JP2004265628A - Image display device and its manufacturing method - Google Patents

Image display device and its manufacturing method Download PDF

Info

Publication number
JP2004265628A
JP2004265628A JP2003038722A JP2003038722A JP2004265628A JP 2004265628 A JP2004265628 A JP 2004265628A JP 2003038722 A JP2003038722 A JP 2003038722A JP 2003038722 A JP2003038722 A JP 2003038722A JP 2004265628 A JP2004265628 A JP 2004265628A
Authority
JP
Japan
Prior art keywords
substrate
frame
shaped member
front substrate
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003038722A
Other languages
Japanese (ja)
Inventor
Masahiro Yokota
昌広 横田
Akiyoshi Yamada
晃義 山田
Hirotaka Unno
洋敬 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003038722A priority Critical patent/JP2004265628A/en
Priority to TW093100257A priority patent/TW200425201A/en
Priority to PCT/JP2004/000111 priority patent/WO2004064102A1/en
Priority to KR1020057012699A priority patent/KR100701112B1/en
Priority to EP04701093A priority patent/EP1589554A1/en
Publication of JP2004265628A publication Critical patent/JP2004265628A/en
Priority to US11/176,208 priority patent/US20050264861A1/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image display device which can rapidly and stably perform the sealing works of a front surface substrate and a back surface substrate and which has proper vacuum degree, and to provide a method for manufacturing the same. <P>SOLUTION: The vacuum enclosure of the image display device includes the front surface substrate and the back surface substrate 12 disposed to face each other, a frame-like member 13 in which the peripheries of the front surface substrate and the back surface substrate are connected to each other, and a sealing material disposed between the front surface substrate or the back surface substrate and the frame-like member. The frame-like material has conductivity and also has a plurality of through holes 30 or slits 32 formed through the front surface of the substrate in a direction perpendicular to the front surface of the substrate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は平坦な形状の画像表示装置に係り、特に、真空の外囲器内部に多数の電子放出素子を設けた画像表示装置、およびその製造方法に関する。
【0002】
【従来の技術】
近年、陰極線管(以下、CRTと称する)に代わる次世代の軽量、薄型の表示装置として様々な平面型表示装置が開発されている。このような平面型表示装置には、液晶の配向を利用して光の強弱を制御する液晶ディスプレイ(以下、LCDと称する)、プラズマ放電の紫外線により蛍光体を発光させるプラズマディスプレイパネル(以下、PDPと称する)、電界放出型電子放出素子の電子ビームにより蛍光体を発光させるフィールドエミッションディスプレイ(以下、FEDと称する)、表面伝導型電子放出素子の電子ビームにより蛍光体を発光させる表面伝導電子放出ディスプレイ(以下、SEDと称する)などがある。
【0003】
例えばFEDやSEDでは、一般に、所定の隙間を置いて対向配置された前面基板および背面基板を有し、これらの基板は、矩形枠状の側壁を介して周辺部同士を互いに接合することにより真空の外囲器を構成している。外囲器には、極めて高い真空度が要求されており、背面基板および前面基板に加わる大気圧荷重を支えるために、これら基板の間には複数の支持部材が配設されている。また、前面基板の内面には蛍光体スクリーンが形成され、背面基板の内面には蛍光体を励起して発光させる電子放出源として多数の電子放出素子が設けられている。
【0004】
背面基板側の電位はほぼアース電位であり、蛍光体スクリーンにはアノード電圧Vaが印加される。そして、蛍光体スクリーンを構成する赤、緑、青の蛍光体に電子放出素子から放出された電子ビームを照射し、蛍光体を発光させることによって画像を表示する。
【0005】
このようなFEDやSEDでは、表示装置の厚さを数mm程度にまで薄くすることができ、現在のテレビやコンピュータのディスプレイとして使用されているCRTと比較して、軽量化、薄型化を達成することができるとともに、省電力化を達成することができる。
【0006】
上記FEDでは、外囲器の内部を高真空にすることが必要となる。また、PDPにおいても一度真空にしてから放電ガスを充填する必要がある。外囲器を真空にする手段として、外囲器を構成する前面基板と背面基板との最終組み立てを真空槽内にて行う方法が提案されている。
【0007】
この方法では、最初に真空槽内に配置された前面基板および背面基板を十分に加熱しておく。これは、外囲器真空度を劣化させる主因となっている外囲器内壁からのガス放出を軽減するためである。次に、前面基板と背面基板が冷えて真空槽内の真空度が十分に向上したところで、外囲器真空度を改善、維持させるためのゲッター膜を蛍光面スクリーン上に形成する。その後、封着材が溶解する温度まで前面基板と背面基板とを再び加熱し、前面基板および背面基板を所定の位置に組み合わせた状態で封着材が固化するまで冷却する。
【0008】
このような方法で作成された真空外囲器は、封着工程および真空封止工程を兼ねるうえ、排気管を用いて外囲器内を排気する場合のような時間を必要とせず、かつ、極めて良好な真空度を得ることができる。
【0009】
しかしながら、このような真空中で組立を行う場合、封着工程で行なう処理が、加熱、位置合わせ、冷却と多岐に渡り、かつ、封着材が溶解固化する長い時間に渡って前面基板と背面基板とを所定の位置に維持し続けなければならない。また、封着時の加熱冷却に伴い前面基板および背面基板が熱膨張および熱収縮して位置合わせ精度が劣化し易いことなど、封着に伴なう生産性、特性面で問題があった。
【0010】
一方、前面基板と側壁との間に比較的低温で溶融するインジウム等の低融点金属封着材を充填し、導電性封着材に通電しそのジュール熱により導電性封着材自身を発熱、溶解させ、基板を結合する方法(以下、通電加熱と称する)が検討されている(例えば、特許公報1参照)。この方法によれば、基板の冷却に膨大な時間を費やす必要がなく、短時間で基板を接合し外囲器を形成する事が可能となる。
【0011】
【特許文献1】
特開2002−319346号
【0012】
【発明が解決しようとする課題】
しかしながら、このような方法を用いた場合、封着前の加熱工程にて溶融した低融点金属が流れて場所により存在量の偏りが出てしまい、通電加熱するときに加熱むらを生じる問題がある。また、低融点金属が溶融すると、通電により低融点金属部で断線する問題がある。
【0013】
この発明は、以上の点に鑑みなされたもので、その目的は、前面基板および背面基板の封着作業を迅速かつ安定して行うことができ、良好な真空度を有した画像表示装置およびその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明の態様に係る画像表示装置は、前面基板と、この前面基板に対向配置されている背面基板と、上記前面基板および背面基板の周縁部間に配置され上記前面基板および背面基板を接合した導電性を有する枠状部材と、上記前面基板あるいは背面基板と前記枠状部材との間に配置された封着材と、を有する外囲器を備え、上記枠状部材は上記前面基板面に垂直な方向に形成された複数の貫通孔あるいはスリットを有していることを特徴とする。
【0015】
また、この発明の他の態様に係る画像表示装置の製造方法は、前面基板と、この前面基板に対向配置されている背面基板と、上記前面基板および背面基板の周縁部間に配置され上記前面基板および背面基板を接合した導電性を有する枠状部材と、上記前面基板あるいは背面基板と前記枠状部材との間に配置された封着材と、を有する外囲器を備えた画像表示装置の製造方法において、
上記前面基板の表面に垂直な方向に貫通形成された複数の貫通孔あるいはスリットを有した枠状部材を用意し、上記前面基板および背面基板を対向して配置し、上記前面基板および背面基板の内面周縁部間に、上記前面基板および背面基板の周縁部に沿って上記枠状部材を配置するとともに、上記前面基板の内面周縁部および背面基板の内面周縁部の少なくとも一方と上記枠状部材との間に導電性を有した封着材を全周に渡って配置し、上記枠状部材に通電して発熱させ、上記封着材を溶融あるいは軟化させるとともに、上記前面基板および背面基板を互いに接近する方向に加圧し、上記前面基板および背面基板の周縁部を封着することを特徴としている。
【0016】
上記構成の画像表示装置およびその製造方法によれば、枠状部材に貫通孔あるいはスリットを設けることにより、貫通孔あるいはスリットの無い枠状部材に比較して枠状部材の抵抗値を大きくすることができる。これにより、封着材もしくは枠状部材に流す加熱のための電流を小さして装置構成や電極構成を簡易化し、あるいは、従来と同じ電流であっても枠状部材の幅をより広くして接合面積を大きくして封着信頼性を向上することができる。
【0017】
また、上記構成によると、枠状部材の基板に平行な方向の弾性を見かけ上弱くすることができる。これにより、加熱時あるいは環境温度変化などによる枠状部材と基板等との熱膨張差による応力を緩和することができるとともに、小さな張力により枠状部材を所望の位置に位置合わせすることができる。
【0018】
また、上記構成によれば、枠状部材の体積に対して表面積を大きくすることができ、封着材の保持性を高めることができる。これにより、製造時、例えば水平度の悪い設定状態で封着材が溶融しても、封着材が枠状部材に局在化したり、あるいは、流れたりする不具合が生じにくくなる利点がある。
また、上記構成によると、枠状部材の熱容量が貫通孔あるいはスリットの分だけ減少するため、通電加熱時に短時間で熱し易く冷め易い構成となる。
【0019】
【発明の実施の形態】
以下、図面を参照しながら、本発明に係る画像表示装置をFEDに適用した実施の形態について詳細に説明する。
図1ないし図3に示すように、FEDは、絶縁基板としてそれぞれ矩形状のガラスからなる前面基板11、および背面基板12を備え、これらの基板は1〜2mmの隙間を置いて対向配置されている。そして、前面基板11および背面基板12は、導電性を有した矩形枠状の枠状部材13を介して周縁部同士が接合され、内部が真空状態に維持された偏平な矩形状の真空外囲器10を構成している。
本実施の形態において、前面基板11の内面周縁部に位置した接合面と枠状部材13との間、および背面基板12の内面周縁部に位置した接合面と枠状部材13との間は、後述する導電性を有した封着材としてインジウム21a、21bにより接合されている。封着材としては、300℃以下で溶融または軟化する材料が望ましく、インジウムの他、インジウム合金等の低融点金属を用いることができる。なお、いずれか一方の接合面と枠状部材13との間は、フリットガラス等の低融点封着材により予め接合されていてもよい。
【0020】
また、枠状部材13は、各角部から外側に突出した突出部13aを有し、これらの突出部は、製造時、電極として機能するとともに、枠状部材を保持、位置決めするための把持部として機能する。ただし、突出部13aを設ける代りに、独立した電極を装着する構成としてもよい。
図2、図3、および図5に示すように、枠状部材13は、網目状に配列された多数の貫通孔30および枠状部材の側面に開口したスリット32を有している。
貫通孔30およびスリット32は、それぞれ前面基板11および背面基板12の表面に垂直な方向に沿って貫通形成されているとともに、枠状部材13の全周に渡り所定の間隔を置いて設けられている。なお、枠状部材13は、融点が500℃以上の材料で形成されていることが望ましく、Ti、Fe、Cr、Ni、Al、Cuの少なくとも1つを含む材料を用いることができる。
【0021】
図2および図3に示すように、真空外囲器10の内部には、前面基板11および背面基板12に加わる大気圧荷重を支えるため、複数の板状のスペーサ14が設けられている。これらのスペーサ14は、真空外囲器10の短辺と平行な方向に配置されているとともに、長辺と平行な方向に沿って所定の間隔を置いて配置されている。なお、スペーサ14の形状については、特にこれに限定されるものではなく、例えば、柱状のスペーサ等を用いることもできる。
【0022】
図3および図4に示すように、前面基板11の内面上には、赤、緑、青に発光する蛍光体層R、G、Bとマトリクス状の黒色光吸収層20とを有した蛍光体スクリーン16が形成されている。また、蛍光体スクリーン16上には、アルミニウム等からなるメタルバックとしてアルミニウム膜17が蒸着され、更に、メタルバックに重ねて図示しないゲッター膜が形成されている。
【0023】
図3に示すように、背面基板12の内面上には、蛍光体層R、G、Bに電子を衝突させて励起する電子放出源として多数の電子放出素子18が設けられている。電子放出素子18は、それぞれの蛍光体層R、G、Bと1対1に対向する位置に配置され、対応する蛍光体層に向けて電子ビームを放出する。また、背面基板12の内面上には、電子放出素子18に駆動信号を供給する多数の配線21がマトリックス状に形成され、その端部は背面基板の周縁部に引出されている。
【0024】
次に、上記のように構成されたFEDの製造方法および製造装置について説明する。
まず、内面に蛍光体スクリーン16が形成された前面基板11を用意し、この前面基板の内面であって蛍光体スクリーンの外側に位置した接合面に、封着材であるインジウムを枠状に塗布する。また、内面に多数の電子放出素子18が形成された背面基板12を用意し、組立時に前面基板11との隙間を確保するためのスペーサ14を取り付ける。背面基板12の内面であって電子放出素子18の外側周縁部に位置した接合面に、封着材であるインジウムを枠状に塗布する。更に、インジウムに重ねて導電性の枠状部材13を配置する。ここで、枠状部材13の4つの角部に、通電加熱用の電流が流れる電極として機能する突出部13aを一体に形成しておき、かつ、背面基板12に塗布されたインジウムに対して枠状部材を位置合わせした後、突出部13aを背面基板12の4隅に固定する。
【0025】
ここでは、インジウムを前面基板11、および背面基板12に充填したが、インジウムを枠状部材13側に充填してもよく、あるいは、前面基板11、背面基板12、枠状部材13のそれぞれに充填してもよい。
【0026】
次に、図6に示すように、背面基板12と、インジウム21bの上に枠状部材13が載置された前面基板11とを、接合面同士が向かい合った状態で、かつ、所定の距離をおいて対向した状態で治具等により保持する。この際、例えば、前面基板11を上向きとして背面基板12の下方に配置する。そして、この状態で前面基板11および背面基板12を真空処理装置に投入する。
【0027】
図7に示すように、この真空処理装置100は、順に並んで設けられたロード室101、ベーキング、電子線洗浄室102、冷却室103、ゲッター膜の蒸着室104、組立室105、冷却室106、およびアンロード室107を有している。これら各室は真空処理が可能な処理室として構成され、FEDの製造時には全室が真空排気されている。また、隣合う処理室間はゲートバルブ等により接続されている。
【0028】
前面基板11および背面基板12は、ロード室101に投入され、ロード室101内を真空雰囲気とした後、ベーキング、電子線洗浄室102へ送られる。べーキング、電子線洗浄室102では、10−5Pa程度の高真空度に達した時点で、加熱により前面基板11および背面基板12を十分に脱ガスする。加熱温度は200℃〜500℃程度に適時設定される。これは、真空外囲器となった後の真空度を劣化させる内壁からのガス放出速度を軽減し、残留ガスによる特性劣化を防ぐためである。
【0029】
また、べーキング、電子線洗浄室102では、加熱と同時に、べーキング、電子線洗浄室102に取り付けられた図示しない電子線発生装置から、前面基板側組立体の蛍光体スクリーン面、および背面基板12の電子放出素子面に電子線を照射する。この電子線は、電子線発生装置外部に装着された偏向装置によって偏向走査されるため、蛍光体スクリーン面、および電子放出素子面の全面を電子線洗浄することが可能となる。
【0030】
加熱、電子線洗浄後、前面基板側組立体および背面基板12は冷却室103に送られ、例えば約100℃の温度まで冷却される。続いて、前面基板11および背面基板12はゲッター膜の蒸着室104へ送られ、ここで蛍光体スクリーンおよびメタルバック上にゲッター膜としてBa膜が蒸着形成される。このBa膜は、表面が酸素や炭素などで汚染されることが防止され、活性状態を維持することができる。
【0031】
次に、組立室105において、蛍光体スクリーン16と電子放出素子18とが対向するように前面基板11および背面基板12を高精度に位置決めして重ね合わせる。このとき、前面基板11の周縁部に設けられたインジウム21aと背面基板12の周縁部に設けられたインジウム21bとで枠状部材13を挟み込むとともに、枠状部材13の4隅に突出した突出部13aを装置側電極に接触させる。
【0032】
この状態で、突出部13aを通して枠状部材13とインジウム21a、21bに所定の電流を流し、インジウムを加熱溶融させるとともに前面基板11と背面基板12を互いに接近する方向へ加圧する。この通電による加熱では、主に枠状部材13とインジウム21a、21bのみを加熱するため、短時間で加熱できるとともに前面基板11あるいは背面基板12の余分な熱膨張も起こり難い。その後、通電を止めると、枠状部材13およびインジウム21a、21bの熱は速やかに前面基板11あるいは背面基板12に熱拡散し、短時間でインジウムが冷却固化され、封着が完了する。
このようにして形成された真空外囲器10は、冷却室106で常温まで冷却された後、アンロード室107から取り出される。以上の工程により、FEDが完成する。
【0033】
以上のように構成されたFEDによれば、枠状部材13は網目状に設けられた貫通孔30およびスリット32を有している。そのため、貫通孔30およびスリット32が設けられていない枠状部材に比較して、枠状部材13の抵抗を高くすることが可能となる。従って、枠状部材13の抵抗が低くなり過ぎないように幅を小さく制限する必要がなく、結果的に枠幅を広くして封着信頼性を向上させることができる。同時に、枠状部材13を通して通電加熱により封着する際、通電加熱に要する電流を小さくでき、加熱時の枠状部材の熱膨張を抑制することができる。
【0034】
枠状部材13は、貫通孔30およびスリット32を設けない場合に比較して、各辺の長手方向に沿った弾性、つまり、基板の面と平行な方向の弾性が大きく柔らかくなるため、通電加熱時に枠状部材13が熱膨張して撚れる不具合を解消することができる。同時に、環境温度等の熱変化についても、枠状部材13の応力を緩和する効果が得られ、封着信頼性が向上する。更に、インジウム21a、21bが溶融した場合においても、インジウムの保持性が向上し、インジウムの流出、偏りを防止することができ、枠状部材13の全周に渡って均一に封着することが可能となる。
以上のことから、前面基板および背面基板の封着作業を迅速かつ安定して行うことができ、良好な真空度を有したFEDが得られる。
【0035】
以下、本発明を適用した複数の実施例について説明する。
(実施例1)
図1ないし図5に示した構成を、30インチサイズのTV用FED表示装置に適用した実施例について説明する。主な構成は、上述の実施の形態で説明したものと同じである。
【0036】
前面基板11と背面基板12は、共に厚さ2.8mmのガラス材から構成されている。前面基板11および背面基板12の周縁部にはそれぞれ厚さ0.2mm、幅3mmでインジウム21a、21bが配置されている。枠状部材13は、図2および図5に示すように、幅5mm、厚さ2mmのニッケル合金に網目状にφ2〜3mmの楕円径の貫通孔30および断面がほぼ半円状のスリット32が空けられている。
これにより、枠状部材13は、孔およびスリットの無い状態の枠状部材に比べて、抵抗が略2倍、質量が約1/2になっている。また、枠状部材13の4隅には突出部13aが形成され、通電電流の電極と背面基板12への固定部を兼ねている。この固定部により、枠状部材13は背面基板12の周縁部のインジウム21bと重なるように配置されている。
【0037】
そして、これら前面基板11および背面基板12を真空槽内に投入し、真空槽内で脱ガス、ゲッター膜形成後、基板温度が120℃となった時点で前面基板11と背面基板12を所定の位置に合わせて周縁部のインジウム21a、21bで枠状部材13を挟んだ状態にして約20kgfの荷重で加圧した。
【0038】
この状態で、枠状部材13の突出部13aに300Aを30秒間通電した。この際、インジウム21a、21bは約160℃まで加熱され溶融した。通電が完了すると、枠状部材13およびインジウム21a、21bの熱は速やかに基板等へ熱拡散し、インジウムが冷却固化した。約300秒後に前面基板11および背面基板12を取出することにより、FEDが得られた。
【0039】
このように枠状部材13に網目状の孔およびスリットを設けることで、加熱電流の大きさを実用上問題ないレベルにするとともに、枠幅を大きくして封着信頼性を向上させることができた。また、枠状部材13の熱膨張を網目構造が吸収するため、通電加熱時の枠状部材の撚れを防止することができた。
【0040】
(実施例2)
実施例2の主な構成は、実施例1と同じである。
実施例2では、図8に示すように、製造時、枠状部材13の両面にインジウム21a、21bを充填し、前面基板11および背面基板12にはインジウム無しとした。そして、これら前面基板11、背面基板12、枠状部材13を全て垂直に立てた状態で真空組立槽に投入した。以後、前述の実施の形態と同様の工程によりFEDを形成した。
【0041】
このように縦搬送を採用すると、スペースやメンテナンス性に優れた真空組立装置を実現することができるが、従来では脱ガス工程での加熱によりインジウムが流れてしまう問題があった。ところが、本実施例では、網目状に貫通孔30およびスリット32の空いた枠状部材13にインジウムを充填することにより、貫通孔30にインジウムが局在し、縦搬送で加熱してもインジウムが流れず枠状部材上に保持することができた。
【0042】
(実施例3)
実施例3の主な構成は、実施例1と同じである。
実施例3では、図9に示すように、枠状部材13に直線状の多数のスリット32を設け、枠状部材13を全体としてほぼ蛇腹状に形成した。各スリット32は、前面基板および背面基板の表面と垂直な方向に形成されているとともに、枠状部材13の両側面から交互に延出して形成されている。このようなスリット32を設けた場合でも、実施例1および2の貫通孔30を設けた場合と同様な効果を得ることができた。
【0043】
(実施例4)
実施例4の主な構成は、実施例1と同じである。
実施例4では、図10に示すように、枠状部材13に設けられている貫通孔30およびスリット32の形成密度を枠状部材の場所により変化させた。これにより、枠状部材13の抵抗を部分的に変化させることが可能となる。従って、所望の箇所の通電発熱を枠状部材13の局所的な抵抗変化で制御することができ、放熱により溶融が難い角部などの特定箇所においても、他の部分と同じようなタイミングで封着材を溶融することができる。これにより、前面基板および背面基板の周縁部を全周に渡って均一かつ安定して封着することができる。
【0044】
(実施例5)
実施例5の主な構成は、実施例1と同じである。
本実施例では、図11に示すように、枠状部材13には、ほぼ半円状のスリット32が交互に設けられ、枠状部材13は全体としてほぼ蛇腹状に形成されている。このようなスリット32を設けた場合でも、実施例1および2の貫通孔30を設けた場合と同様な効果を得ることができた。
【0045】
なお、この発明は上述した実施の形態および実施例に限定されることなく、この発明の範囲内で種々変形可能である。例えば、上述した実施の形態では、枠状部材に貫通孔およびスリットの両方を設ける構成としたが、貫通孔あるいはスリットのいずれか一方のみを設ける構成としもよい。
【0046】
また、上述した実施の形態では、電子放出素子として電界放出型の電子放出素子を用いたが、これに限らず、pn型の冷陰極素子あるいは表面伝導型の電子放出素子等の他の電子放出素子を用いてもよい。また、この発明は、FEDやSEDなどの真空外囲器を必要とする表示装置に限るものではなく、PDPのように一度真空にしてから放電ガスを注入するような他の画像表示装置にも有効である。
【0047】
【発明の効果】
以上説明したように、この発明によれば、前面基板および背面基板の周縁部を導電性の枠状部材を配置して通電加熱により封着する場合、通電加熱に要する電流を小さくでき、加熱時の枠状部材の熱膨張を抑制することができる。これにより、前面基板および背面基板の封着作業を迅速かつ安定して行うことができ、良好な真空度を有した画像表示装置およびその製造方法を提供することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態に係るFEDの外観を示す斜視図。
【図2】図1のFEDの背面基板側の構成を示す斜視図。
【図3】図1の線A−Aに沿ったFEDの断面図。
【図4】上記FEDの前面基板に形成された蛍光体スクリーンの一部を拡大して示す平面図。
【図5】上記FEDにおける枠状部材の一部を拡大して示す平面図。
【図6】上記FEDの製造工程において、前面基板および背面基板を対向して配置した状態を示す断面図。
【図7】上記FEDの製造に用いる真空処理装置を概略的に示す図。
【図8】この発明の実施例2における枠状部材を示す平面図。
【図9】この発明の実施例3における枠状部材を示す平面図。
【図10】この発明の実施例4における枠状部材を示す平面図。
【図11】この発明の実施例5における枠状部材を示す平面図。
【符号の説明】
10…真空外囲器、 11…前面基板、 12…背面基板、
13…枠状部材、 14…支持部材、 16…蛍光体スクリーン、
18…電子放出素子、 21a、21b…インジウム、
30…貫通孔、 32…スリット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image display device having a flat shape, and more particularly to an image display device provided with a large number of electron-emitting devices inside a vacuum envelope and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, various flat display devices have been developed as next-generation lightweight and thin display devices that replace cathode ray tubes (hereinafter, referred to as CRTs). Such a flat display device includes a liquid crystal display (hereinafter, referred to as LCD) that controls the intensity of light by using the orientation of liquid crystal, and a plasma display panel (hereinafter, PDP) that emits a fluorescent material by ultraviolet rays of plasma discharge. ), A field emission display (hereinafter, referred to as FED) that emits a phosphor by an electron beam of a field emission type electron-emitting device, and a surface conduction electron emission display that emits a phosphor by an electron beam of a surface conduction electron-emitting device. (Hereinafter, referred to as SED).
[0003]
For example, FEDs and SEDs generally have a front substrate and a rear substrate that are opposed to each other with a predetermined gap therebetween, and these substrates are connected to each other via a rectangular frame-shaped side wall to form a vacuum. Of the envelope. The envelope is required to have a very high degree of vacuum, and a plurality of support members are arranged between the rear substrate and the front substrate in order to support an atmospheric pressure load applied to the substrates. Further, a phosphor screen is formed on the inner surface of the front substrate, and a number of electron-emitting devices are provided on the inner surface of the rear substrate as electron emission sources for exciting the phosphor to emit light.
[0004]
The potential on the back substrate side is substantially the ground potential, and an anode voltage Va is applied to the phosphor screen. Then, an image is displayed by irradiating the red, green, and blue phosphors constituting the phosphor screen with an electron beam emitted from the electron-emitting device to cause the phosphors to emit light.
[0005]
In such FEDs and SEDs, the thickness of the display device can be reduced to about several millimeters, and the weight and thickness have been reduced compared to CRTs currently used as displays for televisions and computers. Power saving can be achieved.
[0006]
In the above FED, it is necessary to make the inside of the envelope a high vacuum. Also, in the case of a PDP, it is necessary to fill the discharge gas with a vacuum once. As a means for evacuating the envelope, a method has been proposed in which the final assembly of the front substrate and the back substrate constituting the envelope is performed in a vacuum chamber.
[0007]
In this method, first, the front substrate and the rear substrate arranged in the vacuum chamber are sufficiently heated. This is to reduce the gas emission from the inner wall of the envelope, which is a main cause of deteriorating the degree of vacuum of the envelope. Next, when the front substrate and the rear substrate are cooled and the degree of vacuum in the vacuum chamber is sufficiently improved, a getter film for improving and maintaining the degree of vacuum of the envelope is formed on the phosphor screen. Thereafter, the front substrate and the rear substrate are heated again to a temperature at which the sealing material is melted, and cooled until the sealing material is solidified in a state where the front substrate and the rear substrate are combined at a predetermined position.
[0008]
The vacuum envelope created by such a method serves not only as a sealing step and a vacuum sealing step, but also does not require the time required to exhaust the inside of the envelope using an exhaust pipe, and, An extremely good degree of vacuum can be obtained.
[0009]
However, when assembling in such a vacuum, the processes performed in the sealing process include heating, positioning, cooling, and various processes, and the front substrate and the back surface are disposed for a long time during which the sealing material is melted and solidified. The substrate must be kept in place. In addition, the front substrate and the rear substrate are thermally expanded and contracted due to heating and cooling at the time of sealing, and the alignment accuracy is likely to be deteriorated.
[0010]
On the other hand, a low melting point metal sealing material such as indium, which melts at a relatively low temperature, is filled between the front substrate and the side wall, the conductive sealing material is energized, and the conductive sealing material generates heat by Joule heat. A method of dissolving and bonding the substrates (hereinafter referred to as energization heating) has been studied (for example, see Patent Document 1). According to this method, it is not necessary to spend an enormous amount of time for cooling the substrate, and it is possible to form the envelope by bonding the substrates in a short time.
[0011]
[Patent Document 1]
JP-A-2002-319346
[Problems to be solved by the invention]
However, when such a method is used, there is a problem in that the low-melting-point metal melted in the heating step before sealing flows and the abundance of the metal is uneven depending on the location, and uneven heating occurs when electric heating is performed. . In addition, when the low melting point metal is melted, there is a problem that the low melting point metal portion is disconnected due to energization.
[0013]
The present invention has been made in view of the above points, and an object thereof is to quickly and stably perform a sealing operation of a front substrate and a rear substrate, and to provide an image display device having a good degree of vacuum and the image display device. It is to provide a manufacturing method.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, an image display device according to an aspect of the present invention includes a front substrate, a rear substrate disposed opposite to the front substrate, and the front substrate disposed between peripheral portions of the front substrate and the rear substrate. A frame-shaped member having conductivity in which a substrate and a rear substrate are joined together, and a sealing material disposed between the front substrate or the rear substrate and the frame-shaped member; The member has a plurality of through holes or slits formed in a direction perpendicular to the front substrate surface.
[0015]
According to another aspect of the present invention, there is provided a method of manufacturing an image display device, comprising: a front substrate; a rear substrate disposed to face the front substrate; and the front substrate disposed between peripheral portions of the front substrate and the rear substrate. An image display device comprising an envelope having a conductive frame member joined to a substrate and a rear substrate, and a sealing material disposed between the front substrate or the rear substrate and the frame member. In the manufacturing method of
Prepare a frame-shaped member having a plurality of through holes or slits formed in a direction perpendicular to the surface of the front substrate, arrange the front substrate and the rear substrate to face each other, Between the inner peripheral portion, the frame-shaped member is arranged along the peripheral portion of the front substrate and the rear substrate, and at least one of the inner peripheral portion of the front substrate and the inner peripheral portion of the rear substrate and the frame-shaped member. A sealing material having conductivity is arranged around the entire circumference, and heat is applied to the frame-shaped member to generate heat, and the sealing material is melted or softened. The method is characterized in that pressure is applied in the approaching direction to seal the peripheral portions of the front substrate and the rear substrate.
[0016]
According to the image display device and the method of manufacturing the image display device having the above-described configuration, by providing a through-hole or a slit in the frame-shaped member, the resistance value of the frame-shaped member can be increased as compared with a frame-shaped member having no through-hole or slit. Can be. As a result, the current for heating flowing through the sealing material or the frame-shaped member is reduced to simplify the device configuration and the electrode configuration, or the width of the frame-shaped member is increased even when the current is the same as the conventional one, and the bonding is performed. The sealing reliability can be improved by increasing the area.
[0017]
Further, according to the above configuration, the elasticity of the frame-shaped member in the direction parallel to the substrate can be apparently reduced. Accordingly, stress due to a difference in thermal expansion between the frame-shaped member and the substrate or the like due to heating or a change in environmental temperature can be reduced, and the frame-shaped member can be positioned at a desired position with a small tension.
[0018]
Further, according to the above configuration, the surface area can be increased with respect to the volume of the frame-shaped member, and the retention of the sealing material can be improved. Accordingly, even when the sealing material is melted in a manufacturing state, for example, in a setting state with poor horizontality, there is an advantage that the sealing material is less likely to be localized or flow on the frame-shaped member.
Further, according to the above configuration, since the heat capacity of the frame-shaped member is reduced by the amount of the through hole or the slit, the configuration is such that heating and cooling can be easily performed in a short time during energization heating.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which an image display device according to the present invention is applied to an FED will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 3, the FED includes a front substrate 11 and a rear substrate 12 each made of rectangular glass as an insulating substrate, and these substrates are opposed to each other with a gap of 1 to 2 mm. I have. The front substrate 11 and the rear substrate 12 are joined to each other through a frame member 13 having a rectangular frame shape having conductivity, and a flat rectangular vacuum envelope in which the inside is maintained in a vacuum state. The container 10 is constituted.
In the present embodiment, between the joining surface located at the inner peripheral edge of front substrate 11 and frame member 13 and between the joining surface located at the inner peripheral edge of rear substrate 12 and frame member 13, It is joined by indiums 21a and 21b as a sealing material having conductivity described later. As the sealing material, a material that melts or softens at a temperature of 300 ° C. or lower is desirable, and a low melting point metal such as an indium alloy can be used in addition to indium. Note that one of the joining surfaces and the frame-shaped member 13 may be joined in advance with a low-melting-point sealing material such as frit glass.
[0020]
Further, the frame-shaped member 13 has protrusions 13a protruding outward from the respective corners, and these protrusions function as electrodes at the time of manufacturing, and at the same time, grip portions for holding and positioning the frame-shaped member. Function as However, instead of providing the protruding portion 13a, a configuration in which an independent electrode is attached may be adopted.
As shown in FIGS. 2, 3, and 5, the frame-shaped member 13 has a large number of through holes 30 arranged in a mesh pattern and a slit 32 opened on the side surface of the frame-shaped member.
The through holes 30 and the slits 32 are formed so as to penetrate along the direction perpendicular to the surfaces of the front substrate 11 and the rear substrate 12, respectively, and are provided at predetermined intervals over the entire circumference of the frame-shaped member 13. I have. Note that the frame member 13 is desirably formed of a material having a melting point of 500 ° C. or higher, and a material containing at least one of Ti, Fe, Cr, Ni, Al, and Cu can be used.
[0021]
As shown in FIGS. 2 and 3, a plurality of plate-shaped spacers 14 are provided inside the vacuum envelope 10 in order to support an atmospheric pressure load applied to the front substrate 11 and the rear substrate 12. These spacers 14 are arranged in a direction parallel to the short side of the vacuum envelope 10 and at predetermined intervals along a direction parallel to the long side. The shape of the spacer 14 is not particularly limited, and for example, a columnar spacer or the like can be used.
[0022]
As shown in FIGS. 3 and 4, on the inner surface of the front substrate 11, a phosphor having phosphor layers R, G, and B emitting red, green, and blue light and a matrix-shaped black light absorbing layer 20 is provided. A screen 16 is formed. An aluminum film 17 is deposited on the phosphor screen 16 as a metal back made of aluminum or the like, and a getter film (not shown) is formed on the metal back.
[0023]
As shown in FIG. 3, on the inner surface of the rear substrate 12, a large number of electron-emitting devices 18 are provided as electron-emitting sources that excite electrons by colliding with the phosphor layers R, G, and B. The electron-emitting device 18 is disposed at a position facing each of the phosphor layers R, G, and B one by one, and emits an electron beam toward the corresponding phosphor layer. In addition, on the inner surface of the rear substrate 12, a number of wirings 21 for supplying drive signals to the electron-emitting devices 18 are formed in a matrix, and the ends thereof are extended to the peripheral edge of the rear substrate.
[0024]
Next, a method and an apparatus for manufacturing the FED configured as described above will be described.
First, a front substrate 11 having a phosphor screen 16 formed on its inner surface is prepared, and indium, which is a sealing material, is applied in a frame shape to a bonding surface located on the inner surface of the front substrate and outside the phosphor screen. I do. Also, a rear substrate 12 having a large number of electron-emitting devices 18 formed on the inner surface is prepared, and a spacer 14 for securing a gap with the front substrate 11 is attached at the time of assembly. Indium, which is a sealing material, is applied in a frame shape on the bonding surface located on the inner surface of the back substrate 12 and on the outer peripheral portion of the electron-emitting device 18. Further, the conductive frame-shaped member 13 is arranged on the indium. Here, at four corners of the frame-shaped member 13, a projection 13 a functioning as an electrode through which a current for energizing and heating flows is formed integrally, and a frame is formed with respect to indium applied to the back substrate 12. After the alignment of the protruding members, the protrusions 13 a are fixed to the four corners of the rear substrate 12.
[0025]
Here, indium is filled in the front substrate 11 and the back substrate 12, but indium may be filled in the frame member 13 side, or the indium may be filled in the front substrate 11, the back substrate 12, and the frame member 13, respectively. May be.
[0026]
Next, as shown in FIG. 6, the rear substrate 12 and the front substrate 11 on which the frame-shaped member 13 is mounted on the indium 21b are placed at a predetermined distance with the joint surfaces facing each other. And hold it with a jig or the like in a state of facing. At this time, for example, the front substrate 11 is arranged below the rear substrate 12 with the front substrate 11 facing upward. Then, in this state, the front substrate 11 and the rear substrate 12 are put into a vacuum processing apparatus.
[0027]
As shown in FIG. 7, the vacuum processing apparatus 100 includes a load chamber 101, a baking chamber, an electron beam cleaning chamber 102, a cooling chamber 103, a getter film deposition chamber 104, an assembling chamber 105, and a cooling chamber 106 provided in this order. , And an unloading chamber 107. Each of these chambers is configured as a processing chamber capable of performing vacuum processing, and all the chambers are evacuated during the manufacture of the FED. Adjacent processing chambers are connected by a gate valve or the like.
[0028]
The front substrate 11 and the rear substrate 12 are loaded into the load chamber 101, and the inside of the load chamber 101 is evacuated, and then sent to the baking and electron beam cleaning chamber 102. In the baking and electron beam cleaning chamber 102, when the high vacuum degree of about 10 −5 Pa is reached, the front substrate 11 and the rear substrate 12 are sufficiently degassed by heating. The heating temperature is appropriately set at about 200 ° C. to 500 ° C. This is to reduce the rate of gas release from the inner wall, which deteriorates the degree of vacuum after the vacuum envelope is formed, and to prevent characteristic deterioration due to residual gas.
[0029]
In the baking / electron beam cleaning chamber 102, simultaneously with heating, an electron beam generator (not shown) attached to the baking / electron beam cleaning chamber 102 transmits the phosphor screen surface of the front substrate side assembly and the back substrate. Twelve electron-emitting device surfaces are irradiated with an electron beam. Since this electron beam is deflected and scanned by a deflecting device mounted outside the electron beam generator, it is possible to clean the entire surface of the phosphor screen surface and the electron emission element surface with the electron beam.
[0030]
After the heating and the electron beam cleaning, the front substrate side assembly and the rear substrate 12 are sent to the cooling chamber 103 and cooled to a temperature of about 100 ° C., for example. Subsequently, the front substrate 11 and the rear substrate 12 are sent to a getter film deposition chamber 104, where a Ba film is deposited as a getter film on the phosphor screen and the metal back. The surface of the Ba film is prevented from being contaminated with oxygen, carbon, or the like, and can maintain an active state.
[0031]
Next, in the assembly chamber 105, the front substrate 11 and the rear substrate 12 are positioned with high accuracy so that the phosphor screen 16 and the electron-emitting device 18 face each other and are superposed. At this time, the frame member 13 is sandwiched between the indium 21a provided on the peripheral portion of the front substrate 11 and the indium 21b provided on the peripheral portion of the rear substrate 12, and the protrusions protruding from the four corners of the frame member 13 are provided. 13a is brought into contact with the device-side electrode.
[0032]
In this state, a predetermined current is applied to the frame member 13 and the indiums 21a and 21b through the protruding portions 13a to heat and melt the indium and to press the front substrate 11 and the rear substrate 12 in directions approaching each other. In this heating by energization, mainly only the frame member 13 and the indiums 21a and 21b are heated, so that heating can be performed in a short time and unnecessary thermal expansion of the front substrate 11 or the rear substrate 12 hardly occurs. Thereafter, when the energization is stopped, the heat of the frame-shaped member 13 and the indiums 21a and 21b rapidly diffuses into the front substrate 11 or the rear substrate 12, and the indium is cooled and solidified in a short time, thereby completing the sealing.
The vacuum envelope 10 thus formed is cooled to room temperature in the cooling chamber 106 and then taken out of the unloading chamber 107. Through the above steps, the FED is completed.
[0033]
According to the FED configured as described above, the frame-shaped member 13 has the through holes 30 and the slits 32 provided in a mesh shape. Therefore, the resistance of the frame-shaped member 13 can be increased as compared with a frame-shaped member in which the through-hole 30 and the slit 32 are not provided. Therefore, it is not necessary to limit the width to a small value so that the resistance of the frame-shaped member 13 does not become too low. As a result, the frame width can be increased and the sealing reliability can be improved. At the same time, when sealing by energizing heating through the frame member 13, the current required for energizing heating can be reduced, and thermal expansion of the frame member during heating can be suppressed.
[0034]
Since the elasticity of the frame-shaped member 13 along the longitudinal direction of each side, that is, the elasticity in the direction parallel to the substrate surface is greatly softer than the case where the through-hole 30 and the slit 32 are not provided, The disadvantage that the frame-shaped member 13 is sometimes thermally expanded and twisted can be eliminated. At the same time, with respect to thermal changes such as environmental temperature, the effect of relaxing the stress of the frame-shaped member 13 is obtained, and the sealing reliability is improved. Further, even when the indiums 21a and 21b are melted, the indium holding property is improved, the outflow and bias of the indium can be prevented, and the sealing can be performed uniformly over the entire circumference of the frame-shaped member 13. It becomes possible.
From the above, the sealing operation of the front substrate and the rear substrate can be performed quickly and stably, and an FED having a good degree of vacuum can be obtained.
[0035]
Hereinafter, a plurality of embodiments to which the present invention is applied will be described.
(Example 1)
An embodiment in which the configuration shown in FIGS. 1 to 5 is applied to a 30-inch FED display device for a TV will be described. The main configuration is the same as that described in the above embodiment.
[0036]
Both front substrate 11 and rear substrate 12 are made of a glass material having a thickness of 2.8 mm. Indiums 21a and 21b each having a thickness of 0.2 mm and a width of 3 mm are arranged on the periphery of the front substrate 11 and the rear substrate 12, respectively. As shown in FIGS. 2 and 5, the frame-shaped member 13 includes a nickel alloy having a width of 5 mm and a thickness of 2 mm, a mesh-shaped through-hole 30 having an oval diameter of φ2 to 3 mm, and a slit 32 having a substantially semicircular cross section. It is empty.
As a result, the resistance of the frame-shaped member 13 is approximately twice as large as that of the frame-shaped member 13 having no holes and slits, and the weight is reduced to about 1 /. Projections 13 a are formed at the four corners of the frame-shaped member 13, and serve as electrodes for passing a current and fixing portions to the rear substrate 12. With this fixing portion, the frame-shaped member 13 is arranged so as to overlap with the indium 21b at the peripheral edge of the back substrate 12.
[0037]
Then, the front substrate 11 and the rear substrate 12 are put into a vacuum chamber, and after degassing and forming a getter film in the vacuum chamber, when the substrate temperature reaches 120 ° C., the front substrate 11 and the rear substrate 12 are brought into a predetermined state. According to the position, the frame-shaped member 13 was sandwiched between the indiums 21a and 21b at the peripheral edges, and pressure was applied with a load of about 20 kgf.
[0038]
In this state, 300 A was applied to the protruding portion 13a of the frame-shaped member 13 for 30 seconds. At this time, the indiums 21a and 21b were heated to about 160 ° C. and melted. When the energization was completed, the heat of the frame member 13 and the indiums 21a and 21b quickly diffused into the substrate and the like, and the indium was cooled and solidified. After about 300 seconds, the front substrate 11 and the rear substrate 12 were taken out, whereby an FED was obtained.
[0039]
By providing the mesh-shaped holes and slits in the frame-shaped member 13 in this manner, the magnitude of the heating current can be reduced to a level that does not cause a practical problem, and the frame width can be increased to improve the sealing reliability. Was. In addition, since the network structure absorbs the thermal expansion of the frame-shaped member 13, twisting of the frame-shaped member at the time of electric heating can be prevented.
[0040]
(Example 2)
The main configuration of the second embodiment is the same as that of the first embodiment.
In Example 2, as shown in FIG. 8, at the time of manufacturing, both sides of the frame member 13 were filled with indiums 21a and 21b, and the front substrate 11 and the rear substrate 12 were free of indium. Then, the front substrate 11, the rear substrate 12, and the frame-shaped member 13 were all put into a vacuum assembling tank in a vertically standing state. Thereafter, an FED was formed by the same steps as in the above-described embodiment.
[0041]
By adopting the vertical conveyance as described above, a vacuum assembling apparatus excellent in space and maintainability can be realized. However, conventionally, there has been a problem that indium flows due to heating in the degassing step. However, in the present embodiment, indium is filled in the frame-shaped member 13 having the through-holes 30 and the slits 32 in a mesh shape, so that the indium is localized in the through-holes 30, and even if heated in the vertical conveyance, the indium is removed. It could be held on the frame member without flowing.
[0042]
(Example 3)
The main configuration of the third embodiment is the same as that of the first embodiment.
In Example 3, as shown in FIG. 9, a large number of linear slits 32 were provided in the frame member 13, and the frame member 13 was formed substantially in a bellows shape as a whole. Each slit 32 is formed in a direction perpendicular to the surface of the front substrate and the rear substrate, and is formed so as to extend alternately from both side surfaces of the frame-shaped member 13. Even when such a slit 32 is provided, the same effect as in the case where the through-holes 30 of Examples 1 and 2 are provided can be obtained.
[0043]
(Example 4)
The main configuration of the fourth embodiment is the same as that of the first embodiment.
In Example 4, as shown in FIG. 10, the formation density of the through holes 30 and the slits 32 provided in the frame member 13 was changed depending on the location of the frame member. Thereby, the resistance of the frame-shaped member 13 can be partially changed. Therefore, it is possible to control the energization and heat generation at a desired location by a local resistance change of the frame-shaped member 13, and to seal a specific location such as a corner which is difficult to be melted by heat radiation at the same timing as other portions. The material can be melted. Thereby, the peripheral portions of the front substrate and the rear substrate can be uniformly and stably sealed over the entire periphery.
[0044]
(Example 5)
The main configuration of the fifth embodiment is the same as that of the first embodiment.
In this embodiment, as shown in FIG. 11, substantially semicircular slits 32 are alternately provided in the frame-shaped member 13, and the frame-shaped member 13 is formed in a substantially bellows shape as a whole. Even when such a slit 32 is provided, the same effect as in the case where the through-holes 30 of Examples 1 and 2 are provided can be obtained.
[0045]
The present invention is not limited to the above-described embodiments and examples, and can be variously modified within the scope of the present invention. For example, in the embodiment described above, the frame-shaped member is provided with both the through-hole and the slit, but may be provided with only one of the through-hole and the slit.
[0046]
Further, in the above-described embodiment, the field emission type electron emission element is used as the electron emission element. However, the present invention is not limited to this, and other electron emission elements such as a pn type cold cathode element or a surface conduction type electron emission element may be used. An element may be used. Further, the present invention is not limited to a display device requiring a vacuum envelope such as an FED or an SED, but is also applicable to other image display devices such as a PDP in which a vacuum is applied once and a discharge gas is injected. It is valid.
[0047]
【The invention's effect】
As described above, according to the present invention, when the peripheral portions of the front substrate and the rear substrate are sealed by arranging conductive frame members by energizing heating, the current required for energizing heating can be reduced. The thermal expansion of the frame-shaped member can be suppressed. Thereby, the sealing operation of the front substrate and the rear substrate can be performed quickly and stably, and an image display device having a good degree of vacuum and a method of manufacturing the same can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the appearance of an FED according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a configuration on the rear substrate side of the FED in FIG. 1;
FIG. 3 is a sectional view of the FED taken along a line AA in FIG. 1;
FIG. 4 is an enlarged plan view showing a part of a phosphor screen formed on a front substrate of the FED.
FIG. 5 is an enlarged plan view showing a part of a frame member in the FED.
FIG. 6 is a cross-sectional view showing a state in which a front substrate and a rear substrate are arranged to face each other in the manufacturing process of the FED.
FIG. 7 is a view schematically showing a vacuum processing apparatus used for manufacturing the FED.
FIG. 8 is a plan view showing a frame-shaped member according to a second embodiment of the present invention.
FIG. 9 is a plan view showing a frame-shaped member according to a third embodiment of the present invention.
FIG. 10 is a plan view showing a frame-shaped member according to a fourth embodiment of the present invention.
FIG. 11 is a plan view showing a frame-shaped member according to a fifth embodiment of the present invention.
[Explanation of symbols]
10: vacuum envelope, 11: front substrate, 12: rear substrate,
13: frame member, 14: support member, 16: phosphor screen,
18: electron-emitting device, 21a, 21b: indium,
30: through hole, 32: slit

Claims (11)

前面基板と、この前面基板に対向配置されている背面基板と、上記前面基板および背面基板の周縁部間に配置され上記前面基板および背面基板を接合した導電性を有する枠状部材と、上記前面基板あるいは背面基板と前記枠状部材との間に配置された封着材と、を有する外囲器を備え、
上記枠状部材は上記前面基板の表面に垂直な方向に貫通形成された複数の貫通孔あるいはスリットを有していることを特徴とする画像表示装置。
A front substrate, a rear substrate opposed to the front substrate, a conductive frame-shaped member disposed between peripheral edges of the front substrate and the rear substrate, and joined to the front substrate and the rear substrate; A sealing material disposed between the substrate or the back substrate and the frame-shaped member, comprising an envelope,
The image display device, wherein the frame-shaped member has a plurality of through holes or slits formed in a direction perpendicular to the surface of the front substrate.
上記貫通孔あるいはスリットは、上記枠状部材の全周で場所により異なる密度で形成されていることを特徴とする請求項に1記載の画像表示装置。The image display device according to claim 1, wherein the through holes or the slits are formed at different densities depending on locations on the entire circumference of the frame-shaped member. 上記貫通孔あるいはスリットは、蛇腹状に並んで設けられていることを特徴とする請求項1に記載の画像表示装置。The image display device according to claim 1, wherein the through holes or the slits are provided in a bellows shape. 上記貫通孔あるいはスリットは、網目状に並んで設けられていることを特徴とする請求項1に記載の画像表示装置。The image display device according to claim 1, wherein the through holes or the slits are provided in a mesh pattern. 上記封着材は、InまたはInを含む合金を含んでいることを特徴とする請求項1ないし4のいずれか1項に記載の画像表示装置。The image display device according to any one of claims 1 to 4, wherein the sealing material contains In or an alloy containing In. 上記封着材は、300℃以下で溶融または軟化する材料であることを特徴とする請求項1ないし4のいずれか1項に記載の画像表示装置。The image display device according to claim 1, wherein the sealing material is a material that melts or softens at a temperature of 300 ° C. or less. 上記枠状部材は、Ti、Fe、Cr、Ni、Al、Cuの少なくとも1つを含む材料で形成されていることを特徴とする請求項1ないし6のいずれか1項に記載の画像表示装置。The image display device according to claim 1, wherein the frame-shaped member is formed of a material containing at least one of Ti, Fe, Cr, Ni, Al, and Cu. . 上記枠状部材は、融点が500℃以上の材料により形成されていることを特徴とする請求項1ないし6のいずれか1項に記載の画像表示装置。The image display device according to claim 1, wherein the frame-shaped member is formed of a material having a melting point of 500 ° C. or higher. 上記外囲器の内部には蛍光体およい蛍光体を励起する電子源とが設けられ、上記外囲器の内部は真空に維持されていることを特徴とする請求項1ないし9のいずれか1項に記載の画像表示装置。10. A phosphor according to claim 1, wherein a phosphor and an electron source for exciting the phosphor are provided inside the envelope, and the interior of the envelope is maintained in a vacuum. Item 2. The image display device according to item 1. 前面基板と、この前面基板に対向配置されている背面基板と、上記前面基板および背面基板の周縁部間に配置され上記前面基板および背面基板を接合した導電性を有する枠状部材と、上記前面基板あるいは背面基板と前記枠状部材との間に配置された封着材と、を有する外囲器を備えた画像表示装置の製造方法において、
上記前面基板の表面に垂直な方向に貫通形成された複数の貫通孔あるいはスリットを有した枠状部材を用意し、
上記前面基板および背面基板を対向して配置し、
上記前面基板および背面基板の内面周縁部間に、上記前面基板および背面基板の周縁部に沿って上記枠状部材を配置するとともに、上記前面基板の内面周縁部および背面基板の内面周縁部の少なくとも一方と上記枠状部材との間に導電性を有した封着材を全周に渡って配置し、
上記枠状部材に通電して発熱させ、上記封着材を溶融あるいは軟化させるとともに、上記前面基板および背面基板を互いに接近する方向に加圧し、上記前面基板および背面基板の周縁部を封着することを特徴とする画像表示装置の製造方法。
A front substrate, a rear substrate opposed to the front substrate, a conductive frame member disposed between peripheral edges of the front substrate and the rear substrate, and joined to the front substrate and the rear substrate, In a method for manufacturing an image display device including an envelope having a substrate or a back substrate and a sealing material disposed between the frame-shaped member,
Prepare a frame-shaped member having a plurality of through holes or slits formed in a direction perpendicular to the surface of the front substrate,
The front substrate and the rear substrate are arranged facing each other,
Between the inner peripheral edge of the front substrate and the rear substrate, the frame-shaped member is arranged along the peripheral edge of the front substrate and the rear substrate, and at least the inner peripheral edge of the front substrate and the inner peripheral edge of the rear substrate. Place a sealing material having conductivity between one and the frame-shaped member over the entire circumference,
Electricity is applied to the frame-shaped member to generate heat, and the sealing material is melted or softened, and the front substrate and the rear substrate are pressed in a direction approaching each other to seal the peripheral portions of the front substrate and the rear substrate. A method for manufacturing an image display device, comprising:
真空雰囲気中で上記枠状部材に通電して上記封着材を溶融あるいは軟化することを特徴とする請求項10に記載の画像表示装置の製造方法。The method according to claim 10, wherein the sealing material is melted or softened by energizing the frame-shaped member in a vacuum atmosphere.
JP2003038722A 2003-01-10 2003-02-17 Image display device and its manufacturing method Abandoned JP2004265628A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003038722A JP2004265628A (en) 2003-02-17 2003-02-17 Image display device and its manufacturing method
TW093100257A TW200425201A (en) 2003-01-10 2004-01-06 Image display device and a manufacturing method of the same
PCT/JP2004/000111 WO2004064102A1 (en) 2003-01-10 2004-01-09 Image display device and method of producing the same
KR1020057012699A KR100701112B1 (en) 2003-01-10 2004-01-09 Image display device and method of producing the same
EP04701093A EP1589554A1 (en) 2003-01-10 2004-01-09 Image display device and method of producing the same
US11/176,208 US20050264861A1 (en) 2003-01-10 2005-07-08 Image display device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038722A JP2004265628A (en) 2003-02-17 2003-02-17 Image display device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004265628A true JP2004265628A (en) 2004-09-24

Family

ID=33112055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038722A Abandoned JP2004265628A (en) 2003-01-10 2003-02-17 Image display device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004265628A (en)

Similar Documents

Publication Publication Date Title
JP2000323072A (en) Air-tight container and image forming apparatus
US20060132023A1 (en) Image display device and method of manufacturing the same
TW200537543A (en) Image forming device
US20050264861A1 (en) Image display device and method of manufacturing the same
KR20070007843A (en) Method of producing image display device
JP3940577B2 (en) Flat display device and manufacturing method thereof
JP2004265628A (en) Image display device and its manufacturing method
JP2002319346A (en) Display device and its manufacturing method
JP3940583B2 (en) Flat display device and manufacturing method thereof
JP2004265639A (en) Image display device and its manufacturing method
JP3782347B2 (en) Flat display device and manufacturing method thereof
JP2005197050A (en) Image display device and its manufacturing method
JP2003068238A (en) Display device and manufacture thereof
JP2003123672A (en) Image display device
JP2004265630A (en) Image display device and manufacturing method of the same
JP2003132822A (en) Panel display device and manufacturing method therefor
US20070103051A1 (en) Image display apparatus
JP2005044529A (en) Image display device and its manufacturing method
WO2005020271A1 (en) Image display device
JP2005302579A (en) Manufacturing method of image display device
JP2004273134A (en) Method of producing image display device
JP2004247260A (en) Manufacturing method of image forming apparatus, and image forming apparatus
JP2004265601A (en) Image display device and its manufacturing method
JP2008251186A (en) Airtight container, and image display device equipped with airtight container
JP2006059742A (en) Image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080303