記憶手段18(図1)の誤ったアドレスに書き込まれたPIフレームに対しては、上記のように、グレーフラグ714とPIフレームアドレス不一致フラグ717とにより、誤ったアドレスに書き込まれていることが明確に表わされているから、PI訂正に対して図4の垂直方向のデータ(1バイト)からなる消失訂正位置データを対象とするPO訂正では、誤ったアドレスに書き込まれているPIフレーム中の1バイトのデータについては、誤り位置ポインタP2=1となって、必ずPO訂正の対象としての誤りとなる。
【0109】
図13は図12でのステップ1203での処理の一具体例を示すフローチャートである。
【0110】
この処理は、シンドロームでPO訂正が可能な個数を越える誤りがあった場合、PI訂正で訂正不能であったことを意味する誤り位置ポインタP1=11とともに、この誤り位置ポインタP1=10のPI符号(行)に含まれるデータをPO符号での誤り訂正の対象とするものである。また、誤り位置ポインタP2を作成する図11のステップ110において、グレーフラグ714=1、かつPIフレームのセクタ内アドレス不一致フラグ714=1であるために、誤り位置ポインタP2=1のときには(図11のステップ1103)、PIフレーム単位で一時記憶手段18(図1)で誤ったアドレスに書き込まれた可能性が高い。そこで、図13に示すステップ1201は、この場合を表わす誤り位置ポインタP2=1のPI符号(行)に含まれるPO符号上のデータも訂正の対象とする。
【0111】
図13において、誤りの位置について、誤り位置ポインタP1=10または11、もしくは誤り位置ポインタP2=1の条件に当てはまる消失訂正位置データの誤りの個数i(バイト)が1≦i<17である場合(ステップ1300)には、これらi個の消失訂正位置データを誤りとする消失訂正を行なう(ステップ1302)。この条件を満たさないで17≦iのPO符号については、誤り位置の特定ができないものとして、訂正処理を行なわない(ステップ1301)。
【0112】
以上のように、図9において、誤り位置ポインタ格納手段36に格納されている誤り位置ポインタP1,P2を用いてPO符号の消失訂正が行なわれるのであるが、図13に示すアルゴリズムでは、誤り位置ポインタ格納手段36に格納された誤り位置ポインタの値をそのまま使用するのではなく、消失訂正で用いる誤り位置を決定するために、かかる誤り位置ポインタを、消失訂正用誤り位置デコード手段37で一部誤り位置ポインタP2の値をそのシステムに合わせて変更させた後、用いるようにする。
【0113】
これにより、データ復調部7で生成されたグレーフラグ714とセレクタ内アドレス不一致フラグ717とから構成させるポインタP2を誤り訂正処理で有効に使用することができるものであって、一時記憶手段18で誤ったアドレスに書き込まれたPIフレームのデータは必ずPO訂正の対象として認識されることになり、より確実な誤り訂正処理を行なうことが可能となる。
【0114】
また、この実施形態では、P1ポインタ,P2ポインタの2つの誤りポインタを用いて消失訂正を行なう例を示したが、図12のステッフ1203において、2種類の誤り位置ポインタから誤り位置を算出して誤り訂正を行なわずに、P2ポインタのみを用いて誤り位置を算出して誤り訂正を行なっても、同等の効果が得られる。その際には、先程と同様に、グレーフラグ711=1、同期検出フレームアドレス不一致フラグ712=1で、誤り位置ポインタP2=1のときのPI符号(行)に含まれるPO符号上のデータを、ステップ1203での訂正の対象とするものである。
【0115】
なお、以上の実施形態では、光ディスクから再生されるディジタルデータを例として説明したが、本発明はかかる実施形態のみに限定されるものではなく、その主旨を逸脱しない範囲で種々に変形して実施することができることはいうまでもない。
【0116】
【発明の効果】
以上、本発明によれば、同期検出フレームアドレスに誤りがある可能性があるSYNCフレームに付与する第1のフラグと、同期検出フレームアドレスと補間する同期検出フレームアドレスとの値が一致しなかったことを示す第2のフラグとの2つのフラグがともに有効なとき、第1のフラグが付与されたフレームをPO消失訂正時に誤りフレームとして処理することにより、SYNCコードの検出が正常に行なわれず、正常位置とは異なる位置で同期検出フレームアドレスの補間が行なわれて、ECCブロックにおける行単位の記憶手段でのデータ格納ずれが発生し、実際とは異なる行にデータが書き込まれた場合でも、PO消失訂正時に誤りの位置を正しく確定できることが可能となる。
【図面の簡単な説明】
【図1】本発明によるディジタルデータ記録再生装置及び再生方法の一実施形態を示すブロック図である。
【図2】DVDに記録するディジタルデータのセクタの形成過程を示す図である。
【図3】データセクタとこれに付加されるIDの構成を示す図である。
【図4】図3に示したデータセレクタの16個から形成されるECCブロックの構成を示す図である。
【図5】図4に示したECCブロックのインターリーブ後の16個の記録セクタからなるECCブロックの構成を示す図である。
【図6】図5に示した記録セクタに8/16変調とSYNCコードの付加を行なって得られる物理セクタの構成を示す図である。
【図7】図1における各部の信号を示すタイミング図である。
【図8】図1に示す実施形態での再生ディジタルデータのPIフレームの一時記憶手段での記録動作を示す図である。
【図9】図1における誤り訂正処理回路の一具体例を示すブロック図である。
【図10】図9に示す具体例での誤り位置ポインタP1の生成のためのアルゴリズムを示すフローチャートである。
【図11】図9に示す具体例での誤り位置ポインタP2の生成のためのアルゴリズムを示すフローチャートである。
【図12】図9に示す具体例でのPO訂正のアルゴリズムを示すフローチャートである。
【図13】図12でのステップ1203の動作の一具体例を示すフローチャートである。
【符号の説明】
1 光ディスク
2 ピックアップ
3 スピンドルモータ
4 サーボ手段
5 リードチャネル手段
6 データ再生処理部
7 データ復調部
8 同期検出符号検出手段
9 8/16復調手段
10 復調出力手段
11 ID検出手段
12 アドレス生成手段
13 同期検出フレームアドレス生成手段
14 同期検出符号連続未検出検出手段
15 グレーフラグ生成手段
16 同期検出フレームアドレス不一致フラグ生成手段
17 一時記憶制御手段
18 一時記憶手段
19 誤り訂正(PO/PI)手段
20 出力手段
21 システムコントローラ
22 ホスト
30 入力手段
31 アドレス生成手段
32 出力手段
33 誤り位置・値演算手段
34,35 誤り位置ポインタ生成手段
36 誤り位置ポインタ格納手段
37 消失訂正用誤り位置デコード手段
711 グレーフラグ
712 同期検出フレームアドレス不一致フラグ
204 スクランブル前のデータセクタ
208 16物理セクタ
401 誤り訂正符号(内符号:PI)
402 誤り訂正符号(外符号:PO)
601 SYNCコード
701 物理セクタ
702 ディスク欠陥
703 SYNCコード抜け

Claims (12)

  1. 所定のデータ量毎に同期検出符号が付加されて同期検出フレームを形成し、2つの該同期検出フレームを単位として第1,第2の誤り訂正符号が付加されてなるディジタルデータを記録再生するディジタルデータ記録再生装置であって、
    再生された該ディジタルデータから該同期検出符号を検出する第1の検出手段と、
    該第1の検出手段で該同期検出符号が連続して未検出であることを検出する第2の検出手段と、
    該同期検出符号に基づいて同期検出フレームアドレスを生成し、該第2の検出手段で検出される該同期検出符号の連続した未検出期間、同期検出フレームアドレスを生成補間するアドレス生成手段と、
    該第2の検出手段の検出結果に基づいて、該アドレス生成手段で生成される該同期検出フレームアドレスが誤っている可能性がある該ディジタルデータの同期検出フレームに第1のフラグを付与するフラグ付与手段と、
    該アドレス生成手段が該デジタルデータの該同期検出符号でのみ生成される同期検出フレームアドレスと補間がなされた同期検出フレームアドレスとが一致しないことを示す第2のフラグを生成するフラグ生成手段と、
    該アドレス生成手段で生成される該同期検出フレームに応じてアドレスに再生された該ディジタルデータの同期検出フレームを記憶する一時記憶手段と、
    該一時記憶手段に記憶された該ディジタルデータを該第1,第2の誤り訂正符号を用いて誤り訂正する誤り訂正手段と
    とを備え、
    該誤り訂正手段は、該第2のフラグが有効であるとき、第1のフラグが付与された該同期検出フレームを、その該一時記憶手段での書込みアドレスに誤りの可能性があるとして、該第2の誤り訂正符号による消失訂正の処理の対象として処理する処理手段を有することを特徴とするディジタルデータ記録再生装置。
  2. 請求項1において、
    前記アドレス生成手段は、該第2の検出手段で検出される該同期検出符号の連続した未検出期間、ディジタルデータから等間隔に検出される前記同期検出符号を基準にし、補間する前記同期検出フレームアドレスをデータ再生クロックを用いて等間隔にインクリメントして生成することを特徴とするディジタルデータ記録再生装置。
  3. 請求項1または2において、
    前記フラグ付与手段は、前記第2の検出手段で検出される前記同期検出符号の連続した未検出期間経過後に前記第1の検出手段で最初に検出される前記同期検出符号のタイミングで前記第1のフラグに有効とし、前記同期検出符号が予め規定された回数連続して検出されたタイミングで無効とすることを特徴とするディジタルデータ記録再生装置。
  4. 請求項3において、
    前記フラグ生成手段は、前記第1のフラグが無効となるタイミングで前記デジタルデータから検出される前記同期検出符号でのみ生成される前記同期検出フレームアドレスと補間がなされた前記同期検出フレームアドレスとを比較し、両者が相違するとき、前記第2のフラグを有効にすることを特徴とするディジタルデータ記録再生装置。
  5. 請求項4において、
    前記同期検出フレームでデータセクタが形成され、該データセレクタの複数個でデータブロックが形成されるものであって、
    前記フラグ生成手段は、データセクタの末尾のタイミング、またはデータブロック末尾のタイミングで前記第2のフラグを無効にすることを特徴とするディジタルデータ記録再生装置。
  6. 所定のデータ量毎に同期検出符号が付加されて同期検出フレームを形成し、2つの該同期検出フレームを単位として第1,第2の誤り訂正符号が付加されてなるディジタルデータを記録媒体から再生し、再生された該ディジタルデータに同期したデータクロックを用いて復調処理を行なうディジタルデータ再生方法であって、
    再生された該ディジタルデータから同期検出符号を検出し、該同期検出符号から同期検出フレームアドレスを生成して順次の同期検出フレームに付与するとともに、該同期検出符号が連続して未検出の期間では、該データ再生クロックに基づいて同期検出フレームアドレスを生成して補間し、
    補間する同期検出フレームアドレスが誤っている可能性がある該同期検出フレームに付与する第1のフラグと、再生された該ディジタルデータから同期検出符号のみから生成される該同期検出フレームアドレスと補間用の該同期検出フレームアドレスが一致しなかったことを示す第2のフラグとを生成し、
    該第2のフラグが有効であるときには、該第2の誤り訂正符号処理における消失訂正時に、該第1のフラグが付与された該同期検出フレームを、これに付与されている該同期検出フレームアドレスが誤っている可能性があるとして、誤り訂正の対象として処理することを特徴とするディジタルデータ再生方法。
  7. 請求項6において、
    前記同期検出符号の連続した未検出期間、前記ディジタルデータから等間隔に検出される前記同期検出符号を基準にし、補間する前記同期検出フレームアドレスをデータ再生クロックを用いて等間隔にインクリメントして生成することを特徴とするディジタルデータ再生方法。
  8. 請求項6または7において、
    前記同期検出符号の連続した未検出期間経過後に前記ディジタルデータから最初に検出される前記同期検出符号のタイミングで前記第1のフラグに有効とし、前記ディジタルデータから前記同期検出符号が予め規定された回数連続して検出されたタイミングで無効とすることを特徴とするディジタルデータ再生方法。
  9. 請求項8において、
    前記第1のフラグが無効となるタイミングで前記デジタルデータの前記同期検出符号でのみ生成される前記同期検出フレームアドレスと補間がなされた前記同期検出フレームアドレスとを比較し、両者が相違するとき、前記第2のフラグを有効にすることを特徴とするディジタルデータ再生方法。
  10. 請求項9において、
    前記同期検出フレームでデータセクタが形成され、該データセレクタの複数個でデータブロックが形成されるものであって、
    該データセクタの末尾のタイミングまたは該データブロック末尾のタイミングで前記第2のフラグを無効にすることを特徴とするディジタルデータ再生方法。
  11. 所定のデータ量毎に同期検出符号が付加されて同期検出フレームを形成し、2つの該同期検出フレームを単位として第1,第2の誤り訂正符号が付加されてなるディジタルデータを記録媒体から再生し、再生された該ディジタルデータに同期したデータクロックを用いて復調処理を行なうディジタルデータ再生方法であって、
    再生された該ディジタルデータから同期検出符号を検出し、該同期検出符号から同期検出フレームアドレスを生成して順次の同期検出フレームに付与するとともに、該同期検出符号が連続して未検出の期間では、該データ再生クロックに基づいて同期検出フレームアドレスを生成して補間し、
    補間する同期検出フレームアドレスが誤っている可能性がある該同期検出フレームに第1のフラグを付与し、
    前記同期検出符号が連続して未検出となる期間の経過後の予め規定された回数連続して同期検出符号が検出されたタイミングで前記ディジタルデータから検出される該同期検出符号でのみ生成される該同期検出フレームアドレスと補間がなされる該同期検出フレームアドレスを比較し、両者が相違するとき、補間がなされる該同期フレームアドレスが誤っているとして第2のフラグを有効にし、
    該第2のフラグが有効であるときには、該第2の誤り訂正符号処理における消失訂正時に、該第1のフラグが付与された該同期検出フレームを、これに付与されている同期検出フレームアドレスが誤っている可能性があるとして、誤り訂正の対象として処理することを特徴とするディジタルデータ再生方法。
  12. PI及びPO符号が付加された同期検出フレームからするディジタルデータを記録再生するディジタルデータ記録再生装置であって、
    再生された該ディジタルデータを記憶する記憶手段と、
    該記憶手段に記憶された該ディジタルデータを誤り訂正処理する誤り訂正手段と、
    該記憶手段への該ディジタルデータの書込み用アドレスを生成し、該ディジタルデータが欠落したときに、該書込み用アドレスの補間を行なう書込み用アドレス生成手段と、
    該書込み用アドレス生成手段で補間される該書込み用アドレスの良否を判定するためのフラグを生成する手段と
    を設け、該誤り訂正手段は、該フラグに基づいて、該記憶手段で誤ったアドレスに書き込まれた該同期検出フレームを誤り位置として該PO符号による誤り訂正を行なうことを特徴とするディジタルデータ記録再生装置。
JP2003080519A 2003-03-24 2003-03-24 ディジタルデータ記録再生装置及び再生方法 Expired - Fee Related JP4143452B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080519A JP4143452B2 (ja) 2003-03-24 2003-03-24 ディジタルデータ記録再生装置及び再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080519A JP4143452B2 (ja) 2003-03-24 2003-03-24 ディジタルデータ記録再生装置及び再生方法

Publications (2)

Publication Number Publication Date
JP2004288310A true JP2004288310A (ja) 2004-10-14
JP4143452B2 JP4143452B2 (ja) 2008-09-03

Family

ID=33294347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080519A Expired - Fee Related JP4143452B2 (ja) 2003-03-24 2003-03-24 ディジタルデータ記録再生装置及び再生方法

Country Status (1)

Country Link
JP (1) JP4143452B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446481C (zh) * 2006-01-09 2008-12-24 华为技术有限公司 一种检测路由器中光纤链路的方法及装置
WO2010143442A1 (ja) * 2009-06-10 2010-12-16 パナソニック株式会社 誤り訂正方法、及びデータ再生装置
US11101823B2 (en) 2019-05-24 2021-08-24 Kioxia Corporation Memory system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446481C (zh) * 2006-01-09 2008-12-24 华为技术有限公司 一种检测路由器中光纤链路的方法及装置
WO2010143442A1 (ja) * 2009-06-10 2010-12-16 パナソニック株式会社 誤り訂正方法、及びデータ再生装置
JP2010287271A (ja) * 2009-06-10 2010-12-24 Panasonic Corp 誤り訂正方法、及びデータ再生装置
US9230595B2 (en) 2009-06-10 2016-01-05 Panasonic Intellectual Property Management Co., Ltd. Error correction method and data reproduction device
US11101823B2 (en) 2019-05-24 2021-08-24 Kioxia Corporation Memory system
US11515896B2 (en) 2019-05-24 2022-11-29 Kioxia Corporation Memory system
US11784665B2 (en) 2019-05-24 2023-10-10 Kioxia Corporation Memory system

Also Published As

Publication number Publication date
JP4143452B2 (ja) 2008-09-03

Similar Documents

Publication Publication Date Title
KR100734262B1 (ko) 광 저장 매체의 최적화된 결함 처리를 위한 결함 판단 장치
US20040257900A1 (en) Data recording method, recording medium and reproduction apparatus
JPH02301074A (ja) 信号転送装置
US7594155B2 (en) Recording and reproducing data to/from a recording medium having a user data area and an information area for storing information about the recording medium
WO2010143442A1 (ja) 誤り訂正方法、及びデータ再生装置
JP2010287271A5 (ja)
JP4143452B2 (ja) ディジタルデータ記録再生装置及び再生方法
JPH11297000A (ja) データ生成方法及びデータ生成装置
US7213190B2 (en) Data processing apparatus and method
JP4148626B2 (ja) ディジタルデータ再生装置及び再生方法
JP2000010807A (ja) ディジタルデータ再生装置
JP4518586B2 (ja) データ記録装置およびそのリライト決定方法
JP2006191378A (ja) 誤り訂正装置、再生装置及び再生方法
KR19990083471A (ko) 광디스크장치
US7334180B2 (en) Optical encoding method
JP2006164503A (ja) 光学媒体上の欠陥領域を決定する装置及び方法
KR100257622B1 (ko) 데이터복조방법
JP3768640B2 (ja) 再生装置
JP2003173633A (ja) 光ディスク装置
JP2001006298A (ja) ディジタル信号処理回路及びディスク再生装置
JPH11232797A (ja) ディスク再生装置および再生方法
JP2002074861A (ja) ディジタルデータ再生装置及び再生方法
JP2005158103A (ja) データ再生装置およびデータ再生方法
JPH11213575A (ja) データ再生装置とデータ記録再生装置
JP2003257134A (ja) 信号再生方法及び信号再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees