JP2004247625A - 露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法 - Google Patents

露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法 Download PDF

Info

Publication number
JP2004247625A
JP2004247625A JP2003037608A JP2003037608A JP2004247625A JP 2004247625 A JP2004247625 A JP 2004247625A JP 2003037608 A JP2003037608 A JP 2003037608A JP 2003037608 A JP2003037608 A JP 2003037608A JP 2004247625 A JP2004247625 A JP 2004247625A
Authority
JP
Japan
Prior art keywords
pattern
layer
via hole
wiring
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037608A
Other languages
English (en)
Inventor
Koichi Takeuchi
幸一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003037608A priority Critical patent/JP2004247625A/ja
Publication of JP2004247625A publication Critical patent/JP2004247625A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】配線パターンとヴィアホールとのコンタクト抵抗の低減、配線とこれに隣接するヴィアホールとの電気的耐圧の確保を図る。
【解決手段】絶縁膜10に配線パターンとこの配線パターンに接続するヴィアホールパターンとを形成する際に行う露光方法であって、前記配線パターンを形成する際のマスクとして用いるレジスト膜11に前記配線パターンを形成するための露光マスク31を用いてマスクの配線パターン32を露光転写する工程と、前記レジスト膜11に前記ヴィアホールパターンを形成するための露光マスク33を用いてマスクのヴィアホールパターン34を露光転写する工程とを備えている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、微細なパタ−ン加工に関するものであって、特に微細集積化が進行した半導体集積回路装置を製造する際の露光工程に用いる露光方法、その露光方法を用いた半導体装置の製造方法、露光時のマスク合わせをする際に用いるマスクパターンおよび位置ずれ測定方法に関する。
【0002】
【従来の技術】
半導体集積回路の高速化、低消費電力化の要求から、配線材料に銅が用いられるようになっている。層間絶縁膜にヴィアプラグを埋め込む孔と配線を埋め込む溝とを刻んで、銅を埋め込む溝配線技術(例えばダマシン法)が一般的に用いられている。溝配線の形成方法の一つに、先に配線溝を形成してから、その次にヴィアホ−ルを形成する、先溝タイプのデュアルダマシン法がある。
【0003】
先溝タイプのデュアルダマシン法の例を図32によって説明する。図32(1)に示すように、銅配線からなる第1層配線3211が溝配線構造に形成された層間絶縁膜3201上に、この第1層配線3211を被覆するように、カバー膜3202、層間絶縁膜3203、中間ハ−ドマスク膜3204、上層ハ−ドマスク膜3205を順に成膜する。
【0004】
次に、図32(2)に示すように、リソグラフィ工程とエッチング工程により、上層ハ−ドマスク膜3205に配線溝パターン3206を形成する。次に、図32(3)に示すように、リソグラフィ工程とエッチング工程により、上層ハ−ドマスク膜3205、中間ハ−ドマスク膜3204、層間絶縁膜3203に第2層ヴィアホール3221をあける。ただし、上層ハ−ドマスク膜3205がエッチングされるのは、リソグラフィ工程での位置ずれにより第2層ヴィアホール3321が配線溝パターン3206からはみ出した場合である。次に、図32(4)に示すように、上層ハ−ドマスク膜3205をマスクに中間ハードマスク3204および層間絶縁膜3203の途中までエッチングして配線を埋め込む配線溝3208を形成する。
【0005】
この後、図32(5)に示すように、第2層ヴィアホール3221の底部に露出しているカバ−膜3202をエッチングにより除去し、第1層配線3211上面を露出させる。その後、配線溝3212、第2層ヴィアホール3221に対して、バリアメタル膜の形成工程、銅の埋め込み工程、銅および上層ハ−ドマスク膜の化学的機械研磨(以下CMPという、CMPはChemical Mechanical Polishingの略)工程を経て、配線溝3208に第2層配線3212を形成する。さらに、第2層配線3212を被覆するように、中間ハードマスク膜3204上にカバー膜3207を形成する。このようにして、第1層配線3211、第2層配線3212および第1層配線3211と第2層配線3212とを接続する第2層ヴィアホール3221内に形成された第2層プラグ3213とからなる銅配線構造が形成される。
【0006】
先溝タイプのデュアルダマシン配線加工においては、上記に述べたように、リソグラフィ工程は、第1層配線3211→第2層配線3212→第2層ヴィアホ−ル3221の順で行う。第2層ヴィアホ−ル3221の露光のとき、アライメントを第1層配線3211に合わせると、第2層配線3212に対して第2層ヴィアホ−ル3221は間接的な合わせになる。そのため、第2層配線3212に対する第2層ヴィアホ−ル3221の位置合わせ精度が悪くなり、第2層配線3212と第2層ヴィアホ−ル3221との間の電気的耐圧がもたないという問題が生じる。例えば、露光装置での位置合わせの精度が55nmのとき、間接的な合わせ精度は、誤差の伝播に従い、√(55nmの2乗+55nmの2乗)=78nmになる。
【0007】
図33(1)の平面レイアウト図に示すように、位置ズレがないときは、第2層配線パターン3302と第2層ヴィアホールパターン3301とが一致して形成される。一方、位置ずれを起こした場合には、図33(2)の平面レイアウト図および図33(3)の図33(2)に示したA−A線断面図に示すように、第2層配線パターン3302と第2層ヴィアホールパターン3301とがずれて形成される。
【0008】
一方、第2層ヴィアホ−ルパターン3301の露光のとき、アライメントを第2層配線パターン3302に合わせると、第1層配線(図示せず)に対して第2層ヴィアホ−ルパターン3301は間接的な合わせになる。ところで、露光で形成した配線の先端は、露光の解像度不足から、図34に示すように、配線パターン3401は、その設計パターン3405(2点鎖線で示す)の寸法よりも先細り形状になって後退している。先に述べたような理由により、図35(1)の平面レイアウト図に示すように、第1層配線(図示せず)に対する第2層ヴィアホ−ルパターン3502の位置ズレがない場合であっても、後退した第1層配線パターン3501先端部と第2層ヴィアホ−ルパターン3502との重なり面積が小さくなり、コンタクト抵抗が増大するという問題が生じる。特に図35(2)の平面レイアウト図に示すように、第1層配線(図示せず)に対する第2層ヴィアホ−ルパターン3502が位置ズレした場合には、後退した第1層配線パターン3501先端部と第2層ヴィアホ−ルパターン3502との重なり面積が非常に小さくなり、最悪の場合には導通がとれなくなるという問題が生じる。
【0009】
配線端の後退を低減する手段として、図36の露光マスクの平面レイアウト図に示すように、フォトマスクを作成するときに、配線パタ−ン3601の先端に、ハンマ−ヘッドと呼ばれる修飾パタ−ン3602を付加する方法が一般的に用いられている。露光転写後の配線端後退を十分少なくするには、この修飾パタ−ン3602を大きくする必要がある。図面の配線パターン3601および修飾パターン3602は抜きパターンで形成されている。したがって、その周囲の露光マスク上には遮光膜3603が形成されている。しかし、修飾パタ−ン3602が大きいと、図37の平面レイアウト図に示すように、レジスト膜3703に露光転写後、配線パタ−ン3701先端部が太ったパターン3702となってしまう。
【0010】
図38(1)の平面レイアウト図に示すように、位置ズレがないときは、レジスト膜には、修飾パターン3803を形成した第2層配線パターン3801と第2層ヴィアホールパターン3802とが一致して形成される。一方、位置ずれを起こした場合には、図38(2)の平面レイアウト図に示すように、第2層配線パターン3801先端部に形成した修飾パターン3803から第2層ヴィアホールパターン3802がずれて形成される。この場合、例えば、第2層配線パターン3801と隣接する第2層ヴィアホ−ルパターン3802との間隔が狭くなり、第2層配線パターン3801と第2層ヴィアホ−ルパターン3802とが接近して、第2層配線と第2層ヴィアホールに形成される第2層プラグとの電気的耐圧がなくなるという問題が生じる。最悪の場合には第2層配線と第2層プラグとが短絡を起こす。
【0011】
図39(1)の平面レイアウト図および図39(2)の図39(1)に示したB−B線断面図に示すように、第2層ヴィアホ−ル3901に配線の一端が接続するように第2層配線3902が形成され、第2層配線3902の他端に接続するように第3層ヴィアホ−ル3903が形成され、第3層ヴィアホール3903に接続するように第3層配線3904が形成されている。各配線幅は180nmで、ピッチは360nmである。各ヴィアホ−ルの大きさは180nm×180nmである。なお、各ヴィアホール内には上下の配線間の導通をとるプラグが形成されている。
【0012】
ここで、上記第2層配線3902の先端にハンマーヘッド修飾パタ−ンを付けずに形成したときの第2層配線3902の形状は、図40(1)の平面レイアウト図および図40(2)の図40(1)に示したC−C線断面図に示すように、第2層ヴィアホ−ル4001に配線の一端が接続するように第2層配線4002が形成され、第2層配線4002の他端に接続するように第3層ヴィアホ−ル4003が形成されている。そして第2層配線4002の両端は設計寸法よりも先細りとなり後退した形状となる。第2層配線4002の露光は、NA=0.68、σ=0.75の条件で、KrFエキシマレ−ザ・スキャナ−を用いて、図41に示すようなマスクパタ−ン4111が形成されたマスク4101を用いて化学増幅型ポジレジストにパターンを転写した。マスクパタ−ン4111の先端は、露光転写後にレジストの配線パタ−ンの先端が後退することがわかっているので、設計より50nmのばしている。50nm以上のばすと、隣接する配線パタ−ンの先端と接近しすぎて、マスクを製作することができない。つまり、マスク作成の観点から、最大延ばせる長さが50nmである。それでも、最終的に、第2層配線の先端は、設計より90nm後退した。
【0013】
各ヴィアホ−ルは、エッチング工程で断面形状に傾斜がつき、上面での径は180nmになり、底での径は140nmになる。先に述べた先溝タイプのデュアルダマシン加工方法では、第2層ヴィアホ−ルと第2層配線とは、第2配線層上で論理和になり、第2層配線の先端が後退しても問題なく接続する。しかし、第3層ヴィアホ−ルは、第2層配線に対して、露光装置のステ−ジ精度の限界から、最大55nm位置ずれする。この場合、配線端が設計より90nm後退し、位置ずれが55nmあるので、第3層ヴィアホ−ルと第2層配線は、140nm(第3層ヴィアホ−ルの底径)−90nm(設計値からの第2層配線端の後退量)−55nm(位置ずれ量)=−5nmとなり、すなわち第3層ヴィアホールと第2層配線とは重ならず、断線してしまう。
【0014】
そこで、図42に示すように、マスク配線パタ−ン4211の先端に、自動生成ツ−ルを用いて、ハンマ−ヘッド修飾パタ−ン4212を形成した。その配線先端部の拡大を図43に示す。図43に示すように、幅180nmの第2層配線4301に対し、設計先端から50nmのばし、設計横から40nmのばし、長さ250nmのハンマ−ヘッド修飾パタ−ン4302がついている。実際のマスク上のパタ−ンは、第2層配線4301とハンマ−ヘッド修飾パタ−ン4302との論理和になっている。
【0015】
これを露光転写した状態を図44に示す。図44に示すように、露光後の第2層配線4401の設計値パターン4405からの後退(配線長手方向の後退)は20nmである。また第3層ヴィアホ−ルと第2層配線との最大位置ずれは55nmである。よって、第3層ヴィアホ−ルと第2層配線との位置関係を計算すると、140nm(第3層ヴィアホ−ルの底径)−20nm(設計値からの第2層配線端の後退量)−55nm(位置ずれ量)=65nmとなって、少なくても第3層ヴィアホ−ルと第2層配線とは重なり、ぎりぎり接続抵抗を許容される値より小さくすることができた。第2層配線4401のハンマ−ヘッド修飾パタ−ン4502は幅方向に太って、第2層配線4401の設計値パターン4405から片側最大55nm太って形成された。なお、図面ではハンマ−ヘッド修飾パタ−ン4402の設計値パターン4406を破線で示した。
【0016】
図45に示すように、第2層ヴィアホ−ル4501は、第1層配線(図示せず)端部との接続を優先するので、第1層配線に対してアライメントする。よって、第2層ヴィアホ−ル4501は、第2層配線4502に対しては、間接合わせになり、最大55nmの2乗和平均、つまり78nm位置ずれする可能性がある。第2層配線4502端は片側55nm太っており、第2層ヴィアホ−ル4501が第2層配線4502に対して78nmずれた場合、第2層ヴィアホ−ル4501と第2層配線4502との間隔は、180nm(設計値での第2層ヴィアホ−ル1201との間隔)−55nm−78nm=47nmになる。電気的な耐圧の確保から、配線間隔は60nm以上必要なので、第2層ヴィアホ−ル4501と第2層配線4502との間隔47nmは許容できない。
【0017】
ハンマ−ヘッド修飾パタ−ン以外にも、配線端後退に対して有効であると思われる方法が提案されている。この方法は、配線パタ−ンを複数のフォトマスクに分割して、同一レジスト上に多重露光する方法である(例えば、特許文献1参照。)。
【0018】
【特許文献1】
再公表特許WO00/25181号公報(第18−19頁、第7図)
【0019】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示されている技術では、マスクを余分に作成する必要があり、コストが増大するという問題が新たに生じる。
【0020】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法である。
【0021】
本発明の露光方法は、絶縁膜に配線パターンとこの配線パターンに接続するヴィアホールパターンとを形成する際に行う露光方法であって、前記配線パターンを形成する際のマスクとして用いるレジスト膜に前記配線パターンを形成するための露光マスクを用いてマスクの配線パターンを露光転写する工程と、前記レジスト膜に前記ヴィアホールパターンを形成するための露光マスクを用いてマスクのヴィアホールパターンを露光転写する工程とを備えている。
【0022】
上記露光方法では、配線パターンを形成する際のマスクとして用いるレジスト膜に配線パターンを形成するための露光マスクを用いてマスクの配線パターンを露光転写する工程と、レジスト膜にヴィアホールパターンを形成するための露光マスクを用いてマスクのヴィアホールパターンを露光転写する工程とを備えていることから、配線層を形成するレジスト膜に上記2工程の露光が行われる。そして、そのレジスト膜を現像してエッチングマスクとし、レジスト膜が形成されている下層の配線層を形成する絶縁膜に配線パターンをエッチング加工する。このとき、配線パターンにはヴィアホールパターンも一緒に形成される。このため、さらに上記ヴィアホールパターンを露光したマスクと同一マスクを用いて絶縁膜にヴィアホールを形成した場合、予め配線パターンにはヴィアホールパターンも形成されているため、ヴィアホールはヴィアホールパターンとの合わせずれのみ考慮されればよい。このため、配線パターンとヴィアホールとの接続面積が十分に取れるようになり、設計値通りのコンタクト抵抗が得られ、また配線とこれに隣接するヴィアホールとの電気的耐圧が十分に確保される。よって、配線パターンとヴィアホールとの接続面積が狭くなり、コンタクト抵抗が増大する問題や、配線とこれに隣接するヴィアホールとの電気的耐圧の減少という問題が解決される。
【0023】
本発明の半導体装置の製造方法は、層間絶縁膜に配線とこの配線に接続するヴィアホールとを形成する半導体装置の製造方法において、前記層間絶縁膜上にハードマスクを形成する工程と、前記ハ−ドマスクに配線パタ−ンを形成する工程と、前記ハ−ドマスクにヴィアホールパタ−ンを形成する工程とを行うことにより、前記ハ−ドマスクに、前記配線パタ−ンと前記ヴィアホ−ルパタ−ンとの論理和になるパタ−ンを形成する。
【0024】
上記半導体装置の製造方法では、層間絶縁膜上にハードマスクを形成する工程と、ハ−ドマスクに配線パタ−ンを形成する工程と、ハ−ドマスクにヴィアホールパタ−ンを形成する工程とを行うことにより、ハ−ドマスクに、配線パタ−ンとヴィアホ−ルパタ−ンとの論理和になるパタ−ンを形成することから、ハードマスクが形成されている下層の配線層を形成する絶縁膜に配線パターンをエッチング加工するとき、配線パターンにはヴィアホールパターンも一緒に形成される。このため、さらに上記ヴィアホールを形成する絶縁膜にヴィアホールを形成した場合、予め配線パターンにはヴィアホールパターンも形成されているため、ヴィアホールは配線パタ−ンとヴィアホ−ルパタ−ンとの論理和になるパタ−ンとの合わせずれのみ考慮されればよい。すなわち、露光装置起因の合わせずれのみを考慮すればよい。このため、配線パターンとヴィアホールとの接続面積が十分に取れるようになり、設計値通りのコンタクト抵抗が得られ、また配線とこれに隣接するヴィアホールとの電気的耐圧が十分に確保される。よって、配線パターンとヴィアホールとの接続面積が狭くなり、コンタクト抵抗が増大する問題や、配線とこれに隣接するヴィアホールとの電気的耐圧の減少という問題が解決される。
【0025】
本発明のマスクパターンは、ヴィアホ−ル層と配線層との位置ずれを測定するマスクパターンであって、前記配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターン(開口パターンともいう、以下、抜きパターンと記す)で形成され、前記ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが前記抜きパターン内に配置されるものである。
【0026】
上記マスクパターンでは、配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが抜きパターン内に配置されることから、本発明の露光方法を行う際に、同一レジスト膜に配線層とヴィアホール層とを露光しても、もしくは本発明の半導体装置の製造方法を行う際に、同一ハードマスクに配線層とヴィアホール層とを形成しても、ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンのうち少なくとも一つはレジスト膜またはハードマスクにパターンとして現れない。このため、その後ヴィアホールを形成する際に形成される位置ずれ測定パターンのうち、すくなくとも抜きパターン内に配置されたパターンは、先に配線層とともに露光したヴィアホールパターンとは重ならない。このため、配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとによって、正確な位置ずれ測定が行えるようになる。
【0027】
本発明の位置ずれ測定方法は、前記配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンと前記ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンとを用いて配線層に対するヴィアホール層の位置ずれを測定する位置ずれ測定方法であって、前記配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、前記ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが前記抜きパターン内に配置される。
【0028】
上記位置ずれ測定方法では、配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが抜きパターン内に配置されることから、本発明の露光方法を行う際に、同一レジスト膜に配線層とヴィアホール層とを露光しても、もしくは本発明の半導体装置の製造方法を行う際に、同一ハードマスクに配線層とヴィアホール層とを形成しても、ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンのうち少なくとも一つはレジスト膜またはハードマスクにパターンとして現れない。このため、その後ヴィアホールを形成する際に形成される位置ずれ測定パターンのうち、すくなくとも抜きパターン内に配置されたパターンは、先に配線層とともに露光したヴィアホールパターンとは重ならない。このため、配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとによって、正確な位置ずれ測定が行えるようになる。
【0029】
【発明の実施の形態】
本発明の露光方法に係る一実施の形態を、図1の概略構成断面図によって説明する。この露光方法は、絶縁膜に配線パターンとこの配線パターンに接続するヴィアホールパターンとを形成する際に行う露光方法である。
【0030】
図1(1)に示すように、絶縁膜10上に配線パターンを形成する際のマスクとして用いるレジスト膜11を形成した後、このレジスト膜11に配線パターンを形成するための露光マスク31を用いて配線パターン32を露光する。次いで、図1(2)に示すように、上記レジスト膜11にヴィアホールパターンを形成するための露光マスク33を用いてヴィアホールパターン34を露光する。
【0031】
上記ヴィアホールパターンを形成する際に用いた露光マスクは、その後にヴィアホールのみを形成する際に用いる露光マスクと同一のものを用いる。
【0032】
その後、現像工程(ベーキング工程も含む)を行うことで、図2に示すように、上記レジスト膜11には、配線パターンを転写した配線用抜きパタ−ン12が形成されるとともに、上記配線パターンに接続されるヴィアホ−ルパターンを転写したヴィアホール抜きパタ−ン13が形成される。
【0033】
上記絶縁膜10〔前記図1の(1)参照〕はハードマスクであってもよい。この場合には、上記レジスト膜11をマスクにしてハードマスクをエッチング加工することにより、ハードマスクに配線用抜きパタ−ン12とヴィアホール抜きパタ−ン13とが形成される。
【0034】
上記露光方法によれば、配線に接続されるヴィアホ−ルの配線との接続部分に、そのヴィアホ−ル自身のヴィアホール抜きパタ−ン13が配線用抜きパターン12とともに付加されているので、ヴィアホ−ルと配線との接続面積は十分にとれるようになる。また、上記ヴィアホールパターンを形成する際に用いた露光マスクは、その後にヴィアホールのみを形成する際に用いる露光マスクと同一のものを用いることから、露光マスク自体の寸法誤差を考慮する必要がなくなる。
また、該配線層の配線パタ−ンにハンマ−ヘッド修飾パタ−ンをつけていないので、配線端の両側とも太るということはなく、配線と隣接するヴィアホ−ルとの電気的耐圧が不足するという問題も生じない。
【0035】
例えば、配線パタ−ンを形成するとき、配線パターン上に接続するヴィアホ−ルパターンも配線パターンを露光転写した層と同一の層に転写する。さらに、実際にヴィアホ−ルを形成するための露光転写を行う。このとき、ヴィアホールに対して他の層に対する位置ずれ測定を行うが、ヴィアホール下の配線には、すでにヴィアホ−ル層が転写されているので、平面レイアウト上では、同形状の位置ずれ測定マ−クが重なってしまう。ただし、完全に重なるわけではなく、位置ずれした分だけずれてしまい、位置ずれ測定マ−クの波形がシフトしたり、広がったりして、位置ずれ測定精度が劣化する。
【0036】
例えば、図3(1)に示すように、配線層の露光マスクに形成される上記配線層の位置ずれ測定パターン810は、いわゆる一般的に使われているバー型の測定パターンであって、4本の直線状の抜きパターンからなる測定パターン811〜814が正方形の4辺にそって一本ずつ配置されている。また、図3(2)に示すように、ヴィアホール層の露光マスクに形成される上記ヴィアホ−ル層の位置ずれ測定パターン820は、いわゆる一般的に使われているバー型の測定マークであって、4本の直線状の抜きパターンからなる測定パターン821〜824が正方形の4辺にそって一本ずつ配置されている。ここでは、ヴィアホール層の位置ずれ測定パターン820は、配線層の位置ずれ測定パターン810よりも外側に配置されるように、大きく形成されている。
【0037】
上記構成の位置ずれ測定パターンを用いてレジストに露光転写した場合を、図4によって説明する。図4(1)には、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。図4(2)には、図4(1)中のD−D線断面図を示す。また図4(3)には、図4(1)中のD−D線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0038】
図4(2)に示すように、下層絶縁膜21には、配線層に付属する位置ずれ測定マ−ク831が形成され、位置ずれ測定マーク831には銅が埋め込まれている。また、下層絶縁膜21には、配線層にヴィアホ−ル層を付加したときに同時に形成されたヴィアホ−ル層の位置ずれマ−ク832が形成され、位置ずれマ−ク832には銅が埋め込まれている。そして、下層絶縁膜21上には層間絶縁膜22が形成され、さらにレジスト膜23が形成されている。このレジスト膜23には、ヴィアホ−ル本体を形成するために、ヴィアホ−ル層の位置ずれ測定マ−ク833が形成されている。図4(1)の平面レイアウト図では、付加的に形成したヴィアホ−ル層の位置ずれ測定マ−ク832と、本体形成のためのヴィアホ−ル層の位置ずれ測定マ−ク833とが、位置ずれした分だけずれて重なって見える。このため、図4(3)に示すように、ヴィアホ−ル層の位置ずれ測定マ−ク832、833による出力波形842、843は重なるため、出力波形の裾部が広がってしまい、立ち上がりの悪い波形となる。よって、図4(2)に示すように、下層絶縁膜21に形成される配線層とレジスト膜23を用いて形成されるヴィアホ−ル層との位置ずれ測定の精度が劣化してしまう。
【0039】
参考として、配線層を形成するときにヴィアホ−ル層を付加しない通常の方法の位置ずれ測定マ−クを図5によって説明する。図5(1)には、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。図5(2)には、図5(1)中のE−E線断面図を示す。また図5(3)には、図5(1)中のE−E線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0040】
図5(2)に示すように、下層絶縁膜21上の層間絶縁膜22上に形成されたレジスト膜23が形成されている。上記下層絶縁膜21には配線層に付属する位置ずれ測定マ−ク901が形成され、上記レジスト膜23にはヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク902が形成される。図5(1)に示すように、上記下層絶縁膜21に形成された配線層に付属する位置ずれ測定マ−ク901と、上記レジスト膜23に形成されたヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク902とが平面レイアウト図で見て重なっていないので、図5(3)に示すように、光学式位置ずれ測定装置で測定した位置ずれ測定の位置ずれ測定マ−ク901の波形911、位置ずれ測定マ−ク902の波形912はともにきれいな立ち上がりを示す。このため、位置ずれ測定が正確にできる。
【0041】
次に、本発明のマスクパターンおよび位置ずれ測定方法に係る第1実施の形態を、図6の平面レイアウト図によって説明する。
【0042】
図6(1)に示すように、配線層の露光マスクに形成される配線層の位置ずれ測定パターン41は、方形の抜きパタ−ン411で形成される。そして図6(2)に示すように、ヴィアホール層の露光マスクに形成されるヴィアホ−ル層の位置ずれ測定パターン42は方形の抜きパタ−ン421で形成される。そして抜きパタ−ン421は、抜きパタ−ン411よりも小さく形成されている。
【0043】
上記位置ずれ測定パターン41、42が形成された露光マスクを用いて本発明の露光方法を実施した場合を図7によって説明する。図7(1)には、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。図7(2)には、図7(1)中のF−F線断面図を示す。また図7(3)には、図7(1)中のF−F線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0044】
図7(2)に示すように、下層絶縁膜21上の層間絶縁膜22上に形成されたレジスト膜23が形成されている。上記下層絶縁膜21には配線層に付属する位置ずれ測定マ−ク401が形成され、上記レジスト膜23にはヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク402が形成れる。図7(1)に示すように、上記下層絶縁膜21に形成された配線層に付属する位置ずれ測定マ−ク401と、上記レジスト膜23に形成されたヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク402とが平面レイアウト図で見て重なってはいるものの、図7(3)に示すように、光学式位置ずれ測定装置で測定した位置ずれ測定マーク402の波形432が位置ずれ測定マ−ク401の波形431に対してきれいな立ち上がりを示している。このため、位置ずれ測定が正確にできる。これは、配線層とともに付加的に露光したときの該ヴィアホ−ル層の位置ずれ測定マ−ク402は、配線層の位置ずれ測定マ−ク401の内側に入るので、パタ−ンとしては形成されないためである。
【0045】
次に、本発明のマスク4パターンおよび位置ずれ測定方法に係る第2実施の形態を、以下に説明する。
【0046】
まず、露光マスクに形成される位置ずれ測定パターンを、図8によって説明する。図8(1)に示すように、配線層の露光マスクに形成される配線層の位置ずれ測定パターン51は、方形の抜きパタ−ン511と、方形の抜きパターン511の外側4辺に形成された一般的に使われているバー型の抜きパターン512〜515とからなる。そして図8(2)に示すように、ヴィアホール層の露光マスクに形成されるヴィアホ−ル層の位置ずれ測定パターン52は、いわゆる一般的に使われているバー型の測定マークであって、4本の直線状の測定マークパターン521〜524が正方形の4辺にそって一本ずつ配置されている。この測定マ−クパターン521〜524は、位置ずれ測定マ−ク51の方形の抜きパターン511内に収まるように小さく形成されている。
【0047】
上記位置ずれ測定マ−ク41、42を用いて本発明の露光方法を実施した場合を図9によって説明する。図9(1)には、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。図9(2)には、図9(1)中のF−F線断面図を示す。また図9(3)には、図9(1)中のG−G線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0048】
図9(2)に示すように、下層絶縁膜21上の層間絶縁膜22上に形成されたレジスト膜23が形成されている。上記下層絶縁膜21には配線層に付属する位置ずれ測定マ−ク531〜535が形成され、上記レジスト膜23にはヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク541〜544が形成れる。図9(1)に示すように、上記下層絶縁膜21に形成された配線層に付属する位置ずれ測定マ−ク511と、上記レジスト膜23に形成されたヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク541〜544とが平面レイアウト図で見て一部重なってはいるものの、図9(3)に示すように、光学式位置ずれ測定装置で測定した位置ずれ測定マーク562、564の波形が位置ずれ測定マ−ク551の波形に対してきれいな立ち上がりを示している。このため、位置ずれ測定が正確にできる。これは、配線層とともに付加的に露光したときのヴィアホ−ル層の位置ずれ測定マ−ク541〜544は、配線層の位置ずれ測定マ−クの抜きパターン511内側に入るので、パタ−ンとしては形成されないためである。
【0049】
次に、本発明のマスクパターンおよび位置ずれ測定方法に係る第3実施の形態を、以下に説明する。この第3実施の形態では、ヴィアホ−ル層で露光転写するときに、ヴィアホ−ル層のアライメントマ−クを用いる場合を説明する。
【0050】
まず、露光マスクに形成される位置ずれ測定マ−クを、図10によって説明する。図10(1)に示すように、配線層の露光マスクに形成される配線層の位置ずれ測定パターン61は、矩形の抜きパタ−ン611が形成されている。そして図10(2)に示すように、ヴィアホール層の露光マスクに形成されるヴィアホ−ル層の位置ずれ測定パターン62は、一般的に使われているバー型の測定マークであって、複数本(例えばここでは7本)の直線状の測定マークパターン621〜627が並列配置されている。この測定マ−クパターン621〜627は、位置ずれ測定パターン51の方形の抜きパターン611内に収まるように小さく形成されている。
【0051】
上記図10によって説明した位置ずれ測定パターンの場合も、上記第1、第2実施の形態の同様に、配線層の位置ずれ測定パターン61の抜きパターン611内にヴィアホール層の位置ずれ測定パターン62が重なる状態に露光されるため、配線層を露光する際にヴィアホールパターンを付加露光しても、ヴィアホール層の位置ずれ測定パターン62は形成されない。したがって、ヴィアホールを形成しようとするときには、下層に形成される配線層の位置ずれ測定マ−クに対してヴィアホール層の位置ずれ測定マ−クによりアライメントが可能となる。
【0052】
上記説明したように、本発明は、ヴィアホ−ル層のアライメントマ−クが配線層のアライメントマ−クに重ならないように、平面レイアウト図で見て、ヴィアホ−ル層の露光用アライメントマ−クの少なくても一つを十分覆うように、配線パタ−ン層に抜きパタ−ンを形成するものである。特に、ヴィアホ−ル層と配線層のとの位置ずれを測定するパタ−ンの少なくても一つは、配線層においては抜きパタ−ンにし、ヴィアホ−ル層においては、配線層の抜きパタ−ンの内側にレイアウトする。そのことにより、配線層にヴィアホ−ル層を付加するときに、ヴィアホ−ル層の位置ずれ測定マ−クが形成されることはなくなる。また、配線層の抜きパタ−ンは一様な背景になるので、ヴィアホ−ル層の位置ズレ測定マ−クの出力波形の裾部が広がることはなくなる。
【0053】
次に、本発明の具体的な実施例を以下に説明する。
【0054】
第1実施例を図11〜図24によって説明する。まず、図11では、(1)に平面レイアウト図を示し、(2)に図11(1)に示したH−H線断面図を示す。
【0055】
図11に示すように、第2層ヴィアホ−ル111に配線の一端下側もしくは両端下側が接続するように第2層配線112が形成され、第2層配線112の一端上側に接続するように第3層ヴィアホ−ル113が形成され、第3層ヴィアホール113に接続するように第3層配線114が形成されている。各配線パタ−ンの幅は180nmで、最小ピッチは360nmである。また、配線端同士の最小間隔は180nmである。各ヴィアホ−ルのパタ−ンは180nm×180nmの正方形である。
【0056】
次に、上記図11の構成を形成する本発明の半導体装置の製造方法の一実施の形態を、図12、15および17の概略構成断面図によって説明する。
【0057】
図12(1)に示すように、銅配線からなる第1層配線110が溝配線構造に形成された層間絶縁膜121上に、この第1層配線110を被覆するようにエッチング停止層122を例えばSiN膜を70nmの厚さに成膜して形成し、次に層間絶縁膜を、例えば、酸化シリコン(SiO)膜123を例えば350nmの厚さに成膜し、次に有機膜(例えばポリアリルエ−テル系の有機高分子膜)124を例えば150nmの厚さに成膜し、次に酸化シリコン(SiO)膜125を例えば200nmの厚さに成膜して形成する。さらに、ハードマスク膜(例えば窒化シリコン膜)126を例えば150nmの厚さに成膜する。次に、図12(2)に示すように、ハードマスク膜126上に反射防止膜127、例えば有機系の反射防止膜を70nmの厚さに形成し、さらにレジスト膜(例えばアセタ−ル系ポジ型化学増幅レジスト:膜厚460nm)128を塗布形成する。
【0058】
このレジスト膜128に、後に説明する第2配線層のマスク〔図13の(1)参照〕を用いて露光し、続けて後に説明する第3ヴィアホ−ル層のマスク〔図13の(2)参照〕を用いて露光する。この露光では、例えば縮小投影率=1/4のKrFエキシマレ−ザ・スキャナを用いる。露光照明条件は、NA=0.68, σ=0.75である。露光量は、第2配線層、第3配線層に対して、それぞれ、20mJ/cm、30mJ/cmである。また、アライメントは、第2配線層、第3配線層とも、第1配線110に対して行う。その後、現像工程を行って、レジスト膜128に第2配線層を形成するための抜きパターン129が形成される。
【0059】
ここで上記第2配線層のマスクを図13(1)によって説明する。図13(1)に示すように、第2配線層のマスク71には、抜きパターンで形成される配線パターン711が形成されており、各配線パターン711は、例えば幅が180nmであり、設計値での配線長手方向の間隔が180nm、マスク上の配線パターン先端は設計値の配線パターンの先端より50nm長く形成されている。また配線幅方向の配線間隔が180nmになっている。上記第3ヴィアホ−ル層のマスクを図13(2)によって説明する。図13(2)に示すように、第3ヴィアホール層のマスク72には、抜きパターンで形成されるヴィアホールパターン721が形成されており、各ヴィアホールパターン721は、例えば180nm×180nmの抜きパターンになっている。これらの値は、基板上に縮小投影したときの値に換算したものである。また、塗りつぶされたところが遮光部で、白抜きのパタ−ンは、光を100%透過する抜きパタ−ンである。
【0060】
次いで、露光したレジスト膜128を現像する。この現像では、例えばアルカリ現像液(2.38% TMAH)を用いる。その結果、光が照射された部分のレジスト膜128が現像で除去され、抜きパタ−ン129が形成される。図14の抜きパターン129の平面レイアウト図に示すように、レジスト膜128には、配線パターン1291とヴィアホールパターン1292とが形成される。この抜きパタ−ン129は、第2配線層と第3ヴィアホ−ル層の論理和になる。なお、破線で示す部分は設計パタ−ンに相当する。
【0061】
次に、図15(1)に示すように、レジスト膜128〔前記図12の(2)参照〕をマスクにし、ドライエッチング技術を用いて、反射防止膜127〔前記図12の(1)参照〕およびハードマスク膜126をエッチングする。その後、レジスト膜128、反射防止膜127を除去する。この結果、ハードマスク膜126に、第2配線層と第3ヴィアホ−ル層の論理和のパタ−ンに相当する溝パタ−ン130が形成される。
【0062】
次に、図15(2)に示すように、ハードマスク膜126上を覆うように反射防止膜(例えば有機系の反射防止膜)131を塗布する。塗布量は、平坦な基板上に例えば140nmの厚さに塗布するときに相当する。さらに、レジスト膜132を塗布形成する。このレジスト膜132には、例えばアセタ−ル系ポジ型化学増幅レジスト(膜厚460nm)を用いる。次に、後に図16によって説明する第2層ヴィアホ−ルのマスクを用いて露光を行う。この露光では、縮小投影率=1/4のKrFエキシマレ−ザ・スキャナ−を用い、露光照明条件はNA=0.68、σ=0.75で、露光量は30mJ/cm2とする。アライメントは、第1配線層に対して行う。続いて、レジスト膜132を現像処理する。この現像処理には、例えばアルカリ現像液(2.38%:TMAH)を用いる。これにより、ヴィアホ−ルパタ−ン133の直径は180nmに形成される。
【0063】
ここで、第2ヴィアホ−ル層のマスクを図16によって説明する。図16に示すように、第2ヴィアホ−ル層のマスク73は、第2配線層の設計値(破線で示す)の先端部分内に収まるように第2ヴィアホール層パターン731が、例えば180nm×180nmの抜きパターンで形成されている。ここでの値は、基板上に縮小投影したときの値に換算したものである。また、図面塗りつぶされたところが遮光部で、白抜きのパターンは、光を100%透過する抜きパターンである。
【0064】
次に、図17(1)に示すように、上記レジスト膜132をマスクに用いて、反射防止膜131、ハードマスク膜126、酸化シリコン膜125までをエッチングする。このエッチングでは第2配線層を形成する配線溝に付加する第3ヴィアホール層のヴィアホールパターン133が形成される。
【0065】
次に、図17(2)に示すように、ハードマスク膜126をマスクにして有機膜124をエッチングする。このとき、レジスト膜132および反射防止膜131〔前記図17の(1)参照〕も同時に除去される。
【0066】
次に、図17(3)に示すように、ハードマスク膜126および有機膜124をマスクにして酸化シリコン膜125、123をエッチングする。このエッチングでは、有機膜124がマスクとなって下層の酸化シリコン膜123がエッチングされ、第2ヴィアホ−ル134が形成されるとともに、ハードマスク膜126がマスクとなって上層の酸化シリコン膜125がエッチングされ、第2配線層(第3ヴィアホ−ル層が付加されている)が形成される配線溝135が形成される。
【0067】
次に、図17(4)に示すように、ハードマスク膜126をマスクに用いて、有機膜124をエッチングして、配線溝135を下層方向に延長形成する。
【0068】
次に、図17(5)に示すように、ヴィアホール133底部に露出しているエッチング停止膜122をエッチングする。このとき、上面のハードマスク膜126〔前記図17の(4)参照〕が全面エッチバックされる。
【0069】
次に、図17(6)に示すように、配線溝135およびヴィアホール134の各内面および酸化シリコン膜125表面にバリアメタル膜(図示せず)を成膜し、さらに銅のシ−ド膜を成膜し、さらに電解メッキにより配線溝135およびヴィアホール134内を埋め込むように銅膜136を形成する。その後、化学的機械研磨法によって、酸化シリコン膜125上の余剰な銅膜136、バリアメタル膜を研磨除去する。このとき、酸化シリコン膜125表層も研磨除去される。このようにして、配線溝135内に第2層配線137およびヴィアホール133内に第1層配線110に接続するプラグ138が銅膜136で形成される。その後、酸化シリコン膜125上に第2層配線137を被覆するキャップ膜139を、例えば窒化シリコン(SiN)膜を70nmの厚さに成膜して形成する。
【0070】
このときの平面レイアウト図を図18によって説明する。図18は、図17において、酸化シリコン膜125とキャップ膜139との界面をキャップ膜139側から酸化シリコン膜125方向(下方向)に見た図である。図18に示すように、第2層配線137は、第2配線層パターン1371、第3ヴィアホ−ル層1372パターンおよび第2ヴィアホ−ル層パターン1373の論理和となって形成される。
【0071】
次に、図19に示すように、前記図12によって説明した製造工程と同様に、上記キャップ膜139上に、層間絶縁膜を、例えば、酸化シリコン(SiO)膜143を例えば350nmの厚さに成膜し、次に有機膜(例えばポリアリルエ−テル系の有機高分子膜)144を例えば150nmの厚さに成膜し、次に酸化シリコン(SiO)膜145を例えば200nmの厚さに成膜して形成する。さらに、ハードマスク膜(例えば窒化シリコン膜)(図示せず)を例えば150nmの厚さに成膜する。さらにハードマスク膜上に反射防止膜を形成する。
【0072】
次に、前記図12(2)、図15、図17によって説明したプロセスと同様なプロセスを行う。すなわち、レジスト膜をマスクにし、ドライエッチング技術を用いて、反射防止膜およびハードマスク膜をエッチングする。その後、レジスト膜、反射防止膜を除去する。この結果、ハードマスク膜に、第3配線層と第4ヴィアホ−ル層の論理和のパタ−ンに相当する溝パタ−ンが形成される。
【0073】
次に、反射防止膜(例えば有機系の反射防止膜)を塗布形成する。塗布量は、平坦な基板上に例えば140nmの厚さに塗布するときに相当する。さらに、レジスト膜を塗布形成する。このレジスト膜には、例えばアセタ−ル系ポジ型化学増幅レジスト(膜厚460nm)を用いる。次に、第4層ヴィアホ−ルのマスクを用いて露光を行う。この露光では、縮小投影率=1/4のKrFエキシマレ−ザ・スキャナ−を用い、露光照明条件はNA=0.68、σ=0.75で、露光量は30mJ/cm2とする。アライメントは、第2配線層に対して行う。続いて、レジスト膜を現像処理する。この現像処理には、例えばアルカリ現像液(2.38%:TMAH)を用いる。これにより、レジスト膜に直径が180nmのヴィアホ−ルパタ−ンが形成される。
【0074】
次に、上記レジスト膜をマスクに用いて、反射防止膜、ハードマスク膜、酸化シリコン膜145までをエッチングする。このエッチングでは第3配線層を形成する配線溝に付加する第4ヴィアホール層のヴィアホールパターン(図示せず)が形成される。
【0075】
次に、有機膜144をエッチングする。このとき、レジスト膜および反射防止膜も同時に除去される。
【0076】
次に、酸化シリコン膜145、143をエッチングする。このエッチングでは、有機膜144がマスクとなって下層の酸化シリコン膜143がエッチングされ、第3ヴィアホ−ル154が形成されるとともに、ハードマスク膜がマスクとなって上層の酸化シリコン膜145がエッチングされ、第3配線層(第3ヴィアホ−ル層が付加されている)が形成される配線溝155が形成される。
【0077】
次に、ハードマスク膜〔前記図17の(4)参照〕をマスクに用いて、有機膜144をエッチングして、配線溝155を下層方向に延長形成する。
【0078】
次に、ヴィアホール154底部に露出しているキャップ膜139をエッチングする。このとき、上面のハードマスク膜146〔前記図17の(4)参照〕が全面エッチバックされる。
【0079】
次に、配線溝155およびヴィアホール154の各内面および酸化シリコン膜145表面にバリアメタル膜(図示せず)を成膜し、さらに銅のシ−ド膜を成膜し、さらに電解メッキにより配線溝155およびヴィアホール154内を埋め込むように銅膜156を形成する。その後、化学的機械研磨法によって、酸化シリコン膜145上の余剰な銅膜156、バリアメタル膜を研磨除去する。このとき、酸化シリコン膜145表層も研磨除去される。このようにして、配線溝155内に第2層配線157およびヴィアホール153内に第2層配線137に接続するプラグ158が形成される。その後、酸化シリコン膜145上に第2層配線157を被覆するキャップ膜(図示せず)を、例えば窒化シリコン(SiN)膜を70nmの厚さに成膜して形成する。
【0080】
ここで上記第3配線層のマスクを図20に示す。図20に示すように、第3配線層のマスク74には、抜きパターンで形成される配線パターン741が形成されており、各配線パターン741は、例えば幅が180nmであり、設計値での配線長手方向の間隔が180nm、マスク上の配線パターン先端は設計値の配線パターンの先端より50nm長く形成されている。また配線幅方向の配線間隔が180nmになっている。
【0081】
このときの平面レイアウト図を図21によって説明する。図21は、酸化シリコン膜125とキャップ膜139との界面をキャップ膜139側から酸化シリコン膜125方向(下方向)に見た図である。図21に示すように、第2層配線137は、第2配線層パターン1371、第3ヴィアホ−ル層1372パターンおよび第2ヴィアホ−ル層パターン1373の論理和となって形成される。そして、図面丸印内に×印を記載した部分は第3ビアホ−ル158が落ちる位置になる。
【0082】
次に、アライメント系統図を、図22によって説明する。なお、以下の説明で用いた数値は一例であって、露光装置の精度、設計寸法等によって適宜変更することができる。
【0083】
図22に示すように、矢印は、直接合わせを示し、矢印の先の層に矢印の元の層を合わせることを意味する。精度は3σで55nmである。1本の点線の両端にあたる層は、間接合わせの関係にあり、精度は直接合わせの2乗和平均で3σ=78nmになる。2本の点線の両端にあたる層は、3重間接合わせの関係にあり、精度は直接合わせの2乗を3つ足し、平方根を取った値で3σ=95nmになる。<>内に記載された層は、その本体を形成するための露光を示し、()内に記載された層は配線に付加するためのヴィアホ−ル層の露光を示す。また、図面ではヴィアホールをヴィアと略記した。
【0084】
配線とヴィアホ−ルとの接続面積が厳しいところは、<第3ヴィアホ−ル層>と<第2配線層>とである。<第2配線>には、(第3ヴィアホ−ル層)が付加されているので、実質的には、<第3ヴィアホ−ル層>と(第3ヴィアホ−ル層)との接触面積が問題となる。付加的な(第3ヴィアホ−ル層)のホ−ル径は180nmで、そこに落ちる<第3ヴィアホ−ル層>のホ−ル径は、加工変換差がついて140nmになる。
【0085】
図23は、一対の、付加的な(第3ヴィアホ−ル層)のヴィアホ−ル231とそこに落ちる<第3ヴィアホ−ル層>のヴィアホ−ル232との位置関係を示したものである。左図は位置ずれがないとき、右図は位置ずれが95nmあるときを示す。位置ずれが95nmあっても、重なりの長さは65nmあり、所望する接触面積を確保することができた。
【0086】
配線とヴィアホ−ルとの電気的耐圧が厳しいと思われるところは、<第3ヴィアホ−ル層>と<第2ヴィアホ−ル層>とである。図24に示すように、<第3ヴィアホ−ル層>のヴィアホ−ル242と隣接した<第2ヴィアホ−ル層>のヴィアホ−ル241との間隔が問題となる。<第3ヴィアホ−ル層>のヴィアホ−ル242と隣接した<第2ヴィアホ−ル層>のヴィアホ−ル241とのピッチは360nmで、<第2ヴィアホ−ル層>のヴィアホ−ル241の直径は180nmで、<第3ヴィアホ−ル層>のヴィアホ−ル242の直径は140nmである。<第3ヴィアホ−ル層>と<第2ヴィアホ−ル層>とは、3重間接合わせの関係にあり、95nm位置ずれすることがある。しかし、95nm位置ずれしても、<第3ヴィアホ−ル層>のヴィアホ−ル242と隣接した<第2ヴィアホ−ル層>のヴィアホ−ル241との間隔は105nmあり、電気的耐圧の観点からは問題がない。
【0087】
また、<第2ヴィアホ−ル層>のヴィアホ−ルと隣接する配線に付加した(第3ヴィアホ−ル層)のヴィアホ−ルとは2重間接合わせの関係にあるので、78nmの位置ずれがありえる。しかし、位置ずれがないときの最小間隔は180nmなので、位置ずれが78nmあっても、この2つのヴィアホ−ルの間隔は102nm確保できるので、電気的耐圧の観点からは問題がない。
【0088】
以上により、接続抵抗が高すぎることはなく、また電気的耐圧も確保できて、良好にデュアルダマシンの多層配線構造を形成することができる。
【0089】
次に、第2実施例を図25〜図27よって説明する。ここでは、マスクパターンおよび位置ずれ測定方法を説明する。
【0090】
第3ヴィアホ−ル層本体を形成するための第3ヴィアホ−ル層をレジストに転写したときに、第2配線層との第3ヴィアホ−ル層との位置ずれを測定する。このとき、第2配線層においては、図25(1)に示すように、すなわち、例えば50μm×50μmの方形の抜きパタ−ンを用いる。この第2配線層の位置ずれ測定パターン41は、方形の抜きパタ−ンで形成される。すなわち、例えば50μm×50μmの方形の抜きパタ−ンで形成される。一方、第3ヴィアホール層においては、図25(2)に示すように、第3ヴィアホール層の露光マスクに形成される第3ヴィアホ−ル層の位置ずれ測定パターン42を用いる。この第3ヴィアホ−ル層の位置ずれ測定パターン42は方形の抜きパタ−ンで形成され、位置ずれ測定パターン42は、位置ずれ測定パターン41よりも小さく形成されている。すなわち、例えば25μm×25μmの方形の抜きパタ−ンで形成される。ここでの値は、基板上に縮小投影したときの値に換算したものである。また、図面塗りつぶされたところが遮光部で、白抜きのパターンは、光を100%透過する抜きパターンである。
【0091】
このときの断面図の一例を図26の概略構成断面図によって説明する。図26に示すように、絶縁膜271には銅からなる第2配線層の位置ずれ測定マーク272が形成されている。この絶縁膜271は、前記図12によって説明した絶縁膜と同様の構成を有する。すなわち、層間絶縁膜121上に、エッチング停止層122、酸化シリコン(SiO)膜123、有機膜(例えばポリアリルエ−テル系の有機高分子膜)124、酸化シリコン(SiO)膜125が積層されている。上記位置ずれ測定マーク272は、前記図25(1)で説明した位置ずれ測定パターン41を転写して形成されたものであり、有機膜124と酸化シリコン膜125とに溝配線構造で形成されている。
【0092】
さらに、絶縁膜271上には位置ずれ測定マーク272を覆う絶縁膜273が形成されている。この絶縁膜273は、前記図19によって説明した絶縁膜と同様の構成を有する。すなわち、酸化シリコン膜125上に、エッチング停止層142、酸化シリコン(SiO)膜143、有機膜(例えばポリアリルエ−テル系の有機高分子膜)144、酸化シリコン(SiO)膜145が積層されている。さらに、反射防止膜147が形成され、レジスト膜148が形成されている。このレジスト膜148には、前記図25(2)で説明した位置ずれ測定パターン42を転写して形成された抜きパターン149が形成されている。
【0093】
次に、図27(1)に、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。また図27(2)には、図27(1)中のJ−J線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0094】
図27(1)に示すように、位置ずれ測定マ−ク272と、上記レジスト膜147に形成されたヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク149とが平面レイアウト図で見て重なってはいるものの、図27(2)に示すように、光学式位置ずれ測定装置で測定した位置ずれ測定マーク149の波形1491が位置ずれ測定マ−ク272の波形2722に対してきれいな立ち上がりを示している。このため、位置ずれ測定が正確にできる。これは、第2配線層とともに付加的に露光したときの第3ヴィアホ−ル層の位置ずれ測定マ−クは、配線層の位置ずれ測定マ−ク272の内側に入るので、パタ−ンとしては形成されないためである。
【0095】
次に、第3実施例を図28よって説明する。
【0096】
前記第1実施例では、同一のレジストに、第2配線層と第3ヴィアホ−ル層を露光転写した。この第3実施例では、レジスト膜に第2配線層のパターンだけ露光転写し、その後エッチング工程で、レジスト膜下層に形成されているハ−ドマスク膜に、レジスト膜に転写形成された第2配線層のパターンを刻む。次に、反射防止膜、レジストを再度塗布して、第3ヴィアホ−ル層を露光転写する。そして、エッチング工程で、上記ハードマスク膜に、第3ヴィアホ−ル層のパターンを刻む。
【0097】
前記第1実施例では、同一レジスト膜に、一度に第2配線層と第3ヴィアホ−ル層との各パターンを露光転写してから、そのレジスト膜をマスクにしてハ−ドマスク膜をエッチングした。この第3実施例では、第2配線層と第3ヴィアホ−ル層とを、2回に分けて露光転写して、ハ−ドマスク膜をエッチングする。第3実施例ではレジスト塗布、現像工程の回数が増える。しかし、個別に露光、現像を行うので、線幅制御が容易になる。
【0098】
第3ヴィアホ−ル層を露光転写するときは、ハ−ドマスク膜に形成した、第2配線層の位置ずれマ−クに合わせる。このときの、アライメント系統図を、図28に示す。
【0099】
図28に示すように、矢印は、直接合わせを示し、矢印の先の層に矢印の元の層を合わせることを意味する。精度は3σで55nmである。1本の点線の両端にあたる層は、間接合わせの関係にあり、精度は直接合わせの2乗和平均で3σ=78nmになる。2本の点線の両端にあたる層は、3重間接合わせの関係にあり、精度は直接合わせの2乗を3つ足し、平方根を取った値で3σ=95nmになる。<>内に記載された層は、その本体を形成するための露光を示し、()内に記載された層は配線に付加するためのヴィアホ−ル層の露光を示す。なお、図面ではヴィアホールをヴィアと略記した。
【0100】
<第2ヴィアホ−ル層>のヴィアホ−ルと隣接する配線に付加した(第3ヴィアホ−ル層)のヴィアホ−ルとは3重間接合わせの関係にあるので、95nmの位置ずれがありえる。しかし、位置ずれがないときの最小間隔は180nmなので、位置ずれが95nmあっても、この2つのヴィアホ−ルの間隔は85nm確保できるので、電気的耐圧の観点からは問題がない。
【0101】
また、<第3ヴィアホ−ル層>と<第2ヴィアホ−ル層>とは、3重間接合わせの関係にあり、95nm位置ずれすることがある。<第3ヴィアホ−ル層>のヴィアホ−ルと隣接した<第2ヴィアホ−ル層>のヴィアホ−ルとの間隔が問題となる。ピッチは360nmで、<第2ヴィアホ−ル層>のヴィアホ−ルの直径は180nmで、<第3ヴィアホ−ル層>のヴィアホ−ル径は140nmである。しかし、95nm位置ずれしても、<第3ヴィアホ−ル層>のヴィアホ−ルと隣接した<第2ヴィアホ−ル層>のヴィアホ−ルとの間隔は105nmあり、電気的耐圧の観点からは問題がない。
【0102】
配線とヴィアホ−ルとの接続面積が厳しいところは、<第3ヴィアホ−ル層>と<第2配線層>である。<第2配線>には、(第3ヴィアホ−ル層)が付加されているので、実質的には、<第3ヴィアホ−ル層>と(第3ヴィアホ−ル層)との接触面積が問題となる。付加的な(第3ヴィアホ−ル層)のホ−ル径は180nmで、そこに落ちる<第3ヴィアホ−ル層>のホ−ル径は、加工変換差がついて140nmになる。第3ヴィアホ−ル層>と(第3ヴィアホ−ル層)とは、2重間接合わせの関係にあるので、78nm位置ずれする可能性があるが、接触長さは83nmあり、所望する接触面積を十分確保することができた。
【0103】
次に、第4実施例を図29および図30よって説明する。
【0104】
まず、露光マスクに形成される位置ずれ測定パターンを、図29によって説明する。第2配線層と第3ヴィアホ−ル層との位置ずれを測定するときの、位置ずれ測定用パターンを、第2配線層に対しては、図29(1)に示すように、配線層の露光マスクに形成される配線層の位置ずれ測定パターン51は、方形の抜きパタ−ン511と、方形の抜きパターン511の外側4辺に所定距離を離して形成された一般的に使われているバー型の抜きパターン512〜515とからなる。方形の抜きパタ−ン511は、例えば50μm×50μmの抜きパタ−ンで形成され、バー型の抜きパターン512〜515は、方形の抜きパターン511から10μm離して、幅10μmのバー型の抜きパタ−ンで形成されている。そして第3ヴィアホールに対しては、図29(2)に示すように、ヴィアホール層の露光マスクに形成されるヴィアホ−ル層の位置ずれ測定パターン52は、いわゆる一般的に使われているバー型の測定パターンであって、25μm×25μmの正方形内に収まるように、かつこの正方形の各4辺にそって直線状の抜きパターン521〜524が一本ずつ配置されている。この位置ずれ測定パターン521〜524は、幅0.5μmのバー型抜きパターンで形成され、隣接するバー型抜きパターンとは1μm離されて形成されている。したがって、位置ずれ測定パターン52は位置ずれ測定パターン51の方形の抜きパターン511内に収まる。
【0105】
上記位置ずれ測定マ−ク51、52を用いて本発明の露光方法を実施した場合を図30によって説明する。図30(1)には、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。図30(2)には、図30(1)中のF−F線断面図を示す。また図30(3)には、図30(1)中のG−G線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0106】
図30(2)に示すように、前記図12によって説明したのと同様な絶縁膜が形成される。すなわち、層間絶縁膜121上に、エッチング停止層122、酸化シリコン膜123、有機膜124、酸化シリコン膜125、ハードマスク膜126が順に成膜されている。さらに、ハードマスク膜126上には反射防止膜127、レジスト膜128が形成されている。上記ハードマスク膜126には、第2配線層のパターンとともに位置ずれ測定パターン511〜515が転写され、開口パターンからなる位置ずれ測定マーク531〜535が形成されている。また上記レジスト膜128には第3ヴィアホ−ル層のパターンとともに位置ずれ測定パターン521〜524が転写され、開口パターンからなる位置ずれ測定マーク541〜544が形成されている。
【0107】
図30(1)に示すように、上記位置ずれ測定マ−ク531と、上記レジスト膜28に形成されたヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク541〜544とが平面レイアウト図で見て重なってはいるものの、図30(3)に示すように、光学式位置ずれ測定装置で測定した位置ずれ測定マーク542、544の波形562、564が、位置ずれ測定マ−ク531の波形551に対してきれいな立ち上がりを示している。このため、位置ずれ測定が正確にできる。これは、配線層とともに付加的に露光したときの該ヴィアホ−ル層の位置ずれ測定パターン521〜524は、配線層の位置ずれ測定パターン51の抜きパターン511内側に入るので、パタ−ンとしては形成されないためである。
【0108】
次に、第5実施例を図31よって説明する。
【0109】
上記位置ずれ測定パターン51、52を用いて本発明の露光方法を実施した場合を図31によって説明する。図31(1)には、配線層とヴィアホ−ル層との位置ずれを測定するときの位置ずれ測定マ−クの相対位置を平面レイアウト図により示す。図31(2)には、図31(1)中のF−F線断面図を示す。また図31(3)には、図31(1)中のG−G線断面位置で、光学式位置ずれ測定装置で測定した位置ずれ測定マ−クの波形を示す。
【0110】
図31(2)に示すように、前記図12によって説明したのと同様な絶縁膜が形成される。すなわち、層間絶縁膜121上に、エッチング停止層122、酸化シリコン膜123、有機膜124、酸化シリコン膜125、ハードマスク膜126が順に成膜されている。さらに、ハードマスク膜126上には反射防止膜127、レジスト膜128が形成されている。上記有機膜124および酸化シリコン膜125には、第2配線層のパターンとともに位置ずれ測定パターン51が転写され、溝配線構造と同様な構造の位置ずれ測定マーク53(図面では533、531、535)が形成されている。また上記レジスト膜148には第3ヴィアホ−ル層のパターンとともに位置ずれ測定パターン52が転写され、開口パターンからなる位置ずれ測定マーク54(図面では542、544)が形成されている。
【0111】
図31(1)に示すように、上記位置ずれ測定マ−ク531と、上記レジスト膜28に形成されたヴィアホ−ル本体を形成するためのヴィアホ−ル層の位置ずれ測定マ−ク541〜544とが平面レイアウト図で見て重なってはいるものの、図31(3)に示すように、光学式位置ずれ測定装置で測定した位置ずれ測定マーク542、544の波形562、564が、位置ずれ測定マ−ク531の波形551に対してきれいな立ち上がりを示している。このため、位置ずれ測定が正確にできた。これは、配線層とともに付加的に露光したときの該ヴィアホ−ル層の位置ずれ測定パターン52は、配線層の位置ずれ測定パターン51の抜きパターン511内側に入るので、パタ−ンとしては形成されないためである。
【0112】
【発明の効果】
以上、説明したように本発明の露光方法によれば、配線パターンを形成する際のマスクとして用いるレジスト膜に配線パターンを形成するための露光マスクを用いて配線パターンを露光する工程と、レジスト膜にヴィアホールパターンを形成するための露光マスクを用いてヴィアホールパターンを露光する工程の2工程の露光を行うので、配線パターンにはヴィアホールパターンも一緒に形成できる。したがって、さらに上記ヴィアホールパターンを露光したマスクと同一マスクを用いてヴィアホールを形成する絶縁膜にヴィアホールを形成した場合、予め配線パターンにはヴィアホールパターンも形成されているため、ヴィアホールはヴィアホールパターンとの合わせずれのみ考慮されればよい。このため、配線パターンとヴィアホールとの接続面積が十分に取れるようになり、設計値通りのコンタクト抵抗が得られ、また配線とこれに隣接するヴィアホールとの電気的耐圧が十分に確保できる。よって、配線パターンとヴィアホールとの接続面積が狭くなり、コンタクト抵抗が増大する問題や、配線とこれに隣接するヴィアホールとの電気的耐圧の減少という問題が解決できる。これにより、有機系層間絶縁膜を用いた微細なデュアルダマシン配線構造を容易に作製できる。また高度に集積した半導体装置が容易に作製できる。さらに、消費電力が低く、かつ高速に作動する半導体装置が容易に作製できる。
【0113】
本発明の半導体装置の製造方法によれば、層間絶縁膜上にハードマスクを形成する工程と、ハ−ドマスクに配線パタ−ンを形成する工程と、ハ−ドマスクにヴィアホールパタ−ンを形成する工程とを行うことにより、ハ−ドマスクに、配線パタ−ンとヴィアホ−ルパタ−ンとの論理和になるパタ−ンを形成するので、配線層にヴィアホール層を形成する際には、露光装置起因の合わせずれのみを考慮すればよい。このため、配線パターンとヴィアホールとの接続面積が十分に取れるようになり、設計値通りのコンタクト抵抗が得られ、また配線とこれに隣接するヴィアホールとの電気的耐圧が十分に確保できる。よって、配線パターンとヴィアホールとの接続面積が狭くなり、コンタクト抵抗が増大する問題や、配線とこれに隣接するヴィアホールとの電気的耐圧の減少という問題が解決できる。これにより、有機系層間絶縁膜を用いた微細なデュアルダマシン配線構造を容易に作製できる。また高度に集積した半導体装置が容易に作製できる。さらに、消費電力が低く、かつ高速に作動する半導体装置が容易に作製できる。
【0114】
本発明のマスクパターンによれば、配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが抜きパターン内に配置されるので、本発明の露光方法を行う際に、配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとによって、正確な位置ずれ測定が行えるようになる。これにより、有機系層間絶縁膜を用いた微細なデュアルダマシン配線構造を容易に作製できる。また高度に集積した半導体装置が容易に作成できる。さらに、消費電力が低く、かつ高速に作動する半導体装置が容易に作製できる。
【0115】
本発明の位置ずれ測定方法によれば、配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが抜きパターン内に配置されることから、本発明の露光方法を行う際に、配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとによって、正確な位置ずれ測定が行えるようになる。これにより、有機系層間絶縁膜を用いた微細なデュアルダマシン配線構造を容易に作製できる。また高度に集積した半導体装置が容易に作成できる。さらに、消費電力が低く、かつ高速に作動する半導体装置が容易に作製できる。
【図面の簡単な説明】
【図1】本発明の露光方法に係る一実施の形態を示す概略構成断面図である。
【図2】上記レジスト膜に形成された配線パターンとヴィアホールパターンとの合わせを示す平面レイアウト図である。
【図3】従来の配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとを示す平面レイアウト図である。
【図4】従来の配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図、D−D線断面図および位置ずれ測定マ−クの出力波形図である。
【図5】従来の配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図、E−E線断面図および位置ずれ測定マ−クの出力波形図である。
【図6】本発明の配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとを示す平面レイアウト図である。
【図7】本発明の配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図、概略構成断面図および位置ずれ測定マ−クの出力波形図である。
【図8】本発明の配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとを示す平面レイアウト図である。
【図9】本発明の配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図、概略構成断面図および位置ずれ測定マ−クの出力波形図である。
【図10】本発明の配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとを示す平面レイアウト図である。
【図11】本発明の配線構造を説明する平面レイアウトおよびH−H線断面図である。
【図12】本発明の半導体装置の製造方法の一実施の形態を示す概略構成断面図である。
【図13】第2配線層のマスクおよび第3ヴィアホール層のマスクを示す平面レイアウト図である。
【図14】第2配線層のマスクおよび第3ヴィアホール層のマスクを用いて露光した後の第2配線層と第3ヴィアホール層との合わせを示す平面レイアウト図である。
【図15】本発明の半導体装置の製造方法の一実施の形態を示す概略構成断面図である。
【図16】第2ヴィアホール層のマスクを示す平面レイアウト図である。
【図17】本発明の半導体装置の製造方法の一実施の形態を示す概略構成断面図である。
【図18】第2配線層パターン、第3ヴィアホ−ル層パターンおよび第2ヴィアホ−ル層パターンからなる第2層配線を示す平面レイアウト図である。
【図19】本発明の半導体装置の製造方法の一実施の形態を示す概略構成断面図である。
【図20】第3配線層のマスクのマスクを示す平面レイアウト図である。
【図21】第2配線層パターン、第3ヴィアホ−ル層パターンおよび第2ヴィアホ−ル層パターンからなる第2層配線への第3ヴィアホール層の位置を示す平面レイアウト図である。
【図22】本発明の露光方法を用いた場合のアライメント系統図である。
【図23】付加的な(第3ヴィアホ−ル層)のヴィアホ−ルとそこに落ちる<第3ヴィアホ−ル層>のヴィアホ−ルとの位置関係を示す平面レイアウト図である。
【図24】<第3ヴィアホ−ル層>のヴィアホ−ルと隣接した<第2ヴィアホ−ル層>のヴィアホ−ルとの位置関係を示す平面レイアウト図である。
【図25】本発明の配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとを示す平面レイアウト図である。
【図26】本発明の実施例に係わる半導体装置の製造方法の一実施例を示す概略構成断面図である。
【図27】本発明の実施例に係わる配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図および位置ずれ測定マ−クの出力波形図である。
【図28】本発明の露光方法を用いた場合のアライメント系統図である。
【図29】本発明の配線層の位置ずれ測定パターンとヴィアホール層の位置ずれ測定パターンとを示す平面レイアウト図である。
【図30】本発明の実施例に係わる配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図、G−G線断面図および位置ずれ測定マ−クの出力波形図である。
【図31】本発明の実施例に係わる配線層とヴィアホール層との位置ずれ測定パターンを転写して得られた位置ずれ測定マ−クを示す平面レイアウト図、F−F線断面図および位置ずれ測定マ−クの出力波形図である。
【図32】先溝タイプのデュアルダマシン法による配線構造の製造工程を示す概略構成断面図である。
【図33】第2層配線パターンと第2層ヴィアホールパターンとの合わせを説明する平面図およびA−A線断面図である。
【図34】露光で形成した解像度不足の配線の先端部を示す平面レイアウト図である。
【図35】第1層配線パターン先端部と第2層ヴィアホ−ルパターンとの合わせを説明する平面レイアウト図である。
【図36】配線端に修飾パターンを形成した露光マスクの平面レイアウト図である。
【図37】配線端に修飾パターンを形成した露光パターンの平面レイアウト図である。
【図38】修飾パターンを形成した第2層配線パターンと第2層ヴィアホールパターンとの合わせを説明する平面レイアウト図である。
【図39】配線構造を説明する平面レイアウトおよびB−B線断面図である。
【図40】第2層配線先端にハンマーヘッド修飾パタ−ンを付けずに形成したときの第2層配線の形状を示す平面レイアウト図およびC−C線断面図である。
【図41】マスク配線パターンの平面レイアウト図である。
【図42】ハンマーヘッド修飾パターンを設けたマスク配線パターンの平面レイアウト図である。
【図43】ハンマーヘッド修飾パターンを設けたマスク配線パターンの平面レイアウト拡大図である。
【図44】ハンマーヘッド修飾パターンを設けたマスク配線パターンを露光した後のパターンの平面レイアウト図である。
【図45】第2層ヴィアホ−ルと第2層配線との合わせを説明する平面レイアウト図である。
【符号の説明】
11…レジスト膜、31…配線パターンを形成するための露光マスク、32…配線パターン、33…ヴィアホールパターンを形成するための露光マスク、34…ヴィアホールパターン

Claims (8)

  1. 絶縁膜に配線パターンとこの配線パターンに接続するヴィアホールパターンとを形成する際に行う露光方法であって、
    前記配線パターンを形成する際のマスクとして用いるレジスト膜に前記配線パターンを形成するための露光マスクを用いてマスクの配線パターンを露光転写する工程と、
    前記レジスト膜に前記ヴィアホールパターンを形成するための露光マスクを用いてマスクのヴィアホールパターンを露光転写する工程と
    を備えたことを特徴とする露光方法。
  2. 前記ヴィアホールパターンを形成する際に用いた露光マスクは、その後にヴィアホールのみを形成する際に用いる露光マスクと同一のものを用いる
    ことを特徴とする請求項1記載の露光方法。
  3. 層間絶縁膜に配線とこの配線に接続するヴィアホールとを形成する半導体装置の製造方法において、
    前記層間絶縁膜上にハードマスクを形成する工程と、
    前記ハ−ドマスクに配線パタ−ンを形成する工程と、
    前記ハ−ドマスクにヴィアホールパタ−ンを形成する工程とを行うことにより、
    前記ハ−ドマスクに、前記配線パタ−ンと前記ヴィアホ−ルパタ−ンとの論理和になるパタ−ンを形成する
    ことを特徴とする半導体装置の製造方法。
  4. 前記ハ−ドマスクにヴィアホールパタ−ンを形成する工程で用いる露光マスクは、その後にヴィアホールのみを形成する際に用いる露光マスクと同一のものを用いる
    ことを特徴とする請求項3記載の半導体装置の製造方法。
  5. ヴィアホ−ル層と配線層との位置ずれを測定するマスクパターンであって、
    前記配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、
    前記ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが前記抜きパターン内に配置される
    ことを特徴とするマスクパターン。
  6. 前記位置ずれ測定パターンは前記配線層に前記ヴィアホール層のマスクを合わせるアライメントパターンである
    ことを特徴とする請求項5記載のマスクパターン。
  7. 前記配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンと前記ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンとを用いて配線層に対するヴィアホール層の位置ずれを測定する位置ずれ測定方法であって、
    前記配線層を露光する際に一緒に露光される配線層の位置ずれ測定パターンは抜きパターンで形成され、
    前記ヴィアホール層を露光する際に一緒に露光されるヴィアホール層の位置ずれ測定パターンは少なくともその一つが前記抜きパターン内に配置される
    ことを特徴とする位置ずれ測定方法。
  8. 前記位置ずれ測定パターンは前記配線層に前記ヴィアホールそうのマスクを合わせるアライメントパターンである
    ことを特徴とする請求項7記載の位置ずれ測定方法。
JP2003037608A 2003-02-17 2003-02-17 露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法 Pending JP2004247625A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037608A JP2004247625A (ja) 2003-02-17 2003-02-17 露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037608A JP2004247625A (ja) 2003-02-17 2003-02-17 露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法

Publications (1)

Publication Number Publication Date
JP2004247625A true JP2004247625A (ja) 2004-09-02

Family

ID=33022351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037608A Pending JP2004247625A (ja) 2003-02-17 2003-02-17 露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法

Country Status (1)

Country Link
JP (1) JP2004247625A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027962A (ja) * 2006-07-18 2008-02-07 Fujitsu Ltd 半導体装置の製造方法及び露光用マスク
JP2010016268A (ja) * 2008-07-07 2010-01-21 Nec Electronics Corp 半導体装置の製造方法および半導体装置
JP2012124457A (ja) * 2010-12-09 2012-06-28 Hynix Semiconductor Inc オーバーレイバーニアマスクパターンとその形成方法、並びにオーバーレイバーニアパターンを含む半導体素子とその形成方法
US9385490B2 (en) 2011-06-02 2016-07-05 Murata Manufacturing Co., Ltd. Switch-equipped connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027962A (ja) * 2006-07-18 2008-02-07 Fujitsu Ltd 半導体装置の製造方法及び露光用マスク
JP2010016268A (ja) * 2008-07-07 2010-01-21 Nec Electronics Corp 半導体装置の製造方法および半導体装置
JP2012124457A (ja) * 2010-12-09 2012-06-28 Hynix Semiconductor Inc オーバーレイバーニアマスクパターンとその形成方法、並びにオーバーレイバーニアパターンを含む半導体素子とその形成方法
US9385490B2 (en) 2011-06-02 2016-07-05 Murata Manufacturing Co., Ltd. Switch-equipped connector

Similar Documents

Publication Publication Date Title
KR100350289B1 (ko) 배선과 자기 정렬되는 서브임계 콘택 홀의 형성 방법
US20120319287A1 (en) Semiconductor structure and method for fabricating semiconductor layout
JP2009027028A (ja) 半導体装置の製造方法
TWI463530B (zh) 光學與電子束微影製造層級之共對準的溝渠結構及方法
JP2004247625A (ja) 露光方法、半導体装置の製造方法、マスクパターンおよび位置ずれ測定方法
KR20010017560A (ko) 이중 다마신 구조 형성 방법
US7473631B2 (en) Method of forming contact holes in a semiconductor device having first and second metal layers
KR100384876B1 (ko) 반도체소자에서의 개선된 듀얼 대머신 공정
KR100709454B1 (ko) 반도체 소자의 형성 방법
KR100929300B1 (ko) 반도체 소자의 오버레이 버니어 형성 방법
KR100248809B1 (ko) 반도체 장치 제조방법
US7425389B2 (en) Line photo masks and methods of forming semiconductor devices using the same
KR100304440B1 (ko) 반도체소자의 제조방법
KR100470390B1 (ko) 에스램소자 제조시 다마신을 이용한 국부배선 스페이스최소화방법
KR100286347B1 (ko) 반도체 장치의 금속배선 형성방법
JP2003173013A (ja) マスクパターンの補正方法
KR100709453B1 (ko) 반도체소자의 비트라인 형성방법
KR100527568B1 (ko) 반도체소자의 제조방법
KR100356482B1 (ko) 반도체 소자의 금속 배선 형성 방법
JPH1027845A (ja) 半導体装置の製造方法
KR20000043205A (ko) 반도체소자의 콘택홀 형성방법
KR20000066807A (ko) 반도체소자의 제조방법
KR20030058605A (ko) 반도체 소자의 제조 방법
KR20030059416A (ko) 반도체소자의 제조방법
JP2002217127A (ja) 半導体装置の製造方法