JP2004246267A - 光部品実装構造とその製法 - Google Patents

光部品実装構造とその製法 Download PDF

Info

Publication number
JP2004246267A
JP2004246267A JP2003038440A JP2003038440A JP2004246267A JP 2004246267 A JP2004246267 A JP 2004246267A JP 2003038440 A JP2003038440 A JP 2003038440A JP 2003038440 A JP2003038440 A JP 2003038440A JP 2004246267 A JP2004246267 A JP 2004246267A
Authority
JP
Japan
Prior art keywords
fitting
optical component
optical
mounting
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038440A
Other languages
English (en)
Other versions
JP4022918B2 (ja
Inventor
Toshihiro Nakajima
敏博 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2003038440A priority Critical patent/JP4022918B2/ja
Publication of JP2004246267A publication Critical patent/JP2004246267A/ja
Application granted granted Critical
Publication of JP4022918B2 publication Critical patent/JP4022918B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】複数の光部品の位置決めを高精度且つ簡単になしうる光部品実装構造とその製法を提供する。
【解決手段】石英基板10の一方の主面には、嵌合孔S〜Sを有する金属層12を選択メッキ処理等の薄膜プロセスにより形成する。光ファイバアレイ14、マイクロレンズアレイ16等の光部品の底部には、それぞれ嵌合突起P,P、Qを薄膜プロセスにより形成する。嵌合突起P,P,Qを嵌合孔S,S,Sにそれぞれ嵌合させて光ファイバアレイ14及びマイクロレンズアレイ16を基板上面にて位置決めし、光学系を構成する。嵌合孔Sには、金属層12と同様の構成の他の金属層の底部に設けた嵌合突起を嵌合させると共に該他の金属層に設けた嵌合孔には、マイクロレンズアレイ等の光部品の底部に設けた嵌合突起を嵌合させることによりマイクロレンズアレイ16等の光部品と共に光学系を構成してもよい。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、複数の光部品を用いて光学系を構成するに好適な光部品実装構造とその製法に関するものである。
【0002】
【従来の技術】
従来、シリコン基板等の実装基板上に光半導体素子、光導波路等の複数の光部品を実装する方法としては、予めホトリソグラフィ処理により実装基板及び各光部品の対向面に位置合せマークを形成しておき、画像認識により位置合せマークを認識して実装基板上で各光部品を位置決めし、このような位置決め状態において各光部品を半田又は接着材により実装基板に固定するものが知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−356245号公報
【0004】
【発明が解決しようとする課題】
上記した従来技術によると、ホトリソグラフィ処理により形成した位置合せマークを用いて位置決めを行なうので、実装面での位置決め精度としては、1μm以内の精度を確保することができる。しかしながら、次の(イ),(ロ)のような問題点がある。
【0005】
(イ)画像認識により位置合せマークを検出するには、実装基板又は光部品のいずれかが透明材である必要がある。また、実装基板、光部品及び位置合せマークについては、光学的なコントラストが得られる材料組合せを選定する必要がある。さらに、ホトリソグラフィ処理により位置合せマークを形成するには、実装基板や光部品がウェハ状態で取扱えることが必要である。従って、実装基板や光部品の材料、厚さ、形状等によっては、位置合せマークの検出が困難となる事態が生ずる。
【0006】
(ロ)位置合せマークの検出結果をフィードバックしながら位置決めを行なうため、高度の位置調整設備が必要であり、実装に要する時間とコストが増大する。
【0007】
この発明の目的は、複数の光部品の位置決めを高精度且つ簡単になしうる新規な光部品実装構造とその製法を提供することにある。
【0008】
【課題を解決するための手段】
この発明に係る第1の光部品実装構造は、
光部品位置決め用の複数の嵌合凹部が一方の主面に形成された実装基板と、
各々の底部に設けられた嵌合凸部を前記複数の嵌合凹部にそれぞれ嵌合させた状態で光学系を構成する複数の光部品とを備えたものである。
【0009】
第1の光部品実装構造によれば、実装基板の複数の嵌合凹部及び各光部品の嵌合凸部は、いずれも薄膜プロセスにより形成可能であり、位置精度及び寸法精度としては、サブミクロンの精度が得られる。従って、実装基板上で各光部品の嵌合凸部を対応する嵌合凹部に嵌合させるだけで簡単に1μm以下の高精度で位置決めを行い、実装を達成することができる。この精度は、光学系を構成する上で支障がない精度である。
【0010】
この発明に係る第2の光部品実装構造は、
実装基板と、
この実装基板の一方の主面に形成された光部品位置決め用の複数の嵌合凸部と、
各々の底部に設けられた嵌合凹部を前記複数の嵌合凸部にそれぞれ嵌合させた状態で光学系を構成する複数の光部品とを備えたものである。
【0011】
第2の光部品実装構造によれば、実装基板上の複数の嵌合凸部及び各光部品の嵌合凹部は、いずれも薄膜プロセスにより形成可能であり、位置精度及び寸法精度としては、サブミクロンの精度が得られる。従って、実装基板上で各光部品の嵌合凹部を対応する嵌合凸部に嵌合させるだけで簡単に1μm以下の高精度で位置決めを行ない、実装を達成することができる。
【0012】
この発明に係る光部品実装構造の製法は、
光部品位置決め用の複数の嵌合凹部(又は嵌合凸部)を実装基板の一方の主面に薄膜プロセスにより形成する工程と、
複数の光部品のうちの各光部品毎にその底部に嵌合凸部(又は嵌合凹部)を薄膜プロセスにより形成する工程と、
前記複数の光部品の嵌合凸部(又は嵌合凹部)を前記実装基板の複数の嵌合凹部(又は嵌合凸部)にそれぞれ嵌合させることにより前記複数の光部品を含む光学系を構成する工程と
を含むものである。この製法は、前述した第1又は第2の光部品実装構造を製作するのに適している。各光部品の底部に嵌合凸部(又は嵌合凹部)を形成する工程は、実装基板の一方の主面に嵌合凹部(又は嵌合凸部)を形成する工程の前でもよく、あるいは実装基板の一方の主面に嵌合凹部(又は嵌合凸部)を形成する工程と並行的に実行してもよい。
【0013】
この発明の光部品実装構造の製法によれば、実装基板の複数の嵌合凹部(又は嵌合凸部)と各光部品の嵌合凸部(又は嵌合凹部)とを薄膜プロセスにより形成するので、各嵌合凹部及び各嵌合凸部をサブミクロンの精度で形成可能である。
従って、実装基板上で各光部品の嵌合凸部(又は嵌合凹部)を対応する嵌合凹部(又は嵌合凸部)に嵌合させるだけで簡単に1μm以下の高精度で位置決めを行ない、実装を達成することができる。
【0014】
この発明に係る第3の光部品実装構造は、
光部品位置決め用の第1〜第3の嵌合凹部が一方の主面に形成された実装基板と、
各々の底部に設けられた第1及び第2の嵌合凸部を前記第1及び第2の嵌合凹部にそれぞれ嵌合させた状態で前記実装基板の一方の主面に配置された第1及び第2の光部品と、
底部に設けられた第3の嵌合凸部を前記第3の嵌合凹部に嵌合させた状態で前記実装基板の一方の主面に配置された金属層と、
この金属層の上面において所定の位置に装着された第3の光部品と
を備え、前記第2の光部品により前記第1及び第3の光部品を光学的に結合したものである。
【0015】
第3の光部品実装構造によれば、実装基板上で第1〜第3の嵌合凹部に第1,第2の光部品の第1,第2の嵌合凸部及び金属層の第3の嵌合凸部をそれぞれ嵌合させて実装を行なうので、第1の光部品実装構造に関して前述したと同様に簡単に高精度の実装を達成することができる。また、金属層には第3の光部品を装着すると共に、第2の光部品により第1及び第3の光部品を光学的に結合するようにしたので、基板及び金属層の上面を利用して複雑で高度の機能を持った光学系(光モジュール)を実現することができる。
【0016】
この発明に係る第4の光部品実装構造は、
実装基板と、
この実装基板の一方の主面に形成された光部品位置決め用の第1〜第3の嵌合凸部と、
各々の底部に設けられた第1及び第2の嵌合凹部を前記第1及び第2の嵌合凸部にそれぞれ嵌合させた状態で前記実装基板の一方の主面に配置された第1及び第2の光部品と、
底部に設けられた第3の嵌合凹部を前記第3の嵌合凸部に嵌合させた状態で前記実装基板の一方の主面に配置された金属層と、
この金属層の上面において所定の位置に装着された第3の光部品と
を備え、前記第2の光部品により前記第1及び第3の光部品を光学的に結合したものである。
【0017】
第4の光部品実装構造によれば、実装基板上で第1〜第3の嵌合凸部に第1,第2の光部品の第1,第2の嵌合凹部及び金属層の第3の嵌合凹部をそれぞれ嵌合させて実装を行なうので、第2の光部品実装構造に関して前述したと同様に簡単に高精度の実装を達成することができる。また、金属層には第3の光部品を装着すると共に、第2の光部品により第1及び第3の光部品を光学的に結合するようにしたので、基板及び金属層の上面を利用して複雑で高度の機能を持った光学系を実現することができる。
【0018】
第3又は第4の光部品実装構造において、前記所定の位置に設けた嵌合凹部(又は嵌合凸部)と前記第3の光部品の底部に設けた嵌合凸部(又は嵌合凹部)との嵌合により前記第3の光部品の実装を達成してもよい。このようにすると、第3の光部品を簡単に高精度で位置決めして実装することができる。
【0019】
この発明に係る光部品実装構造及びその製法において、嵌合凹部としては、嵌合孔又は嵌合溝のいずれを用いてもよく、嵌合凸部としても、嵌合孔又は嵌合溝に適合するものを用いることができる。
【0020】
【発明の実施の形態】
図1,2は、この発明の一実施形態に係る光部品実装構造を示すもので、図1は、図2の光ファイバF及びレンズLに沿う断面を示している。
【0021】
実装基板10は、シリコン、石英又はステンレススチール等からなるもので、その一方の主面には、Ni−Fe合金等からなる金属層12がメッキ処理等を含む薄膜プロセスにより形成されている。金属層12は、平面形状が例えば円形状である多数の嵌合孔を有するように形成される。図1には、便宜上、金属層12の多数の嵌合孔のうちの6個の嵌合孔S〜Sを示す。S等の多数の嵌合孔の位置は、光ファイバアレイ14、マイクロレンズアレイ16等の光部品を用いて所望の光学系を構成する際に各々の光部品を配置すべき設計位置に対応して決定される。S等の各嵌合孔は、開口端に近づくにつれてサイズ(直径)が増大するように形成される。このようにすると、嵌合が容易となり遊びを少なくして精密な嵌合を達成できる。
【0022】
一例として、基板10を石英基板で構成する場合、基板10の厚さAは1250μm、金属層12の厚さBは50μm、S等の各嵌合孔の直径は50.3μmとすることができる。S等の各嵌合孔の平面形状は、円形状に限らず、楕円形状、細長形状、多角形状等であってもよい。また、光部品1個あたりの嵌合孔設置数は、1又は複数個とすることができ、1個とするときは回転しない形状とすればよい。
【0023】
光ファイバアレイ14は、8つの光ファイバ保持孔が並設された光ファイバホルダFHと、このホルダFHの8つの光ファイバ保持孔にそれぞれ保持された8本のシングルモードの光ファイバF〜Fと、ホルダFHの底部に設けられた複数の嵌合突起とを備えている。図1には、便宜上、ホルダFHの複数の嵌合突起のうちの2つの嵌合突起P,Pを示す。嵌合突起P,Pは、いずれもNi−Fe合金等の金属からなるもので、嵌合孔S,Sにそれぞれ嵌合可能なサイズ及び形状を有するように薄膜プロセスにより形成される。このことは、ホルダFHに設けられたP,P以外の嵌合突起についても同様である。一例として、ホルダFHの長さCは2000μm、ホルダFHの厚さDは600μm、F5等の各光ファイバの中心(光軸)とホルダFHの底面との間の距離Eは300μmとすることができる。
【0024】
マイクロレンズアレイ16は、光ファイバアレイ14からの射出光を受取るもので、石英等からなる透光基板BPと、この基板BPの一方の主面に並設された8つの凸状レンズL〜Lと、透光窓LPにてレンズL〜Lを露呈するように基板BPに装着され、底部に複数の嵌合突起を有する支持枠SFとを備えている。図1には、便宜上、支持枠SFの複数の嵌合突起のうちの1つの嵌合突起Qを示す。嵌合突起Qは、Ni−Fe合金等の金属からなるもので、嵌合孔Sに嵌合可能なサイズ及び形状を有するように薄膜プロセスにより形成される。このことは、支持枠SFに設けられたQ以外の嵌合突起について同様である。基板BPの他方の主面(光ファイバアレイ14の光射出面に対向する主面)には、反射戻り光を抑制するため斜め研磨が施されている。基板BPの他方の主面における光軸位置と光ファイバアレイ14の光射出面との間の間隔Fは、300μmとすることができる。
【0025】
前述したようにS等の各嵌合孔の平面形状を円形状とし、各嵌合孔の直径を50.3μmとした場合、P,P,Q等の各嵌合突起を円柱状とし、各嵌合突起の直径を50μmとすることができる。各嵌合孔の位置精度及び寸法精度と各嵌合突起の位置精度及び寸法精度とは、いずれも薄膜プロセスで使用する縮小投影露光装置のアライメント精度に等しいため、0.1〜0.2μmの精度とすることができる。
【0026】
実装基板10に光部品を実装する際には、光ファイバアレイ14のP,P等の嵌合突起をS,S等の嵌合孔に嵌合し、マイクロレンズアレイ16のQ等の嵌合突起をS等の嵌合孔に嵌合する。このように嵌合するだけで簡単に1μm以下の高精度でアレイ14、16等の光部品を実装基板10上に位置決めし、実装することができる。
【0027】
この後は、必要に応じて各光部品を金属層12に固定する作業を行なうことができる。この場合、P等の各嵌合突起が金属製であるため、半田付け、レーザー(例えばYAG[Yttrium Alminium Garnet]レーザー)溶接等の信頼性の高い固定手段を用いることができる。
【0028】
図1,2に示す光学系では、光ファイバアレイ14の例えば光ファイバFから射出した光は、マイクロレンズアレイ16のレンズLでコリメート(平行光化)される。このような動作は、F以外の光ファイバF〜F,F〜Fの射出光についても同様である。
【0029】
図1,2の実施形態によれば、簡単に高精度の実装を行なうことができ、実装に要する時間とコストを大幅に低減することができる。
【0030】
図3は、この発明の他の実施形態に係る光部品実装構造を示すもので、図1,2と同様の部分には同様の符号を付して詳細な説明を省略する。
【0031】
マイクロレンズアレイ16は、図1に示したマイクロレンズアレイ16とは透光基板BPの一方の主面にL等の8個の凸状レンズを並設する代りにL51等の8個の凹状レンズを並設した点のみを異にするものである。
【0032】
光導波路17は、マイクロレンズアレイ16からの射出光を受取るもので、マイクロレンズアレイ16の8個の凹状レンズにそれぞれ対応した8本のコア(導光路)を有する。光導波路17の底部には複数の嵌合突起が設けられている。図3には、便宜上、光導波路17の複数の嵌合突起のうちの2つの嵌合突起U,Uを示す。嵌合突起U,Uは、いずれもNi−Fe合金等の金属からなるもので、嵌合孔S,Sにそれぞれ嵌合可能なサイズ及び形状を有するように薄膜プロセスにより形成される。このことは、光導波路17に設けられたU,U以外の嵌合突起についても同様である。
【0033】
Ni−Fe合金等からなる金属層12’は、金属層12と同様に多数の嵌合孔を有するもので、メッキ処理等を含む薄膜プロセスにより形成される。図3には、便宜上、金属層12’の多数の嵌合孔のうちの1つの嵌合孔Sを示す。S等の多数の嵌合孔の位置は、マイクロレンズアレイ16’等の複数の光部品を用いて所望の光学系を構成する際に各々の光部品を配置すべき設計位置に対応して決定される。S等の各嵌合孔は、開口端に近づくにつれてサイズ(直径)が増大するように形成される。このようにすると、嵌合が容易となり、精密な嵌合が可能になる。
【0034】
金属層12’の底部には、複数の嵌合突起が設けられている。図3では、便宜上、金属層12’の複数の嵌合突起のうちの1つの嵌合突起Tを示す。嵌合突起Tは、Ni−Fe合金等の金属からなるもので、嵌合孔Sに嵌合可能なサイズ及び形状を有するように薄膜プロセスにより形成される。このことは、金属層12’に設けられたT以外の嵌合突起についても同様である。
【0035】
マイクロレンズアレイ16’は、光導波路17からの射出光を受取るもので、石英等からなる透光基板BP’と、この基板BP’の一方の主面に並設された8つの凸状レンズと、透光窓LP’にて8つの凸状レンズを露呈するように基板BP’に装着され、底部に複数の嵌合突起を有する支持枠SF’とを備えている。図3には、便宜上、8つに凸状レンズのうちの1つのレンズL52を示すと共に、複数の嵌合突起のうちの1つの嵌合突起Qを示す。
【0036】
レンズL52は、マイクロレンズアレイ16のレンズL51に対応するものである。嵌合突起Qは、Ni−Fe合金等の金属からなるもので、嵌合孔Sに嵌合可能なサイズ及び形状を有するように薄膜プロセスにより形成される。このことは、支持枠SF’に設けられたQ以外の嵌合突起についても同様である。
基板BP’の他方の主面(光導波路17の光射出面に対向する主面)は、傾斜のない平坦面としたが、マイクロレンズアレイ16の基板BPと同様に斜め研磨を施してもよい。
【0037】
一例として、S,S〜S等の各嵌合孔の平面形状を円形状とし、各嵌合孔の直径を50.3μmとした場合、Q,U,U,T等の各嵌合突起を円柱状とし、各嵌合突起の直径を50μmとすることができる。各嵌合孔の位置精度及び寸法精度と各嵌合突起の位置精度及び寸法精度とは、図1の実施形態に関して前述したと同様にいずれも0.1〜0.2μmの精度とすることができる。なお、各嵌合孔の平面形状が円形状に限定されないことは前述した通りである。
【0038】
実装基板10に光部品を実装する際には、光導波路17のU,U等の嵌合突起をS,S等の嵌合孔に嵌合し、金属層12’のT等の嵌合突起をS等の嵌合孔に嵌合し、マイクロレンズアレイ16’のQ等の嵌合突起をS等の嵌合孔に嵌合する。また、金属層12’において、図示しない1又は複数の嵌合孔には、図示しない1又は複数の光部品の嵌合突起をそれぞれ嵌合する。予め光部品を嵌合により装着した金属層12’を金属層12に嵌合により装着してもよい。このように嵌合するだけで簡単に1μm以下の高精度で光導波路17、マイクロレンズアレイ16’等の光部品を実装基板10上で多層的に位置決めし、実装することができる。実装作業の後は、前述したと同様に固定作業を行なうことができる。
【0039】
図3の実施形態によれば、図1,2の実施形態と同様に簡単に高精度の実装を行なうことができる。その上、限られた実装面内において多層的に光部品の実装を行なうことができるので、小型で高機能の光学系を実現できる利点もある。
【0040】
図3に示す光学系では、光ファイバアレイ14の例えば光ファイバFから射出した光は、マイクロレンズアレイ16のレンズL51で集光され、光導波路17にて対応するコアを介してマイクロレンズアレイ16’のレンズL52でコリメートされる。このような動作は、F以外の光ファイバからの射出光についても同様である。
【0041】
図4〜9は、この発明に係るマイクロレンズアレイの製法の一例を示すものである。
【0042】
図4(A)の工程では、石英基板20の一方の主面に所定のマイクロレンズアレイ領域毎に4つの凸状レンズにそれぞれ対応する4つのレジスト層をホトリソグラフィ処理により形成する。このときのホトリソグラフィ処理では、1つのマイクロレンズアレイのためのレジスト層K11〜K14が形成される。また、レジスト層K11〜K14の左隣りには、他のマイクロレンズアレイのためのレジスト層K15,K16等が形成され、レジスト層K11〜K14の右隣りには、更に他のマイクロレンズアレイのためのレジスト層K17,K18等が形成される。そして、レジスト層K11〜K18にリフローのための熱処理を施して各レジスト層が球面状凸部をなすようにする。
【0043】
図4(B)の工程では、レジスト層K11〜K18及び基板20の表面にエッチング処理を施してレジスト層K11〜K18のレンズパターンを基板20の表面に転写することによりレジスト層K11〜K18にそれぞれ対応する凸状レンズL11〜L18を基板20の表面に形成する。このとき形成されるレンズL11〜L18の平面配置パターンは、図7に示されている。図4(B)は、図7のX−X’線断面に対応している。
【0044】
図4(C)の工程では、基板20の上面にマイクロレンズアレイ領域毎に4個のレンズを覆うようにリフトオフ用のレジスト層をホトリソグラフィ処理により形成する。このときのホトリソグラフィ処理では、レンズL11〜L14を覆うようにレジスト層K21が形成される。また、レンズL15,L16等を覆うようにレジスト層K22が形成され、レンズL17,L18等を覆うようにレジスト層K23が形成される。
【0045】
図5(D)の工程では、基板20の上面にスパッタ法により順次にCr層及びCu層を堆積してCu/Cr積層(Cr層にCu層を重ねた積層)を形成する。このとき形成されるCu/Cr積層のうち、レジスト層K21〜K23上に堆積される積層には符号22を付し、基板20の表面に堆積される積層には符号22aを付す。Cu/Cr積層22aは、犠牲層として用いられるもので、平面形状が長方形であるレジスト層K21を取囲むように形成される。一例として、Cr層及びCu層の厚さは、それぞれ30nm及び300nmとすることができる。
Cr層は、Cu層の密着性を向上させるために用いられるものである。
【0046】
図5(E)の工程では、リフトオフ処理によりレジスト層K21〜K23をその上のCu/Cr積層22と共に除去し、Cu/Cr積層22aを残存させる。
そして、基板20の上面にマイクロレンズアレイ領域毎に4個のレンズを覆うようにリフトオフ用のレジスト層をホトリソグラフィ処理により形成する。このときのホトリソグラフィ処理では、レンズL11〜L14を覆うようにレジスト層K31が形成される。また、レンズL15,L16等を覆うようにレジスト層K32が形成され、レンズL17,L18等を覆うようにレジスト層K33が形成される。レジスト層K31〜K33は、Cu/Cr積層22aの両側に基板20の表面部分を露呈させるよう形成される。
【0047】
この後、基板20の上面にスパッタ法によりNi−Fe合金層を形成する。このとき形成されるNi−Fe合金層のうち、レジスト層K31〜K33上に堆積される合金層には符号24を付し、Cu/Cr積層22aを覆って基板20の表面に堆積される合金層には符号24aを付す。Ni−Fe合金層24aは、メッキ下地層として用いられるもので、平面形状が長方形状であるレジスト層K31を取囲むように形成される。Ni−Fe合金層24aの厚さは、150nm程度とすることができる。
【0048】
図5(F)の工程では、リフトオフ処理によりレジスト層K31〜K33をその上のNi−Fe合金層24と共に除去し、Ni−Fe合金層24aを残存させる。そして、Cu/Cr積層22aとNi−Fe合金層24aとの積層膜の上に所定のダイシング線に沿ってレジスト層26a〜26d,26e〜26hを図7に示すような平面パターンで形成する。レジスト層26a〜26hは、図6(I)のダイシング工程においてダイシング深さ方向の緩衝層として役立つものである。
【0049】
図6(G)の工程では、基板20の上面にメッキマスク用のレジスト層をホトリソグラフィ処理により形成する。このときのホトリソグラフィ処理では、マイクロレンズアレイ領域毎にL11〜L14等の4つのレンズを覆うようにレジスト層が形成されると共に、26a,26b等の隣り合うレジスト層毎に該レジスト層間で延長するようにレジスト層が形成される。すなわち、図6(G)及び図7に示すように、レンズL11〜L14を覆うようにレジスト層K41が形成されると共にレンズL15,L16等を覆うようにレジスト層K42が形成され、レンズL17,L18等を覆うようにレジスト層K43が形成される。また、レジスト層26a,26b間で延長するようにレジスト層K44が形成されると共に、レジスト層26c,26d間で延長するようにレジスト層K45が形成される。さらに、レジスト層26e,26f間で延長するようにレジスト層K46が形成されると共に、レジスト26g,26h間で延長するようにレジスト層K47が形成され、レジスト層K46,K47は、次の工程で形成される支持枠28に嵌合突起Q〜Qを付与するように凹部を有するパターンで形成される。レジスト層K44〜K47は、交点毎に連続する格子状のパターンで形成される。
【0050】
図6(H)の工程では、レジスト層K41〜K47をマスクとするNi−Fe合金の選択メッキ処理によりマイクロレンズアレイ領域毎にNi−Fe合金からなる支持枠28をNi−Fe合金層(メッキ下地層)24aの上に形成する。このとき、支持枠28には、図7に示すように嵌合突起Q〜Qが付与される。
【0051】
図6(I)の工程では、基板20の他方の主面に対して26a〜26h等の各レジスト層に沿ってダイシング刃BLによりダイシング処理を施すことにより基板20をチップ化する。20Aは、チップ化された基板である。このとき、26a〜26h等の各レジスト層は、ダイシング刃BLが支持枠28に損傷を与えるのを防ぐ。
【0052】
この後、図6(I)に示す構造体にチップ分離処理を施すと、図8,9に示すようなマイクロレンズアレイが得られる。図8は、図9のY−Y’線断面に相当する。チップ分離処理では、薬液処理によりCu/Cr積層(犠牲層)22aを除去すると共に、レジスト層26a〜26h,K41〜K47を除去し、隣り合うチップ(チップ化された基板)間でNi−Fe合金層24aを切断する。レジスト層K41を除去することで支持枠28には透光窓28Aが付与され、レンズL11〜L14が透光窓28Aから露呈される。図8において、28b,28cは、図7のレジスト層26b,26cにそれぞれ対応する孔である。
【0053】
図8,9に示したマイクロレンズアレイは、サブミクロンの精度で形成されるもので、図1〜3に示したマイクロレンズアレイ16と同様にして実装基板に簡単に且つ高精度で実装することができる。
【0054】
図10〜12は、この発明に係る光ファイバアレイの製法の一例を示すものである。
【0055】
図10(A)の工程では、石英基板30の一方の主面にスパッタ法により順次にCr層及びCu層を堆積してメッキ下地層としてのCu/Cr積層32を形成する。一例として、Cr層及びCu層の厚さは、それぞれ30nm及び300nmとすることができる。
【0056】
図10(B)の工程では、Cu/Cr積層32の上に孔O〜Oを有するレジスト層33をホトリソグラフィ処理により形成する。孔O〜Oは、いずれも所望の嵌合突起に対応するもので、平面形状を例えば50μm角の方形状とすることができる。レジスト層33の厚さは、80μm程度とすることができる。
【0057】
図10(C)の工程では、基板30の上面にNi−Fe合金のオーバーフローメッキ処理を施すことにより孔O〜O及びレジスト層33を覆うように150μm程度の厚さのNi−Fe合金層34を形成する。合金層34は、下面に孔O〜Oにそれぞれ対応する嵌合突起P11〜P16を有するように形成される。この後、合金層34の表面を10μm程度研磨することにより合金層34の表面を平坦化する。
【0058】
次に、孔O〜Oの上方の光ファイバ保持部に対応するライン・スペース部36Aと孔O〜Oの上方の光ファイバ保持部に対応するライン・スペース部36Bとを有するレジスト層36を合金層34の上にホトリソグラフィ処理により形成する。ライン・スペース部36Aにおいては、図11(D)及び図12に示すファイバ整列層38A,38A〜38Aが得られるように複数の細長いレジスト層が並列的に形成され、ライン・スペース部36Bにおいても、ライン・スペース部36Aと同様にレジスト層が並列的に形成される。
【0059】
図11(D)の工程では、ライン・スペース部36A,36Bを有するレジスト層36をマスクとしてNi−Fe合金の選択メッキ処理を行なうことにより70μm程度の厚さを有するファイバ整列層38A,38Bをそれぞれライン・スペース部36A,36Bに形成する。ライン・スペース部36Aにおいては、図12に示すようにファイバ整列層38Aから紙面の奥方向にファイバ整列層38A,38A…38Aが並ぶように形成され、ライン・スペース部36Bにおいても、ファイバ整列層38Bから紙面の奥方向にライン・スペース部36Aと同様に8つのファイバ整列層が並べて形成される。
【0060】
図11(E)の工程では、レジスト層36とライン・スペース部36A,36Bのレジスト層とを除去する。そして、基板30、Cu/Cr積層32及びNi−Fe合金層34の積層体に対してダイシング刃BLによりダイシング処理を施すことにより該積層体を所定の光ファイバホルダ領域毎にチップ化する。30Aは、チップ化された基板であり、34Aは、チップ化された基板30A上のNi−Fe合金層からなる光ファイバホルダである。
【0061】
この後、各チップ毎に薬液処理によりCu/Cr積層32を除去すると共にレジスト層33を除去すると、図12に示すように嵌合突起P11〜P13を底部に有すると共にファイバ整列層38A,38A〜38Aを上部に有する光ファイバホルダ34Aが得られる。
【0062】
光ファイバホルダ34Aにおいて、38A,38A等の隣り合うファイバ整列層間にはF等の光ファイバを装填する。8本の光ファイバF〜Fを装填し、整列し終わった段階で、金属板又は石英板等からなる押え板39で光ファイバF〜Fを押えて光ファイバホルダ34Aに固定する。この固定には、レーザー溶接、半田付け、UV(紫外線)接着剤等を使用することができる。
【0063】
図10〜12では、金属層34Aの下面に3つの嵌合突起P11〜P13を形成する例を示したが、必要に応じて更に多くの嵌合突起を前述したと同様にして形成することができる。なお、P11等の各嵌合突起の平面形状を方形状とした(各嵌合突起を角柱状とした)ときは、図1に示したS等の嵌合孔の平面形状も方形状とするのが望ましい。
【0064】
図12に示した光ファイバアレイは、サブミクロンの精度で形成されるもので、P11等の各嵌合突起を図1又は図3に示した実装基板10のS等の嵌合孔に嵌合させるだけで簡単に高精度の実装を達成することができる。
【0065】
図13は、この発明に係る実装基板の製法の一例を示すものである。
【0066】
図13(A)の工程では、石英からなる実装基板40の一方の主面にスパッタ法によりNi−Fe合金層42を形成する。合金層42は、メッキ下地層として用いられるもので、150nm程度の厚さで形成することができる。
【0067】
図13(B)の工程では、図14(E)に示す嵌合孔S11〜S14にそれぞれ対応するレジスト層K51〜K54を含むレジスト群と、嵌合孔S15〜S18にそれぞれ対応するレジスト層K55〜K58を含むレジスト群とをNi−Fe合金層42の上に所定の間隔を隔ててホトリソグラフィ処理により形成する。
51等の各レジスト層は、S11等の各嵌合孔が開口端に近づくにつれてサイズを増大するのを可能にするために形成されるもので、S11等の各嵌合孔の嵌合部のサイズより若干大きなサイズで形成される。
【0068】
図13(C)の工程では、ホトリソグラフィ処理によりレジスト層K51〜K54の上にそれぞれレジスト層K61〜K64を形成すると共にレジスト層K55〜K58の上にそれぞれレジスト層K65〜K68を形成する。K61等の各レジスト層は、S11等の各嵌合孔に対応するもので、S11等の各嵌合孔の嵌合部に相当するサイズで形成される。
【0069】
図14(D)の工程では、レジスト層K51〜K58,K61〜K68をマスクとするNi−Fe合金の選択メッキ処理を行なうことによりNi−Fe合金からなる金属層44をNi−Fe合金層(メッキ下地層)42の上に形成する。金属層44の厚さは、50μm程度にすることができる。
【0070】
図14(E)の工程では、レジスト層K51〜K58,K61〜K68を除去して金属層44に嵌合孔S11〜S18を付与する。S11等の各嵌合孔は、K61等の各レジスト層の周囲にK51等各レジスト層が存在してメッキの成長を遅らせるため、開口端に近づくにつれてサイズが増大するように形成される。
【0071】
図14(F)の工程では、実装基板40に各種の光部品を装填する。一例として、光ファイバアレイ14は、光ファイバホルダFHの上部にて光ファイバFを複数保持するもので、ホルダFHの底部には嵌合突起P21〜P24が設けられている。嵌合突起P21〜P24を嵌合孔S15〜S18にそれぞれ嵌合させることにより光ファイバアレイ14を実装基板40に実装することができる。
【0072】
図14(F)に示す実装構造にあっては、S15等の各嵌合孔の深さに比べてP21等の各嵌合突起の突出長を大きく設定してあるので、金属層44のメッキ厚さのばらつきの影響を受けることなく、Ni−Fe合金層42の表面を基準として光部品間の光軸調整を行なうことができる。
【0073】
図15は、この発明に係る光ファイバアレイの他の例を示すもので、図12と同様の部分には同様の符号を付して詳細な説明を省略する。
【0074】
図15の光ファイバアレイの特徴は、図12で示したように金属層34Aの下面に嵌合突起P11〜P13を設ける代りに、金属層34Aの下面に嵌合孔N〜Nを設けた点にある。
【0075】
図15に示した光ファイバアレイを得るためには、図10〜12に関して前述した製法に若干の変更を加えればよい。すなわち、図10(B)の工程では、Cu/Cr積層32の上にレジスト層M〜M,M〜Mをホトリソグラフィ処理により形成する。レジスト層M〜Mは、所望の4つの嵌合孔に対応したもので、いずれも平面形状が方形状のレジスト層からなっている。レジスト層M,M,M,Mのいずれについても、1つの側部を破線で示す。M等の各レジスト層の平面的に見たサイズは、50μm角とすることができ、各レジスト層の厚さは、80μm程度とすることができる。レジスト層M〜Mも、レジスト層M〜Mと同様に形成される。この後は、図10(C)〜図12の工程を前述したと同様に実行する。
【0076】
図16は、図15の光ファイバアレイを実装基板に装着した状態を示すもので、図15と同様の部分には同様の符号を付してある。
【0077】
実装基板50は、石英、シリコン又はステンレススチール等からなるもので、その一方の主面には、Ni−Fe合金等からなる金属層52が形成されている。
金属層52の上には、金属層34Aの嵌合孔N〜Nにそれぞれ対応する嵌合突起P31〜P34が形成されている。P31等の各嵌合突起は、先端に近づくにつれてサイズが減少するように形成される。このようにすると、嵌合が容易となり、精密な嵌合が可能となる。
【0078】
図15の光ファイバアレイは、サブミクロンの精度で形成されるもので、N等の嵌合孔を実装基板50のP31等の嵌合突起に嵌合させるだけに簡単に高精度の実装を達成することができる。
【0079】
図17〜19は、この発明に係る実装基板の製法の他の例を示すもので、この製法では、図16に示したのと同様の嵌合突起を有する実装基板が得られる。
【0080】
図17の工程では、石英からなる実装基板50の一方の主面に例えばスパッタ法によりNi−Fe合金を堆積してメッキ下地層としての金属層(Ni−Fe合金層)52を形成する。金属層52の厚さは、150nm程度とすることができる。次に、金属層52の上には、図19の嵌合突起P31〜P34にそれぞれ対応する孔e〜eを有するレジスト層54をホトリソグラフィ処理により形成する。e等の各孔は、金属層(メッキ下地層)52の一部を露呈するもので、P31等の各嵌合突起の嵌合部より若干小さいサイズで形成される。
【0081】
この後、図19の嵌合突起P31〜P34にそれぞれ対応する孔E〜Eを有するレジスト層56をホトリソグラフィ処理により形成する。E等の各孔は、e等の各孔とその周囲のレジスト部分(レジスト層54の一部)とを露呈するもので、P31等の各嵌合突起の嵌合部に相当するサイズで形成される。
【0082】
図18の工程では、レジスト層54,56をマスクとするNi−Fe合金の選択メッキ処理によりNi−Fe合金からなる嵌合突起P31〜P34を形成する。P31等の各嵌合突起は、e等の各孔の周囲にレジスト層54の一部が環状をなすように存在してメッキの成長を遅らせるため、先端に近づくにつれてサイズが減少するように形成される。
【0083】
図19の工程では、レジスト層54,56を除去する。この結果、嵌合突起P31〜P34を有する実装基板50が得られる。
【0084】
図20〜22は、この発明に係る実装基板の更に他の例を示すもので、この製法では、図16に示したものとは異なる嵌合突起を有する実装基板が得られる。
【0085】
図20の工程では、石英からなる実装基板50の一方の主面にメッキ下地層としての金属層52a〜52dを形成する。金属層52a〜52dは、図22の嵌合突起P41〜P44にそれぞれ対応するもので、例えば金属層52a〜52dにそれぞれ対応する4つの孔を有するレジスト層を基板表面に形成した後、スパッタ法によりNi−Fe合金を堆積し、レジスト層をその上のNi−Fe合金層と共に除去(リフトオフ)し、残存するNi−Fe合金層により形成することができる。52a等の各金属層は、P41等の各嵌合突起の嵌合部より若干小さいサイズで形成される。
【0086】
次に、基板50の一方の主面には、図22の嵌合突起P41〜P44にそれぞれ対応する孔E11〜E14を有するレジスト層58をホトリソグラフィ処理により形成する。E11等の各孔は、52a等の各金属層とその周囲の基板表面部分とを露呈するもので、P41等の各嵌合突起の嵌合部に相当するサイズで形成される。
【0087】
図21の工程では、レジスト層58をマスクとするNi−Fe合金の選択メッキ処理によりNi−Fe合金からなる嵌合突起P41〜P44を形成する。P41等の各嵌合突起は、52a等の各金属層(メッキ下地層)の周囲に基板表面部分が環状に露呈してメッキの成長を遅らせるため、先端に近づくにつれてサイズが減少するように形成される。
【0088】
図22の工程では、レジスト層58を除去する。この結果、嵌合突起P41〜P44を有する実装基板50が得られる。この実装基板50は、図16に関して前述した実装基板50と同様にして簡単且つ高精度の実装が可能である。
【0089】
この発明は、上記した実施形態に限定されるものではなく、種々の改変形態で実施可能なものである。例えば、次のような変更が可能である。
【0090】
(1)図13,14に示した実装基板の製法においては、S11〜S14等の嵌合孔を図20〜22に示した製法の応用により形成してもよい。
【0091】
(2)レンズ配置、光ファイバ配置、嵌合孔配置及び嵌合突起配置については、一次元配置を例示したが、二次元配置にしてもよい。
【0092】
【発明の効果】
以上のように、この発明によれば、実装基板の一方の主面において複数の光部品を凹凸嵌合により位置決めし、実装するようにしたので、簡単に高精度の光学系を実現できる効果が得られる。また、高度な位置調整設備や複雑なアライメントフィードバックを必要としないので、短時間且つ低コストで実装を行なえる利点もある。
【0093】
その上、基板及び金属層の上面を利用して多層的に光部品を配置するようにしたので、限られた実装面内において高度の機能を有する光学系を実現できる効果も得られる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係る光部品実装構造を示す断面図である。
【図2】図1の光部品実装構造を示す斜視図である。
【図3】この発明の他の実施形態に係る光部品実装構造を示す断面図である。
【図4】この発明に係るマイクロレンズアレイの製法の一例を示すもので、(A)は、レジスト層形成工程及びレジストリフロー工程を示す断面図、(B)は、レンズ形成工程を示す断面図、(C)は、レジスト層形成工程を示す断面図である。
【図5】図4(C)の工程に続く工程を示すものであって、(D)は、Cu/Cr積層形成工程を示す断面図、(E)は、リフトオフ工程、レジスト層形成工程及びNi−Fe合金層形成工程を示す断面図、(F)は、リフトオフ工程及びレジスト層形成工程を示す断面図である。
【図6】図5(F)の工程に続く工程を示すものであって、(G)は、レジスト層形成工程を示す断面図、(H)は、選択メッキ工程を示す断面図、(I)は、ダイシング工程を示す断面図である。
【図7】図6(I)の基板の上面図である。
【図8】図6(I)のダイシング工程の後、チップ分離処理を施して得られたマイクロレンズアレイを示す断面図である。
【図9】図8のマイクロレンズアレイの上面図である。
【図10】この発明に係る光ファイバアレイの製法の一例を示すもので、(A)は、Cu/Cr積層形成工程を示す断面図、(B)は、レジスト層形成工程を示す断面図、(C)はオーバーメッキ工程及びレジスト層形成工程を示す断面図である。
【図11】図10(C)の工程に続く工程を示すもので、(D)は、選択メッキ工程を示す断面図、(E)は、レジスト除去工程及びダイシング工程を示す断面図である。
【図12】図11(E)の工程の後、Cu/Cr積層除去処理及びレジスト除去処理を施して得られた基板を用いて光ファイバアレイを構成する様子を示す斜視図である。
【図13】この発明に係る実装基板の製法の一例を示すもので、(A)は、Ni−Fe合金層形成工程を示す断面図、(B)は、レジスト層形成工程を示す断面図、(C)は、レジスト層形成工程を示す断面図である。
【図14】図13(C)の工程に続く工程を示すもので、(D)は、選択メッキ工程を示す断面図、(E)は、レジスト除去工程を示す断面図、(F)は、光部品装填工程を示す断面図である。
【図15】光ファイバアレイの他の例を示す斜視図である。
【図16】図15の光ファイバアレイを実装基板に装着した状態を示す断面図である。
【図17】この発明に係る実装基板の製法の他の例におけるNi−Fe合金層形成工程及びレジスト層形成工程を示す断面図である。
【図18】図17の工程に続く選択メッキ工程を示す断面図である。
【図19】図18の工程に続くレジスト除去工程を示す断面図である。
【図20】この発明に係る実装基板の製法の更に他の例におけるNi−Fe合金層形成工程及びレジスト層形成工程を示す断面図である。
【図21】図20の工程に続く選択メッキ工程を示す断面図である。
【図22】図21の工程に続くレジスト除去工程を示す断面図である。
【符号の説明】
10,40,50:実装基板、12,12’,44,52,52a〜52d:金属層、14:光ファイバアレイ、16,16’:マイクロレンズアレイ、17:光導波路、20,30:石英基板、20A,30A:チップ化された基板、22,22a,32:Cu/Cr積層、24,24a,34,:Ni−Fe合金層、26a〜26h,36,44,46,54,56,58,K11〜K18,K21〜K23,K31〜K33,K41〜K47,K51〜K58,K61〜K68,M〜M:レジスト層、28:支持枠、28A:透光窓、34A:光ファイバホルダ、38A,38A〜38A,38B:ファイバ整列層、39:押え板、S〜S,S11〜S18,N〜N:嵌合孔、P,P,P11〜P13,P21〜P24,P31〜P34,P41〜P44,Q〜Q,R,R,T,U,U:嵌合突起、F〜F:光ファイバ、L〜L,L11〜L18,L51,L52:レンズ、BL:ダイシング刃。

Claims (6)

  1. 光部品位置決め用の複数の嵌合凹部が一方の主面に形成された実装基板と、
    各々の底部に設けられた嵌合凸部を前記複数の嵌合凹部にそれぞれ嵌合させた状態で光学系を構成する複数の光部品とを備えた光部品実装構造。
  2. 実装基板と、
    この実装基板の一方の主面に形成された光部品位置決め用の複数の嵌合凸部と、
    各々の底部に設けられた嵌合凹部を前記複数の嵌合凸部にそれぞれ嵌合させた状態で光学系を構成する複数の光部品とを備えた光部品実装構造。
  3. 光部品位置決め用の複数の嵌合凹部(又は嵌合凸部)を実装基板の一方の主面に薄膜プロセスにより形成する工程と、
    複数の光部品のうちの各光部品毎にその底部に嵌合凸部(又は嵌合凹部)を薄膜プロセスにより形成する工程と、
    前記複数の光部品の嵌合凸部(又は嵌合凹部)を前記実装基板の複数の嵌合凹部(又は嵌合凸部)にそれぞれ嵌合させることにより前記複数の光部品を含む光学系を構成する工程とを含む光部品実装構造の製法。
  4. 光部品位置決め用の第1〜第3の嵌合凹部が一方の主面に形成された実装基板と、
    各々の底部に設けられた第1及び第2の嵌合凸部を前記第1及び第2の嵌合凹部にそれぞれ嵌合させた状態で前記実装基板の一方の主面に配置された第1及び第2の光部品と、
    底部に設けられた第3の嵌合凸部を前記第3の嵌合凹部に嵌合させた状態で前記実装基板の一方の主面に配置された金属層と、
    この金属層の上面において所定の位置に装着された第3の光部品と
    を備え、前記第2の光部品により前記第1及び第3の光部品を光学的に結合した光部品実装構造。
  5. 実装基板と、
    この実装基板の一方の主面に形成された光部品位置決め用の第1〜第3の嵌合凸部と、
    各々の底部に設けられた第1及び第2の嵌合凹部を前記第1及び第2の嵌合凸部にそれぞれ嵌合させた状態で前記実装基板の一方の主面に配置された第1及び第2の光部品と、
    底部に設けられた第3の嵌合凹部を前記第3の嵌合凸部に嵌合させた状態で前記実装基板の一方の主面に配置された金属層と、
    この金属層の上面において所定の位置に装着された第3の光部品と
    を備え、前記第2の光部品により前記第1及び第3の光部品を光学的に結合した光部品実装構造。
  6. 前記所定の位置に設けた嵌合凹部(又は嵌合凸部)と前記第3の光部品の底部に設けた嵌合凸部(又は嵌合凹部)との嵌合により前記第3の光部品の実装を達成した請求項4又は5記載の光部品実装構造。
JP2003038440A 2003-02-17 2003-02-17 光部品実装構造とその製法 Expired - Fee Related JP4022918B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038440A JP4022918B2 (ja) 2003-02-17 2003-02-17 光部品実装構造とその製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038440A JP4022918B2 (ja) 2003-02-17 2003-02-17 光部品実装構造とその製法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007213742A Division JP2008015544A (ja) 2007-08-20 2007-08-20 光部品実装構造

Publications (2)

Publication Number Publication Date
JP2004246267A true JP2004246267A (ja) 2004-09-02
JP4022918B2 JP4022918B2 (ja) 2007-12-19

Family

ID=33022974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038440A Expired - Fee Related JP4022918B2 (ja) 2003-02-17 2003-02-17 光部品実装構造とその製法

Country Status (1)

Country Link
JP (1) JP4022918B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507968A (zh) * 2011-11-09 2012-06-20 浙江大学 用于光纤加速度计的低蠕变光纤盘及其制作方法
WO2017026363A1 (ja) * 2015-08-12 2017-02-16 株式会社村田製作所 光電変換素子、および、光学モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507968A (zh) * 2011-11-09 2012-06-20 浙江大学 用于光纤加速度计的低蠕变光纤盘及其制作方法
WO2017026363A1 (ja) * 2015-08-12 2017-02-16 株式会社村田製作所 光電変換素子、および、光学モジュール
JPWO2017026363A1 (ja) * 2015-08-12 2018-02-15 株式会社村田製作所 光電変換素子、および、光学モジュール

Also Published As

Publication number Publication date
JP4022918B2 (ja) 2007-12-19

Similar Documents

Publication Publication Date Title
EP3385774B1 (en) Light-guide optical element and method of its manufacture
US7025511B2 (en) Micro lens array and its manufacture
TWI362058B (en) Micro-optics on optoelectronics
JP2006270046A (ja) 発光ダイオードパッケージ及びその製造方法
TWI432788B (zh) 膜懸置光學元件與相關方法
US10343899B2 (en) Method for wafer-level manufacturing of objects and corresponding semi-finished products
JP2007101649A (ja) 光学レンズ,および,光学レンズの製造方法
JP4240890B2 (ja) 光学素子の製造方法および光学素子
JP2003202409A (ja) レーザーアレイ及びその製作方法
JP2003195008A (ja) 両側マイクロレンズアレイ及びその製造方法
JP2004246267A (ja) 光部品実装構造とその製法
JP4207522B2 (ja) マイクロレンズアレイとその製法
JP4239722B2 (ja) 光部品とその製法及び光部品加工用具とその製法
JP2010103155A (ja) パターニング方法
JP2008015544A (ja) 光部品実装構造
US7269322B2 (en) Optical filter, manufacturing method thereof, and planar lightwave circuit using the same
JP3753109B2 (ja) 光ファイバアレイと光ファイバ位置決め方法
JP2009098485A (ja) ミラー貼り付け光路変換素子とその作製方法
KR101856481B1 (ko) 광 디바이스용 기판 및 그 제조방법 및 광 디바이스
JP2003255180A (ja) マイクロレンズアレイ結合系及びマイクロレンズアレイとその製法
JP3988131B2 (ja) マイクロレンズアレイとその製法
JP2002026397A (ja) 素子実装方法と光伝送装置
US20230317753A1 (en) Methods Of Forming Optical Modules
JP3797279B2 (ja) 光ファイバアレイとその製法及び光ファイバ固定板
JP2008262218A (ja) 光部品とその製法及び光部品加工用具とその製法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

RD03 Notification of appointment of power of attorney

Effective date: 20070221

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Effective date: 20070622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070910

A61 First payment of annual fees (during grant procedure)

Effective date: 20070923

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101012

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101012

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111012

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131012

LAPS Cancellation because of no payment of annual fees