JP2004251764A - 電子ビーム像用tdiセンサ及びマスク検査装置 - Google Patents

電子ビーム像用tdiセンサ及びマスク検査装置 Download PDF

Info

Publication number
JP2004251764A
JP2004251764A JP2003042603A JP2003042603A JP2004251764A JP 2004251764 A JP2004251764 A JP 2004251764A JP 2003042603 A JP2003042603 A JP 2003042603A JP 2003042603 A JP2003042603 A JP 2003042603A JP 2004251764 A JP2004251764 A JP 2004251764A
Authority
JP
Japan
Prior art keywords
electron beam
tdi
tdi sensor
beam image
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042603A
Other languages
English (en)
Inventor
Satoshi Maruyama
聡 丸山
Moti Itzkovitch
モチ イツコビッチ
Eyal Neistein
イヤル ナイシュタイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2003042603A priority Critical patent/JP2004251764A/ja
Publication of JP2004251764A publication Critical patent/JP2004251764A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【課題】電子ビーム用マスクのパターンの欠陥検査の一層の高速化及び高精度化を可能にする電子ビーム像用TDIセンサの実現。
【解決手段】ファイバー光プレート(FOP)76と、FOPの一方の端面に設けられ、電子ビームの像を光学像に変換するシンチレータ75と、FOP76の他方の端面に近接して設けられた時間遅延積分型(TDI)光イメージセンサ77とを備え、FOP76の他方の端面とTDIイメージセンサ77の間は、光透過性の接着剤80で接着されている。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビーム像用TDIセンサに関し、特にマスクに電子ビームやイオンビームなどの荷電粒子ビームを照射してマスクの開口を通過した荷電粒子ビームで露光を行う露光装置で使用するステンシルマスクの欠陥を検査するマスク検査装置での使用に適した電子ビーム像用TDIセンサに関する。
【0002】
【従来の技術】
半導体集積回路の集積度は微細加工技術により規定されており、微細加工技術には一層の高性能が要求されている。特に、露光技術においては、ステッパなどに用いられるフォトリソグラフィの技術的な限界が予想されており、一層の微細化を難しくしている。この限界を打ち破る技術として電子ビーム露光技術が注目されている。電子ビーム露光方式としては、単一の電子ビームで一筆書きのようにパターンを描画する方式があるがスループットが非常に低いという問題がある。そこで、可変矩形方式やブロック露光方式が提案されている。
【0003】
可変矩形方式やブロック露光方式では、薄いメンブレン(膜)に開口を形成したステンシルマスクを使用し、ステンシルマスクに電子ビームを照射し、マスクの開口パターンに整形された電子ビームを試料上に照射して露光を行う。そのため、マスクは、製作後パターンに欠陥がないか、また使用中にパターンに欠陥が生じていないか検査することが必要であり、各種の検査装置が使用されている。
【0004】
特開2001−227932号公報は、透過型のマスクの検査を行うマスク検査装置を開示しており、検査速度を向上するため光学イメージセンサとして時間遅延積分方式イメージセンサ(TDIセンサ)を使用することを開示している。
この公知例に開示された構成例では、マスクに電子ビームを照射してマスクの開口を通過した電子ビームの像をシンチレータに投影する。シンチレータに投影された電子ビームの開口パターン像は光学像に変換され、更に光学レンズなどでTDIセンサに投影されて開口パターンの映像が捕えらる。このような構成で開口パターンをTDIセンサの積分方向に走査し、複数の受光セルの出力を加算することにより、積分方向の受光セルの列数倍の感度が得られる。また、別の構成例では、電子ビームに感度を有するTDIセンサを使用し、マスクの開口を通過した電子ビームの像を直接TDIセンサに投影して、開口パターンの映像を捕らえる。
【0005】
上記のように、荷電粒子ビーム露光用マスクは、製作後だけでなく、使用中に欠陥が生じたか検査する必要があるが、マスクの検査中はマスクが使用できないため、マスクの検査に要する時間も露光装置のスループットに関係する。そのため、荷電粒子ビーム露光用マスクはパターン領域の面積が大きい場合でも、その検査装置は、検査のスループットが高いことが要求される。そのため、特開2001−227932号公報に開示されたTDIセンサを使用する検査装置は、非常に有用である。
【0006】
【特許文献1】
特開2001−227932号公報(全体)
【特許文献2】
特許第2951947号(全体)
【0007】
【発明が解決しようとする課題】
TDI光イメージセンサは、1次元光イメージセンサを第1の方向に複数列配置し、光学像をTDI光イメージセンサに対して第1の方向に相対的に移動させた時の各列の受光セルの出力を列間の移動時間を考慮して加算するものである。
例えば、TDI光イメージセンサの列間のピッチ長をP、TDI光イメージセンサ上での像の移動速度をVとすると、各列の受光セルはP/V時間ごとに像の同じ部分に位置するので、受光セルの出力をP/V時間ずつ遅延させて加算すれば像の同一部分について列数倍の強度の信号が得られることになる。すなわち、1次元の場合に比べて、光イメージセンサの感度を列数倍だけ高くなる。
【0008】
そこで例えば、1次元のイメージセンサを1000列配列したTDI光イメージセンサを使用して大幅な感度向上を図ることを考える。この場合、受光セルの配列ピッチがPであると、TDI光イメージセンサは第1の方向に少なくとも1000Pの幅を有することになる。
【0009】
現状ではシンチレータをTDI光イメージセンサの受光面上に直接形成することはできないので、特開2001−227932号公報に記載されているように、電子ビーム画像をシンチレータに投影して光学像を形成し、その光学像を光学レンズなどでTDI光イメージセンサの受光面上に投影する。しかしこの構成はTDI光イメージセンサの受光面上に明るい像を投影するのが難しいという問題がある。そこで、TDI光イメージセンサの受光セルの配列ピッチより小さい直径の光ファイバを並列に配列したファイバ光プレート(FOP)の一方の端面にシンチレータを形成し、シンチレータを電子ビームの開口パターン像が形成される位置に配置し、TDI光イメージセンサの受光面をFOPの他方の端面に近接して配置することが考えられる。
【0010】
FOPの各光ファイバの端面から出射された光は、光ファイバの直径が小さいため回折の影響で大きな角度で広がる。そのため、TDI光イメージセンサの受光面とFOPの端面の間隔はできるだけ小さいことが望ましく、例えば、TDI光イメージセンサの受光セルの配列ピッチと同程度かそれ以下、例えば5μmにすることが望ましく、それより大きいとTDI光イメージセンサにより検出される開口パターンの像に無視できないボケが生じる。
【0011】
上記のように、高感度のセンサにするために1000列の1次元イメージセンサを配列したTDI光イメージセンサは、その幅が非常に大きくなり、例えば8mmの幅になる。このように広い全幅に渡ってFOPの端面との間隔を5μmの幅にするのは非常に難しい。特に、部分的に間隔が異なると、受光セルの位置によりボケ状態の異なる光像を捕らえることになり、正確なパターン像を検出できず、正確な欠陥検出が行えないという問題を生じる。
【0012】
本発明は、このような問題を解決するためのものであり、電子ビーム用マスクのパターンの欠陥検査の一層の高速化及び高精度化を可能にする電子ビーム像用TDIセンサ及びマスク検査装置の実現を目的とする。
【0013】
【課題を解決するための手段】
上記目的を実現するため、本発明の電子ビーム像用TDIセンサは、ファイバ光プレート(FOP)の端面とTDI光イメージセンサの間を光透過性の接着剤で接着する。
【0014】
すなわち、本発明の電子ビーム像用TDIセンサは、ファイバー光プレートと、ファイバー光プレートの一方の端面に設けられ、電子ビームの像を光学像に変換するシンチレータと、ファイバー光プレートの他方の端面に近接して設けられた時間遅延積分型(TDI)光イメージセンサとを備え、ファイバー光プレートの他方の端面と時間遅延積分型光イメージセンサの間は、光透過性の接着剤で接着されていることを特徴とする。
【0015】
FOPの端面とTDI光イメージセンサの受光面間を光透過性の接着剤で接着することにより、間隔を所望の一定値に高精度に制御できる。また、FOPの光ファイバの端面から出射された光の広がる角度は、屈折の関係で間に空気がある場合より、間が光ファイバの屈折率に近い透明材料で満たされている方が小さくなる。例えば、FOPの屈折率は1.7程度であり、光透過性の接着剤は通常屈折率が1.5程度であるので、空気層の屈折率1よりFOPの屈折率に近く、この点からもボケが低減される。従って、接着剤は、屈折率などの光学特性がファイバー光プレートの光学特性と類似であるものを使用することが望ましい。
【0016】
シンチレータは誘電体であり、電子ビームを照射すると表面に電子が蓄積され、望ましくない放電などの問題が生じる。そこで、シンチレータのファイバー光プレートに面しない表面(電子ビームの入射する側の表面)には、接地された薄い(10nm程度の)アルミニュームの薄膜などの導電体で形成された放電層を設けることが望ましい。
【0017】
シンチレータは、シンチレーション媒体蛍光材料で形成され、使用するシステムで要求される応答時間、シンチレーション効率及び材料の均一性や安定性などから材料が決定され、例えば、イットリウム・アルミニューム・ガーネット(YAG)を主成分とし、それにセリウム(Ce)などを微量添加した材料で形成する。また、シンチレータの厚さは、材料及び入射する電子ビームのエネルギ(加速電圧)から決定される侵入深さ(penetration depth)に応じて決定される。
【0018】
シンチレータは、これまではアモルファス材料で形成するのが一般的であり、本発明にも適用できる。シンチレータをアモルファス材料で形成するのは、シンチレータは厚さが10μm程度であり、ファイバー光プレートの表面にこのような厚さの単結晶層を作ることができなかったためである。しかし、シンチレータには電子ビームが照射されるため、アモルファス材料で形成すると微小な結晶の間が劣化し易いという問題があり、単結晶の材料で作ることが望ましい。
【0019】
そこで、本発明では、大きなYAG結晶から薄いプレートを切り出して研磨したFOP表面に接着剤で貼り付けた後、YAG結晶のプレートを所望の厚さまで研磨することにより、FOPの単面に10μm程度の厚さのYAG単結晶のシンチレータを実現する。
【0020】
【発明の実施の形態】
図1は、本発明の実施例のステンシルマスク検査装置の全体構成を示す図である。本実施例の検査装置は、図示のように、真空チャンバ60内に、マスク30を保持するマスク保持部64と、部材61,62,63で構成されたマスク保持部64を3軸方向に移動させるステージと、電子銃71と、電子銃71から出力された電子ビームを開口パターンが形成されるマスク30の薄い膜32の部分に照射する電子ビーム照射部72とが設けられている。真空チャンバ60には、マスク30を通過した電子ビームを捕らえて開口パターンの像を電子ビーム像用TDIセンサ74に投影する電子ビーム投影部73が付属している。検査時には、真空チャンバ60内と電子ビーム投影部73の内部及び電子ビーム像用TDIセンサ74が設けられる部分は真空である。
【0021】
マスク保持部64は、ステージ駆動部65により3軸方向に移動可能である。具体的には、マスク保持部64が部材61に対してZ軸方向(図面中の垂直方向)に移動し、部材61が部材63に対してY軸方向(図面に垂直な方向)に移動し、部材63が部材62に対してX軸方向(図面に水平な方向)に移動する。なお、ステージには回転を調整する機構も設けられるが、ここでは省略している。また、検査するマスク30を真空チャンバ60に搬入及び搬出する機構も設けられるが、ここでは省略している。
【0022】
信号処理ユニット81は、電子ビーム像用TDIセンサ74の出力を処理して開口パターンを表すイメージデータを生成する。制御ユニット/イメージ処理ユニット82は、信号処理ユニット81の出力するイメージデータから開口パターンの欠陥を検出すると共に、ステージ駆動部65などを制御する。これらの部分については、信号処理ユニット81がTDI信号を処理する以外は従来例と同じであるので、ここではこれ以上の説明は省略する。
【0023】
図2は、本実施例の電子ビーム像用TDIセンサ74の構成を示す図である。
図2に示すように、ベース部材78の上にTDI光イメージセンサ77を固定する。ベース部材78には部材79が固定されており、部材79には接着剤90によりファイバー光プレート(FOP)76が固定されている。FOP76の一方の表面には電子ビーム像を光学像に変換するシンチレータ75が設けられ、FOP76の他方の面はTDI光イメージセンサ77の受光面に接着剤80により一定の間隔、例えば5μmの厚さになるように接着される。イメージセンサ74は、シンチレータ75が電子ビームの開口パターン像が形成される位置に配置される。参照番号91は、ベース部材78に設けられたリード線であり、一部はボンディングワイヤ92を介してTDI光イメージセンサ77の端子に接続される。
また、部材79の表面には電子ビームが照射されるので、部材79を接地して電子が蓄積されないようにする必要がある。そのため、部材79は接続線を介してリード線91の一部の接地端子に接続される。
【0024】
シンチレータ75のFOPに面しない側(電子ビームの入射する側)の表面には、10nm程度の厚さのアルミニューム層94が形成されており、接続線93により接地されている。シンチレータ75は誘電体であり、電子ビームがシンチレータ75に入射すると一部は光に変換されるが、一部は表面に蓄積されシンチレータ75の表面が帯電する。帯電量が大きくなると放電が発生してシンチレータ75を破壊する場合があるので、この導電体であるアルミニューム層94によりシンチレータ75の表面の帯電を防止している。
【0025】
シンチレータはシンチレーション媒体蛍光材料で形成され、使用するシステムで要求される応答時間、シンチレーション効率及び材料の均一性や安定性などから材料が決定され、例えば、イットリウム・アルミニューム・ガーネット(YAG)を主成分とし、それにセリウム(Ce)などを微量添加した材料で形成する。また、シンチレータの厚さは、材料及び入射する電子ビームのエネルギ(加速電圧)から決定される侵入深さ(penetration depth)に応じて決定される。
【0026】
シンチレータは、これまではアモルファス材料で形成するのが一般的であり、本発明にも適用できる。シンチレータをアモルファス材料で形成するのは、シンチレータは厚さが10μm程度であり、ファイバー光プレートの表面にこのような厚さの単結晶層を作ることができなかったためである。しかし、シンチレータには電子ビームが照射されるため、アモルファス材料で形成すると微小な結晶の間が劣化し易いという問題があり、単結晶の材料で作ることが望ましく、本実施例では、シンチレータは単結晶板(プレート)で作られている。具体的には、大きな結晶から薄いプレートを切り出して研磨したFOP76の表面に光透過性の接着剤で貼り付けた後、結晶のプレートを所望の厚さまで研磨することにより、FOP76の単面に10μm程度の厚さの単結晶のシンチレータ75を実現する。シンチレータを単結晶層とすることにより、電子ビームを照射した場合に、アモルファス材料のシンチレータに比べて劣化が小さい。
【0027】
なお、劣化の問題はあるが、FOP76の表面にアモルファス材料を塗布してシンチレータ75を形成することも可能である。
【0028】
図3は、FOP76の端面とTDI光イメージセンサ77の受光面の間が従来の空気の場合(図3の(A))と本実施例のように透明な接着剤で満たされている場合(図3の(B))を示す。
【0029】
シンチレータ75に投影された電子ビーム像は光像に変換されて各光ファイバ761に入射し、他方の端面に伝達されて、TDI光イメージセンサ77の受光面に入射する。
【0030】
前述のように、FOP76とTDI光イメージセンサ77は例えば8mm程度の幅を有するが、FOP76の端面とTDI光イメージセンサ77の受光面間を5μm程度の一定の厚さに保持するのは、FOP76やTDI光イメージセンサ77の反りなどのために非常に難しい。そこで、本実施例では、FOP76の端面とTDI光イメージセンサ77の受光面間を光透過性の接着剤で接着する。例えば、FOP76の端面又はTDI光イメージセンサ77の受光面に所定の厚さの透明な接着剤を所定の厚さで塗布する。この場合の厚さの制御は、スピナーなどを使用すれば比較的高精度に行える。その上でもう一方の面を接触させた上で紫外線などを照射して接着剤を硬化させる。これにより、間隔を全面に渡って小さな一定値に高精度に制御できる。
【0031】
また、図3の(A)及び(B)に示すように、FOPの光ファイバ761の端面から出射された光は、光ファイバ761の直径が小さいため、光回折の関係で大きく広がる。FOPの光ファイバ761の屈折率は例えば1.7程度であり、その広がる角度は、屈折率が1である空気層801がある図3の(A)の場合より、間が屈折率が約1.5である透明材料80で満たされている方が小さくなる。
【0032】
以上のように、本実施例では、FOP76の端面とTDI光イメージセンサ77の受光面間の間隔が全面に渡って小さな一定値に高精度に制御できるため、光ファイバ761の端面から出射された光がTDI光イメージセンサ77の受光面に入射するまでの距離が短く、端面から出射された光が広がっても受光面上における像のボケは小さい。また、空気層801に比べて透明材料80の方が光ファイバ761の屈折率に近いので、光ファイバ761の端面から出射された光の広がり角も小さくなるので、この点からも受光面上における像のボケが低減される。
【0033】
更に、図4に示すように、FOP76は、光ファイバ761を規則的に配列した板である。本実施例では、光ファイバ761は、図5に示すように配列される。TDI光イメージセンサ77の受光セルの配列ピッチPは、2方向(X方向とY方向)で同じであり、配列ピッチPは光ファイバ761の直径Dより大きく、このような寸法条件は、装置の仕様に応じて適宜設定される。
【0034】
図5は、TDI光イメージセンサ77の動作原理を説明する図である。このTDI光イメージセンサ77は、CCDなどによる幅Wの1次元光イメージセンサを等ピッチ間隔PでN列配列したものであり、各列のセルの出力が並列に読み出せる。従って、N列配列すると、TDI光イメージセンサ77の走査方向の幅TはNPとなる。TDI光イメージセンサ77に対して投影する光画像を走査方向に一定の速度Vで移動させると、例えば、1番目の受光セルC1に投影された光画像の部分はP/Vの時間後には1番目の受光セルC1に投影される。すなわち、mP/Vの時間間隔で読み出した受光セルの出力は、m−1列前の対応する受光セルの出力と同じである。従って、上記のような走査を行う場合に、各受光セル列の出力をP/Vの時間間隔で読み出し、1列目の受光セルの出力とP/Vの時間後の2列目の受光セルの出力の和を加算し、更に2P/Vの時間後の3列目の受光セルの出力の和を加算するという具合に、(m−1)P/Vの時間後のm列目の受光セルの出力の和を加算することをN列目まで繰り返すと、光画像の同一部分の強度をN回検出して加算したことになる。TDI光イメージセンサ77は、N個の受光セルの出力を加算した信号を出力する。すなわち、TDI光イメージセンサ77は、1次元の光イメージセンサに比べてN倍の感度を有する。
【0035】
従って、画像処理速度が十分であれば、1次元の光イメージセンサを使用した場合に比べて走査速度をN倍にすることが可能であり、検査装置のスループットを大幅に向上できる。例えば、実施例で使用したTDI光イメージセンサは、受光セルの配列ピッチは2方向との8μmであり、Wは28mmで幅方向に3500個のセルが配列され、Tは8mmで走査方向に1000個のセルが配列されており、1次元の場合に比べて1000倍の感度を有する。なお、電子ビーム照射部72は、TDI光イメージセンサ77の8mm×28mmのセルアレイに対応するマスク30上の範囲を照明する必要がある。
【0036】
TDI光イメージセンサは、各種の受光セルの配置を有するものがあり、それらはすべて使用可能である。
【0037】
以上本発明の実施例を説明したが、本発明はこれに限定されず、各種の変形例が可能である。例えば、TDI光イメージセンサ77のセルアレイの大きさは仕様に応じて適宜決定され、電子ビーム投影部73の投影倍率は複数の倍率が選択できるようになっていることが望ましい。これにより、各種のマスクを各種の条件で測定できる。また、電子ビーム照射部72により照射される電子ビームの強度むらを補償するため、各種の補償処理が行われることが望ましい。
【0038】
【発明の効果】
以上説明したように、本発明によればTDI光イメージセンサを使用するので、センサの感度が向上し、ステンシルマスク検査装置のスループットが向上する。しかも、FOPの各光ファイバの端面から出射された光がTDI光イメージセンサの受光面に入射するまでの像のボケが小さく、高精度のイメージを得ることができるので、高品質の検査が可能である。
【図面の簡単な説明】
【図1】本発明の実施例のステンシルマスク検査装置の全体構成を示す図である。
【図2】本発明の電子ビーム像用TDIセンサの構成を示す図である。
【図3】ファイバ光プレートの端面とTDI光イメージセンサの受光面の間の出射光の広がりを、従来例と本発明で比較する図である。
【図4】ファイバ光プレートの光ファイバの配列とTDI光イメージセンサの受光セルの配列関係を示す図である。
【図5】TDI光イメージセンサの動作原理を説明する図である。
【符号の説明】
30…ステンシルマスク
60…真空チャンバ
61−63…ステージ部材
64…マスク保持部材
65…ステージ駆動部
71…電子銃
72…電子ビーム照射部
73…電子ビーム投影部
74…電子ビール像用TDIセンサ
75…シンチレータ
76…ファイバ光プレート(FOP)
77…TDI光イメージセンサ
80…FOPとTDI光イメージセンサ間の接着剤
94…アルミニューム薄層

Claims (9)

  1. ファイバー光プレートと、
    前記ファイバー光プレートの一方の端面に設けられ、電子ビームの像を光学像に変換するシンチレータと、
    前記ファイバー光プレートの他方の端面に近接して設けられた時間遅延積分型(TDI)光イメージセンサとを備え、
    前記ファイバー光プレートの他方の端面と前記時間遅延積分型光イメージセンサの間は、光透過性の接着剤で接着されていることを特徴とする電子ビーム像用TDIセンサ。
  2. 請求項1に記載の電子ビーム像用TDIセンサであって、
    前記シンチレータの前記ファイバー光プレートに面しない表面に設けられた放電層を備える電子ビーム像用TDIセンサ。
  3. 請求項2に記載の電子ビーム像用TDIセンサであって、
    前記放電層は、接地された導電体で構成される層である電子ビーム像用TDIセンサ。
  4. 請求項1から3のいずれか1項に記載の電子ビーム像用TDIセンサであって、
    前記シンチレータは、単結晶層である電子ビーム像用TDIセンサ。
  5. 請求項4に記載の電子ビーム像用TDIセンサであって、
    前記ファイバー光プレートの一方の端面と前記シンチレータの間は、光透過性の接着剤で接着されている電子ビーム像用TDIセンサ。
  6. 請求項5に記載の電子ビーム像用TDIセンサであって、
    前記単結晶層は、前記接着剤で前記ファイバー光プレートに接着された単結晶板を所望の厚さに研磨したものである電子ビーム像用TDIセンサ。
  7. 請求項5又は6に記載の電子ビーム像用TDIセンサであって、
    前記シンチレータの前記単結晶層は、イットリウム・アルミニューム・ガーネットを主成分とする電子ビーム像用TDIセンサ。
  8. 請求項1から3のいずれか1項に記載の電子ビーム像用TDIセンサであって、
    前記シンチレータは、前記ファイバー光プレートの一方の端面に直接付けられたシンチレーション媒体蛍光材料である電子ビーム像用TDIセンサ。
  9. 請求項1から8のいずれか1項に記載の電子ビーム像用TDIセンサを備えたマスク検査装置。
JP2003042603A 2003-02-20 2003-02-20 電子ビーム像用tdiセンサ及びマスク検査装置 Pending JP2004251764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042603A JP2004251764A (ja) 2003-02-20 2003-02-20 電子ビーム像用tdiセンサ及びマスク検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042603A JP2004251764A (ja) 2003-02-20 2003-02-20 電子ビーム像用tdiセンサ及びマスク検査装置

Publications (1)

Publication Number Publication Date
JP2004251764A true JP2004251764A (ja) 2004-09-09

Family

ID=33025839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042603A Pending JP2004251764A (ja) 2003-02-20 2003-02-20 電子ビーム像用tdiセンサ及びマスク検査装置

Country Status (1)

Country Link
JP (1) JP2004251764A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128672A (ja) * 2006-11-16 2008-06-05 Hitachi Maxell Ltd 層厚さ測定方法及び層の界面平滑度の測定方法
US7768625B2 (en) 2005-06-02 2010-08-03 Canon Kabushiki Kaisha Photo detector unit and exposure apparatus having the same
US7907255B2 (en) * 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2013026152A (ja) * 2011-07-25 2013-02-04 Hitachi High-Technologies Corp 電子顕微鏡
JP2013522923A (ja) * 2010-03-22 2013-06-13 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフィーシステム、センサ、コンバータ素子、および、製造方法
US8736924B2 (en) 2011-09-28 2014-05-27 Truesense Imaging, Inc. Time-delay-and-integrate image sensors having variable integration times

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316919B2 (en) 2003-08-29 2016-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907255B2 (en) * 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11003096B2 (en) 2003-08-29 2021-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10514618B2 (en) 2003-08-29 2019-12-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947637B2 (en) 2003-08-29 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7768625B2 (en) 2005-06-02 2010-08-03 Canon Kabushiki Kaisha Photo detector unit and exposure apparatus having the same
JP2008128672A (ja) * 2006-11-16 2008-06-05 Hitachi Maxell Ltd 層厚さ測定方法及び層の界面平滑度の測定方法
JP2013522923A (ja) * 2010-03-22 2013-06-13 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフィーシステム、センサ、コンバータ素子、および、製造方法
USRE47287E1 (en) 2010-03-22 2019-03-12 Mapper Lithography Ip B.V. Lithography system, sensor, converter element and method of manufacture
JP2013026152A (ja) * 2011-07-25 2013-02-04 Hitachi High-Technologies Corp 電子顕微鏡
US9503606B2 (en) 2011-09-28 2016-11-22 Semiconductor Components Industries, Llc Time-delay-and-integrate image sensors having variable integration times
US9049353B2 (en) 2011-09-28 2015-06-02 Semiconductor Components Industries, Llc Time-delay-and-integrate image sensors having variable integration times
US8964088B2 (en) 2011-09-28 2015-02-24 Semiconductor Components Industries, Llc Time-delay-and-integrate image sensors having variable intergration times
US8736924B2 (en) 2011-09-28 2014-05-27 Truesense Imaging, Inc. Time-delay-and-integrate image sensors having variable integration times

Similar Documents

Publication Publication Date Title
JP5723670B2 (ja) 光学システム、検査システムおよび製造方法
CN107064167B (zh) 晶片检查
JP4713185B2 (ja) 異物欠陥検査方法及びその装置
US5933219A (en) Projection exposure apparatus and device manufacturing method capable of controlling polarization direction
KR101496603B1 (ko) 검사 장치
CN1677241A (zh) 曝光装置及方法
KR20150088197A (ko) 초점 위치 조정 방법 및 검사 방법
JP2007510304A (ja) 光学像を形成する装置及び方法
JP2019190903A (ja) 高さ検出装置および荷電粒子線装置
JP3799614B2 (ja) 露光装置
US20070115471A1 (en) Wafer, exposure mask, method of detecting mark and method of exposure
JP2004251764A (ja) 電子ビーム像用tdiセンサ及びマスク検査装置
JP3262415B2 (ja) 像読取り装置、表面状態検査装置及び該装置を備える露光装置
JP4261591B2 (ja) 照明光学装置および試料検査装置
JP2000146687A (ja) Uvイメ―ジングに関するフロント照射蛍光スクリ―ン
JP4444984B2 (ja) レチクル欠陥検査装置およびこれを用いた検査方法
JP2004246343A (ja) 反射光学系及び露光装置
TW200915016A (en) Maskless exposure device
JP4961615B2 (ja) フォトマスクの検査方法及び装置
JP2001052986A (ja) X線投影露光装置
JP3107593B2 (ja) パターン検査装置
KR20140053771A (ko) 검출 장치, 리소그래피 장치, 물품을 제조하는 방법 및 검출 방법
JP2018200185A (ja) パターン検査装置及びパターン検査方法
JPH027046B2 (ja)
JP2011064829A (ja) パターン描画装置および描画方法