JP2004245089A - 気体圧縮機 - Google Patents

気体圧縮機 Download PDF

Info

Publication number
JP2004245089A
JP2004245089A JP2003033989A JP2003033989A JP2004245089A JP 2004245089 A JP2004245089 A JP 2004245089A JP 2003033989 A JP2003033989 A JP 2003033989A JP 2003033989 A JP2003033989 A JP 2003033989A JP 2004245089 A JP2004245089 A JP 2004245089A
Authority
JP
Japan
Prior art keywords
rotor
groove
oil
pressure
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033989A
Other languages
English (en)
Inventor
Hiroshi Iijima
博史 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Compressor Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Compressor Manufacturing Inc filed Critical Calsonic Compressor Manufacturing Inc
Priority to JP2003033989A priority Critical patent/JP2004245089A/ja
Publication of JP2004245089A publication Critical patent/JP2004245089A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】動力の上昇や耐久性の低下等を招くことなく、ロータサイド隙間のシール性向上による体積効率の向上と、それによる圧縮機の性能の向上を図るのに好適な気体圧縮機を提供する。
【解決手段】ロータ8の端面と対向するサイドブロック6の内面に、該サイドブロック6とロータ8との間の隙間G2(ロータサイド隙間)に開口するシールオイル貯留溝55が形成される。このシールオイル貯留溝55とサイドブロック6の軸受10側とが中圧オイル供給孔53で連通接続され、その軸受10のクリアランス通過時に絞られ減圧されたオイルが中圧オイル供給孔53を介してシールオイル貯留溝55に供給される。さらに、このシールオイル貯留溝55からロータサイド隙間G2へオイルが供給され、このオイルによりロータサイド隙間G2がシールされるものとする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、カーエアコンシステムやGHPシステム等の空調システムに用いられる気体圧縮機に関し、特にその動力の上昇や耐久性の低下等を招くことなく、ロータサイド隙間のシール性向上による体積効率の向上と、それによる圧縮機の性能の向上を図れるようにした気体圧縮機である。
【0002】
【従来の技術】
図11は従来の気体圧縮機の一例を示した断面図である。この図11の気体圧縮機は、端面にサイドブロック5、6を取り付けてなるシリンダ4内にロータ8が回転可能に横架され、そのロータ8の外周面からシリンダ4の内周面に向かって出没可能なベーン16を複数具備する構造となっている。そして、ベーン16によりシリンダ4とロータ8の間のシリンダ内空間が複数の小室に仕切られ、この仕切られた小室が圧縮室17として機能する。すなわち、圧縮室17は、ロータ8の回転により容積の大小変化を繰り返し、この容積変化により冷媒ガスの吸入、圧縮、吐出という一連の動作を行なう。
【0003】
上記のような図11に示す従来構造の気体圧縮機において、そのロータ8の端面と対向するサイドブロック5、6の内面側には、そのサイドブロック5または6とロータ8との間の隙間G2(以下、ロータサイド隙間という。)をシールする手段として、弾性材料からなるシール部材60を設けている(例えば、特開2000‐257576号公報の図1と図2を参照。)。
【0004】
上記シール部材60は、ロータサイド隙間G2を介する高圧側から低圧側への高圧冷媒ガスの内部リーク、具体的には高圧となる圧縮室17から低圧の吸入室18側への高圧冷媒ガスのリークを防止することで、体積効率(圧縮室17内に吸入される冷媒ガスの容量と圧縮室17の最大容積との比)の向上と、これによる圧縮機の性能の向上を図るために設けられている。
【0005】
しかしながら、上記のような従来構造の気体圧縮機によると、ロータサイド隙間G2のシール手段として、弾性部材からなるシール部材60を用いた接触型シール構造を採用するため、次のような問題点を有していた。
【0006】
(1)シール部材60の摩耗によりロータサイド隙間G2のシール性能が低下し、それに伴い上述のロータサイド隙間G2を介する内部リーク量が増え、体積効率の低下とそれによる圧縮機の性能の低下が生じうる。
【0007】
(2)回転するロータ8の端面にシール部材60が接触するため、ロータ8とシール部材60との間の摺動抵抗が大きく、これが気体圧縮機の動力の増大を招く要因となっている。
【0008】
(3)回転するロータ8の端面との接触によるシール部材60の劣化は避けられず、シール部材60の劣化や破損等との関係から、気体圧縮機の耐久性に問題がある。
【0009】
【特許文献1】
特開2000‐257576号公報
【0010】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたもので、その目的とするところは、動力の上昇や耐久性の低下等を招くことなく、ロータサイド隙間のシール性向上による体積効率の向上と、それによる圧縮機の性能の向上を図るのに好適な気体圧縮機を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は、端面にサイドブロックを取り付けてなるシリンダと、上記シリンダ内に回転可能に横架されたロータと、上記ロータの外周面から上記シリンダの内周面に向かって出没可能に設けられるとともに、上記シリンダとロータの間のシリンダ内空間を複数の小室に仕切るベーンと、上記ベーンにより仕切られた小室からなるとともに、上記ロータの回転により容積の大小変化を繰り返し、この容積変化により冷媒ガスを吸入、圧縮し吐出する圧縮室と、上記ロータの端面と対向する上記サイドブロックの内面に形成され、このサイドブロックと上記ロータとの間の隙間に開口する溝と、上記溝にオイルを供給するオイル供給手段とを具備することを特徴とするものである。
【0012】
本発明では、上記溝からサイドブロックとロータとの間の隙間(ロータサイド隙間)に積極的にオイルが供給され、このオイルによりロータサイド隙間がシールされ、そのロータサイド隙間を介する高圧側から低圧側への冷媒ガスのリークが防止される。
【0013】
上記溝については、上記ロータの回転中心軸線回りに円環状に形成される構造を採用することができる。
【0014】
また、上記溝は、さらに、ロータの外周面からシリンダの内周面に向かってベーンが最大に突出したときの該ベーンの底面から、ロータの外周までの範囲内に設けることができる。その範囲の中でも特にベーンの底面側に近接する位置側に当該溝を配置するのが好適である。その理由は、ロータの外周に近い位置にその溝を配置すると、この溝から冷媒ガスの吸入過程にある低圧の圧縮室側へ移行するオイルの量が増え、オイル圧縮や体積効率の低下といった問題が顕著になるからである。
【0015】
上記本発明においては、上記オイル供給手段から上記溝へのオイルの供給位置を、吸入行程にある上記圧縮室の位置側に配置してなる構造を採用することができる。
【0016】
上記本発明において、上記ベーン底部へ供給されるオイルと上記溝へ供給されるオイルとはともに中圧オイルとすることができる。
【0017】
上記本発明において、上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、上記オイル供給手段は、その一端が上記サイドブロックの軸受のクリアランス側に開口するとともに、その他端が上記溝側に開口する中圧オイル供給孔からなり、上記軸受のクリアランスで絞られ減圧されたオイルが上記中圧オイル供給孔を介して上記溝側へ供給される構造を採用してもよい。
【0018】
上記本発明において、上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、上記ロータの端面と対向している上記サイドブロックの内面には、上記軸受のクリアランスで絞られ減圧された中圧オイルが導入供給されるとともに、この中圧オイルをベーン背圧としてベーン底部へ供給するサライ溝が設けられ、上記オイル供給手段は、上記サライ溝と上記溝とを連通接続する連通孔からなる構造を採用してもよい。
【0019】
上記本発明において、上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、上記ロータ軸の端面側には、上記軸受のクリアランスで絞られ減圧された中圧オイルが供給される背圧空間が設けられ、上記ロータの端面と対向している上記サイドブロックの内面には、上記背圧空間から中圧オイル供給孔を介して中圧オイルが導入供給されるとともに、この中圧オイルをベーン背圧としてベーン底部へ供給するサライ溝が設けられ、上記オイル供給手段は、上記第1の中圧オイル供給孔を途中で分岐し、この分岐孔を上記溝に連通接続してなる構造を採用してもよい。
【0020】
上記本発明において、上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、上記ロータ軸の周面側には、シール室とこのシール室に配置された中圧メカニカルシールが設けられ、上記オイル供給手段は、上記中圧メカニカルシールの上記シール室へ中圧オイルを供給するための中圧オイル供給孔を途中で分岐し、この分岐孔を上記溝に連通接続してなる構造を採用してもよい。
【0021】
【発明の実施の形態】
以下、本発明に係る気体圧縮機の実施形態について図1ないし図11を基に詳細に説明する。
【0022】
図1は本発明の第1の実施形態である気体圧縮機の断面図である。
【0023】
この図1の気体圧縮機は、一端開口型コンプレッサケース1内に圧縮機構部2を収納し、該コンプレッサケース1の開口端にフロントヘッド3を取り付けてなる、いわゆるシェル構造を採用している。
【0024】
圧縮機構部2は内周略楕円状のシリンダ4を有し、シリンダ4のフロント側とリア側の端面にはサイドブロック5、6がそれぞれ取り付けられ、また、シリンダ4の内側には断面円形のロータ8がロータ軸7を介して回転可能に横架されている。
【0025】
ロータ軸7はロータ8の軸心に一体に設けられ、かつ、フロント側およびリア側のサイドブロック5、6に設けた軸受9、10を介して支持されている。この両サイドブロック5、6の軸受9、10はそれぞれのサイドブロック5、6の表裏面を貫通する孔形状となっている。
【0026】
ロータ軸7のフロント側端部7Fは、フロント側サイドブロック5の軸受9からフロントヘッド3を貫通し該フロントヘッド3のボス部3‐1中央から外部へ突出する構造となっている。このようにフロントヘッド3を貫通するロータ軸7の周面側にはフロントヘッドの内面を削ってシール室11が設けられ、このシール室11内にシール手段12が配置され、該シール手段12によりフロントヘッド3の内側と外部とが遮断されている。
【0027】
シール手段12としては、例えば周知の低圧リップシールや中圧メカニカルシール等を用いることができる。通常、カーエアコンシステム用の気体圧縮機では低圧リップシールを用い、GHP用の気体圧縮機では中圧メカニカルシールが用いられるが、低圧リップシールをGHP用の気体圧縮機に適用し、中圧リップシールをカーエアコンシステム用の気体圧縮機に適用することもできる。
【0028】
本実施形態の気体圧縮機では、図1に示した通り、シール手段12の一例として低圧リップシール12‐1を採用している。このため、低圧リップシール12‐1が配置されるシール室11は、そのシール構造上低圧、例えば冷媒ガスの吸入圧力Psまたはそれに近い比較的低い圧力とする。本実施形態では、シール室11を低圧の吸入室18に連通させることにより、シール室11が上記のような低圧となるように構成している。
【0029】
フロントヘッド3のボス部3‐1外周にはベアリング3‐1‐1を介してプーリ13が回転可能に取り付けられており、このプーリ13の端面側に電磁式のクラッチ14が設けられている。このクラッチ14のオン動作によりプーリ13とロータ軸7が連結され、該プーリ13と一体にロータ軸7が回転する。プーリ13は図示しないベルト等を介してエンジン側プーリに連結され、かつ、エンジンの動力により回転する。
【0030】
図2に示したように、ロータ8の外周面にはスリット状のベーン溝15が5つ切り込み形成され、これらのベーン溝15にそれぞれ1枚ずつベーン16が摺動可能に装着されている。
【0031】
上記各ベーン16は、ロータ8の外周面からシリンダ4の内周面に向かって出没可能に設けられている。これらのベーン16の先端がシリンダ4の内周面に押し付けられることによって、シリンダ4とロータ8の間のシリンダ内空間、すなわち180°対向する位置にある三日月型のシリンダ室がロータ8周方向に複数の小室として仕切られる。この仕切られた小室が圧縮室17であり、圧縮室17はロータ8が図中矢印Rの方向へ回転することにより容積の大小変化を繰り返し、この容積変化により冷媒ガスを吸入、圧縮して吐出するように構成されている。
【0032】
すなわち、圧縮室17の容積変化が生じると、その容積増加時に、吸入室18内の低圧冷媒ガスが圧縮室17へ吸入される。このような圧縮室17への吸入動作は、フロント側サイドブロック5の吸入口20‐1(図3参照)やシリンダ4の吸入通路19と連通するようにリア側サイドブロック6の端面に掘られた吸入口20‐2(図4参照)を介して行なわれる。
【0033】
そして、圧縮室17の容積が減少し始めると、その容積減少効果により圧縮室17内の冷媒ガスが圧縮され始める。その後、圧縮された冷媒ガスの圧力がシリンダ4外部空間の吐出チャンバ21側の圧力よりも高くなると、シリンダ4楕円短径部付近に位置するシリンダ吐出孔22の吐出弁23が開く。
【0034】
上記のようにして吐出弁23が開くと、圧縮室17内の高圧冷媒ガスがシリンダ吐出孔22からシリンダ4外部空間の吐出チャンバ21側へ流出する。ベーン16がシリンダ吐出孔22を通過すると同時に、吐出弁23を挟んだ次の圧縮室17と吐出チャンバ21との圧力差が逆転し吐出弁23が閉じる。
【0035】
吐出チャンバ21側へ流出した高圧冷媒ガスは、シリンダ4やリア側サイドブロック6の吐出通路28‐1、28‐2を通り、リア側サイドブロック6に取り付けられている油分離器24を経て、最後に吐出室25へ吐出される。
【0036】
吐出チャンバ21内に吐出した高圧冷媒ガス中には、圧縮機構部2の摺動部の潤滑や隙間部のシールのためのオイルがミストの状態で含まれている。この高圧冷媒ガス中のオイル成分は油分離器24の分離フィルタ26で分離捕獲され、かつ、吐出室25底部のオイル溜り27に滴下し貯留される。
【0037】
吐出室25底部のオイル溜り27にはその吐出室25の高圧、すなわち圧縮室17から吐出室25内に吐出した高圧冷媒ガスの圧力Pd(以下、吐出圧力という。)が作用している。
【0038】
上記のようなオイル溜り27のオイルは、圧縮機構部2の摺動部や隙間部、例えば(1)サイドブロック5、6の軸受9、10、(2)ベーン16底部、具体的にはベーン背圧空間の一部としてベーン16底部とベーン溝15底部との間にできる隙間G1(以下、ベーン底部隙間空間という。)、ならびに(3)ロータサイド隙間G2等へ供給される。次に、その圧縮機構部2の摺動部や隙間部へのオイルの供給手段について説明する。
【0039】
圧縮機構部2には高圧オイル供給孔50が設けられている。この高圧オイル供給孔50は、その一端50aがオイル溜り27側に開口し、その他端50bがフロントおよびリア側サイドブロック5、6の軸受9、10側に開口する構造であって、かつ、リア側サイドブロック6に穿設した孔50‐1と、これと連通するようにシリンダ4に穿設した孔50‐2と、これと連通するようにフロント側サイドブロック5に穿設した孔50‐3とから構成されている。
【0040】
したがって、本実施形態の気体圧縮機においては、この高圧オイル供給孔50により、オイル溜り27側からフロントおよびリア側サイドブロック5、6の軸受9、10側へ吐出圧力Pd相当の高圧のオイルが供給され、このオイルによって軸受9、10の潤滑が行なわれる。
【0041】
ロータ8の端面と対向しているリア側サイドブロック6の内面にはサライ溝51が設けられている。このサライ溝51は、リア側サイドブロック6の軸受10の周囲に形成され、かつ、その軸受10のクリアランスに開口し連通する構造となっている。
【0042】
また、このサライ溝51には、冷媒ガスの吸入行程から圧縮行程の時期に、ベーン溝15底部側がその側面から対向し連通するように構成されている。
【0043】
このような構造のサライ溝51については、フロント側サイドブロック5の内面にも同様に設けられている。
【0044】
ロータ軸7のリア側端面7R側にはリア背圧空間52が設けられている。このリア背圧空間52は、油分離器24およびリア側サイドブロック6の外壁の一部とロータ軸7のリア側端面7Rを含む壁面で形成されている。
【0045】
また、このリア背圧空間52は、リア側サイドブロック6に穿設された第1の中圧オイル供給孔53(図7参照。図1では省略。)を介して同リア側サイドブロック6のサライ溝51に連通する構造となっている。
【0046】
フロント側サイドブロック5にもサライ溝51に連通する孔54が穿設されているが、この孔54はフロント側サイドブロック5のサライ溝51と上述した低圧のシール室11とを連通接続する手段として設けられている。
【0047】
したがって、本実施形態の場合、上記の如くオイル溜り27からリア側サイドブロック6の軸受10に供給されたオイルは、その軸受10のクリアランスを通過して直接リア側サイドブロック6のサライ溝51側へ流出し供給されるとともに、同軸受10のクリアランス、リア背圧空間52および第1の中圧オイル供給孔53(図7参照。図1では省略。)をその順に通過してサライ溝51側へ供給される。
【0048】
この際、軸受10のクリアランスの通過時にオイルは絞られ減圧される。これにより、リア側サイドブロック6のサライ溝51へ供給されるオイルの圧力は軸受9、10へ供給されるオイルの圧力より低く、吐出圧力Pdと吸入圧力Psの中間の圧力となる。以下、この中間の圧力のオイルを「中圧オイル」という。
【0049】
さらに、上記中圧オイルは、ベーン背圧としてサライ溝51からリア側サイドブロック6のベーン16底部へ供給され、これにより、ベーン16がロータ8の外周面からシリンダ4の内周面に向かって飛び出る。
【0050】
フロント側サイドブロック5の軸受9に供給されたオイルは、その軸受9のクリアランスを通過して直接フロント側サイドブロック5のサライ溝51側へ流出し供給される。また、同オイルは、軸受9のクリアランスを通過して低圧のシール室11側にも流出し、このシール室11内の低圧リップシール12‐1とロータ軸7との摺動部が当該オイルにより潤滑される。
【0051】
フロント側サイドブロック5のサライ溝51に供給されるオイルは中圧オイルであり、この点についてはリア側サイドブロック6のサライ溝51に供給されるオイルと同様である。
【0052】
尚、本実施形態においては、低圧リップシール12‐1の採用によりシール室11は低圧となるため、フロント側サイドブロック5のサライ溝51から同フロント側サイドブロック5の孔54を介するルートでも、シール室11にオイルが供給される。
【0053】
ところで、本実施形態の気体圧縮機においては、内面楕円形状のシリンダ4の中心に真円のロータ8を配置することで、ロータ軸7を中心として180°対向する位置に三日月型のシリンダ室が2つ形成される構造を採用している。このため、その双方のシリンダ室において冷媒ガスの吸入・圧縮・吐出という一連の動作を行なうことが可能となっている。また、本実施形態の気体圧縮機では、ロータ8にベーン16を5枚配設しているため、ロータ8が1回転する間に一方の三日月型シリンダ室内では当該ベーン16により仕切られた圧縮室17が5回形成される。したがって、ロータ8が1回転する間に、一方の三日月型シリンダ室で冷媒ガスの吸入・圧縮・吐出という一連の動作が5回行われ、双方のシリンダ室で都合10回行われる。このような構造との関係から、リア側サイドブロック6やフロント側サイドブロック5のサライ溝51については、ロータ軸7を中心として180°対向する位置にそれぞれ1つずつ計2つ設けている。これと同様に吸入通路19、吸入口20、吐出チャンバ21、シリンダ吐出孔22、吐出弁23等についても、それぞれ2つずつ設けている。
【0054】
ロータ8の一方の端面と対向しているリア側サイドブロック6の内面と、同ロータ8の他方の端面と対向しているフロント側サイドブロック5の内面には、上記サライ溝51のほか、サライ溝51やベーン底部隙間空間G1とは非連通の溝55がそれぞれ形成されている。
【0055】
上記溝55は、ロータサイド隙間G2に中圧オイルを供給し、該ロータサイド隙間G2のオイルシール効果を高めるために導入されたものである。以下、この溝55を「シールオイル貯留溝」という。
【0056】
リア側サイドブロック6のシールオイル貯留溝55は、ロータ8の回転中心軸線回り、具体的にはサライ溝51の外周において同リア側サイドブロック6の軸受10を囲むように、円環状に形成されている。また、このシールオイル貯留溝55は、その溝上面側がロータサイド隙間G2に開口し連通する構造となっている。さらに、このシールオイル貯留溝55は、ロータ8の外周面からシリンダ4の内周面に向かってベーン16が最大に突出したときの当該ベーン16の底面から、ロータ8の外周までの範囲内に設けられる。フロント側サイドブロック5のシールオイル貯留溝55も同様に形成されている。
【0057】
したがって、本実施形態の気体圧縮機では、冷媒ガスの吸入・圧縮・吐出といういかなる過程にあっても、上記のようなシールオイル貯留溝55とベーン底部隙間空間G1またはサライ溝51とは完全に切り離されていて、両者が連通することはない。
【0058】
このようなシールオイル貯留溝55とベーン底部隙間空間G1またはサライ溝51との非連通構造を採用したのは、ベーン背圧の上昇による動力の増大という不具合等を防止するためである。
【0059】
すなわち、シールオイル貯留溝55がサライ溝51またはベーン底部隙間空間G1に一時的にでも連通するような事態が生じると、その連通時にシールオイル貯留溝55からサライ溝51やベーン底部隙間空間G1側へオイルが流入し、これによりベーン背圧が必要以上に高まり、動力の増大等という不具合が発生しうるため、これを防止することが必要となるからである。
【0060】
また、リア側サイドブロックとフロント側サイドブロックのシールオイル貯留溝55は、双方とも上記範囲内(ロータ8の外周面からシリンダ4の内周面に向かってベーン16が最大に突出したときの当該ベーン16の底面から、ロータ8の外周までの範囲内)に設けられるが、本実施形態では、その範囲の中でも特に当該ベーン16の底面側に近接する位置側に、シールオイル貯留溝55が配置される構造を採用している。
【0061】
このようなシールオイル貯留溝55の配置構造を採用したのは、仮にロータ8の外周に近い位置にシールオイル貯留溝55を配置すると、このシールオイル貯留溝55から冷媒ガスの吸入過程にある低圧の圧縮室17側へ移行するオイルの量が増え、オイル圧縮や体積効率(圧縮室内に吸入される冷媒ガスの容量と圧縮室の最大容積との比)の低下といった問題が顕著になるからである。
【0062】
リア側サイドブロック6には第1の中圧オイル供給孔53(図7参照。図1では省略。)とは別個に、第2の中圧オイル供給孔56が設けられている。この第2の中圧オイル供給孔56は、その一端56aが軸受10のクリアランス側に開口し、その他端56bが上記シールオイル貯留溝55側に開口する構造となっている。
【0063】
ここで、第2の中圧オイル供給孔56からシールオイル貯留溝55へのオイル供給位置(中圧オイル供給孔他端56bの開口位置)について説明する。
【0064】
本実施形態の場合、シールオイル貯留溝55は円環状に設けられ、この円環状シールオイル貯留溝55に対し第2の中圧オイル供給孔56から中圧オイルが供給されるが、その円環状シールオイル貯留溝55の円周方向における中圧オイル供給孔他端56bの開口位置、すなわち中圧オイル供給孔56からシールオイル貯留溝55への中圧オイルの供給位置は、図2等に示すように、吸入行程にある圧縮室17の位置側に配置することが望ましい。これは、中圧オイルを効果的にロータサイド隙間G2に供給するための手段である。
【0065】
サイドブロック端面とロータ端面とに挟まれた狭いロータサイド隙間G2内のオイルの流れは、外周側にある圧縮室17の圧力の影響とロータ8の回転の影響を受ける。すなわち、吸入行程にある低圧の圧縮室17‐1の位置におけるロータサイド隙間G2内のオイルの流れは、圧力差により半径方向内周側から外周側に向かうとともに、ロータ8の回転による摩擦力により圧縮行程にある圧縮室17‐2側に傾いていく。したがって、シールオイル貯留溝55における中圧オイルの下流側出口(中圧オイル供給孔他端56bの開口位置)を吸入口付近に配置し、オイル供給の起点とすることにより、ロータサイド隙間G2の広い範囲にオイルを充分に行き渡らせることが可能となる。
【0066】
これに対して、仮に中圧オイル供給孔56から円環状シールオイル貯留溝55への中圧オイルの供給位置(中圧オイル供給孔他端56bの開口位置)が圧縮行程にある圧縮室17‐2に近い場合には、供給されたオイルの圧力と圧縮室17‐2との圧力差が小さい。従って、オイルの半径方向内周側から外周側に向かう流れが発生しにくく、ロータ8の回転による摩擦力の影響のみといった状況となってしまい、シールオイル貯留溝55よりも外周のロータサイド隙間G2にはオイルが行き渡りにくくなる可能性がある。
【0067】
上記のような構造からなる第2の中圧オイル供給孔56はフロント側サイドブロック5にも同様に設けられている。
【0068】
したがって、本実施形態の気体圧縮機では、オイル溜り27から軸受9、10に供給されたオイルは、その軸受9、10のクリアランスと第2の中圧オイル供給孔56を通過してフロントおよびリア側サイドブロック5、6のシールオイル貯留溝55に供給される。このとき、第2の中圧オイル供給孔56を介してシールオイル貯留溝55に供給されるオイルは、第1の中圧オイル供給孔53(図7参照。図1では省略。)を介してサライ溝51に供給されるオイルと同じく、中圧オイルである。これは軸受9、10のクリアランス通過時に絞られ減圧されたオイルが第2のオイル供給孔56を介してシールオイル貯留溝55に供給されるためである。
【0069】
シールオイル貯留溝55に供給された中圧オイルは、その溝55の上面側からロータサイド隙間G2に流出し、ロータ8の径方向に拡散する。この中圧オイルの拡散動作は、主としてロータサイド隙間G2に流出した中圧オイルが回転するロータ8の端面で引きずられて回転することと、その回転による遠心力が中圧オイルに働くこと等によるものと考えられる。
【0070】
ところで、シールオイル貯留溝55に供給されるオイルとして中圧オイルを採用した理由は次の通りである。すなわち、▲1▼吸入圧力Psまたはそれに近い比較的低い圧力しかない低圧のオイルではそのオイル圧力が低すぎるため、回転体内部、具体的には上述したシールオイル貯留溝55へのオイルの供給ができないこと、▲2▼吐出圧力Pdまたはそれに近い比較的高い圧力を有する高圧のオイルでは低圧側へのオイルリークや熱いオイルの供給による過熱損失等があること、▲3▼通常は気体圧縮機の運転時にサライ溝51の中圧オイルがロータサイド隙間G2に流出し供給されるので、そのロータサイド隙間G2への中圧オイルの供給量を増やすことが望ましいことから、本実施形態の気体圧縮機では、シールオイル貯留溝55に供給されるオイルを中圧オイルとした。
【0071】
上記の如く構成された図1の気体圧縮機にあっては、サライ溝51からロータサイド隙間G2へ漏洩する中圧オイルに加え、さらにシールオイル貯留溝55からロータサイド隙間G2に中圧オイルを積極的に供給し、これらの中圧オイルによってロータサイド隙間G2にオイルシールが形成される、非接触型シール構造を採用したものである。このため、従来の接触型シール構造のようにシール部材60の摩耗によるロータサイド隙間G2のシール性の低下という不具合が発生する余地はなく、ロータサイド隙間G2のシール性の向上とそれによる体積効率の向上を図るのに好適である。
【0072】
この図1の気体圧縮機にあっては、サイドブロック5、6とロータ8との間にオイルの粘性流動抵抗が発生するものの、この抵抗は従来の弾性材料からなるシール部材60の摺動抵抗よりかなり小さいから、小さな動力でも気体圧縮機の運転が可能となり、さらに、従来の接触型シール構造のようにシール部材60を用いないから、この種のシール部材60の劣化による耐久性の低下という問題はなく、厳しい条件下での使用や長期連続使用に耐えうる耐久性の高い気体圧縮機であるといえる。
【0073】
また、この図1の気体圧縮機によると、シールオイル貯留溝55とサライ溝51の双方からロータサイド隙間G2にオイルの供給が行なわれるから、回転するロータ8と固定のサイドブロック5、6との摺動部における潤滑不良を効果的に防止できるという利点もある。
【0074】
図5は本発明の第2の実施形態である気体圧縮機の断面図である。
【0075】
前述した図1の気体圧縮機においては、フロント側サイドブロック5のシールオイル貯留溝55への中圧オイルの供給構造として、第2の中圧オイル供給孔56を介して軸受9のクリアランス側にシールオイル貯留溝55が連通する構造を採用した。
【0076】
これに代えて、この図5の気体圧縮機においては、フロント側サイドブロック5では、そのフロント側サイドブロック5のサライ溝51にシールオイル貯留溝55が連通する構造を採用した。具体的には、第2の中圧オイル供給孔56の一端56aがサライ溝51に開口し、これによりサライ溝51の中圧オイルの一部が第2の中圧オイル供給孔56を介してシールオイル貯留溝55へ供給される構造を採用した。
【0077】
尚、この図5の気体圧縮機におけるその余の構成については図1の気体圧縮機と同様であるため、それと同一部材には同一符号を付し、その詳細説明は省略する。
【0078】
図6は本発明の第3の実施形態である気体圧縮機の断面図である。
【0079】
同図の気体圧縮機は、図5の気体圧縮機におけるフロント側サイドブロック5で採用したシールオイル貯留溝55への中圧オイルの供給構造を、リア側サイドブロック6にも適用した例である。
【0080】
したがって、この図6の気体圧縮機では、リア側サイドブロック6においても第2の中圧オイル供給孔56の一端56aがサライ溝51に開口し、サライ溝51の中圧オイルの一部が第2の中圧オイル供給孔56を通じてシールオイル貯留溝55に導入供給される。
【0081】
図7は本発明の第4の実施形態である気体圧縮機の断面図である。
【0082】
同図の気体圧縮機が図1、図5、図6の気体圧縮機と異なる構造は、リア側サイドブロック6におけるシールオイル貯留溝55への中圧オイルの供給構造である。
【0083】
すなわち、図1と図5の気体圧縮機のリア側サイドブロック6では、第2の中圧オイル供給孔56を介して軸受10のクリアランスからシールオイル貯留溝55へ中圧オイルを供給導入する構成を採用し、また、図6の気体圧縮機のリア側サイドブロック6では、第2の中圧オイル供給孔56を介してサライ溝51からシールオイル貯留溝55へ中圧オイルを供給導入する構成を採用した。前述した通り、リア側サイドブロック6の第1の中圧オイル供給孔53もまた中圧オイルを供給する手段であるが、図1、図5、図6の気体圧縮機では、いずれも、リア側サイドブロック6のシールオイル貯留溝55への中圧オイルの供給にあたり、この第1の中圧オイル供給孔53を利用していない。
【0084】
それに対し、この図7の気体圧縮機では、上記第1の中圧オイル供給孔53を利用して中圧オイルをシールオイル貯留溝55へ導入供給する構造を採用するものとした。その構造を具体的に説明すると、第1の中圧オイル供給孔53を途中で分岐し、その分岐孔53‐1をシールオイル貯留溝55に連通接続させる構造である。
【0085】
これにより、図7の気体圧縮機においては、第1の中圧オイル供給孔53を流れる中圧オイルの一部が分岐孔53‐1を介してシールオイル貯留溝55に導入供給される。
【0086】
尚、この図7の気体圧縮機におけるその余の構成については図1、図5または図6の気体圧縮機と同様であるため、それと同一部材には同一符号を付し、その詳細説明は省略する。
【0087】
図8は本発明の第5の実施形態である気体圧縮機の断面図である。
【0088】
前述の気体圧縮機は、いずれも、フロントヘッド3を貫通するロータ軸7回りのシール手段12として低圧リップシール12‐1を採用しているが、この図8の気体圧縮機では、そのシール手段12として、中圧メカニカルシール12‐2を採用している。
【0089】
この場合、中圧メカニカルシール12‐1が配置されるシール室11には、そのシール構造上、中圧オイルが供給される。このシール室11への中圧オイルの供給系ルートは、フロント側サイドブロック5の軸受9のクリアランスから直接供給するルートと、フロント側サイドブロック5の孔54を介して同フロント側サイドブロック5のサライ溝51側から供給するルートがある。
【0090】
したがって、中圧メカニカルシール12‐1を用いた場合は、フロント側サイドブロック5の孔54が中圧オイル供給孔となる。このフロント側サイドブロック5の孔54(中圧オイル供給孔)から中圧オイルを抽出し、これをシールオイル貯留溝55に供給導入する構造を採用したものが、この図8の気体圧縮機である。
【0091】
具体的には、図8の気体圧縮機においては、フロント側サイドブロック5の孔54(中圧オイル供給孔)を分岐するとともに、その分岐孔54‐1をシールオイル貯留溝55に連通接続させる構造を採る。これにより、フロント側サイドブロック5の孔54を流れる中圧オイルの一部が分岐孔54‐1を介してシールオイル貯留溝55に導入供給される。
【0092】
なお、この図8の気体圧縮機では、リア側サイドブロック5のシールオイル貯留溝55への中圧オイルの供給構造として、図7の気体圧縮機と同様の構造を採用しているが、これに代えて、図1または図6の気体圧縮機と同様の構造を適用してもよい。
【0093】
図9は本発明の第6の実施形態である気体圧縮機の断面図である。
【0094】
同図の気体圧縮機は、図8の気体圧縮機と同じく中圧メカニカルシールを採用したものであるが、フロントおよびリア側サイドブロック5、6のシールオイル貯留溝55への中圧オイルの供給構造が図8の気体圧縮機とは異なる。
【0095】
すなわち、この図9の気体圧縮機では、フロントおよびリア側サイドブロック5、6のシールオイル貯留溝55への中圧オイルの供給構造として、図6に示す気体圧縮機と同一の構造を採用している。
【0096】
したがって、この図9の気体圧縮機では、フロントおよびリア側サイドブロック5、6のいずれにおいても、第2の中圧オイル供給孔56の一端56aがサライ溝51に開口し、サライ溝51の中圧オイルの一部が第2の中圧オイル供給孔56を通じてシールオイル貯留溝55に導入供給される。
【0097】
前述した図5ないし図9の気体圧縮機にあっては、これもまた図1の気体圧縮機と同じく、サライ溝51からロータサイド隙間G2へ漏洩する中圧オイルに加え、さらにシールオイル貯留溝55からロータサイド隙間G2に中圧オイルを積極的に供給し、これらの中圧オイルによってロータサイド隙間G2のオイルシール効果を得る、非接触型シール構造を採用したものであるから、図1の気体圧縮機と同様の効果、すなわち動力の低減、耐久性の向上等の効果を奏する。
【0098】
図10は、図1等の気体圧縮機のフロント側サイドブロックに設けたサライ溝についての他の実施形態の説明図、図11は、図1等の気体圧縮機のリア側サイドブロックに設けたサライ溝についての他の実施形態の説明図である。
【0099】
図1等の気体圧縮機におけるサライ溝51はロータ8の径方向に所定の幅Lを有し、そのサライ溝51の径方向幅Lは従来の気体圧縮機におけるサライ溝51と同一であって変更されていない。このような従来と同一のサライ溝51に代えて、従来のサライ溝51に比しその径方向幅Lを短くした図10および図11に示すサライ溝51を適用してもよい。従来の気体圧縮機におけるサライ溝の径方向幅を1とすると、この図10および図11に示すサライ溝51の径方向幅Lは約30%前後減少している。
【0100】
上記のようなサライ溝51の径方向幅構造の採用により、更なる動力の低減を図ることができる。すなわち、サライ溝51の径方向幅Lを縮小すると、サライ溝51のオイル貯留量が相対的に減り、その結果、サライ溝51からベーン16底部へのオイルの供給量が減少することから、ベーン16が冷媒ガスの吸入行程にあるときの当該ベーン16のベーン背圧が低減され、シリンダ4内周へのベーン16の押し付け力が小さくなる。よって、ベーン16先端とシリンダ4内周面との間における摺動摩擦抵抗が減り、さらに小さな動力でも気体圧縮機の運転が可能となり、より一層動力の低減を図ることができる。
【0101】
前述のようにサライ溝51のオイル貯留量が相対的に減ると、このサライ溝51からロータサイド隙間G2に漏れ出るオイル量も減り、この限りにおいてはロータサイド隙間G2のオイルシール効果が減退する。しかし、図1等に示す気体圧縮機では、サライ溝51からロータサイド隙間G2へのオイル供給のほか、これとは別にシールオイル貯留溝55からロータサイド隙間G2へのオイル供給があるため、ロータサイド隙間G2のオイルシール効果は十分であり、ロータサイド隙間G2を介する高圧側から低圧側への冷媒ガスのリークは効果的に防止される。
【0102】
尚、図10に示す小径のサライ溝51を図5ないし図9の気体圧縮機に適用してもよいことはいうまでもない。
【0103】
ここで、図1等のように中圧オイル供給孔56の一端56a(上流側入口)を軸受9のクリアランス(軸穴)に開口した構造の場合と、図5等のように中圧オイル供給孔56の一端56a(上流側入口)をサライ溝51に開口した構造の場合とにおける、作用・効果の違いについて説明する。
【0104】
軸受9のクリアランスで絞られ減圧されたオイル圧は、中圧オイル供給孔56までの距離に依存する。すなわち、中圧オイル供給孔56の一端56aを直接軸受9のクリアランスに開口したものとサライ溝51に開口したものとで、高圧オイルからの絞られる距離が等しければ、オイル圧はほぼ等しくなり効果は同じである。
【0105】
しかしながら、サライ溝51は本来、運転時に適正なベーン背圧を与えるために設けられており、軸受9のクリアランスによる高圧オイルからの距離と減圧の程度はほぼ固定されている。従って、中圧オイル供給孔56の一端56a(上流側入口)をサライ溝51に開口させた構造の場合には、供給する中圧オイルの圧力もほぼ固定されることになる。
【0106】
これに対して、中圧オイル供給孔56の一端56a(上流側入口)を軸受9のクリアランスに開口させた構造の場合には、高圧オイルからの距離を適宜選定することにより、供給する中圧オイルの圧力を任意に設定することが可能である。従って、例えば中圧オイル供給孔56の一端56aを軸受9のクリアランスの高圧オイルに近い位置に開口させ、その中圧オイル供給孔56の他端56b(下流側出口)をシールオイル貯留溝55の圧縮室吸入側付近に開口させた場合においては、中圧オイル供給孔56の一端56aをサライ溝51に開口させた場合よりも高い圧力の中圧オイルをシールオイル貯留溝55へ供給することができる。そのため、シールオイル貯留溝55の外周にあるロータサイド隙間G2の、より広い範囲にオイルを行き渡らせることができる。但し、吸入行程の圧縮室17‐1にオイルが流入し過ぎることがないように配慮する必要がある。
【0107】
上記のような構成の違いによる作用・効果の違いから考えれば、1つの三日月型シリンダ室に関して中圧オイル供給孔56を複数設け、互いに異なる圧力の中圧オイルをロータサイド隙間G2に供給できることがわかる。この場合、特に好ましいのは、シールオイル貯留溝55を吸入行程用、圧縮行程用、吐出行程用と3分割して3つの円弧溝とし、吸入行程用円弧溝には最も低い圧力、吐出行程用円弧溝には最も高い圧力、圧縮行程用円弧溝にはそれらの中間圧力の中圧オイルをそれぞれ供給することである。
【0108】
このように構成することにより、いずれの円弧溝外周側のロータサイド隙間G2にも、オイルを充分に行き渡らせることができるとともに、各行程の圧縮室に必要以上にオイルを流入させてしまうことがない。但し、軸受9、10へのオイル供給量やサライ溝51へのオイル供給量が減少傾向にあることに注意する必要がある。
【0109】
【発明の効果】
本発明に係る気体圧縮機にあっては、ロータの端面と対向しているサイドブロックの内面に、該サイドブロックとロータとの間の隙間(ロータサイド隙間)に開口する溝を形成するとともに、この溝にオイルを供給するオイル供給手段を設けたものである。すなわち、ロータサイド隙間のシール構造として、上記溝からロータサイド隙間に積極的にオイルを供給し、このオイルによりロータサイド隙間をシールするという、いわゆる非接触型シール構造を採用したものである。このため、従来の接触型シール構造に比しシール部分の抵抗は小さく、また従来の接触型シール構造のようなシール部材の劣化という不具合が発生する余地もないことから、動力の上昇や耐久性の低下等を招くことなく、ロータサイド隙間のシール性向上による体積効率の向上と、それによる圧縮機の性能の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態である気体圧縮機の断面図。
【図2】図1のA‐A線断面図。
【図3】図1の気体圧縮機におけるフロント側サイドブロックの内面の説明図。
【図4】図1の気体圧縮機におけるリア側サイドブロックの内面の説明図。
【図5】本発明の第2の実施形態である気体圧縮機の断面図。
【図6】本発明の第3の実施形態である気体圧縮機の断面図。
【図7】本発明の第4の実施形態である気体圧縮機の断面図。
【図8】本発明の第5の実施形態である気体圧縮機の断面図。
【図9】本発明の第6の実施形態である気体圧縮機の断面図。
【図10】図1等の気体圧縮機のフロント側サイドブロックに設けたサライ溝についての他の実施形態の説明図。
【図11】図1等の気体圧縮機のリア側サイドブロックに設けたサライ溝についての他の実施形態の説明図。
【図12】従来の気体圧縮機の断面図。
【符号の説明】
1 コンプレッサケース
2 圧縮機構部
3 フロントヘッド
3‐1 ボス部
3‐1‐1 ベアリング
4 シリンダ
5 フロント側サイドブロック
6 リア側サイドブロック
7 ロータ軸
7F ロータ軸のフロント側端部
7R ロータ軸のリア側端面
8 ロータ
9 フロント側サイドブロックの軸受
10 リア側サイドブロックの軸受
11 シール室
12 シール手段
12‐1 低圧リップシール
12‐2 中圧メカニカルシール
13 プーリ
14 電磁クラッチ
15 ベーン溝
16 ベーン
17 圧縮室
18 吸入室
19 吸入通路
20‐1 フロント側サイドブロックの吸入口
20‐2 リア側サイドブロックの吸入口
21 吐出チャンバ
22 シリンダ吐出孔
23 吐出弁
24 油分離器
25 吐出室
26 分離フィルタ
27 オイル溜り
28‐1 シリンダの吐出通路
28‐2 リア側サイドブロックの吐出通路
50 高圧オイル供給孔
50‐1、50‐2、50‐3 孔
50a 高圧オイル供給孔の一端
50b 高圧オイル供給孔の他端
51 サライ溝
52 リア背圧空間
53 第1の中圧オイル供給孔
53‐1 分岐孔
54 孔
54 分岐孔
55 溝(シールオイル貯留溝)
56 第2の中圧オイル供給孔
56a 第2の中圧オイル供給孔の一端
56b 第2の中圧オイル供給孔の他端
60 シール部材
G1 ベーン底部隙間空間
G2 ロータサイド隙間
L サライ溝の径方向幅
Pd 吐出圧力
Ps 吸入圧力
R ロータ回転方向

Claims (10)

  1. 端面にサイドブロックを取り付けてなるシリンダと、
    上記シリンダ内に回転可能に横架されたロータと、
    上記ロータの外周面から上記シリンダの内周面に向かって出没可能に設けられるとともに、上記シリンダとロータの間のシリンダ内空間を複数の小室に仕切るベーンと、
    上記ベーンにより仕切られた小室からなるとともに、上記ロータの回転により容積の大小変化を繰り返し、この容積変化により冷媒ガスを吸入、圧縮し吐出する圧縮室と、
    上記ロータの端面と対向する上記サイドブロックの内面に形成され、このサイドブロックと上記ロータとの間の隙間に開口する溝と、
    上記溝にオイルを供給するオイル供給手段とを具備すること
    を特徴とする気体圧縮機。
  2. 上記溝は、上記ロータの回転中心軸線回りに円環状に形成されること
    を特徴とする請求項1に記載の気体圧縮機。
  3. 上記溝は、ロータの外周面からシリンダの内周面に向かってベーンが最大に突出したときの該ベーンの底面から、ロータの外周までの範囲内に設けられること
    を特徴とする請求項1に記載の気体圧縮機。
  4. 上記溝は、上記範囲内の中でも上記ベーンの底面側に近接する位置側に配置されること
    を特徴とする請求項3に記載の気体圧縮機。
  5. 上記オイル供給手段から上記溝へのオイルの供給位置を、吸入行程にある圧縮室の位置側に配置してなること
    を特徴とする請求項1に記載の気体圧縮機。
  6. 上記ベーン底部へ供給されるオイルと上記溝へ供給されるオイルとがともに中圧オイルであること
    を特徴とする請求項1に記載の気体圧縮機。
  7. 上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、
    上記オイル供給手段は、その一端が上記サイドブロックの軸受のクリアランス側に開口するとともに、その他端が上記溝側に開口する中圧オイル供給孔からなり、
    上記軸受のクリアランスで絞られ減圧されたオイルが上記中圧オイル供給孔を介して上記溝側へ供給される構造であること
    を特徴とする請求項1に記載の気体圧縮機。
  8. 上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、
    上記ロータの端面と対向している上記サイドブロックの内面には、上記軸受のクリアランスで絞られ減圧された中圧オイルが導入供給されるとともに、この中圧オイルをベーン背圧としてベーン底部へ供給するサライ溝が設けられ、
    上記オイル供給手段は、上記サライ溝と上記溝とを連通接続する連通孔からなること
    を特徴とする請求項1に記載の気体圧縮機。
  9. 上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、
    上記ロータ軸の端面側には、上記軸受のクリアランスで絞られ減圧された中圧オイルが供給される背圧空間が設けられ、
    上記ロータの端面と対向している上記サイドブロックの内面には、上記背圧空間から中圧オイル供給孔を介して中圧オイルが導入供給されるとともに、この中圧オイルをベーン背圧としてベーン底部へ供給するサライ溝が設けられ、
    上記オイル供給手段は、上記第1の中圧オイル供給孔を途中で分岐し、この分岐孔を上記溝に連通接続してなる構造であること
    を特徴とする請求項1に記載の気体圧縮機。
  10. 上記ロータは、その軸心に一体に設けたロータ軸とこれを支持する上記サイドブロックの軸受とにより回転可能に設けられ、
    上記ロータ軸の周面側には、シール室とこのシール室に配置された中圧メカニカルシールが設けられ、
    上記オイル供給手段は、上記中圧メカニカルシールの上記シール室へ中圧オイルを供給するための中圧オイル供給孔を途中で分岐し、この分岐孔を上記溝に連通接続してなる構造であること
    を特徴とする請求項1に記載の気体圧縮機。
JP2003033989A 2003-02-12 2003-02-12 気体圧縮機 Pending JP2004245089A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033989A JP2004245089A (ja) 2003-02-12 2003-02-12 気体圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033989A JP2004245089A (ja) 2003-02-12 2003-02-12 気体圧縮機

Publications (1)

Publication Number Publication Date
JP2004245089A true JP2004245089A (ja) 2004-09-02

Family

ID=33019803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033989A Pending JP2004245089A (ja) 2003-02-12 2003-02-12 気体圧縮機

Country Status (1)

Country Link
JP (1) JP2004245089A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050963A (ja) * 2006-08-23 2008-03-06 Calsonic Compressor Inc 気体圧縮機
WO2008038638A1 (fr) * 2006-09-26 2008-04-03 Hitachi, Ltd. Pompe à palettes à débit variable
KR20130121325A (ko) * 2012-04-27 2013-11-06 한라비스테온공조 주식회사 베인 로터리 압축기

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050963A (ja) * 2006-08-23 2008-03-06 Calsonic Compressor Inc 気体圧縮機
WO2008038638A1 (fr) * 2006-09-26 2008-04-03 Hitachi, Ltd. Pompe à palettes à débit variable
US8038420B2 (en) 2006-09-26 2011-10-18 Hitachi, Ltd. Variable displacement vane pump
DE112007001884B4 (de) * 2006-09-26 2013-06-06 Hitachi, Ltd. Verstellflügelpumpe
KR20130121325A (ko) * 2012-04-27 2013-11-06 한라비스테온공조 주식회사 베인 로터리 압축기
KR101871145B1 (ko) * 2012-04-27 2018-07-02 한온시스템 주식회사 베인 로터리 압축기

Similar Documents

Publication Publication Date Title
KR101480464B1 (ko) 스크롤 압축기 및 이를 적용한 냉동기기
JP6302813B2 (ja) スクロール圧縮機及びこれを用いた冷凍サイクル装置
JPH06323276A (ja) 高圧ロータリコンプレッサ
KR101553953B1 (ko) 스크롤 압축기 및 이를 적용한 냉동기기
JP2003148366A (ja) 多段気体圧縮機
JP2014125908A (ja) スクロール圧縮機
CN113446215A (zh) 一种涡盘组件及涡旋式压缩机
JP2004245089A (ja) 気体圧縮機
KR20070050343A (ko) 스크롤 압축기
JP5291423B2 (ja) 流体機械
CN217206873U (zh) 涡旋压缩机
WO2022239675A1 (ja) ロータリ圧縮機および冷凍サイクル装置
JPH08296575A (ja) 回転ベーン形圧縮機及び真空ポンプ
JP3745915B2 (ja) 気体圧縮機
JP2004116458A (ja) スクロール型圧縮機
JPH0579481A (ja) ロータリ圧縮機
KR101731449B1 (ko) 스크롤 압축기
JP4142863B2 (ja) 気体圧縮機
JP2001140781A (ja) 気体圧縮機
JP4043233B2 (ja) 気体圧縮機
KR101587165B1 (ko) 스크롤 압축기 및 이를 적용한 냉동기기
JP4421359B2 (ja) 気体圧縮機
KR101587166B1 (ko) 스크롤 압축기 및 이를 적용한 냉동기기
JPS59229079A (ja) 回転圧縮機の回転スリ−ブの流体支持装置
CN109441804B (zh) 涡旋式泵体、压缩机、空调器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A621 Written request for application examination

Effective date: 20060206

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080507

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Effective date: 20080725

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080922