JP2004251862A - ガスセンサの劣化診断方法およびガスセンサの劣化診断装置 - Google Patents

ガスセンサの劣化診断方法およびガスセンサの劣化診断装置 Download PDF

Info

Publication number
JP2004251862A
JP2004251862A JP2003070227A JP2003070227A JP2004251862A JP 2004251862 A JP2004251862 A JP 2004251862A JP 2003070227 A JP2003070227 A JP 2003070227A JP 2003070227 A JP2003070227 A JP 2003070227A JP 2004251862 A JP2004251862 A JP 2004251862A
Authority
JP
Japan
Prior art keywords
gas
detection element
hydrogen
deterioration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003070227A
Other languages
English (en)
Other versions
JP3836440B2 (ja
Inventor
Takashi Sasaki
孝 佐々木
Hiroyuki Abe
浩之 阿部
Tsutomu Eguchi
強 江口
Yasushi Kojima
泰 児島
Takushi Saito
卓志 斉藤
Akihiro Suzuki
昭博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003070227A priority Critical patent/JP3836440B2/ja
Priority to CA002485604A priority patent/CA2485604C/en
Priority to US10/514,254 priority patent/US7251981B2/en
Priority to EP03728054A priority patent/EP1505385B1/en
Priority to PCT/JP2003/005897 priority patent/WO2003096000A1/ja
Priority to DE60335460T priority patent/DE60335460D1/de
Publication of JP2004251862A publication Critical patent/JP2004251862A/ja
Application granted granted Critical
Publication of JP3836440B2 publication Critical patent/JP3836440B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

【課題】水素センサ等のガスセンサの劣化診断を簡単に行えるようにする。
【解決手段】水素センサは、基準検出要素と常用検出要素とを備え、各検出要素はそれぞれ検出素子と温度補償素子で対をなして構成され、通常時は常用検出要素に通電して該常用検出要素により水素ガスの濃度検出を行う。この常用検出要素の劣化診断を行うときは、常用検出要素と基準検出要素の両方に通電して各検出要素により所定水素濃度のガスに対して同時に濃度検出を行い、常用検出要素の出力値と基準検出要素の出力値とを比較することにより、常用検出要素の劣化診断を行う。
【選択図】 図7

Description

【0001】
【発明の属する技術分野】
この発明は、水素センサ等のガスセンサの劣化を診断するガスセンサの劣化診断方法およびガスセンサの劣化診断装置に関するものである。
【0002】
【従来の技術】
例えば固体高分子膜型燃料電池は、固体高分子電解質膜をアノード極とカソード極とで両側から挟み込んで形成されたセルを複数積層して構成されたスタックを備えており、アノード極に燃料として水素が供給され、カソード極に酸化剤として空気が供給されて、アノード極で触媒反応により発生した水素イオンが、固体高分子電解質膜を通過してカソード極まで移動して、カソード極で酸素と電気化学反応を起こして発電するようになっている。
また、このような固体高分子膜型燃料電池等の燃料電池においては、カソード極から排出される未反応の空気(空気オフガスという)は系外に排出するのが一般的であるが、その場合には、空気オフガス中の水素ガス濃度を確認する必要がある。
【0003】
そこで、従来から、例えば燃料電池のカソード側の排出系に水素検出器を設置し、この水素検出器によって空気オフガス中の水素ガス濃度を確認するシステムが開発されている(例えば、特許文献1参照)。
また、例えば燃料電池の酸素極側の排出系に水素ガスを検出するガスセンサを備え、このガスセンサによって、燃料極側の水素が固体高分子電解質膜を通じて酸素極側に漏洩したことを検知したときは、燃料の供給を遮断する保護装置が知られている(例えば、特許文献2参照)。
そして、これらの水素検出器に、ガス接触燃焼式のガスセンサを用いることが考えられている。このガス接触燃焼式ガスセンサは、触媒が付着されている検出素子と触媒が付着されていない温度補償素子とを備えて構成されており、被検知ガス(水素検出器の場合は水素)が触媒に接触した際に燃焼する熱を利用して検出素子と温度補償素子との電気抵抗の差異から被検知ガスのガス濃度を検出するものである。
【0004】
【特許文献1】
特公平6−52662号公報
【特許文献2】
特開平6−223850号公報
【0005】
【発明が解決しようとする課題】
ところで、空気オフガスには、燃料電池に使用されているシール材等の材料中のシリコンが混入する場合があるが、水素検出器が触媒反応中にこのシリコンに晒されると触媒が被毒し、その結果、水素検出器が劣化して、検出精度が低下する。さらに、このようなシリコン被毒に加えて、例えば硫黄被毒や水分の吸着等により感度低下等の劣化が生じる虞があり、劣化の程度によっては、水素検出器を交換する必要が生じる。
したがって、水素検出器の劣化診断は極めて重要であり、水素検出器が劣化しているか否かを簡単に診断する方法が切望されている。
本発明は上記事情に鑑みてなされたもので、ガスセンサの劣化を容易に診断することが可能なガスセンサの劣化診断方法およびガスセンサの劣化診断装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のガスセンサの劣化診断方法は、検出素子と温度補償素子とを備えて構成される複数の検出要素が互いに近接配置されてなり、前記複数の検出要素のうち、少なくとも1つの検出要素を基準検出要素とし、前記基準検出要素以外の検出要素を常用検出要素とする検出手段(例えば、実施の形態での各水素センサ11a,11b、複数の水素センサ60)の劣化を診断するガスセンサの劣化診断方法であって、被検知ガスの濃度検出時は前記常用検出要素に通電して該常用検出要素により前記被検知ガスの濃度検出を行い、前記常用検出要素の劣化診断時は前記常用検出要素と前記基準検出要素の両方に通電して各検出要素により前記被検知ガスの濃度検出を行い(例えば、実施の形態でのステップS01〜ステップS03)、前記常用検出要素の出力値と前記基準検出要素の出力値とを比較する(例えば、実施の形態でのステップS04、ステップS61およびステップS62)ことにより、前記常用検出要素の劣化診断を行う(例えば、実施の形態でのステップS05、ステップS06)ことを特徴としている。
【0007】
上記のガスセンサの劣化診断方法によれば、被検知ガスの濃度検出時は常用検出要素に通電して被検知ガスの濃度検出を行い、例えば基準検出要素には通電を遮断することにより、常用検出要素に比べて基準検出要素の劣化を抑制することができる。そして、常用検出要素の劣化診断時は、常用検出要素および基準検出要素の両方に通電して、常用検出要素の出力値と基準検出要素の出力値とを相対的に比較することにより、常用検出要素が劣化しているか否かを容易に診断(相対診断)することができる。
【0008】
さらに、請求項2に記載の本発明のガスセンサの劣化診断方法では、前記複数の検出要素は、各検出要素により得られる前記被検知ガスの実質的な濃度の検出結果の差異が所定の範囲以内となるようにして、互いに近接配置されることを特徴としている。
上記のガスセンサの劣化診断方法によれば、例えば複数の検出要素に対して同等のガス濃度の被検出ガスを供給したときに、各検出要素の配置位置に応じて各検出要素による検出結果が異なる場合であっても、相対診断による常用検出要素に対する劣化診断の診断精度が低下してしまうことを抑制することができる。
【0009】
さらに、請求項3に記載の本発明のガスセンサの劣化診断方法では、前記所定の範囲は、前記検出結果に対する±10%以内とされることを特徴としている。
上記のガスセンサの劣化診断方法によれば、相対診断による常用検出要素に対する劣化診断の診断精度が低下してしまうことを、より一層、抑制することができる。
【0010】
さらに、請求項4に記載の本発明のガスセンサの劣化診断方法は、前記常用検出要素の劣化診断を行うときに、前記被検知ガスのガス濃度を、少なくとも前記常用検出要素で検出可能な任意濃度に設定することを特徴としている。
上記のガスセンサの劣化診断方法によれば、常用検出要素の劣化診断時には、常用検出要素と基準検出要素の両方に通電して各検出要素により同時に被検知ガスの濃度検出を行い、相対的に比較しているので、被検知ガスのガス濃度は既知濃度である必要が無く、常用検出要素と基準検出要素とに同等のガス濃度の被検知ガスが供給されていればよい。
これにより、劣化診断時における被検知ガスのガス濃度が一定でなく変動する場合にも常用検出要素の劣化診断が可能となる。
【0011】
さらに、請求項5に記載の本発明のガスセンサの劣化診断方法は、前記常用検出要素の出力値と前記基準検出要素の出力値との比較結果が所定範囲外である場合に、前記ガスセンサは劣化したと判断することを特徴としている。
上記のガスセンサの劣化診断方法によれば、常用検出要素が劣化したか否かを確実に判断することができる。なお、比較値は、常用検出要素の出力値と基準検出要素の出力値との差でもよいし、常用検出要素の出力値と基準検出要素の出力値のいずれか一方を他方で除算して得た商であってもよい。
【0012】
さらに、請求項6に記載の本発明のガスセンサの劣化診断方法では、前記比較結果は、前記常用検出要素の出力値と前記基準検出要素の出力値との差、あるいは、前記常用検出要素の出力値と前記基準検出要素の出力値との何れか一方に対する何れか他方の比であることを特徴としている。
上記のガスセンサの劣化診断方法によれば、常用検出要素が劣化したか否かを容易に判断することができる。
【0013】
さらに、請求項7に記載の本発明のガスセンサの劣化診断方法では、前記所定範囲は、予め前記常用検出要素の出力値および前記基準検出要素の出力値に応じて設定された所定領域であり、前記常用検出要素の出力値が、前記基準検出要素の出力値に応じた前記所定領域の最大値よりも大きい場合、あるいは、前記基準検出要素の出力値に応じた前記所定領域の最小値よりも小さい場合に、前記ガスセンサは劣化したと判断することを特徴としている。
上記のガスセンサの劣化診断方法によれば、常用検出要素が劣化したか否かを容易に判断することができる。
【0014】
さらに、請求項8に記載の本発明のガスセンサの劣化診断方法は、前記被検知ガスを前記基準検出要素により検出したときの前記基準検出要素の出力値に基づいて前記基準検出要素の劣化診断を行う(例えば、実施の形態でのステップS14)ことを特徴としている。
上記のガスセンサの劣化診断方法によれば、常用検出要素の劣化診断を相対的に診断する際の基準とされる基準検出要素の劣化診断を、基準検出要素の出力値によって、いわば絶対的に診断することができる。これにより、相対診断による常用検出要素の劣化診断の診断精度を向上させることができる。
【0015】
さらに、請求項9に記載の本発明のガスセンサの劣化診断方法では、前記被検知ガスは既知濃度とされることを特徴としている。
上記のガスセンサの劣化診断方法によれば、既知濃度の被検出ガスによって基準検出要素が劣化したか否かを絶対的に診断することができ、相対診断による常用検出要素の劣化診断の診断精度を、より一層、向上させることができる。
【0016】
さらに、請求項10に記載の本発明のガスセンサの劣化診断方法は、燃料ガスおよび酸化剤ガスが供給されて電気化学反応により発電する燃料電池から排出される前記燃料ガスを前記燃料電池から排出される前記酸化剤ガスにより希釈して得た希釈ガスを、前記燃料電池から排出される前記酸化剤ガスに混合して、前記既知濃度の前記被検知ガスとすることを特徴としている。
【0017】
上記のガスセンサの劣化診断方法によれば、燃料電池から出力される燃料ガスを有効に利用して基準検出要素の劣化診断を実行することができる。
【0018】
さらに、請求項11に記載の本発明のガスセンサの劣化診断方法は、所定濃度の前記被検知ガスを前記基準検出要素の雰囲気ガスに混合して、前記既知濃度の前記被検知ガスとすることを特徴としている。
上記のガスセンサの劣化診断方法によれば、例えば基準検出要素を実装位置から取り外して検査する必要が無しに、基準検出用素の実装状態において容易に劣化診断を実行することができる。
【0019】
さらに、請求項12に記載の本発明のガスセンサの劣化診断方法は、前記常用検出要素の劣化診断の実行頻度よりも少ない頻度で前記基準検出要素の劣化診断を行うことを特徴としている。
上記のガスセンサの劣化診断方法によれば、基準検出要素に通電する頻度が増大することを抑制することによって、基準検出要素が劣化してしまうことを抑制し、相対診断による常用検出要素の劣化診断の診断精度が低下してしまうことを抑制することができる。
【0020】
さらに、請求項13に記載の本発明のガスセンサの劣化診断方法では、前記検出手段は、前記検出素子の触媒に接触する前記被検出ガスの燃焼に応じて発生する前記検出素子と前記温度補償素子との電気抵抗値の差異に基づいて前記被検知ガスのガス濃度を検出するガス接触燃焼式のガスセンサであることを特徴としている。
上記のガスセンサの劣化診断方法によれば、検出素子の触媒が被毒物質で被毒されることに起因するガスセンサの劣化に対しても、容易に劣化診断を行うことができる。
【0021】
さらに、請求項14に記載の本発明のガスセンサの劣化診断方法では、前記被検知ガスは水素ガスであり、前記検出手段は、燃料電池の酸素極から排出される酸化剤ガス中の水素ガス濃度を検出する水素センサであることを特徴としている。
上記のガスセンサの劣化診断方法によれば、水素センサによって燃料電池の運転状態を的確に把握しつつ、燃料電池の運転中であっても、水素センサの劣化診断を容易に行うことができる。
【0022】
さらに、請求項15に記載の本発明のガスセンサの劣化診断方法では、前記被検知ガスは水素ガスであり、前記検出手段は、車両の車室内の雰囲気ガスの水素ガス濃度を検出する水素センサであることを特徴としている。
上記のガスセンサの劣化診断方法によれば、水素センサによって車両の状態や、例えば車両に搭載された燃料電池の運転状態を的確に把握しつつ、車両の運転時であっても、水素センサの劣化診断を容易に行うことが可能となる。
【0023】
また、請求項16に記載の本発明のガスセンサの劣化診断装置は、検出素子と温度補償素子とを備えて構成される複数の検出要素が互いに近接配置されてなり、前記複数の検出要素のうち、少なくとも1つの検出要素を基準検出要素とし、前記基準検出要素以外の検出要素を常用検出要素とする検出手段(例えば、実施の形態での各水素センサ11a,11b、複数の水素センサ60)と、被検知ガスの濃度検出時に前記常用検出要素に通電して該常用検出要素により前記被検知ガスの濃度検出を行う常用検出手段(例えば、実施の形態での常用スイッチ70Bおよび通電指示部69)と、前記常用検出要素の劣化診断時に前記常用検出要素と前記基準検出要素の両方に通電して各検出要素により前記被検知ガスの濃度検出を行う相対診断手段(例えば、実施の形態でのステップS01〜ステップS03)と、前記常用検出要素の出力値と前記基準検出要素の出力値とを比較する比較手段(例えば、実施の形態でのステップS04、ステップS61およびステップS62)と、前記比較手段での比較結果に応じて前記常用検出要素の劣化判定を行う相対判定手段(例えば、実施の形態でのステップS05、ステップS06)とを備えることを特徴としている。
【0024】
上記構成のガスセンサの劣化診断装置によれば、被検知ガスの濃度検出時は常用検出要素に通電して被検知ガスの濃度検出を行い、例えば基準検出要素には通電を遮断することにより、常用検出要素に比べて基準検出要素の劣化を抑制することができる。そして、常用検出要素の劣化診断時は、常用検出要素および基準検出要素の両方に通電して、常用検出要素の出力値と基準検出要素の出力値とを相対的に比較することにより、常用検出要素が劣化しているか否かを容易に診断することができる。
【0025】
さらに、請求項17に記載の本発明のガスセンサの劣化診断装置では、前記複数の検出要素は、各検出要素により得られる前記被検知ガスの実質的な濃度の検出結果の差異が所定の範囲以内となるようにして、互いに近接配置されることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、例えば複数の検出要素に対して同等のガス濃度の被検出ガスを供給したときに、各検出要素の配置位置に応じて各検出要素による検出結果が異なる場合であっても、相対診断による常用検出要素に対する劣化診断の診断精度が低下してしまうことを抑制することができる。
【0026】
さらに、請求項18に記載の本発明のガスセンサの劣化診断装置では、前記所定の範囲は、前記検出結果に対する±10%以内とされることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、相対診断による常用検出要素に対する劣化診断の診断精度が低下してしまうことを、より一層、抑制することができる。
【0027】
さらに、請求項19に記載の本発明のガスセンサの劣化診断装置は、前記基準検出要素の劣化診断時に前記基準検出要素に通電して前記基準検出要素により前記被検知ガスの濃度検出を行う絶対診断手段(例えば、実施の形態でのステップS14)と、前記基準検出要素の出力値に基づいて前記基準検出要素の劣化判定を行う絶対判定手段(例えば、実施の形態でのステップS43、ステップS44)とを備えることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、常用検出要素の劣化診断を相対的に診断する際の基準とされる基準検出要素の劣化診断を、基準検出要素の出力値によって、いわば絶対的に診断することができる。これにより、相対診断による常用検出要素の劣化診断の診断精度を向上させることができる。
【0028】
さらに、請求項20に記載の本発明のガスセンサの劣化診断装置は、燃料ガスおよび酸化剤ガスが供給されて電気化学反応により発電する燃料電池と、前記燃料電池から排出される前記燃料ガスを、前記燃料電池から排出される前記酸化剤ガスにより希釈する希釈手段(例えば、実施の形態での希釈装置26)と、前記希釈手段から出力される希釈ガスを前記燃料電池から排出される前記酸化剤ガスに混合して既知濃度の前記被検知ガスとし、前記基準検出要素に供給する既知濃度ガス供給手段(例えば、実施の形態での制御装置12および還流路27および導入弁28)とを備えることを特徴としている。
【0029】
上記構成のガスセンサの劣化診断装置によれば、燃料電池から出力される燃料ガスを有効に利用して基準検出要素の劣化診断を実行することができる。
【0030】
さらに、請求項21に記載の本発明のガスセンサの劣化診断装置は、所定濃度の前記被検知ガスを前記基準検出要素の雰囲気ガスに混合して既知濃度の前記被検知ガスとし、前記基準検出要素に供給する既知濃度ガス供給手段(例えば、実施の形態での制御装置12および供給装置71および導入弁72)とを備えることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、例えば基準検出要素を実装位置から取り外して検査する必要が無しに、基準検出用素の実装状態において容易に劣化診断を実行することができる。
【0031】
さらに、請求項22に記載の本発明のガスセンサの劣化診断装置では、前記検出手段は、前記検出素子の触媒に接触する前記被検出ガスの燃焼に応じて発生する前記検出素子と前記温度補償素子との電気抵抗値の差異に基づいて前記被検知ガスのガス濃度を検出するガス接触燃焼式のガスセンサ(例えば、実施の形態での各水素センサ11a,11b、複数の水素センサ60)であることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、検出素子の触媒が被毒物質で被毒されることに起因するガスセンサの劣化に対しても、容易に劣化診断を行うことができる。
【0032】
さらに、請求項23に記載の本発明のガスセンサの劣化診断装置では、前記被検知ガスは水素ガスであり、前記検出手段は、燃料電池の酸素極から排出される酸化剤ガスの流路に配置され、前記流路を流通する前記酸化剤ガス中の水素ガス濃度を検出する水素センサ(例えば、実施の形態での水素センサ11b、複数の水素センサ60)であることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、水素センサによって燃料電池の運転状態を的確に把握しつつ、燃料電池の運転中であっても、水素センサの劣化診断を容易に行うことができる。
【0033】
さらに、請求項24に記載の本発明のガスセンサの劣化診断装置では、前記被検知ガスは水素ガスであり、前記検出手段は、車両の車室内に配置され、前記車室内の雰囲気ガスの水素ガス濃度を検出する水素センサ(例えば、実施の形態での水素センサ11a、複数の水素センサ60)であることを特徴としている。
上記構成のガスセンサの劣化診断装置によれば、水素センサによって車両の状態や、例えば車両に搭載された燃料電池の運転状態を的確に把握しつつ、車両の運転時であっても、水素センサの劣化診断を容易に行うことが可能となる。
【0034】
【発明の実施の形態】
以下、本発明の一実施形態に係るガスセンサの劣化診断装置について添付図面を参照しながら説明する。
本実施形態に係るガスセンサの劣化診断装置10は、例えば図1に示すように、燃料電池車両等の車両1の車室内においてゼロを含む所定濃度の水素を検出する水素センサ11aや、例えば図2に示すように、車両1の動力源とされる燃料電池2および燃料電池2に接続された各配管3,4,5,6を具備する燃料電池システム7の酸素極側の出口側配管6に備えられた水素センサ11b等のガスセンサに対して、各ガスセンサが劣化したか否かを診断するものであって、例えば、制御装置12と、記憶装置13と、警報装置14とを備えて構成されている。
【0035】
なお、制御装置12は、車両1のルーフ1aに取り付けられた水素センサ11aおよび燃料電池2の酸素極側の出口側配管6に取り付けられた水素センサ11bに接続され、例えば、各水素センサ11a,11bから出力される検出信号と、記憶装置13に格納されている所定の判定閾値との比較結果に応じて、各水素センサ11a,11bが劣化しているか否かを判定し、劣化していると判定した際には、警報装置14によって警報等を出力する。ここで、記憶装置3は、各ガスセンサ11a,11bの検出値(出力)に対する所定の判定閾値のマップ等を記憶している。
【0036】
図2は、燃料電池システム7の構成図であり、この実施の形態において、燃料電池システム7は、例えば図1に示すように、燃料電池2の発電電力によって駆動する燃料電池車両等の車両1に搭載されている。
燃料電池2は、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極(アノード)と酸素極(カソード)で挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セル(図示略)を多数組積層して構成されたスタックからなる。
【0037】
この燃料電池2では、例えば高圧の水素タンク等を備える水素供給装置(図示略)から燃料極側の入口側配管3を介して燃料として水素が燃料極に供給されるとともに、コンプレッサ21により酸素極側の入口側配管4を介して酸化剤として空気が酸素極に供給され、燃料極の触媒電極上で触媒反応により水素がイオン化され、生成された水素イオンが適度に加湿された固体高分子電解質膜を通過して酸素極まで移動する。そして、この間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。また、酸素極には酸素を含む空気が供給されているために、この酸素極において、水素イオン、電子及び酸素が反応して水が生成される。ここで、コンプレッサ21は、制御装置12によって、燃料電池2の出力に応じた流量の空気を燃料電池2に供給するように制御される。
そして、燃料極側の出口側配管5および酸素極側の出口側配管6から未反応の反応ガス(例えば、水素や空気等)を含むいわゆるオフガスが排出される。
【0038】
ここで、未反応の水素を含む水素オフガス(アノードオフガス)は燃料電池2の燃料極側の出口側配管5から水素循環路22に排出され、エゼクタ23を介して燃料極側の入口側配管3に戻され、再び燃料電池2の燃料極に供給されるようになっている。
一方、反応済みの空気を含む空気オフガス(カソードオフガス)は燃料電池2の酸素極側の出口側配管6を介して大気中へ排出される。
【0039】
酸素極側の出口側配管6にはガス接触燃焼式の水素センサ11bが備えられ、例えば空気オフガスの流通方向が水平方向となるように配置された出口側配管6に対しては、この出口側配管6の鉛直方向上部に水素センサ11bが配置されている。そして、この水素センサ11bにより、酸素極側の出口側配管6内を流通する空気オフガス中に含まれる、ゼロを含む所定濃度の水素を検知できるようになっている。
【0040】
さらに、図2に示すように、燃料電池2の燃料極側の出口側配管5にはパージ弁24を介して水素排出路25が接続され、この水素排出路25には希釈装置26が接続されており、水素オフガスは、パージ弁24を介して水素排出路25に排出可能とされ、さらに、水素排出路25を通って希釈装置26に導入可能とされている。
希釈装置26は、水素排出路25から取り込んだ水素オフガスを、酸素極側の出口側配管6において水素センサ11bよりも下流の位置6aから取り込んだ空気オフガスによって適宜の倍率で希釈し、希釈ガスとして排出することができるように構成されている。
希釈装置26で生成された希釈ガスは、還流路27および導入弁28を介して、酸素極側の出口側配管6において水素センサ11bよりも上流の位置(希釈ガスの導入部)6bに戻されるようになっている。
なお、希釈装置26は適宜の希釈ガスを貯留可能であって、例えば燃料電池2の停止時等のように、酸素極側の出口側配管6内において空気オフガスが流通していない場合であっても、出口側配管6内に希釈ガスを流通させることができるように構成されている。
【0041】
ここで、パージ弁24および導入弁28は、制御装置12によって開閉制御されており、パージ弁24および導入弁28が開放されると、燃料極側の出口側配管5を流れる水素オフガスが水素排出路25を通って希釈装置26に導入され、希釈装置26において適宜の濃度に希釈された水素オフガスが希釈ガスとして還流路27を通って酸素極側の出口側配管6に排出される。
なお、希釈装置26による希釈倍率は、予め所定値に設定可能であり、水素オフガスの水素ガス濃度が既知である場合には、希釈ガスの水素ガス濃度も既知となる。ただし、酸素極側の出口側配管6を流れる空気オフガスの流量は燃料電池2の出力に応じて変化するため、希釈ガスと混合された空気オフガス中の水素ガス濃度は燃料電池2の出力に応じて変化する。
【0042】
このため、例えば、酸素極側の出口側配管6を流れる空気オフガスに希釈ガスを混合して、希釈ガス混合後の空気オフガス中に含まれる水素ガスによって水素センサ11bの劣化診断を行う場合には、希釈ガス混合後の空気オフガス中の水素ガス濃度が、少なくとも水素センサ11bの検出可能範囲内の値となるように、希釈ガスの水素ガス濃度を設定し、希釈装置26による希釈倍率を設定する。
さらに、この場合には、酸素極側の出口側配管6に導入された希釈ガスが酸素極側の出口側配管6を流れる空気オフガスにほぼ均一に混合された状態で水素センサ11bに到達するように、希釈ガスの導入部6bから水素センサ11bまでの距離が所定距離に設定されている。
なお、パージ弁24と、水素排出路25と、希釈装置26と、還流路27と、導入弁28とによって、希釈ガス供給装置29が構成されている。
【0043】
図1に示すように、例えばガス接触燃焼式の水素センサ11aは車両1のルーフ1aの水平方向(例えば、車両1の前後方向や横方向等)に沿って長い直方形状のケース30を備え、図2に示すように、例えばガス接触燃焼式の水素センサ11bは酸素極側の出口側配管6の長手方向に沿って長い直方形状のケース30を備えている。
例えば図3に示すように、ケース30は、例えばポリフェニレンサルファイド製であって、長手方向両端部にフランジ部31を備えている。フランジ部31にはカラー32が取り付けられており、このカラー32内にボルト33が挿入されることで、フランジ部31は、ルーフ1aに設けられた取付座(図示略)や、例えば図4に示すように、酸素極側の出口側配管6に設けられた取付座6Aに締め付け固定されるようになっている。
【0044】
また、例えば図4に示すように、ケース30の厚さ方向の端面には筒状部34が形成され、筒状部34の内部はガス検出室35として形成され、筒状部34の先端内周部分がガス導入部36として開口形成されている。例えば図4に示すように、酸素極側の出口側配管6に設けられた水素センサ11bにおいて、筒状部34は、酸素極側の出口側配管6の貫通孔6Bに外側から挿通されている。そして、酸素極側の出口側配管6に取り付けられるガスセンサ11bにおいては、筒状部34の外周面にシール材37が取り付けられ、このシール材37が酸素極側の出口側配管6の貫通孔6Bの内周壁に密接して気密性を確保している。
【0045】
なお、ルーフ1aに設けられた水素センサ11aは、筒状部34の先端面がルーフ1aとほぼ面一となるように設置されており、酸素極側の出口側配管6に設けられた水素センサ11bは、筒状部34の先端面が酸素極側の出口側配管6の内面とほぼ面一となるように設置されている。そして、例えば水素センサ11abに対して検査対象ガスとされる車室内の雰囲気ガスはルーフ1aに対して略垂直にガス検出室35内へ導入される。また、例えば水素センサ11bに対して検査対象ガスとされる空気オフガスは酸素極側の出口側配管6に対して略垂直にガス検出室35内へ導入される。
【0046】
ケース30内には樹脂で封止された回路基板38が設けられ、筒状部34の内部に互いに近接して配置された複数組の各検出要素、例えば2組の基準検出要素50Aおよび常用検出要素50Bは、回路基板38に接続されている。
各検出要素50A,50Bはそれぞれ、検出素子51と温度補償素子52とで対をなして構成されている。そして、各素子51,52は回路基板38に接続された複数、例えば8個のピン53により、ガス検出室35の底面35A上に配置されたベース54から、各水素センサ11a,11bの厚さ方向に所定距離だけ離間した位置において、所定間隔を隔てて対をなすようにして配置されている。
つまり、2組の各検出要素50A,50Bはガス検出室35内でベース54から同一高さの位置にて平行に配置されている。
なお、各素子51,52の配列方向(例えば、各素子51,52の中心位置を結ぶ直線が伸びる方向)は任意の方向に設定可能であり、例えば酸素極側の出口側配管6に取り付けられた水素センサ11bにおいて、各素子51,52の配列方向は、出口側配管6内を流通する空気オフガスの流通方向とは無関係に設定されてもよい。
【0047】
なお、複数組の各検出要素が近接して配置される場合とは、複数組の各検出要素により検出される被検出ガスの実質的な濃度の各検出値(濃度検出値)間の偏差が各検出要素間の相対的な配置位置のみに応じて変化する場合において、各濃度検出値間の偏差が所定偏差以内となる場合である。例えば、2組の基準検出要素50Aおよび常用検出要素50Bは、各検出要素50A,50Bより検出される水素ガス濃度の各濃度検出値間の偏差が各濃度検出値に対して所定割合以内となるようにして配置されている。
ここで、所定偏差は、例えば各濃度検出値に対して±20%以内とされ、より好ましくは、例えば±10%以内とされ、さらに好ましくは、例えば±5%以内とされている。
なお、各検出要素の検出値の偏差は、検出される被検出ガスの実質的な濃度の検出値に応じて設定されるものであって、例えば、単に、各検出要素から出力される出力値に対して算出した偏差等ではなく、例えば各検出要素毎に出力値に対して適宜のオフセット値が設定されている場合等であっても、これらのオフセット値を補正した後に得られる各濃度検出値に応じて算出される。
【0048】
検出素子51は周知の素子であって、例えば図5および図6に示すように、電気抵抗に対する温度係数が高い白金等を含む金属線のコイル51aの表面が、被検出ガスとされる水素に対して活性な貴金属等からなる触媒51bを坦持するアルミナ等の坦体で被覆されて形成されている。
温度補償素子52は、被検出ガスに対して不活性とされ、例えば検出素子51と同等のコイル52aの表面がアルミナ等の坦体で被覆されて形成されている。
そして、被検出ガスである水素が検出素子51の触媒51bに接触した際に生じる燃焼反応の発熱により高温となった検出素子51と、被検出ガスによる燃焼反応が発生せず検出素子51よりも低温の温度補償素子52との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して水素ガス濃度を検出することができるようになっている。
【0049】
例えば図6に示すように、各検出要素50A,50Bに対し、検出素子51(抵抗値R4)及び温度補償素子52(抵抗値R3)が直列接続されてなる枝辺と、固定抵抗61(抵抗値R1)及び固定抵抗62(抵抗値R2)が直列接続されてなる枝辺とが、外部の電源63から供給される電圧に基づいて所定の基準電圧を印加する基準電圧発生回路64に対して並列に接続されてブリッジ回路が形成されている。そして、各ブリッジ回路において、検出素子51と温度補償素子52同志の接続点PSと、固定抵抗61,62同志の接続点PRとの間に、これらの接続点PS,PR間の電圧を検出する各基準検出回路65Aおよび常用検出回路65Bが接続されている。
【0050】
ここで、ガス検出室35内に導入された検査対象ガス中に被検出ガスである水素が存在しないときには、ブリッジ回路はバランスしてR1×R4=R2×R3の状態にあり、各検出回路65A,65Bの出力がゼロとなる。一方、水素が存在すると、検出素子51の触媒51bにおいて水素が燃焼し、コイル51aの温度が上昇し、抵抗値R4が増大する。これに対して温度補償素子52においては水素は燃焼せず、抵抗値R3は変化しない。これにより、ブリッジ回路の平衡が破れて各検出回路65A,65Bに、水素濃度の増大変化に応じて増大傾向に変化する適宜の電圧が印加される。
そして、各検出回路65A,65Bから出力される電圧の検出値は、劣化診断部66および出力切替部67へ出力されている。
【0051】
ここで、劣化診断部66は、後述するように、基準検出要素50Aおよび常用検出要素50Bの各検出値を相対的に比較する相対診断、あるいは、基準検出要素50Aの検出値と常用検出要素50Bの検出値とを互いに独立に所定基準値と比較する絶対診断によって、各検出要素50A,50Bの劣化診断を行い、例えば診断結果を出力切替部67および通電指示部69および警報装置14へ出力する。
出力切替部67は、劣化診断部66から入力される診断結果に応じて、例えば基準検出回路65Aまたは常用検出回路65Bの何れか一方から出力される検出値を出力回路68へ出力する。例えば出力切替部67は、車両1の運転時おいて、常用検出回路65Bから出力される検出値を出力回路68へ出力している状態にて、劣化診断部66から常用検出要素50Bの劣化を示す診断結果が入力されると、例えば基準検出要素50Aから出力される検出値を出力回路68へ出力するように切替を行う。
そして、出力回路68は入力された検出値を制御装置12へ出力しており、制御装置12においては、電圧の検出値の変化に応じて予め設定された水素濃度のマップ等に基づき、水素濃度が算出される。
【0052】
さらに、各検出要素50A,50Bと基準電圧発生回路64との間には、基準電圧発生回路64から各検出要素50A,50Bへの通電のオン/オフを通電指示部69から入力される制御指令に応じて切替可能な基準スイッチ70Aおよび常用スイッチ70Bが備えられている。
ここで、通電指示部69は、例えば劣化診断部66から入力される劣化診断の診断結果や、例えば制御装置12から入力される制御指令や、例えば所定のタイミング等に基づき、各スイッチ70A,70Bの切替動作を制御する。
【0053】
例えば、燃料電池2の運転中において、通常時には、通電指示部69により各水素センサ11a,11bにおいて常用検出要素50Bが組み込まれたブリッジ回路に常時通電され、この常用検出要素50Bによって車両1の車室内や酸素極側の出口側配管6を流れる空気オフガス中の水素ガス濃度が検出される。そして、この通常時には、通電指示部69により基準検出要素50Aが組み込まれたブリッジ回路には通電が遮断され、基準検出要素50Aによる水素ガス濃度の検出は行われない。
この場合、検出素子51に付着されている触媒のシリコン被毒や硫黄被毒や水分の吸着等による劣化は、検出素子51が通電されている時にのみ進行することが知られている。したがって、通常時には、常用検出要素50Bの検出素子51に付着されている触媒は、経時的使用によって空気オフガス中に含まれるシリコンや硫黄や水分により劣化する虞がある。一方、通常時には基準検出要素50Aへの通電が遮断されているので、基準検出要素50Aの検出素子51に付着されている触媒が空気オフガス中に含まれるシリコンや硫黄や水分により劣化することは抑制される。
【0054】
そして、所定の時期に各水素センサ11a,11bの劣化診断が実行されるときには、通電指示部69は基準検出要素50Aおよび常用検出要素50Bが組み込まれた各ブリッジ回路に通電し、基準検出要素50Aと常用検出要素50Bの両方でそれぞれ検査対象ガスの水素ガス濃度の検出を実行させる。
ここで、所定の時期とは、例えば燃料電池2の運転継続時間が所定時間経過する毎のタイミングに加えて、例えば車両の始動開始に備え、車両の始動開始を指示するIGスイッチのオン時や、例えば車両の次回の始動に備え、IGスイッチのオフ時や、各水素センサ11a,11bが劣化する虞がある場合に対応して、例えば各水素センサ11a,11bが所定濃度を超える水素ガス濃度の被検出ガスに所定時間以上に亘って曝されたときや、例えば各水素センサ11a,11bが所定湿度を超える湿度の被検出ガスに所定時間以上に亘って曝されたとき等とされている。
【0055】
さらに、所定の時期は、例えば燃料電池2の起動時や定常運転時や車両1のアイドル運転時等のように、燃料電池2から排出される水素オフガスや空気オフガスの各ガス濃度が相対的に安定していることによって、安定した濃度の被検出ガスによって劣化診断を実行することができる場合や、例えば燃料電池2の過渡運転時等のように、燃料電池2から排出される水素オフガスや空気オフガスの各ガス濃度の時間変化が相対的に大きいことによって被検出ガスの複数の異なる濃度に対して劣化診断を実行可能な場合や、例えば各水素センサ11a,11bに対して所定の継続時間毎に実行される例えば断線検知等の自己診断処理が実行される時等とされている。
【0056】
そして、例えばIGスイッチのオン/オフに応じた劣化診断や燃料電池2の作動状態に応じた劣化診断等においては、制御装置12から入力される制御指令によって劣化診断の処理が開始され、例えば所定時間毎の劣化診断や各水素センサ11a,11bの作動状態に応じた劣化診断等においては、制御装置12から入力される制御指令を必要とせずに、例えば劣化診断部66等によって劣化診断の処理が開始される。
【0057】
上述した劣化診断部66にて実行される相対診断では、基準検出要素50Aに基づく出力値(以下、基準検出要素50Aの出力値と略す)と常用検出要素50Bに基づく出力値(以下、常用検出要素50Bの出力値と略す)とを比較することにより、常用検出要素50Bが劣化しているか否かの診断を行う。
すなわち、基準検出要素50Aの検出素子51に付着している触媒は、通常運転時は通電されていないので劣化が抑制されている。このため、基準検出要素50Aは水素ガス濃度に対応する、より正確な出力値を出力することができ、常用検出要素50Bの出力値が基準検出要素50Aの出力値と比較して所定の許容範囲内である場合には、常用検出要素50Bは正常であると判定することができ、所定の許容範囲から外れている場合には、常用検出要素50Bは異常であると判定することができる。
従って、この相対診断では、基準検出要素50Aおよび常用検出要素50Bに同等の水素ガス濃度の検査対象ガスが供給されていればよい。
【0058】
なお、この相対診断においては、診断内容に応じて、単に、通電指示部69によって基準検出要素50Aおよび常用検出要素50Bが組み込まれた各ブリッジ回路に通電することによって、各水素センサ11a,11bの雰囲気ガスの状態を診断の前後で変化させずに劣化診断を実行してもよいし、さらに、各水素センサ11a,11bに対する検査対象ガスの水素ガス濃度が少なくとも各水素センサ11a,11bの検出可能範囲内の値となるように設定して劣化診断を実行してもよい。
例えば、酸素極側の出口側配管6に配置された水素センサ11bに対しては、制御装置12によってパージ弁24と導入弁28を開くことにより、希釈ガスを酸素極側の出口側配管6に供給し、検査対象ガスとされる空気オフガスの水素ガス濃度を、水素センサ11bの検出可能範囲内の適宜の値に設定する。
また、検査対象ガスとして、水素ガス濃度がゼロあるいは各水素センサ11a,11bの検出可能範囲未満の値となるガス、例えば大気等を供給した場合には、常用検出要素50Bの出力値に対してゼロ点変動の有無を検知することができる。さらに、例えば、このゼロ点変動の変動レベルと、各水素センサ11a,11bの劣化状態との相関関係を、予め事前に取得しておくことにより、高濃度側での劣化状態を推定することができる。
【0059】
また、劣化診断部66にて実行される絶対診断では、制御装置12は基準検出要素50Aおよび常用検出要素50Bに既知濃度の検査対象ガス、つまりゼロを含む所定の水素ガス濃度の検査対象ガス(絶対検査用ガス)を供給する。そして、劣化診断部66は、基準検出要素50Aの出力値と常用検出要素50Bの出力値とを互いに独立に、既知濃度の絶対検査用ガスに応じた所定値と比較し、各検出要素50A,50Bの出力値が所定値に対して所定の許容範囲内である場合には、対応する各検出要素50A,50Bは正常であると判定し、所定の許容範囲から外れている場合には、対応する各検出要素50A,50Bは異常であると判定する。
【0060】
この絶対診断においては、診断内容に応じて、通電指示部69によって基準検出要素50Aまたは常用検出要素50Bの何れか一方のブリッジ回路、あるいは、基準検出要素50Aおよび常用検出要素50Bの両方の各ブリッジ回路に通電することによって、各検出要素50A,50B毎あるいは両検出要素50A,50Bに対して劣化診断を行ってもよい。
また、既知濃度の絶対検査用ガスを供給する際に、例えば、酸素極側の出口側配管6に配置された水素センサ11bに対しては、制御装置12によってパージ弁24と導入弁28を開くことにより、希釈ガスを酸素極側の出口側配管6に供給し、検査対象ガスとされる空気オフガスの水素ガス濃度を、水素センサ11bの検出可能範囲内の所定値に設定する。
また、検査対象ガスとして、水素ガス濃度がゼロあるいは各水素センサ11a,11bの検出可能範囲未満の値となるガス、例えば大気等を供給した場合には、基準検出要素50Aおよび常用検出要素50Bの各出力値に対してゼロ点変動の有無を検知することができる。
【0061】
そして、劣化診断部66での診断結果は制御装置12へ出力され、例えば常用検出要素50Bや基準検出要素50Aに異常が発生していると診断された場合に、制御装置12は警報装置14によって各水素センサ11a,11bが劣化していることを運転者等に報知する。
【0062】
本実施の形態によるガスセンサの劣化診断装置10は上記構成を備えており、次に、ガスセンサの劣化診断装置10の動作について添付図面を参照しながら説明する。
以下に、相対診断によって、例えば車両1のルーフ1aに取り付けられた水素センサ11aおよび燃料電池2の酸素極側の出口側配管6に取り付けられた水素センサ11bの劣化を診断する処理について説明する。
ここでは、例えば燃料電池2において発電が行われる車両1の通常の運転状態であって、各水素センサ11a,11bに対し、常用検出要素50Bが組み込まれたブリッジ回路に常時通電され、基準検出要素50Aが組み込まれたブリッジ回路には通電が遮断され、水素センサ11aの常用検出要素50Bによって車室内雰囲気ガスの水素ガス濃度が検出され、水素センサ11bの常用検出要素50Bによって燃料電池2の酸素極側の出口側配管6から排出される空気オフガスの水素ガス濃度が検出されている状態について説明する。
まず、例えば図7に示すステップS01においては、各水素センサ11a,11bの基準検出要素50Aに通電を行う。
【0063】
次に、ステップS02においては、各水素センサ11a,11b毎に常用検出要素50Bの出力値B1を読み込み、次に、ステップS03においては、各水素センサ11a,11b毎に基準検出要素50Aの出力値A1を読み込む。
そして、ステップS04においては、各水素センサ11a,11b毎に常用検出要素50Bの出力値B1と基準検出要素50Aの出力値A1の差(比較値)を求め、この差(A1−B1)が所定値Yを超えているか否かを判定する。
この判定結果が「YES」の場合、つまり所定値Yを超えている場合には、ステップS05に進み、常用検出要素50Bの検出素子51が感度異常であり、検出素子51の触媒が劣化したことによって出力値が低下したと判断して、各水素センサ11a,11bが劣化したと判定し、一連の処理を終了する。
一方、この判定結果が「NO」の場合、つまり所定値Y以下の場合には、ステップS06に進み、常用検出要素50Bの検出素子51は感度正常であり、各水素センサ11a,11bが劣化していないと判定し、一連の処理を終了する。
なお、所定値Yは、例えば各出力値A1または出力値B1に対する20%の値(例えば、0.2・A1または0.2・B1)等とされている。
【0064】
以下に、絶対診断によって、各水素センサ11a,11b、特に燃料電池2の酸素極側の出口側配管6に取り付けられた水素センサ11bの劣化を診断する処理について説明する。
ここでは、例えば燃料電池2において発電が行われる車両1の通常の運転状態であって、水素センサ11bに対し、常用検出要素50Bが組み込まれたブリッジ回路に常時通電され、基準検出要素50Aが組み込まれたブリッジ回路には通電が遮断され、常用検出要素50Bによって燃料電池2の酸素極側の出口側配管6から排出される空気オフガスの水素ガス濃度が検出されている状態について説明する。
まず、例えば図8に示すステップS11においては、水素センサ11bの基準検出要素50Aに通電を行う。
【0065】
次に、ステップS12において、水素ガス濃度が既知濃度である検査対象ガス(絶対検査用ガス)を酸素極側の出口側配管6に供給する。
ここでは、例えば制御装置12によってパージ弁24と導入弁28を開くことにより、水素オフガスが所定の希釈倍率で空気オフガスによって希釈された希釈ガスを酸素極側の出口側配管6に供給し、希釈ガス混合後の空気オフガスの水素ガス濃度が所定の既知濃度となるように設定する。
次に、ステップS13においては、後述する常用検出要素50Bに対する劣化診断処理(図9)を実行し、次に、ステップS14においては、後述する基準検出要素50Aに対する劣化診断処理(図10)を実行する。
そして、ステップS15においては、例えば制御装置12によってパージ弁24と導入弁28を閉弁し、水素ガス濃度が既知濃度である絶対検査用ガスの供給を停止して、一連の処理を終了する。
【0066】
以下に、上述したステップS13における常用検出要素50Bに対する劣化診断処理について説明する。
先ず、図9に示すステップS31においては、常用検出要素50Bの出力値B2を読み込み、次に、ステップS32に進み、常用検出要素50Bの出力値B2が、所定値Y2から所定値Y3の範囲内にあるか否かを判定する。
この判定結果が「YES」(Y2>B2>Y3)である場合は、ステップS33に進み、常用検出要素50Bの検出素子51は感度正常である判断して、一連の処理を終了する。
一方、この判定結果が「NO」(B2≦Y3、あるいは、B2≧Y2)である場合は、ステップS34に進み、常用検出要素50Bの検出素子51は感度異常であると判断して、一連の処理を終了する。
【0067】
以下に、上述したステップS14における基準検出要素50Aに対する劣化診断処理について説明する。
先ず、図10に示すステップS41においては、基準検出要素50Aの出力値A2を読み込み、次に、ステップS42に進み、基準検出要素50Aの出力値A2が、所定値Y2から所定値Y3の範囲にあるか否かを判定する。
この判定結果が「YES」(Y2>A2>Y3)である場合は、ステップS43に進み、基準検出要素50Aの検出素子51は感度正常である判断して、一連の処理を終了する。
一方、この判定結果が「NO」(A2≦Y3、あるいは、A2≧Y2)である場合は、ステップS44に進み、基準検出要素50Aの検出素子51は感度異常であると判断して、一連の処理を終了する。
【0068】
なお、上述したステップS11〜ステップS15における絶対診断による劣化診断処理は、例えば上述したステップS01〜ステップS06における相対診断による劣化診断処理の実行頻度よりも少ない頻度で実行されており、例えば相対診断による劣化診断処理を所定の複数回実行する毎に1回、あるいは、燃料電池2の停止時等に実行される。
【0069】
上述したように、本実施の形態によるガスセンサの劣化診断装置10によれば、車両1の通常の運転状態等においては常用検出要素50Bが組み込まれたブリッジ回路に常時通電され、基準検出要素50Aが組み込まれたブリッジ回路には通電が遮断されることにより、常用検出要素50Bに比べて基準検出要素50Aの劣化を抑制することができる。そして、常用検出要素50Bの劣化診断時は、常用検出要素50Bおよび基準検出要素50Aの両方に通電して、常用検出要素50Bの出力値と基準検出要素50Aの出力値とを相対的に比較することにより、常用検出要素50Bが劣化しているか否かを容易に診断することができる。
また、常用検出要素50Bの劣化診断を相対的に診断する際の基準とされる基準検出要素50Aの劣化診断を、基準検出要素50Aの出力値によって、いわば絶対的に診断することができる。これにより、相対診断による常用検出要素50Bの劣化診断の診断精度を向上させることができる。
【0070】
また、本実施の形態によるガスセンサの劣化診断方法によれば、先ず、相対診断による劣化診断処理によって、各水素センサ11a,11bの検査対象ガスに対して、同時に、基準検出要素50Aと常用検出要素50Bの両方で水素ガス濃度の検出を実行し、この際の基準検出要素50Aの出力値と常用検出要素50Bの出力値とを相対的に比較することによって、常用検出要素50Bが劣化しているか否かを診断することができる。したがって、劣化診断時における検査対象ガスの水素ガス濃度が一定でなく変動する場合にも劣化診断が可能であり、さらに、検査対象ガスの水素ガス濃度を既知である必要が無く、任意の水素ガス濃度の検査対象ガスを供給するだけで診断を行うことができる。このため、例えば燃料電池2の運転中等において、単に、基準検出要素50Aおよび常用検出要素50Bが組み込まれた各ブリッジ回路に通電することによって、各水素センサ11a,11bの劣化診断を容易に行うことができる。
【0071】
また、水素ガス濃度が既知濃度である検査対象ガス(絶対検査用ガス)を用いた絶対診断による劣化診断処理によれば、基準検出要素50Aと、常用検出要素50Bとを、独立に診断することができる。これにより、例えば相対診断による劣化診断処理の実行回数が増大することに伴って、通常時においては通電が遮断されている基準検出要素50Aに対する通電の頻度が増大し、徐々に基準検出要素50Aの検出素子51の触媒が劣化する場合や、基準検出要素50Aに予期しない異常が発生した場合等であっても、これらの異常状態の発生を確実に検知することができる。
しかも、基準検出要素50Aに加えて常用検出要素50Bの劣化診断も独立して行うことができるので、相対診断による劣化診断処理での常用検出要素50Bの診断結果に対する信頼性を向上させることができる。
また、水素ガス濃度が既知濃度である検査対象ガス(絶対検査用ガス)として、予め所定の希釈倍率で水素オフガスを空気オフガスにより希釈した希釈ガスを用いた場合には、水素センサ11bを燃料電池システムから取り外すことなく、基準検出要素50Aの劣化診断を容易に行うことが可能となる。
【0072】
〔他の実施の形態〕
なお、上述した本実施の形態においては、基準検出要素50Aおよび常用検出要素50Bはガス検出室35内の同一のベース54に配置されるとしたが、これに限定されず、例えば図11および図12に示す本実施形態のガスセンサの劣化診断装置10の第1変形例に係る各水素センサ11a,11bのように、各検出要素50A,50Bは互いに独立して、ガス検出室35の底面35A上に隣接するようにして近接配置された2つの異なる各ベース54a,54bに配置されてもよい。
また、例えば図13および図14に示す本実施形態のガスセンサの劣化診断装置10の第2変形例に係る各水素センサ11a,11bのように、各検出要素50A,50Bは互いに独立して、各水素センサ11a,11bの厚さ方向に沿ってガス検出室35内に近接配置された2つの異なる各ベース54a,54bに配置されてもよい。
【0073】
さらに、上述した本実施の形態においては、例えば図15および図16に示す本実施形態のガスセンサの劣化診断装置10の第3変形例に係る各水素センサ11a,11bのように、筒状部34の内部に互いに独立する複数、例えば2つの第1筒状部34aおよび第2筒状部34bが形成され、第1筒状部34aが第1ガス検出室35―1とされ、第2筒状部34bが第2ガス検出室35―2とされてもよい。
この場合、例えば、基準検出要素50Aは第1ガス検出室35―1の底面35−1A上に配置された第1ベース54aに配置され、常用検出要素50Bは第2ガス検出室35―2の底面35−2A上に配置された第2ベース54bに配置されている。
【0074】
さらに、上述した本実施の形態においては、基準検出要素50Aおよび常用検出要素50Bは各水素センサ11a,11bのガス検出室35内に配置されるとしたが、これに限定されず、例えば図17および図18に示す本実施形態のガスセンサの劣化診断装置10の第4変形例に係る水素センサ60のように、筒状部34の内部に1組の検出要素61を備える水素センサ60を複数個備え、これらの複数の水素センサ60の各検出要素61を、基準検出要素50Aまたは常用検出要素50Bに対応させてもよい。なお、この第4変形例に係る水素センサ60において、1組の検出要素61は検出素子51と温度補償素子52とで対をなして構成されている。また、水素センサ60において、上述した本実施の形態と同一部分には同じ符号を配して説明を省略する。
例えば図19に示すように、酸素極側の出口側配管6においては、この出口側配管6が伸びる方向に沿って複数、例えば2つの水素センサ60,60が隣接するように近接配置され、一方の水素センサ60の検出要素61が基準検出要素50Aとされ、他方の水素センサ60の検出要素61が常用検出要素50Bとされている。
なお、この本実施形態の第4変形例に係るガスセンサの劣化診断装置10においては、例えば図20に示すように、複数、例えば2つの水素センサ60,60を出口側配管6の径方向に沿って対向配置させてもよいし、例えば図21に示すように、複数、例えば2つの水素センサ60,60を出口側配管6の周方向に沿った適宜の位置に近接して配置させてもよい。
また、この本実施形態の第4変形例に係るガスセンサの劣化診断装置10においては、複数の水素センサ60を車両1の車室内の適宜の位置に近接して配置してもよい。
【0075】
なお、上述した本実施の形態においては、各水素センサ11a,11bに2組の基準検出要素50Aおよび常用検出要素50Bを備えるとしたが、これに限定されず、3組以上の検出要素を互いに近接するように備えてもよい。この場合、より好ましくは、1組の基準検出要素50Aと、2組以上の常用検出要素50B1,50B2,…,50Bn(ただし、nは任意の自然数)とを備えて各水素センサ11a,11bを構成する。
例えば図22および図23に示す本実施形態のガスセンサの劣化診断装置10の第5変形例に係る各水素センサ11a,11bにおいて、1組の基準検出要素50Aおよび2組の常用検出要素50B1,50B2は、例えばガス検出室35内の同一のベース54に配置され、各検出要素50A,50B1,50B2はそれぞれ、検出素子51と温度補償素子52とで対をなして構成されている。そして、各素子51,52は回路基板38に接続された複数、例えば12個のピン53により、ガス検出室35の底面35A上に配置されたベース54から、各水素センサ11a,11bの厚さ方向に所定距離だけ離間した位置において、所定間隔を隔てて対をなすようにして配置されている。
この場合には、基準検出要素50Aに比べて相対的に劣化が生じやすい複数の常用検出要素50B1,50B2,…,50Bnを、各常用検出要素50B1,50B2,…,50Bnの劣化状態に応じて順次、切り替えて使用することができる。例えば燃料電池2において発電が行われる車両1の通常の運転状態において、先ず、第1の常用検出要素50B1に通電を行い、検査対象ガスの水素ガス濃度の検出を行い、この第1の常用検出要素50B1が劣化したと判定された場合には、他の常用検出要素50B2,…,50Bnの何れかに通電を切り替えて水素ガス濃度の検出を行う。
さらに、全ての各常用検出要素50B1,50B2,…,50Bnが劣化したと判定された場合には、基準検出要素50Aによって検査対象ガスの水素ガス濃度の検出を行うように設定してもよい。
【0076】
なお、上述した本実施の形態において、劣化診断部66は診断結果を出力するとしたが、これに限定されず、例えば各検出要素50A,50Bが劣化していると判定した場合には、各水素センサ11a,11bから出力可能な出力値の範囲を逸脱した値の信号を、出力回路68から出力させることで、制御装置12等の外部の装置に対して各水素センサ11a,11bの異常を通知してもよい。
【0077】
なお、上述した本実施の形態においては、相対診断によって各水素センサ11a,11bの劣化診断を行うときに、例えば燃料電池2において発電が行われる車両1の通常の運転状態において、単に、各水素センサ11a,11bの基準検出要素50Aに通電を行う(ステップS01)としたが、これに限定されず、例えば図24に示す本実施形態の第6変形例に係るガスセンサの劣化診断装置10の動作を示すフローチャートのように、各水素センサ11a,11bに供給される検査対象ガスの水素ガス濃度が、少なくとも各水素センサ11a,11bの検出可能範囲内の適宜の値となるように設定する処理を付加してもよい。
例えば、図24に示すステップS01においては、各水素センサ11a,11bの基準検出要素50Aに通電を行い、ステップS51に進む。
【0078】
ステップS51においては、検査対象ガスの水素ガス濃度を少なくとも各水素センサ11a,11bの検出可能範囲内の適宜の値に調整し、上述したステップS02に進む。例えば、酸素極側の出口側配管6に配置された水素センサ11bに対しては、希釈ガス供給装置29においてパージ弁24と導入弁28を開くことにより、希釈ガス混合後の空気オフガス中の水素ガス濃度が、少なくとも水素センサ11bの検出可能範囲内の値となるように、希釈ガスの水素ガス濃度を設定し、希釈装置26による希釈倍率を設定する。
ただし、ここで、検査対象ガスの水素ガス濃度の値は既知である必要はない。
そして、上述したステップS05またはステップS06において、各水素センサ11a,11bが劣化しているか否かを判定した後には、例えば図24に示すステップS52に進み、上述したステップS51にて開始した検査対象ガスの水素ガス濃度を調整する処理を停止し、一連の処理を終了する。
例えば、酸素極側の出口側配管6に配置された水素センサ11bに対しては、希釈ガス供給装置29においてパージ弁24と導入弁28とを閉弁する。
【0079】
なお、上述した本実施の形態においては、パージ弁24と、水素排出路25と、希釈装置26と、還流路27と、導入弁28とによって構成される希釈ガス供給装置29を備えるとしたが、これに限定されず、例えば各水素センサ11a,11bに対して、相対診断による劣化診断のみを実行する場合には、例えば図25に示す本実施形態のガスセンサの劣化診断装置10の第7変形例のように、水素排出路25と、希釈装置26と、還流路27と、導入弁28とは省略可能である。
さらに、例えば図26に示す本実施形態のガスセンサの劣化診断装置10の第8変形例のように、希釈ガス供給装置29の水素排出路25と、希釈装置26と、還流路27と、導入弁28とを備える代わりに、例えば燃料電池システム7の外部等に配置され、適宜あるいは所定の水素ガス濃度の基準ガスを供給する供給装置71を備えてもよい。ここで、供給装置71から供給される基準ガスは、例えば導入弁72を介して、酸素極側の出口側配管6において水素センサ11bよりも上流の位置(希釈ガスの導入部)6bに導入されるようになっている。
また、例えば図27に示す本実施形態のガスセンサの劣化診断装置10の第9変形例のように、希釈ガス供給装置29に加えて、供給装置71および導入弁72を備えてもよい。この場合には、劣化診断の診断内容や燃料電池システム7の状態や車両1の状態等に応じて、希釈ガス供給装置29と供給装置71とを適宜に選択して作動させることができる。
【0080】
なお、上述した本実施の形態においては、各素子51,52を接続してなる回路をブリッジ回路としたが、これに限定されず、例えば直列回路等のその他の回路であってもよく、検出素子51の抵抗値R4に関連した状態量として、所定接点間の電圧や電流の検出値が制御装置12へ出力されてもよい。
【0081】
なお、上述した本実施の形態においては、常用検出要素50Bの出力値と基準検出要素50Aの出力値との差を比較値として劣化診断を行っているが、これに限定されず、例えば常用検出要素50Bの出力値と基準検出要素50Aの出力値のいずれか一方を他方で除算して得た商を比較値として用いて、劣化診断を行ってもよい。
【0082】
また、上述した本実施の形態においては、相対診断において、例えばステップS04に示すように、常用検出要素50Bの出力値B1と基準検出要素50Aの出力値A1の差(A1−B1)が、各出力値A1または出力値B1に対する所定の割合として設定される相対的な所定値Yを超えているか否かを判定したが、これに限定されず、相対的な所定値Yの代わりに絶対的な所定値(例えば、感度や濃度の適宜の値等)を用いてもよい。
さらに、常用検出要素50Bの出力値B1と基準検出要素50Aの出力値A1の差(A1−B1)の符号の正負に応じて判定閾値(上述した相対的な所定値Yや絶対的な所定値等)の大きさを変更してもよく、例えば差(A1−B1)の符号が正の場合には、負の場合に比べて、より判定閾値を超え易くなるようにして判定閾値を小さく設定することで、被検知ガスである水素ガスの濃度が過小に評価されてしまうことを抑制することができる。
また、例えば図28に示すように、予め、基準検出要素50Aの出力値A1および常用検出要素50Bの出力値B1に応じて所定の劣化判定領域を設定しておき、常用検出要素50Bの出力値B1が劣化判定領域以内に属するか否かを判定してもよい。
【0083】
例えば図28においては、基準検出要素50Aの出力値A1に対して、常用検出要素50Bの出力値が過大であると判定される感度過大劣化領域αと、常用検出要素50Bの出力値が過小であると判定される感度過小劣化領域βとが設定されている。そして、基準検出要素50Aの出力値A1が、例えば適宜の値aであるとき、常用検出要素50Bの出力値B1が感度過大劣化領域αの最小値α1以上か否か、あるいは、常用検出要素50Bの出力値B1が感度過小劣化領域βの最大値β1以下か否かを判定する。
すなわち、例えば図29に示す本実施形態の第10変形例に係るガスセンサの劣化診断装置10の動作を示すフローチャートのように、例えば上述したステップS04の代わりに、先ずステップS61において、例えば図28に示すグラフ図のように、基準検出要素50Aの出力値A1に応じて常用検出要素50Bの出力値に対する劣化判定領域を設定する。
そして、ステップS62において、常用検出要素50Bの出力値B1が劣化判定領域以内か否かを判定する。ここでは、例えば常用検出要素50Bの出力値B1が感度過大劣化領域αの最小値α1以上か否か、あるいは、常用検出要素50Bの出力値B1が感度過小劣化領域βの最大値β1以下か否かを判定してもよいし、例えば常用検出要素50Bの出力値B1と基準検出要素50Aの出力値A1の差(A1−B1)が、(A1−α1)以下か否か、あるいは、(A1−β1)以上か否かを判定してもよい。
この判定結果が「YES」の場合にはステップS05に進み、一方、この判定結果が「NO」の場合には、ステップS06に進む。
【0084】
また、この本実施形態の第10変形例において、例えば図28に示すような劣化判定領域を設定する際には、基準検出要素50Aおよび常用検出要素50Bの感度のばらつき、つまり各検出要素50A,50Bの個体差や、各検出要素50A,50Bの経年劣化等の劣化状態や、劣化のない初期状態での各検出要素50A,50Bの検出精度等に応じて設定してもよい。
さらに、劣化判定領域を設定する際に、基準検出要素50Aの出力値A1が大きくなることに伴い、常用検出要素50Bの出力値が過大であると判定される場合に比べて、常用検出要素50Bの出力値が過小であると判定され易くなるように設定してもよい。すなわち、例えば図28に示すように、基準検出要素50Aの出力値A1と常用検出要素50Bの出力値B1とが同等となる直線Lに対し、基準検出要素50Aの任意の出力値A1での直線Lの値と感度過大劣化領域αの最小値α1との差Lαに比べて、基準検出要素50Aの任意の出力値A1での直線Lの値と感度過小劣化領域βの最大値β1との差Lβの方がより小さくなるように設定する。
この場合には、被検知ガスである水素ガスの実際の濃度に対して、より低い濃度の検出値が得られる感度過小劣化領域βを基準検出要素50Aの出力値A1の増大に伴って拡大することにより、水素ガス濃度が過小に評価されてしまうことを抑制し、所定の濃度を超える水素ガスを確実に検知することができる。
なお、この本実施形態の第10変形例において、例えば、感度過大劣化領域αおよび感度過小劣化領域βの代わりに、基準検出要素50Aの出力値A1に対して常用検出要素50Bの出力値B1が正常であると判定される正常領域を設定し、常用検出要素50Bの出力値B1が、基準検出要素50Aの出力値A1に応じた正常領域の最大値よりも大きいか否か、あるいは、基準検出要素50Aの出力値A1に応じた正常領域の最小値よりも小さいか否かに応じて、感度異常の有無を判定するように設定してもよい。
【0085】
また、上述した本実施の形態においては、絶対診断において、例えばステップS32およびステップS42に示すように、常用検出要素50Bの出力値B2や基準検出要素50Aの出力値A2が所定値Y2から所定値Y3の範囲にあるか否かを判定する際に、各出力値A2,B2がY2以上であると判定される場合に比べて、各出力値A2,B2がY3以下であると判定され易くなるようにして、各所定値Y2,Y3を設定してもよい。
これにより、被検知ガスである水素ガスの実際の濃度に対して、より低い濃度の検出値が得られる各検出要素50A,50Bの感度低下の状態を検知し易くすることができる。
【0086】
なお、上述した本実施の形態においては、被検知ガスを水素ガスとしたが、これに限定されるものではなく、他のガス成分であってもよく、また、ガスセンサは、水素センサ11a,11bに限るものではなく、他のガス成分を検出するものであってもよい。また、ガスセンサは、車両1のルーフ1aに取り付けられた水素センサ11aおよび燃料電池2の酸素極側の出口側配管6に取り付けられた水素センサ11bに限るものではなく、車両1のその他の位置に配置されてもよい。さらに、ガスセンサは、ガス接触燃焼式の水素センサに限らず、例えば検査対象ガス中に含まれる各ガスの熱伝導率の差異を利用して水素を検知する気体熱伝導式水素センサや、超音波式水素センサ等の非触媒型の水素センサであってもよい。
【0087】
【発明の効果】
以上説明したように、請求項1に記載の本発明のガスセンサの劣化診断方法によれば、常用検出要素が劣化しているか否かを容易に診断することができる。
さらに、請求項2および請求項3に記載の本発明のガスセンサの劣化診断方法によれば、例えば複数の検出要素に対して同等のガス濃度の被検出ガスを供給したときに、各検出要素の配置位置に応じて各検出要素による検出結果が異なる場合であっても、相対診断による常用検出要素に対する劣化診断の診断精度が低下してしまうことを抑制することができる。
【0088】
さらに、請求項4に記載の本発明のガスセンサの劣化診断方法によれば、劣化診断時における被検知ガスのガス濃度が一定でなく変動する場合にも常用検出要素の劣化診断が可能となる。
さらに、請求項5に記載の本発明のガスセンサの劣化診断方法によれば、常用検出要素が劣化したか否かを確実に判断することができる。
【0089】
さらに、請求項6および請求項7に記載の本発明のガスセンサの劣化診断方法によれば、常用検出要素が劣化したか否かを容易に判断することができる。
さらに、請求項8および請求項9に記載の本発明のガスセンサの劣化診断方法によれば、常用検出要素の劣化診断を相対的に診断する際の基準とされる基準検出要素の劣化診断を、基準検出要素の出力値によって、いわば絶対的に診断することができ、相対診断による常用検出要素の劣化診断の診断精度を向上させることができる。
さらに、請求項10に記載の本発明のガスセンサの劣化診断方法によれば、燃料電池から出力される燃料ガスを有効に利用して基準検出要素の劣化診断を実行することができる。
さらに、請求項11に記載の本発明のガスセンサの劣化診断方法によれば、例えば基準検出要素を実装位置から取り外して検査する必要が無しに、基準検出用素の実装状態において容易に劣化診断を実行することができる。
【0090】
さらに、請求項12に記載の本発明のガスセンサの劣化診断方法によれば、基準検出要素に通電する頻度が増大することを抑制することによって、基準検出要素が劣化してしまうことを抑制し、相対診断による常用検出要素の劣化診断の診断精度が低下してしまうことを抑制することができる。
さらに、請求項13に記載の本発明のガスセンサの劣化診断方法によれば、検出素子の触媒が被毒物質で被毒されることに起因するガスセンサの劣化に対しても、容易に劣化診断を行うことができる。
【0091】
さらに、請求項14に記載の本発明のガスセンサの劣化診断方法によれば、水素センサによって燃料電池の運転状態を的確に把握しつつ、燃料電池の運転中であっても、水素センサの劣化診断を容易に行うことができる。
さらに、請求項15に記載の本発明のガスセンサの劣化診断方法によれば、水素センサによって車両の状態や、例えば車両に搭載された燃料電池の運転状態を的確に把握しつつ、車両の運転時であっても、水素センサの劣化診断を容易に行うことが可能となる。
【0092】
さらに、請求項16に記載の本発明のガスセンサの劣化診断装置によれば、常用検出要素が劣化しているか否かを容易に診断することができる。
さらに、請求項17および請求項18に記載の本発明のガスセンサの劣化診断装置によれば、例えば複数の検出要素に対して同等のガス濃度の被検出ガスを供給したときに、各検出要素の配置位置に応じて各検出要素による検出結果が異なる場合であっても、相対診断による常用検出要素に対する劣化診断の診断精度が低下してしまうことを抑制することができる。
【0093】
さらに、請求項19に記載の本発明のガスセンサの劣化診断装置によれば、常用検出要素の劣化診断を相対的に診断する際の基準とされる基準検出要素の劣化診断を、基準検出要素の出力値によって、いわば絶対的に診断することができ、相対診断による常用検出要素の劣化診断の診断精度を向上させることができる。
さらに、請求項20に記載の本発明のガスセンサの劣化診断装置によれば、燃料電池から出力される燃料ガスを有効に利用して基準検出要素の劣化診断を実行することができる。
さらに、請求項21に記載の本発明のガスセンサの劣化診断装置によれば、例えば基準検出要素を実装位置から取り外して検査する必要が無しに、基準検出用素の実装状態において容易に劣化診断を実行することができる。
【0094】
さらに、請求項22に記載の本発明のガスセンサの劣化診断装置によれば、検出素子の触媒が被毒物質で被毒されることに起因するガスセンサの劣化に対しても、容易に劣化診断を行うことができる。
さらに、請求項23に記載の本発明のガスセンサの劣化診断装置によれば、水素センサによって燃料電池の運転状態を的確に把握しつつ、燃料電池の運転中であっても、水素センサの劣化診断を容易に行うことができる。
さらに、請求項24に記載の本発明のガスセンサの劣化診断装置によれば、水素センサによって車両の状態や、例えば車両に搭載された燃料電池の運転状態を的確に把握しつつ、車両の運転時であっても、水素センサの劣化診断を容易に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るガスセンサの劣化診断装置の構成図である。
【図2】本発明の一実施形態に係るガスセンサの劣化診断装置を備える燃料電池システムの要部構成図である。
【図3】図1または図2に示す水素センサの断面図である。
【図4】図3に示すI−I線に沿う概略断面図である。
【図5】図1または図2に示す水素センサの要部斜視図である。
【図6】図1または図2に示す水素センサを構成する検出部および回路部の構成図である。
【図7】本発明の一実施形態に係るガスセンサの劣化診断方法、特に相対診断による劣化診断の処理を示すフローチャートである。
【図8】本発明の一実施形態に係るガスセンサの劣化診断方法、特に絶対診断による劣化診断の処理を示すフローチャートである。
【図9】図8に示す常用検出要素の劣化診断の処理を示すフローチャートである。
【図10】図8に示す基準検出要素の劣化診断の処理を示すフローチャートである。
【図11】本実施形態のガスセンサの劣化診断装置の第1変形例に係る水素センサの断面図である。
【図12】図11に示すI−I線に沿う概略断面図である。
【図13】本実施形態のガスセンサの劣化診断装置の第2変形例に係る水素センサの断面図である。
【図14】図13に示す水素センサの要部斜視図である。
【図15】本実施形態のガスセンサの劣化診断装置の第3変形例に係る水素センサの断面図である。
【図16】図15に示すI−I線に沿う概略断面図である。
【図17】本実施形態のガスセンサの劣化診断装置の第4変形例に係る水素センサの断面図である。
【図18】図17に示すI−I線に沿う概略断面図である。
【図19】図17に示す水素センサの酸素極側の出口側配管での配置位置の一例を示す出口側配管の中心軸に平行な断面図である。
【図20】図17に示す水素センサの酸素極側の出口側配管での配置位置の一例を示す出口側配管の中心軸に平行な断面図である。
【図21】図17に示す水素センサの酸素極側の出口側配管での配置位置の一例を示す出口側配管の中心軸に直交する断面図である。
【図22】本実施形態のガスセンサの劣化診断装置の第5変形例に係る水素センサの断面図である。
【図23】図22に示す水素センサの要部斜視図である。
【図24】本実施形態の第6変形例に係るガスセンサの劣化診断方法、特に相対診断による劣化診断の処理を示すフローチャートである。
【図25】本実施形態の第7変形例に係るガスセンサの劣化診断装置を備える燃料電池システムの要部構成図である。
【図26】本実施形態の第8変形例に係るガスセンサの劣化診断装置を備える燃料電池システムの要部構成図である。
【図27】本実施形態の第9変形例に係るガスセンサの劣化診断装置を備える燃料電池システムの要部構成図である。
【図28】基準検出要素の出力値A1および常用検出要素の出力値B1に応じた劣化判定領域を示すグラフ図である。
【図29】本実施形態の第10変形例に係るガスセンサの劣化診断方法、特に相対診断による劣化診断の処理を示すフローチャートである。
【符号の説明】
2 燃料電池
11a 水素センサ(検出手段、ガス接触燃焼式のガスセンサ)
11b 水素センサ(検出手段、ガス接触燃焼式のガスセンサ)
26 希釈装置(希釈手段)
12 制御装置(既知濃度ガス供給手段)
27 還流路(既知濃度ガス供給手段)
28 導入弁(既知濃度ガス供給手段)
50A 基準検出要素
50B 常用検出要素
51 検出素子
52 温度補償素子
60 水素センサ(検出手段、ガス接触燃焼式のガスセンサ)
69 通電指示部(常用検出手段)
70B 常用スイッチ(常用検出手段)
71 供給装置(既知濃度ガス供給手段)
72 導入弁(既知濃度ガス供給手段)
ステップS01〜ステップS03 相対診断手段
ステップS04 比較手段
ステップS05、ステップS06 相対判定手段
ステップS14 絶対診断手段
ステップS43、ステップS44 絶対判定手段
ステップS61およびステップS62 比較手段

Claims (24)

  1. 検出素子と温度補償素子とを備えて構成される複数の検出要素が互いに近接配置されてなり、前記複数の検出要素のうち、少なくとも1つの検出要素を基準検出要素とし、前記基準検出要素以外の検出要素を常用検出要素とする検出手段の劣化を診断するガスセンサの劣化診断方法であって、
    被検知ガスの濃度検出時は前記常用検出要素に通電して該常用検出要素により前記被検知ガスの濃度検出を行い、
    前記常用検出要素の劣化診断時は前記常用検出要素と前記基準検出要素の両方に通電して各検出要素により前記被検知ガスの濃度検出を行い、
    前記常用検出要素の出力値と前記基準検出要素の出力値とを比較することにより、前記常用検出要素の劣化診断を行うことを特徴とするガスセンサの劣化診断方法。
  2. 前記複数の検出要素は、各検出要素により得られる前記被検知ガスの実質的な濃度の検出結果の差異が所定の範囲以内となるようにして、互いに近接配置されることを特徴とする請求項1に記載のガスセンサの劣化診断方法。
  3. 前記所定の範囲は、前記検出結果に対する±10%以内とされることを特徴とする請求項2に記載のガスセンサの劣化診断方法。
  4. 前記常用検出要素の劣化診断を行うときに、前記被検知ガスのガス濃度を、少なくとも前記常用検出要素で検出可能な任意濃度に設定することを特徴とする請求項1から請求項3の何れかに記載のガスセンサの劣化診断方法。
  5. 前記常用検出要素の出力値と前記基準検出要素の出力値との比較結果が所定範囲外である場合に、前記ガスセンサは劣化したと判断することを特徴とする請求項1から請求項4の何れかに記載のガスセンサの劣化診断方法。
  6. 前記比較結果は、前記常用検出要素の出力値と前記基準検出要素の出力値との差、あるいは、前記常用検出要素の出力値と前記基準検出要素の出力値との何れか一方に対する何れか他方の比であることを特徴とする請求項5に記載のガスセンサの劣化診断方法。
  7. 前記所定範囲は、予め前記常用検出要素の出力値および前記基準検出要素の出力値に応じて設定された所定領域であり、前記常用検出要素の出力値が、前記基準検出要素の出力値に応じた前記所定領域の最大値よりも大きい場合、あるいは、前記基準検出要素の出力値に応じた前記所定領域の最小値よりも小さい場合に、前記ガスセンサは劣化したと判断することを特徴とする請求項5に記載のガスセンサの劣化診断方法。
  8. 前記被検知ガスを前記基準検出要素により検出したときの前記基準検出要素の出力値に基づいて前記基準検出要素の劣化診断を行うことを特徴とする請求項1から請求項7の何れかに記載のガスセンサの劣化診断方法。
  9. 前記被検知ガスは既知濃度とされることを特徴とする請求項8に記載のガスセンサの劣化診断方法。
  10. 燃料ガスおよび酸化剤ガスが供給されて電気化学反応により発電する燃料電池から排出される前記燃料ガスを前記燃料電池から排出される前記酸化剤ガスにより希釈して得た希釈ガスを、前記燃料電池から排出される前記酸化剤ガスに混合して、前記既知濃度の前記被検知ガスとすることを特徴とする請求項9に記載のガスセンサの劣化診断方法。
  11. 所定濃度の前記被検知ガスを前記基準検出要素の雰囲気ガスに混合して、前記既知濃度の前記被検知ガスとすることを特徴とする請求項9に記載のガスセンサの劣化診断方法。
  12. 前記常用検出要素の劣化診断の実行頻度よりも少ない頻度で前記基準検出要素の劣化診断を行うことを特徴とする請求項8から請求項11の何れかに記載のガスセンサの劣化診断方法。
  13. 前記検出手段は、前記検出素子の触媒に接触する前記被検出ガスの燃焼に応じて発生する前記検出素子と前記温度補償素子との電気抵抗値の差異に基づいて前記被検知ガスのガス濃度を検出するガス接触燃焼式のガスセンサであることを特徴とする請求項1から請求項12の何れかに記載のガスセンサの劣化診断方法。
  14. 前記被検知ガスは水素ガスであり、前記検出手段は、燃料電池の酸素極から排出される酸化剤ガス中の水素ガス濃度を検出する水素センサであることを特徴とする請求項1から請求項13のいずれかに記載のガスセンサの劣化診断方法。
  15. 前記被検知ガスは水素ガスであり、前記検出手段は、車両の車室内の雰囲気ガスの水素ガス濃度を検出する水素センサであることを特徴とする請求項1から請求項13のいずれかに記載のガスセンサの劣化診断方法。
  16. 検出素子と温度補償素子とを備えて構成される複数の検出要素が互いに近接配置されてなり、前記複数の検出要素のうち、少なくとも1つの検出要素を基準検出要素とし、前記基準検出要素以外の検出要素を常用検出要素とする検出手段と、
    被検知ガスの濃度検出時に前記常用検出要素に通電して該常用検出要素により前記被検知ガスの濃度検出を行う常用検出手段と、
    前記常用検出要素の劣化診断時に前記常用検出要素と前記基準検出要素の両方に通電して各検出要素により前記被検知ガスの濃度検出を行う相対診断手段と、
    前記常用検出要素の出力値と前記基準検出要素の出力値とを比較する比較手段と、
    前記比較手段での比較結果に応じて前記常用検出要素の劣化判定を行う相対判定手段と
    を備えることを特徴とするガスセンサの劣化診断装置。
  17. 前記複数の検出要素は、各検出要素により得られる前記被検知ガスの実質的な濃度の検出結果の差異が所定の範囲以内となるようにして、互いに近接配置されることを特徴とする請求項16に記載のガスセンサの劣化診断装置。
  18. 前記所定の範囲は、前記検出結果に対する±10%以内とされることを特徴とする請求項17に記載のガスセンサの劣化診断装置。
  19. 前記基準検出要素の劣化診断時に前記基準検出要素に通電して前記基準検出要素により前記被検知ガスの濃度検出を行う絶対診断手段と、前記基準検出要素の出力値に基づいて前記基準検出要素の劣化判定を行う絶対判定手段と
    を備えることを特徴とする請求項16から請求項18の何れかに記載のガスセンサの劣化診断装置。
  20. 燃料ガスおよび酸化剤ガスが供給されて電気化学反応により発電する燃料電池と、前記燃料電池から排出される前記燃料ガスを、前記燃料電池から排出される前記酸化剤ガスにより希釈する希釈手段と、
    前記希釈手段から出力される希釈ガスを前記燃料電池から排出される前記酸化剤ガスに混合して既知濃度の前記被検知ガスとし、前記基準検出要素に供給する既知濃度ガス供給手段と
    を備えることを特徴とする請求項19に記載のガスセンサの劣化診断装置。
  21. 所定濃度の前記被検知ガスを前記基準検出要素の雰囲気ガスに混合して既知濃度の前記被検知ガスとし、前記基準検出要素に供給する既知濃度ガス供給手段と
    を備えることを特徴とする請求項19に記載のガスセンサの劣化診断装置。
  22. 前記検出手段は、前記検出素子の触媒に接触する前記被検出ガスの燃焼に応じて発生する前記検出素子と前記温度補償素子との電気抵抗値の差異に基づいて前記被検知ガスのガス濃度を検出するガス接触燃焼式のガスセンサであることを特徴とする請求項16から請求項21の何れかに記載のガスセンサの劣化診断装置。
  23. 前記被検知ガスは水素ガスであり、前記検出手段は、燃料電池の酸素極から排出される酸化剤ガスの流路に配置され、前記流路を流通する前記酸化剤ガス中の水素ガス濃度を検出する水素センサであることを特徴とする請求項16から請求項21の何れかに記載のガスセンサの劣化診断装置。
  24. 前記被検知ガスは水素ガスであり、前記検出手段は、車両の車室内に配置され、前記車室内の雰囲気ガスの水素ガス濃度を検出する水素センサであることを特徴とする請求項16から請求項21の何れかに記載のガスセンサの劣化診断装置。
JP2003070227A 2002-05-13 2003-03-14 ガスセンサの劣化診断方法 Expired - Fee Related JP3836440B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003070227A JP3836440B2 (ja) 2002-05-13 2003-03-14 ガスセンサの劣化診断方法
CA002485604A CA2485604C (en) 2002-05-13 2003-05-12 Method and device for diagnosing gas sensor degradation
US10/514,254 US7251981B2 (en) 2002-05-13 2003-05-12 Method and device for diagnosing gas sensor degradation
EP03728054A EP1505385B1 (en) 2002-05-13 2003-05-12 Method for diagnosing deterioration of gas sensor and equipment for diagnosing deterioration of gas sensor
PCT/JP2003/005897 WO2003096000A1 (fr) 2002-05-13 2003-05-12 Methode de diagnostic de la deterioration d'un capteur de gaz et equipement pour le diagnostic de la deterioration de gaz
DE60335460T DE60335460D1 (de) 2002-05-13 2003-05-12 Verfahren zur diagnose der verschlechterung eines gassensors und gerät zur diagnose einer verschlechterung eines gassensors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002137649 2002-05-13
JP2002374086 2002-12-25
JP2003070227A JP3836440B2 (ja) 2002-05-13 2003-03-14 ガスセンサの劣化診断方法

Publications (2)

Publication Number Publication Date
JP2004251862A true JP2004251862A (ja) 2004-09-09
JP3836440B2 JP3836440B2 (ja) 2006-10-25

Family

ID=29424252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070227A Expired - Fee Related JP3836440B2 (ja) 2002-05-13 2003-03-14 ガスセンサの劣化診断方法

Country Status (6)

Country Link
US (1) US7251981B2 (ja)
EP (1) EP1505385B1 (ja)
JP (1) JP3836440B2 (ja)
CA (1) CA2485604C (ja)
DE (1) DE60335460D1 (ja)
WO (1) WO2003096000A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153857A (ja) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd 水素センサの劣化検知システム、劣化検知方法及び水素濃度測定手段の劣化検知システム
JP2006252968A (ja) * 2005-03-11 2006-09-21 Riken Keiki Co Ltd 燃料電池を用いた給電装置
JP2006252933A (ja) * 2005-03-10 2006-09-21 Riken Keiki Co Ltd 燃料電池を用いた給電装置
JP2006337243A (ja) * 2005-06-03 2006-12-14 Citizen Watch Co Ltd 接触燃焼式ガスセンサ
US7342505B2 (en) 2004-11-26 2008-03-11 Honda Motor Co., Ltd. Gas detection apparatus and method for controlling gas sensor
JP2009300088A (ja) * 2008-06-10 2009-12-24 Yazaki Corp ガス検出装置及び経年変化補正方法
JP2010019754A (ja) * 2008-07-11 2010-01-28 Honda Motor Co Ltd ガスセンサ
JP2010019732A (ja) * 2008-07-11 2010-01-28 Honda Motor Co Ltd ガスセンサ
JP2010038869A (ja) * 2008-08-08 2010-02-18 Yazaki Corp ガス検出装置
JP2010054230A (ja) * 2008-08-26 2010-03-11 Yazaki Corp ガス検出装置
JP2010190580A (ja) * 2009-02-16 2010-09-02 Riken Keiki Co Ltd 接触燃焼式ガス検出装置
JP2010237007A (ja) * 2009-03-31 2010-10-21 Honda Motor Co Ltd ガスセンサ
JP2011237407A (ja) * 2010-04-15 2011-11-24 Ngk Spark Plug Co Ltd 可燃性ガス検出装置および可燃性ガス検出素子の制御方法
DE102012208384A1 (de) 2011-05-20 2012-11-22 Honda Motor Co., Ltd. Gassensor
JP2014010011A (ja) * 2012-06-28 2014-01-20 Denso Corp 湿度センサ
JP2014182098A (ja) * 2013-03-21 2014-09-29 Tokyo Gas Co Ltd センサ装置、そのセンサ制御プログラム、そのセンサ制御方法およびセンサ制御システム
WO2017122357A1 (ja) * 2016-01-15 2017-07-20 三菱電機株式会社 劣化診断装置、劣化診断システム、列車、劣化診断方法及び劣化診断プログラム
JP2017134929A (ja) * 2016-01-26 2017-08-03 スズキ株式会社 燃料電池システム
JP2018049783A (ja) * 2016-09-23 2018-03-29 アイシン精機株式会社 燃料電池システム
JP2018528572A (ja) * 2015-07-13 2018-09-27 ヌヴェラ・フュエル・セルズ,エルエルシー 燃料電池システムによる酸素欠乏空気の生成

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294674A (ja) 2002-04-04 2003-10-15 Honda Motor Co Ltd ガスセンサの取付構造
JP4636425B2 (ja) * 2004-04-02 2011-02-23 トヨタ自動車株式会社 燃料電池システム
JP3950135B2 (ja) * 2004-11-26 2007-07-25 株式会社日立製作所 ガス検知システム
US7846595B2 (en) * 2006-02-14 2010-12-07 Ford Global Technologies, Llc System and method to operate a fuel cell in the exhaust of an internal combustion engine
CN100387976C (zh) * 2006-04-21 2008-05-14 原德林 甲烷传感器智能校验装置
US7937984B2 (en) * 2006-12-29 2011-05-10 Honeywell International Inc. Gas sensor test system and methods related thereto
JP4277925B2 (ja) * 2007-10-10 2009-06-10 トヨタ自動車株式会社 ガス検出システム、車両、およびガス検出システムの点検方法
JP4863960B2 (ja) * 2007-10-12 2012-01-25 日立オートモティブシステムズ株式会社 酸素センサの検査方法
JP4892511B2 (ja) * 2008-04-15 2012-03-07 本田技研工業株式会社 ガスセンサ
JP4853548B2 (ja) * 2009-05-29 2012-01-11 株式会社デンソー 排気センサ診断装置
AU2010313245B2 (en) * 2009-10-30 2014-10-23 Msa Technology, Llc Combustible gas sensors including integral support structures and combustible gas sensor with multiple active elements
JPWO2011145492A1 (ja) * 2010-05-17 2013-07-22 本田技研工業株式会社 接触燃焼式ガスセンサ
JP2012163341A (ja) 2011-02-03 2012-08-30 Honda Motor Co Ltd 水素検出システム
US20130017465A1 (en) * 2011-07-11 2013-01-17 GM Global Technology Operations LLC Leakage diagnostic for a fuel cell system in idle-stop mode
US9562873B2 (en) 2011-10-14 2017-02-07 Msa Technology, Llc Sensor interrogation
US9784755B2 (en) * 2011-10-14 2017-10-10 Msa Technology, Llc Sensor interrogation
ITMO20120222A1 (it) * 2012-09-20 2014-03-21 C R D Ct Ricerche Ducati Trent O S R L Sistema e metodo per il monitoraggio dell'inquinamento atmosferico
FR2999811B1 (fr) * 2012-12-19 2016-11-04 Michelin & Cie Systeme a pile a combustible equipe d'un detecteur de fuite d'hydrogene
FR2999709B1 (fr) * 2012-12-19 2018-11-30 Compagnie Generale Des Etablissements Michelin Detecteur de fuite d'hydrogene
DE102013008425B3 (de) * 2013-05-16 2014-05-22 Dräger Safety AG & Co. KGaA Verfahren zur Erkennung von Sensorvergiftungen und Teststation zur Durchführung des Verfahrens
US9835574B2 (en) 2014-07-02 2017-12-05 Stmicroelectronics S.R.L. Gas measurement device and measurement method thereof
US10112486B2 (en) * 2016-09-21 2018-10-30 Hyundai Motor Company Apparatus for detecting gas leakage of a vehicle equipped with a fuel cell system
US10234412B2 (en) 2016-11-04 2019-03-19 Msa Technology, Llc Identification of combustible gas species via pulsed operation of a combustible gas sensor
US10900922B2 (en) 2018-07-17 2021-01-26 Msa Technology, Llc Power reduction in combustible gas sensors
JP7091941B2 (ja) * 2018-08-27 2022-06-28 トヨタ自動車株式会社 燃料ガス供給制御装置およびその方法、ならびに燃料電池車の起動方法
US11112378B2 (en) 2019-06-11 2021-09-07 Msa Technology, Llc Interrogation of capillary-limited sensors
IT201900010647A1 (it) * 2019-07-02 2021-01-02 St Microelectronics Srl Procedimento di funzionamento di un dispositivo sensore di gas, e corrispondente dispositivo sensore di gas
US11703473B2 (en) 2019-12-11 2023-07-18 Msa Technology, Llc Operation of combustible gas sensor in a dynamic mode with a constant resistance setpoint
CN112229881A (zh) * 2020-09-22 2021-01-15 中煤科工集团重庆研究院有限公司 抑制载体催化甲烷检测元件信号突变的装置及方法
JP7165710B2 (ja) * 2020-10-30 2022-11-04 本田技研工業株式会社 燃料電池車両
DE102021105014A1 (de) 2021-03-02 2022-09-08 Dräger Safety AG & Co. KGaA Verfahren zur Auswertung von Daten wenigstens eines mobilen und eines stationären Gasmessgeräts sowie System zur Überwachung mindestens einer Gaskonzentration
DE102022106689A1 (de) * 2021-03-30 2022-10-06 Dräger Safety AG & Co. KGaA Gasdetektionsvorrichtung mit einem Detektor und einem Kompensator und Gasdetektionsverfahren
DE102022208287A1 (de) 2022-08-09 2023-05-11 Vitesco Technologies GmbH Verfahren zum Ermitteln eines Fehlers einer Gassensorvorrichtung und Gassensorvorrichtung
DE102022209399B3 (de) * 2022-09-09 2023-09-07 Vitesco Technologies GmbH Verfahren zur Diagnose eines Wasserstoffsensors, Wasserstoffsensor, Computerprogramm und computerlesbares Medium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419888A (en) * 1979-06-14 1983-12-13 Kabushikikaisha Shibaura Denshi Seisakusho Humidity measuring method
JPS61239153A (ja) 1985-04-16 1986-10-24 Kazutoshi Nakao 気体検出センサの経時特性補正方法
JPH0652662B2 (ja) 1987-09-30 1994-07-06 株式会社日立製作所 燃料電池
JPH03202767A (ja) * 1989-06-15 1991-09-04 Honda Motor Co Ltd 内燃エンジンの排気ガス濃度検出器の劣化検出方法
JP2876544B2 (ja) * 1990-09-05 1999-03-31 本田技研工業株式会社 触媒温度センサ劣化検出装置
JP2797810B2 (ja) 1992-02-04 1998-09-17 ヤマハ株式会社 ディジタルオーディオ機器
JP3219855B2 (ja) 1992-06-24 2001-10-15 株式会社リコー ガス測定方法及びガス測定装置
US5243954A (en) * 1992-12-18 1993-09-14 Dresser Industries, Inc. Oxygen sensor deterioration detection
JPH06223850A (ja) 1993-01-29 1994-08-12 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の運転保護システム
JP3494508B2 (ja) 1995-06-26 2004-02-09 日本碍子株式会社 可燃性ガスセンサ、可燃性ガス濃度の測定方法及び触媒劣化検知方法
JPH1010069A (ja) 1996-06-20 1998-01-16 Hitachi Ltd 未燃物濃度測定装置及び触媒診断装置
JP3316789B2 (ja) 1996-08-02 2002-08-19 矢崎総業株式会社 接触燃焼式ガスセンサ及び接触燃焼式ガスセンサの製造方法
JPH10170463A (ja) 1996-12-12 1998-06-26 Tokyo Gas Co Ltd 半導体式センサを用いた可燃性ガス検知器の点検方法
US6673480B1 (en) * 1998-07-02 2004-01-06 Ballard Power Systems Inc. Sensor cell for an electrochemical fuel cell stack
JP4001723B2 (ja) * 2001-03-28 2007-10-31 本田技研工業株式会社 改質触媒装置の触媒性能回復方法
DE10164293A1 (de) * 2001-12-28 2003-07-10 Wagner Alarm Sicherung Verfahren und Vorrichtung zum Messen des Sauerstoffgehaltes
US20040005494A1 (en) * 2002-07-05 2004-01-08 Drake Javit A. Chemical sensing in fuel cell systems

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153857A (ja) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd 水素センサの劣化検知システム、劣化検知方法及び水素濃度測定手段の劣化検知システム
US7342505B2 (en) 2004-11-26 2008-03-11 Honda Motor Co., Ltd. Gas detection apparatus and method for controlling gas sensor
JP2006252933A (ja) * 2005-03-10 2006-09-21 Riken Keiki Co Ltd 燃料電池を用いた給電装置
JP2006252968A (ja) * 2005-03-11 2006-09-21 Riken Keiki Co Ltd 燃料電池を用いた給電装置
JP4758145B2 (ja) * 2005-06-03 2011-08-24 シチズンホールディングス株式会社 接触燃焼式ガスセンサ
JP2006337243A (ja) * 2005-06-03 2006-12-14 Citizen Watch Co Ltd 接触燃焼式ガスセンサ
JP2009300088A (ja) * 2008-06-10 2009-12-24 Yazaki Corp ガス検出装置及び経年変化補正方法
JP2010019754A (ja) * 2008-07-11 2010-01-28 Honda Motor Co Ltd ガスセンサ
JP2010019732A (ja) * 2008-07-11 2010-01-28 Honda Motor Co Ltd ガスセンサ
JP2010038869A (ja) * 2008-08-08 2010-02-18 Yazaki Corp ガス検出装置
JP2010054230A (ja) * 2008-08-26 2010-03-11 Yazaki Corp ガス検出装置
JP2010190580A (ja) * 2009-02-16 2010-09-02 Riken Keiki Co Ltd 接触燃焼式ガス検出装置
JP2010237007A (ja) * 2009-03-31 2010-10-21 Honda Motor Co Ltd ガスセンサ
US8918289B2 (en) 2010-04-15 2014-12-23 Ngk Spark Plug Co., Ltd. Combustible gas detection apparatus and combustible gas sensor control method
JP2011237407A (ja) * 2010-04-15 2011-11-24 Ngk Spark Plug Co Ltd 可燃性ガス検出装置および可燃性ガス検出素子の制御方法
DE102011007281A1 (de) 2010-04-15 2011-12-15 Ngk Spark Plug Co., Ltd. Brenngas-Detektionsvorrichtung und Brenngassensor-Steuerungsverfahren
DE102012208384A1 (de) 2011-05-20 2012-11-22 Honda Motor Co., Ltd. Gassensor
US8713990B2 (en) 2011-05-20 2014-05-06 Honda Motor Co., Ltd. Gas sensor
JP2014010011A (ja) * 2012-06-28 2014-01-20 Denso Corp 湿度センサ
JP2014182098A (ja) * 2013-03-21 2014-09-29 Tokyo Gas Co Ltd センサ装置、そのセンサ制御プログラム、そのセンサ制御方法およびセンサ制御システム
JP2018528572A (ja) * 2015-07-13 2018-09-27 ヌヴェラ・フュエル・セルズ,エルエルシー 燃料電池システムによる酸素欠乏空気の生成
WO2017122357A1 (ja) * 2016-01-15 2017-07-20 三菱電機株式会社 劣化診断装置、劣化診断システム、列車、劣化診断方法及び劣化診断プログラム
JP2017134929A (ja) * 2016-01-26 2017-08-03 スズキ株式会社 燃料電池システム
JP2018049783A (ja) * 2016-09-23 2018-03-29 アイシン精機株式会社 燃料電池システム

Also Published As

Publication number Publication date
DE60335460D1 (de) 2011-02-03
CA2485604A1 (en) 2003-11-20
EP1505385A4 (en) 2007-11-28
US20050155405A1 (en) 2005-07-21
JP3836440B2 (ja) 2006-10-25
US7251981B2 (en) 2007-08-07
EP1505385B1 (en) 2010-12-22
WO2003096000A1 (fr) 2003-11-20
CA2485604C (en) 2009-02-24
EP1505385A1 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3836440B2 (ja) ガスセンサの劣化診断方法
JP4434525B2 (ja) 燃料電池の異常検出方法
US7342505B2 (en) Gas detection apparatus and method for controlling gas sensor
JP5105218B2 (ja) 異常判定装置
US11031612B2 (en) Fuel cell system having integrated gas connections for connection to an external test gas supply
WO2006048983A1 (ja) 燃料電池システム
EP2075866A1 (en) Fuel cell system
JP4585402B2 (ja) ガスセンサ
WO2005096428A1 (ja) 燃料電池システム及びその制御方法
JP4907343B2 (ja) 燃料電池システム
US7104110B2 (en) Control device used for a gas sensor
JP3853688B2 (ja) 水素検出手段の故障判定装置
JP2006253096A (ja) 燃料電池の異常検知装置
JP3905800B2 (ja) 燃料電池の保護装置
US7096717B2 (en) Control device of gas sensor
JP3986984B2 (ja) 接触燃焼式水素センサの較正方法
JP2007327926A (ja) ガス検出システム
JP2004061244A (ja) ガスセンサ及びガスセンサのガス検知方法及びガスセンサの故障検知方法
JP7050027B2 (ja) ガス漏れ検査方法及びガス漏れ検査装置
KR102663202B1 (ko) 연료전지의 수소 공급 제어방법
JP2004093203A (ja) ガスセンサの状態判定装置
JP4131801B2 (ja) 燃料電池システムに具備される水素センサの劣化検知方法
JP2005322579A (ja) 燃料電池の水素ガス漏洩検知装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Ref document number: 3836440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140804

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees