JP2004241394A - Adhesive film and process for manufacturing laminate board using the same - Google Patents

Adhesive film and process for manufacturing laminate board using the same Download PDF

Info

Publication number
JP2004241394A
JP2004241394A JP2000031225A JP2000031225A JP2004241394A JP 2004241394 A JP2004241394 A JP 2004241394A JP 2000031225 A JP2000031225 A JP 2000031225A JP 2000031225 A JP2000031225 A JP 2000031225A JP 2004241394 A JP2004241394 A JP 2004241394A
Authority
JP
Japan
Prior art keywords
resin composition
adhesive film
base film
laminated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000031225A
Other languages
Japanese (ja)
Inventor
Shigeo Nakamura
茂雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2000031225A priority Critical patent/JP2004241394A/en
Priority to PCT/JP2000/005166 priority patent/WO2001059023A1/en
Publication of JP2004241394A publication Critical patent/JP2004241394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a laminate board of build-up type with which thin printed wirings exhibiting excellent mechanical strength can be formed easily. <P>SOLUTION: This adhesive film for interlayer insulation comprises a supporting base film, and a layer of thermally fluid solid thermosetting resin composition under ordinary temperature formed on the surface of the supporting base film while having an area not larger than that of the supporting base film and exhibiting physical properties of slash region S in the relation of temperature and melt viscosity wherein a glass cloth or nonwoven fabric is provided on the surface of the resin composition. The build-up board is manufactured by vacuum forming the adhesive film on one or both sides of a base material under heat and pressure and thermosetting them integrally. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、導体回路層と絶縁層とを交互に積み上げたビルドアップ方式のプリント配線板の製造法において、フィルム状接着剤及びガラスクロス、ガラスペーパー又は有機不織布を用いた積層板及び多層プリント配線板の製造法に関するものである。
【0002】
【従来の技術】
近年内層回路板の導体層上に有機絶縁層を交互に積み上げていくビルドアップ方式の多層プリント配線板の製造技術が注目されている。熱硬化性樹脂付き銅箔を使用し真空積層プレスにより多層プリント配線板を製造する工法は、携帯用電子機器向けに広く行われるようになった。一方、本発明者らも特願平9ー357420において内層回路パターンの被覆と表面ビアホール及び/又はスルーホール内の樹脂充填を同時に一括して行うことのできる多層プリント配線板用層間接着フィルム、及びこれを用いた多層プリント配線板の製造法を開示している。それらのビルドアップ工法ではガラスクロスやガラスペーパー等を含まない樹脂を絶縁層とするため、剛性に乏しく軽量化の要求に応えた薄物配線板においては、機械的強度に劣るという欠点があった。
【0003】
【発明が解決しようとする課題】
上記問題点を顧みて、本発明者らは機械強度に優れたビルドアップ用フィルム状接着剤及びガラスクロス、ガラスペーパー又は有機不織布を用いた簡便な積層板の製造法を開発することにある。
【0004】
【問題を解決するための手段】
本発明は支持ベースフィルムとその表面に積層され、該支持ベースフィルムと同じか又は小さい面積を有し、かつ温度と溶融粘度との関係で添付図面、図1の斜線領域Sの物性を有する熱流動性、常温固形の熱硬化性樹脂組成物層からなる接着フィルムにおいて、さらに該樹脂組成物表面にガラスクロス又は有機不織布層を設けた構造であることを特徴とする層間絶縁用接着フィルム、及びこれを基材上の片面又は両面上に、加熱、加圧条件下真空積層した後、熱硬化させ一体化したことを特徴とする積層板の製造法、又は、
支持ベースフィルムとその表面に積層され、該支持ベースフィルムと同じか又は小さい面積を有し、かつ温度と溶融粘度との関係で添付図面、図1の斜線領域Sの物性を有する熱流動性、常温固形の熱硬化性樹脂組成物層からなる接着フィルムを用いて絶縁層を形成する方法において、基材上の片面又は両面上にガラスクロス又は有機不織布を枚葉し、さらにその上に接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程を必須とする積層板の製造法、さらには、
1)基材上の片面又は両面上に該接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程
2)支持ベースフィルムを剥離し、該樹脂組成物層が転写された基材のその上層にガラスクロス、ガラスペーパー又は有機不織布を枚葉し、さらにその上に該接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程
を必須とする積層板の製造法である。
【0005】
【発明の実施の形態】
本発明に用いる熱流動性、常温固形の樹脂組成物層を形成する熱硬化性樹脂組成物は加熱により軟化し、かつフィルム形成能があり、さらに高温で熱硬化により耐熱性、電気特性など層間絶縁材に要求される特性を満足するものであれば特に限定されるものではない。該樹脂組成物層の厚みはラミネートされる内層回路基板の導体厚以上で、導体厚+(10〜120)μmの範囲であるのが一般的である。かつ、本願請求項1〜3の場合は樹脂厚がガラスクロス又は有機不織布厚+(10〜120)μmの範囲にあるのが好ましい。
【0006】
該樹脂組成物は例えば、エポキシ樹脂系、アクリル樹脂系、ポリイミド樹脂系、ポリアミドイミド樹脂系、ポリシアネート樹脂系、ポリエステル樹脂系、熱硬化型ポリフェニレンエーテル樹脂系等が挙げられ、これらを2種以上組み合わせて使用したり、多層構造を有する接着フィルム層とすることも可能である。中でも、層間絶縁材として信頼性とコスト的に優れたエポキシ樹脂系においては、特願平9ー357420記載のエポキシ樹脂組成物が好ましい。
【0007】
該樹脂組成物層の好ましい物性は動的粘弾性率を測定し、この温度と溶融粘度との関係で示すことができ、本願明細書添付図面、図1の斜線領域Sはこの樹脂組成物層の好ましい範囲である。動的粘弾性率測定は(株)ユー・ビー・エム社製型式Rheosol−G3000を用いて測定した曲線であり、動的粘弾性率曲線の上限は平均乾燥温度100℃で10分、同じく下限の曲線は平均乾燥温度100℃で4分間処理した樹脂組成物層の物性を示している。実験的にこの曲線に挟まれる領域で、かつ溶融粘度10万Poise以下及び温度140℃以下の領域が本願発明の実施に好ましく用いられる樹脂組成物層の物性をあらわしている。溶融粘度10万Poise以上では樹脂組成物層が硬くなり本願発明の接着フィルムの真空積層を実施した場合、基材及びガラスクロス又は有機不織布への該樹脂組成物の埋め込み性が悪い上に密着性が劣る。温度140℃を超える温度で製造すると支持ベースフィルムと樹脂組成物の熱膨張率の差により真空積層後しわが発生しやすく好ましくない。
【0008】
本願明細書添付図面、図1に示した動的粘弾性率測定は昇温速度5℃/分で測定されたが、昇温速度が異なると曲線の形状も異なってくる。接着フィルム製造例1で得られた樹脂組成物層について異なる昇温速度で測定した動的粘弾性率測定曲線を図2に示した。したがって、該樹脂組成物層の好ましい物性の範囲は測定条件を一定にして動的粘弾性率測定曲線を測定しなくてはならない。
【0009】
本願発明の接着フィルムに用いられる支持ベースフィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、さらには離型紙や銅箔、アルミニウム箔の如き金属箔などが挙げられる。支持ベースフィルムの厚みとしては10〜150μmが一般的である。なお、支持フィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
【0010】
本願発明の該樹脂組成物と支持ベースフィルムとからなる接着フィルムは、所定の有機溶剤に溶解した該樹脂組成物ワニスを支持ベースフィルム上に塗布後、加熱及び/又は熱風吹き付けにより溶剤を乾燥させて公知慣用の方法で作製することができる。その後、樹脂組成物層の表面にガラスクロス又は有機不織布を熱ラミネートして貼り合わせロール状に巻きとって貯蔵される。あるいは本願発明請求項3、4の場合には、樹脂組成物層の表面をそのまま又は離形フィルムを積層し、ロール状に巻きとって貯蔵される。この時、樹脂組成物層の面積としては支持ベースフィルムと同じか又は支持ベースフィルム上に樹脂未塗工部分を有する小さい面積とすることができる。
【0011】
本願発明に用いられるガラスクロス、ガラスペーパー、有機不織布としては市販のものが使用できるが、20〜100μmの薄物が好ましい。中でもフィラメント径が細めで、目が細かく平坦性の良いタイプや、アラミド不織布に代表される有機不織布を使用すればレーザー加工性に優れており好ましい。
【0012】
次に具体的工法について説明する。該接着フィルムが樹脂組成物面にガラスクロス又は有機不織布を有する構造の場合には、ガラスクロス又は有機不織布面を基材上の片面又は両面上に、加熱、加圧条件下真空積層する。積層には市販の真空積層プレス機、真空ラミネーターを使用して行える。なかでも、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、日立テクノエンジニアリング製ドライコータ等市販の真空積層機を使用すれば、簡便にボイド無く真空積層することが可能である。これにより、基材/樹脂/ガラスクロス又は有機不織布/樹脂の構成で剛性に優れた積層板を簡便に製造することが可能である。基材についてはプリプレグ、アンクラッド基板の他、ポリイミド、ポリエチレンナフタレートの如きフレキシブルフィルム、さらにはパターン加工された回路基板を使用し多層プリント配線板を製造することも可能である。
【0013】
ガラスクロス又は有機不織布を有さない接着フィルムを使用する場合には、該樹脂組成物面を基材上にガラスクロス又は有機不織布を挟んで加熱、加圧条件下同様に真空積層する。これにより、上記同様の基材/樹脂/ガラスクロス又は有機不織布/樹脂の構成の積層板を製造することが可能である。さらに本願発明では、まず該接着フィルムを基材上に真空積層後、支持ベースフィルムを剥離する。その後、該樹脂組成物が転写された基材上にガラスクロス、ガラスペーパー又は有機不織布を枚葉し、さらにもう一度該接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層することもできる。これにより、該接着フィルムの樹脂組成物層が薄い場合にも基材/樹脂/ガラスクロス、ガラスペーパー又は有機不織布/樹脂の構成で簡便に積層板を製造することが可能である。
【0014】
真空積層後、支持ベースフィルムが銅箔の如き金属箔の場合にはそのまま熱硬化させ一体化し積層板を製造することができる。また、支持ベースフィルムがそれ以外の該樹脂組成物から剥離可能なものである場合には、真空積層後、該支持ベースフィルムを剥離した後、同様に熱硬化させ一体化し積層板を製造することができる。熱硬化の条件は樹脂によって異なるが100〜200℃で10〜90分の範囲で選択される。
【0015】
本発明の方法に従って積層板を得た後、所定のスルーホール及び/又はビアホール部にレーザー及び/又はドリルによる穴開けを行い、必要に応じて穴内を乾式及び/又は湿式法によりクリーニングした後、蒸着、スパッタリング、イオンプレーティング等の乾式メッキ及び/又は無電解、電解メッキ等の湿式メッキにより導体層を形成しプリント配線板が製造できる。
【0016】
【実施例】
以下実施例を示して本発明を具体的に説明するが、本発明はこれに限定されるものではない。
【0017】
【接着フィルム製造例1】液状ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製エピコート828EL)20部、臭素化ビスフェノールA型エポキシ樹脂(東都化成(株)製YDBー500)20部、クレゾールノボラック型エポキシ樹脂(エポキシ当量215、軟化点78℃、大日本インキ化学(株)製エピクロンNー673)20部、末端エポキシ化ポリブタジエンゴム(ナガセ化成工業(株)製デナレックスR−45EPT)15部とをMEKに攪拌しながら加熱溶解させ、そこへ臭素化フェノキシ樹脂ワニス(不揮発分40重量%、臭素含有量25重量%、溶剤組成、キシレン:メトキシプロパノール:メチルエチルケトン=5:2:8、東都化成(株)製YPBー40ーPXM40)50部、エポキシ硬化剤として2、4ージアミノー6ー(2ーメチルー1ーイミダゾリルエチル)ー1、3、5ートリアジン・イソシアヌル酸付加物4部、さらに微粉砕シリカ2部、三酸化アンチモン4部、炭酸カルシウム5部を添加し樹脂組成物ワニスを作製した。そのワニスを厚さ38μmのポリエチレンテレフタレートフィルム上に、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布、80〜120℃(平均100℃)で乾燥した後、樹脂面に0.05mm厚のガラスクロスを温度50℃、線圧2kg/cmの条件で熱ラミネートした。その後、幅507mmにスリットしロール状接着フィルムとし、さらに507x336mmサイズのシート状にした。
上記により得られた接着フィルムの樹脂組成物層の動的粘弾性率測定は(株)ユー・ビー・エム社製型式Rheosol−G3000を用いて測定した。図1は動的粘弾性率曲線の上限は平均乾燥温度100℃で10分、同じく下限の曲線は平均乾燥温度100℃で4分間処理した樹脂組成物の物性を示している。図2は昇温速度を5℃/分、10℃/分及び20℃/分にした時の動的粘弾性率測定曲線である。
【0018】
【接着フィルム製造例2】接着フィルム製造例1のガラスクロスを厚さ15μmのポリプロピレンフィルムに変更する以外は全く同様にしてシート状接着フィルムを得た。
【0019】
【接着フィルム製造例3】接着フィルム製造例1の支持ベースフィルムであるポリエチレンテレフタレートフィルムを厚さ18μmの銅箔に変更する以外は全く同様にしてロール状接着フィルムを得た。
【0020】
【比較実施例1】パターン加工された厚さ0.2mm、サイズ510x340mmのガラスエポキシ内層回路基板に(導体厚35μm)、製造例2で得られたシート状接着フィルムのポリプロピレンフィルムを剥離し、樹脂面をパターン側にして基板両面に枚葉した。次に(株)名機製作所製真空プレス機MVLPにより、真空度1ミリバール、温度100℃、圧力6kg/cm2、15秒プレスで両面同時にラミネートした。その後、支持ベースフィルムを剥離し、積層回路板を170℃で30分熱硬化させ4層板を得た。その4層板のユニバーサル硬度計(FISCHERSCOPE H100)から求められた弾性率は、室温で5.0GPa、150℃で3.5GPaであった。
【0021】
【実施例1】比較実施例1と同様に、パターン加工された厚さ0.2mm、サイズ510x340mmのガラスエポキシ内層回路基板両面に、製造例1で得られたシート状接着フィルムのガラスクロス面をパターン側にして基板両面に枚葉した。次に(株)名機製作所製真空プレス機MVLPにより、真空度1ミリバール、温度110℃、圧力6kg/cm2、30秒プレスで両面同時にラミネートした。その後、支持ベースフィルムを剥離し、積層回路板を170℃で30分熱硬化させ4層板を得た。その4層板のユニバーサル硬度計から求められた弾性率は、室温で7.4GPa、150℃で6.6GPaであった。
【0022】
【実施例2】比較実施例1と同様に、パターン加工された厚さ0.2mm、サイズ510x340mmのガラスエポキシ内層回路基板両面に、製造例2で得られたシート状接着フィルムのポリプロピレンフィルムを剥離した後、樹脂面をパターン側にして基板両面に枚葉し、(株)名機製作所製真空プレス機MVLPにより、真空度1ミリバール、温度100℃、圧力6kg/cm2、15秒プレスで両面同時にラミネートした。その後、支持ベースフィルムを剥離し、その積層回路板上に基板と同じサイズの厚さ0.05mmアラミド不織布を挟んだ状態で、さらに製造例2で得られたシート状接着フィルムの樹脂面を不織布側にして両面に枚葉した。そして、(株)名機製作所製真空プレス機MVLPにより、真空度1ミリバール、温度100℃、圧力6kg/cm2、30秒プレスで両面同時にラミネートした。その後、支持ベースフィルムを剥離し、積層回路板を170℃で30分熱硬化させ4層板を得た。その4層板のユニバーサル硬度計から求められた弾性率は、室温で5.9GPa、150℃で4.4GPaであった。
【0023】
【実施例3】厚さ0.1mmのポリエチレンナフタレートフィルムを基材として、製造例3で得られたロール状接着フィルムを日立テクノエンジニアリング製ロール式ドライコータを使用し、ガラスクロス面を基材側にして両面同時に真空積層した。条件は温度110℃、線圧2kg/cm、50cm/分で行った。その後、120℃で30分、さらに170℃で30分熱硬化させて両面板を得た。その両面板の銅箔エッチアウト後のユニバーサル硬度計から求められた弾性率は、室温で6.4GPa、150℃で5.0GPaであった。
【0024】
実施例1乃至3の結果から明らかなように、本発明の方法に従えば、簡便に機械的強度に優れた積層板並びに多層プリント配線板を製造することが可能である。
【0025】
【比較例2】
接着フィルム製造例1により得られた樹脂組成物層を平均乾燥温度100℃で2分、乾燥した樹脂組成物層の動的粘弾性率測定曲線を図3に示した。明らかに図1で示された斜線領域Sの外側である。この樹脂組成物層を支持ベースフィルム上に形成した接着フィルムはラミネート工程は実施できたものの、次の熱硬化工程で樹脂ダレが発生し、このために樹脂組成物層に層厚が不均一となったため本発明の目的には使用できなかった。
【0026】
【比較例3】
接着フィルム製造例1により得られた樹脂組成物層を平均乾燥温度100℃で15分、乾燥した樹脂組成物層の動的粘弾性率測定曲線を図3に示した。明らかに図1で示された斜線領域Sの外側で高粘度側にシフトした。この樹脂組成物層を支持ベースフィルム上にラミネートした接着フィルムの製造した。この接着フィルムの樹脂組成物層を回路基板のパターン部分に積層することを試みたがボイドなく真空積層できる条件を見出すことができなかった。
【0027】
【発明の効果】
本発明の方法に従うと、ビルドアップ方式により簡便に機械的強度に優れた積層板及び多層プリント配線板を製造することが可能である。
【図面の簡単な説明】
【図1】動的粘弾性率測定を示し,(株)ユー・ビー・エム社製型式Rheosol−G3000を用いて測定した曲線であり、動的粘弾性率の上限の曲線(1)の平均乾燥温度100℃で10分、同じく下限の曲線(2)は平均乾燥温度100℃で4分間処理した樹脂組成物の物性を示している。測定条件は昇温速度は5℃/分、開始温度60℃、測定温度間隔2.5℃、振動1Hz/degである。
【図2】動的粘弾性率測定を示し,(株)ユー・ビー・エム社製型式Rheosol−G3000を用いて測定した曲線であり、接着フィルム製造例1により得られた樹脂組成物層を平均乾燥温度100℃で5分間処理した樹脂組成物の物性を示している。昇温速度は5℃/分(曲線III)、10℃(曲線II)及び20℃(曲線I)である。測定条件は開始温度60℃、測定温度間隔2.5℃、振動1Hz/degである。
【図3】動的粘弾性率測定を示し,(株)ユー・ビー・エム社製型式Rheosol−G3000を用いて測定した曲線であり、接着フィルム製造例1により得られた樹脂組成物層を平均乾燥温度100℃で2分(曲線A)、8分(曲線B)及び15分間(曲線C)で処理した樹脂組成物の物性を示している。測定条件は昇温速度は5℃/分、開始温度60℃、測定温度間隔2.5℃、振動1Hz/degである。
[0001]
[Industrial applications]
The present invention relates to a method of manufacturing a build-up type printed wiring board in which a conductive circuit layer and an insulating layer are alternately stacked, a laminated board using a film adhesive and glass cloth, glass paper or an organic nonwoven fabric, and a multilayer printed wiring board. The present invention relates to a method for manufacturing a plate.
[0002]
[Prior art]
In recent years, attention has been focused on a build-up type multilayer printed wiring board manufacturing technique in which organic insulating layers are alternately stacked on conductor layers of an inner circuit board. BACKGROUND ART A method of manufacturing a multilayer printed wiring board by a vacuum lamination press using a copper foil with a thermosetting resin has been widely used for portable electronic devices. On the other hand, the present inventors have also disclosed in Japanese Patent Application No. 9-357420 an interlayer adhesive film for a multilayer printed wiring board, which can simultaneously cover the inner layer circuit pattern and fill the resin in the surface via holes and / or through holes simultaneously. A method for manufacturing a multilayer printed wiring board using the same is disclosed. In these build-up methods, since the resin containing no glass cloth, glass paper, or the like is used as the insulating layer, there is a drawback that a thin wiring board that has poor rigidity and meets the demand for light weight has poor mechanical strength.
[0003]
[Problems to be solved by the invention]
In view of the above problems, the present inventors have developed a simple method for producing a laminate using a film-like adhesive for build-up and glass cloth, glass paper, or an organic nonwoven fabric having excellent mechanical strength.
[0004]
[Means to solve the problem]
The present invention relates to a supporting base film and a heat laminated on the surface thereof, having the same or smaller area as the supporting base film, and having the physical properties of the hatched area S in FIG. Fluidity, an adhesive film comprising a thermosetting resin composition layer of a solid at room temperature, an adhesive film for interlayer insulation characterized by having a structure further provided with a glass cloth or an organic nonwoven layer on the surface of the resin composition, and This method on one or both sides of the substrate, heating, after vacuum lamination under pressure conditions, a method of manufacturing a laminated plate characterized by being thermally cured and integrated, or
A support base film and a surface having the same or smaller area as the support base film, and having the same or smaller area as the support base film, and having the physical properties of the hatched region S in FIG. In a method of forming an insulating layer using an adhesive film composed of a room temperature solid thermosetting resin composition layer, a glass cloth or an organic nonwoven fabric is sheeted on one or both sides of a substrate, and an adhesive film is further formed thereon. In a state where the resin composition layer is directly covered and superimposed, a method of manufacturing a laminated board that requires a step of heating and pressing and laminating under vacuum conditions, further,
1) heating and pressurizing and laminating under a vacuum condition in a state where the resin composition layer of the adhesive film is directly covered on one side or both sides of the base material; 2) peeling off the supporting base film; Glass cloth, glass paper or organic non-woven fabric is sheeted on the upper layer of the substrate on which the material layer has been transferred, and the resin composition layer of the adhesive film is directly overlaid thereon. This is a method of manufacturing a laminated board which requires a step of pressing and laminating.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermosetting resin composition for forming the resin composition layer at room temperature at room temperature is softened by heating, and has the ability to form a film. There is no particular limitation as long as the properties required for the insulating material are satisfied. The thickness of the resin composition layer is generally equal to or greater than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of conductor thickness + (10 to 120) μm. In addition, in the case of claims 1 to 3 of the present application, it is preferable that the resin thickness is in the range of glass cloth or organic nonwoven fabric thickness + (10 to 120) μm.
[0006]
Examples of the resin composition include an epoxy resin, an acrylic resin, a polyimide resin, a polyamide imide resin, a polycyanate resin, a polyester resin, and a thermosetting polyphenylene ether resin. It is also possible to use them in combination or to form an adhesive film layer having a multilayer structure. Among them, an epoxy resin composition described in Japanese Patent Application No. 9-357420 is preferable for an epoxy resin system having excellent reliability and cost as an interlayer insulating material.
[0007]
The preferred physical properties of the resin composition layer can be determined by measuring the dynamic viscoelastic modulus and showing the relationship between the temperature and the melt viscosity. The hatched area S in FIG. Is a preferable range. The dynamic viscoelasticity measurement is a curve measured using a model Rheosol-G3000 manufactured by UBM Corporation. The upper limit of the dynamic viscoelasticity curve is 10 minutes at an average drying temperature of 100 ° C., and the lower limit is also the same. Curve indicates the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes. The region sandwiched between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C. or less represents the physical properties of the resin composition layer preferably used in the practice of the present invention. When the melt viscosity is 100,000 Poise or more, the resin composition layer becomes hard, and when the adhesive film of the present invention is vacuum-laminated, the resin composition is poorly embedded in a substrate and a glass cloth or an organic nonwoven fabric, and has a poor adhesion. Is inferior. Manufacturing at a temperature higher than 140 ° C. is not preferred because wrinkles tend to occur after vacuum lamination due to the difference in thermal expansion coefficient between the supporting base film and the resin composition.
[0008]
The dynamic viscoelasticity measurement shown in the attached drawing of FIG. 1 of the present application and shown in FIG. 1 was measured at a heating rate of 5 ° C./min. FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Adhesive Film Production Example 1. Therefore, in the preferable range of the physical properties of the resin composition layer, the dynamic viscoelastic modulus measurement curve must be measured while keeping the measurement conditions constant.
[0009]
Examples of the support base film used for the adhesive film of the present invention include polyolefins such as polyethylene and polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonate, and further, release paper, metal foil such as copper foil and aluminum foil, and the like. The thickness of the supporting base film is generally from 10 to 150 μm. The support film may have been subjected to a release treatment in addition to the mud treatment and the corona treatment.
[0010]
The adhesive film comprising the resin composition and the supporting base film of the present invention is obtained by applying the resin composition varnish dissolved in a predetermined organic solvent on a supporting base film, and then drying the solvent by heating and / or hot air blowing. Can be produced by a known and commonly used method. Thereafter, a glass cloth or an organic nonwoven fabric is heat-laminated on the surface of the resin composition layer, and the laminate is wound into a roll and stored. Alternatively, in the case of claims 3 and 4 of the present invention, the surface of the resin composition layer is stored as it is or a release film is laminated and wound up in a roll shape. At this time, the area of the resin composition layer can be the same as the support base film or a small area having a resin uncoated portion on the support base film.
[0011]
Commercially available glass cloth, glass paper, and organic nonwoven fabric used in the present invention can be used, but a thin material of 20 to 100 μm is preferable. Among them, it is preferable to use a type having a small filament diameter, a fine mesh and good flatness, and an organic nonwoven fabric typified by an aramid nonwoven fabric because of excellent laser workability.
[0012]
Next, a specific construction method will be described. When the adhesive film has a structure having a glass cloth or an organic nonwoven fabric on the resin composition surface, the glass cloth or the organic nonwoven fabric surface is vacuum-laminated on one or both surfaces of the substrate under heating and pressure. Lamination can be performed using a commercially available vacuum laminating press or vacuum laminator. Vacuum laminators manufactured by Nichigo Morton Co., Ltd., vacuum press laminators manufactured by Meiki Seisakusho Co., Ltd., and dry coaters manufactured by Hitachi Techno Engineering Co., Ltd. can be used for easy vacuum lamination without voids. It is possible. Thereby, it is possible to easily manufacture a laminate having excellent rigidity with the structure of the substrate / resin / glass cloth or the organic nonwoven fabric / resin. As for the base material, a multilayer printed wiring board can be manufactured using a prepreg, an unclad substrate, a flexible film such as polyimide or polyethylene naphthalate, or a patterned circuit board.
[0013]
When an adhesive film having no glass cloth or organic nonwoven fabric is used, the resin composition surface is vacuum-laminated similarly under heating and pressurizing conditions with the glass cloth or organic nonwoven fabric interposed on a substrate. Thereby, it is possible to manufacture a laminate having the same structure as the above-mentioned base material / resin / glass cloth or organic nonwoven fabric / resin. Further, in the present invention, first, the adhesive film is vacuum-laminated on a substrate, and then the supporting base film is peeled off. Thereafter, a glass cloth, a glass paper or an organic nonwoven fabric is sheet-fed on the substrate on which the resin composition has been transferred, and the resin composition layer of the adhesive film is once again directly covered and superimposed, and heated under vacuum. , And can be laminated under pressure. Thereby, even when the resin composition layer of the adhesive film is thin, it is possible to easily produce a laminate with the structure of the substrate / resin / glass cloth, glass paper or organic nonwoven fabric / resin.
[0014]
After the vacuum lamination, when the supporting base film is a metal foil such as a copper foil, it can be thermally cured as it is and integrated to produce a laminated board. When the supporting base film can be peeled off from the other resin composition, after laminating in a vacuum, the supporting base film is peeled off, and then thermally cured and integrated to produce a laminated board. Can be. The thermosetting conditions vary depending on the resin, but are selected in the range of 100 to 200 ° C. for 10 to 90 minutes.
[0015]
After obtaining a laminate according to the method of the present invention, a predetermined through-hole and / or via-hole is perforated with a laser and / or a drill, and the inside of the hole is cleaned by a dry method and / or a wet method as necessary. A printed wiring board can be manufactured by forming a conductor layer by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless and electrolytic plating.
[0016]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0017]
[Adhesive Film Production Example 1] 20 parts of liquid bisphenol A type epoxy resin (Epicoat 828EL manufactured by Yuka Shell Epoxy Co., Ltd.), 20 parts of brominated bisphenol A type epoxy resin (YDB-500 manufactured by Toto Kasei Co., Ltd.), cresol 20 parts of novolak type epoxy resin (epoxy equivalent: 215, softening point: 78 ° C., Epicron N-673 manufactured by Dainippon Ink and Chemicals, Inc.), 15 parts of epoxidized polybutadiene rubber (Denalex R-45EPT manufactured by Nagase Kasei Kogyo Co., Ltd.) Was dissolved in MEK while stirring, and a brominated phenoxy resin varnish (nonvolatile content: 40% by weight, bromine content: 25% by weight, solvent composition, xylene: methoxypropanol: methyl ethyl ketone = 5: 2: 8, Toto Kasei) 50 parts of YPB-40-PXM40 manufactured by Co., Ltd., as an epoxy curing agent 4, diamino-6- (2-methyl-1-imidazolylethyl) -1,3,5-triazine / isocyanuric acid adduct 4 parts, further pulverized silica 2 parts, antimony trioxide 4 parts, calcium carbonate 5 parts An article varnish was prepared. The varnish was applied on a 38 μm-thick polyethylene terephthalate film using a die coater so that the resin thickness after drying was 70 μm, and dried at 80 to 120 ° C. (average 100 ° C.). A thick glass cloth was thermally laminated at a temperature of 50 ° C. and a linear pressure of 2 kg / cm. Thereafter, the sheet was slit to a width of 507 mm to form a roll-shaped adhesive film, and further formed into a sheet having a size of 507 × 336 mm.
The dynamic viscoelastic modulus of the resin composition layer of the adhesive film obtained as described above was measured using a model Rheosol-G3000 manufactured by UBM Corporation. In FIG. 1, the upper limit of the dynamic viscoelastic modulus curve is 10 minutes at an average drying temperature of 100 ° C., and the lower curve is the physical property of a resin composition treated at an average drying temperature of 100 ° C. for 4 minutes. FIG. 2 is a dynamic viscoelasticity measurement curve at a heating rate of 5 ° C./min, 10 ° C./min, and 20 ° C./min.
[0018]
[Adhesive Film Production Example 2] A sheet-like adhesive film was obtained in exactly the same manner as in Adhesive Film Production Example 1, except that the glass cloth was changed to a polypropylene film having a thickness of 15 μm.
[0019]
[Adhesive Film Production Example 3] A roll-shaped adhesive film was obtained in exactly the same manner as in Adhesive Film Production Example 1, except that the polyethylene terephthalate film as the support base film was changed to a copper foil having a thickness of 18 µm.
[0020]
Comparative Example 1 The polypropylene film of the sheet-like adhesive film obtained in Production Example 2 was peeled from a patterned glass-epoxy inner-layer circuit board having a thickness of 0.2 mm and a size of 510 × 340 mm (conductor thickness: 35 μm). The sheet was made on both sides of the substrate with the surface facing the pattern. Next, both surfaces were simultaneously laminated by a vacuum press machine MVLP manufactured by Meiki Seisakusho Co., Ltd. under a pressure of 1 mbar, a temperature of 100 ° C., a pressure of 6 kg / cm 2 and a press of 15 seconds. Thereafter, the supporting base film was peeled off, and the laminated circuit board was thermally cured at 170 ° C. for 30 minutes to obtain a four-layer board. The modulus of elasticity of the four-layer plate obtained from a universal hardness tester (FISCHERSCOPE H100) was 5.0 GPa at room temperature and 3.5 GPa at 150 ° C.
[0021]
Example 1 In the same manner as in Comparative Example 1, a glass cloth surface of the sheet-like adhesive film obtained in Production Example 1 was applied to both sides of a patterned glass epoxy inner layer circuit board having a thickness of 0.2 mm and a size of 510 × 340 mm. The sheet was formed on both sides of the substrate as the pattern side. Then, both surfaces were simultaneously laminated by a vacuum press machine MVLP manufactured by Meiki Seisakusho Co., Ltd. under a pressure of 1 mbar, a temperature of 110 ° C., a pressure of 6 kg / cm 2 and a pressure of 30 seconds. Thereafter, the supporting base film was peeled off, and the laminated circuit board was thermally cured at 170 ° C. for 30 minutes to obtain a four-layer board. The modulus of elasticity of the four-layer plate determined from a universal hardness tester was 7.4 GPa at room temperature and 6.6 GPa at 150 ° C.
[0022]
Example 2 In the same manner as in Comparative Example 1, the polypropylene film of the sheet-like adhesive film obtained in Production Example 2 was peeled off on both sides of a patterned glass epoxy inner layer circuit board having a thickness of 0.2 mm and a size of 510 × 340 mm as in Comparative Example 1. After that, the sheet was made on both sides of the substrate with the resin side as the pattern side, and both sides were simultaneously pressed by a vacuum press machine MVLP manufactured by Meiki Seisakusho Co., Ltd. with a vacuum of 1 mbar, a temperature of 100 ° C., a pressure of 6 kg / cm 2 and a pressure of 15 seconds for 15 seconds. Laminated. Thereafter, the supporting base film is peeled off, and the resin surface of the sheet-like adhesive film obtained in Production Example 2 is further woven with a 0.05 mm thick aramid nonwoven fabric of the same size as the substrate on the laminated circuit board. The sheets were placed on both sides. Then, both surfaces were simultaneously laminated by a vacuum press machine MVLP manufactured by Meiki Seisakusho Co., Ltd. under a pressure of 1 mbar, a temperature of 100 ° C., a pressure of 6 kg / cm 2 and a pressure of 30 seconds. Thereafter, the supporting base film was peeled off, and the laminated circuit board was thermally cured at 170 ° C. for 30 minutes to obtain a four-layer board. The modulus of elasticity of the four-layer plate obtained from the universal hardness tester was 5.9 GPa at room temperature and 4.4 GPa at 150 ° C.
[0023]
Example 3 Using a polyethylene naphthalate film having a thickness of 0.1 mm as a substrate, the roll-shaped adhesive film obtained in Production Example 3 was applied to a glass cloth surface using a roll-type dry coater manufactured by Hitachi Techno Engineering. The two sides were vacuum-laminated at the same time. The conditions were as follows: temperature 110 ° C., linear pressure 2 kg / cm, 50 cm / min. Thereafter, the mixture was thermally cured at 120 ° C. for 30 minutes and further at 170 ° C. for 30 minutes to obtain a double-sided board. The modulus of elasticity of the double-sided board measured by a universal hardness tester after etching out the copper foil was 6.4 GPa at room temperature and 5.0 GPa at 150 ° C.
[0024]
As is clear from the results of Examples 1 to 3, according to the method of the present invention, it is possible to easily produce a laminated board and a multilayer printed wiring board having excellent mechanical strength.
[0025]
[Comparative Example 2]
FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained in Example 1 of the adhesive film produced by drying the resin composition layer at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG. The adhesive film formed on the supporting base film with this resin composition layer could be subjected to a laminating step, but resin dripping occurred in the next thermosetting step, and thus the resin composition layer had an uneven thickness. Therefore, it could not be used for the purpose of the present invention.
[0026]
[Comparative Example 3]
FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained by drying the resin composition layer obtained in Adhesive Film Production Example 1 at an average drying temperature of 100 ° C. for 15 minutes. Clearly, it shifted to the higher viscosity side outside the shaded area S shown in FIG. An adhesive film in which this resin composition layer was laminated on a supporting base film was produced. An attempt was made to laminate the resin composition layer of the adhesive film on the pattern portion of the circuit board, but could not find conditions for vacuum lamination without voids.
[0027]
【The invention's effect】
According to the method of the present invention, a laminate and a multilayer printed wiring board having excellent mechanical strength can be easily manufactured by a build-up method.
[Brief description of the drawings]
FIG. 1 shows a dynamic viscoelastic modulus measurement, which is a curve measured using a model Rheosol-G3000 manufactured by UBM Corporation, and is an average of the upper limit curve (1) of the dynamic viscoelastic modulus. Curve (2) at the drying temperature of 100 ° C. for 10 minutes, and similarly at the lower limit, shows the physical properties of the resin composition treated at the average drying temperature of 100 ° C. for 4 minutes. The measurement conditions are as follows: a temperature rising rate is 5 ° C./min, a starting temperature is 60 ° C., a measuring temperature interval is 2.5 ° C., and a vibration is 1 Hz / deg.
FIG. 2 shows a dynamic viscoelasticity measurement, and is a curve measured using a model Rheosol-G3000 manufactured by UBM Corporation. The resin composition layer obtained in Adhesive Film Production Example 1 was It shows the physical properties of the resin composition treated at an average drying temperature of 100 ° C. for 5 minutes. The heating rates are 5 ° C./min (curve III), 10 ° C. (curve II) and 20 ° C. (curve I). The measurement conditions are a start temperature of 60 ° C., a measurement temperature interval of 2.5 ° C., and a vibration of 1 Hz / deg.
FIG. 3 shows a dynamic viscoelasticity measurement, and is a curve measured using a model Rheosol-G3000 manufactured by UBM Corporation. The resin composition layer obtained in Adhesive Film Production Example 1 was It shows the physical properties of the resin composition treated at an average drying temperature of 100 ° C. for 2 minutes (curve A), 8 minutes (curve B), and 15 minutes (curve C). The measurement conditions are as follows: a temperature rising rate is 5 ° C./min, a starting temperature is 60 ° C., a measuring temperature interval is 2.5 ° C., and a vibration is 1 Hz / deg.

Claims (6)

支持ベースフィルムとその表面に積層され、該支持ベースフィルムと同じか又は小さい面積を有し、かつ温度と溶融粘度との関係で添付図面、図1の斜線領域Sの物性を有する熱流動性、常温固形の熱硬化性樹脂組成物層からなる接着フィルムにおいて、さらに該樹脂組成物表面にガラスクロス又は有機不織布層を設けた構造であることを特徴とする層間絶縁用接着フィルム。A support base film and a heat fluidity laminated on the surface thereof, having the same or smaller area as the support base film, and having the physical properties of the hatched region S in FIG. An adhesive film for interlayer insulation, wherein the adhesive film comprises a thermosetting resin composition layer which is solid at room temperature, and further has a structure in which a glass cloth or an organic nonwoven fabric layer is provided on the surface of the resin composition. 請求項1記載の層間絶縁用接着フィルムのガラスクロス又は有機不織布面を、基材上の片面又は両面上に、加熱、加圧条件下真空積層した後、熱硬化させ一体化したことを特徴とする積層板の製造法。A glass cloth or an organic nonwoven fabric surface of the adhesive film for interlayer insulation according to claim 1, which is vacuum-laminated under heating and pressure conditions on one or both surfaces of the substrate, and then thermally cured to be integrated. Manufacturing method of laminated board. 支持ベースフィルムとその表面に積層され、該支持ベースフィルムと同じか又は小さい面積を有し、かつ温度と溶融粘度との関係で添付図面、図1の斜線領域Sの物性を有する熱流動性、常温固形の熱硬化性樹脂組成物層からなる接着フィルムを用いて絶縁層を形成する方法において、基材上の片面又は両面上にガラスクロス又は有機不織布を枚葉し、さらにその上に接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程を必須とする積層板の製造法。A support base film and a heat fluidity laminated on the surface thereof, having the same or smaller area as the support base film, and having the physical properties of the hatched region S in FIG. In a method of forming an insulating layer using an adhesive film composed of a room-temperature solid thermosetting resin composition layer, a glass cloth or an organic nonwoven fabric is sheeted on one or both surfaces of a substrate, and an adhesive film is further formed thereon. A method for producing a laminated board, which requires a step of heating and pressurizing and laminating under a vacuum condition in a state in which the resin composition layer is directly covered and superposed. 支持ベースフィルムとその表面に積層され、該支持ベースフィルムと同じか又は小さい面積を有し、かつ温度と溶融粘度との関係で添付図面、図1の斜線領域Sの物性を有する熱流動性、常温固形の熱硬化性樹脂組成物層からなる接着フィルムを用いて絶縁層を形成する方法において、
1)基材上の片面又は両面上に接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程
2)支持ベースフィルムを剥離し、該樹脂組成物層が転写された基材のその上層にガラスクロス、ガラスペーパー又は有機不織布を枚葉し、さらにその上に該接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程
を必須とする積層板の製造法。
A support base film and a surface having the same or smaller area as the support base film, and having the same or smaller area as the support base film, and having the physical properties of the hatched region S in FIG. In a method of forming an insulating layer using an adhesive film composed of a room-temperature solid thermosetting resin composition layer,
1) A step of heating and pressing under a vacuum condition to laminate the resin composition layer of the adhesive film directly on one side or both sides of the base material 2) Peeling off the supporting base film, and removing the resin composition Glass cloth, glass paper or organic non-woven fabric is laminated on the upper layer of the substrate on which the layer has been transferred, and the resin composition layer of the adhesive film is directly overlaid thereon. A method of manufacturing a laminated board that requires a step of pressing and laminating.
請求項2乃至4記載の基材がプリプレグ又はフレキシブルフィルムであることを特徴とする積層板の製造法。5. A method for producing a laminate, wherein the substrate according to claim 2 is a prepreg or a flexible film. 請求項2乃至4記載の基材がパターン加工された回路基板であることを特徴とする多層プリント配線板の製造法。A method for producing a multilayer printed wiring board, wherein the substrate according to any one of claims 2 to 4 is a patterned circuit board.
JP2000031225A 2000-02-08 2000-02-08 Adhesive film and process for manufacturing laminate board using the same Pending JP2004241394A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000031225A JP2004241394A (en) 2000-02-08 2000-02-08 Adhesive film and process for manufacturing laminate board using the same
PCT/JP2000/005166 WO2001059023A1 (en) 2000-02-08 2000-08-02 Adhesive film and method for manufacturing multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000031225A JP2004241394A (en) 2000-02-08 2000-02-08 Adhesive film and process for manufacturing laminate board using the same

Publications (1)

Publication Number Publication Date
JP2004241394A true JP2004241394A (en) 2004-08-26

Family

ID=32948292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000031225A Pending JP2004241394A (en) 2000-02-08 2000-02-08 Adhesive film and process for manufacturing laminate board using the same

Country Status (1)

Country Link
JP (1) JP2004241394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099649A (en) * 2007-10-15 2009-05-07 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
JP2013016847A (en) * 2012-09-14 2013-01-24 Shinko Electric Ind Co Ltd Wiring board manufacturing method
JP2018520248A (en) * 2015-07-13 2018-07-26 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated block copolymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099649A (en) * 2007-10-15 2009-05-07 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
US8196296B2 (en) 2007-10-15 2012-06-12 Shinko Electric Industries Co., Ltd. Method for manufacturing wiring board
US8561293B2 (en) 2007-10-15 2013-10-22 Shinko Electric Industries Co., Ltd. Method for manufacturing wiring board
KR101477211B1 (en) * 2007-10-15 2014-12-30 신꼬오덴기 고교 가부시키가이샤 Method for manufacturing wiring board
JP2013016847A (en) * 2012-09-14 2013-01-24 Shinko Electric Ind Co Ltd Wiring board manufacturing method
JP2018520248A (en) * 2015-07-13 2018-07-26 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated block copolymer

Similar Documents

Publication Publication Date Title
KR101530874B1 (en) Process for producing multilayer printed wiring board
JP4300687B2 (en) Manufacturing method of multilayer printed wiring board using adhesive film
JP2009105446A (en) Method for manufacturing multilayer printed wiring board
KR101960247B1 (en) Process for producing multilayered printed wiring board
JP2937933B2 (en) Manufacturing method of multilayer printed wiring board
US20050186434A1 (en) Thermosetting resin composition, adhesive film and multilayer printed wiring board using same
KR101464142B1 (en) Method for manufacturing multilayer printed wiring board
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP2004241394A (en) Adhesive film and process for manufacturing laminate board using the same
JP2004237447A (en) Adhesive film, and method for manufacturing multilayered printed wiring board using the film
JP3698863B2 (en) Bonding material for single-sided metal-clad laminate production
JP3861537B2 (en) Vacuum lamination method of adhesive film
JP2004095804A (en) Printed circuit board with built-in passive element and method of manufacturing the same
JP2001105555A (en) Adhesive film and method for manufacturing multi-layer printed wiring board using adhesive film
JPH1126938A (en) Manufacture of laminated board with inner layer circuit
JP2000345119A (en) Adhesive film and production of multilayered printed circuit board by using the same
JP2000269638A (en) Vacuum laminating method for adhesive film and manufacturing multilayer printed wiring board using the same
JP4677703B2 (en) POLYIMIDE RESIN FILM AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD USING SAME
JP2001085838A (en) Method for manufacturing multilayer laminated plate
JPH10135590A (en) Substrate for printed circuit
JP4099681B2 (en) Manufacturing method of multilayer printed wiring board
WO2001059023A1 (en) Adhesive film and method for manufacturing multilayer printed wiring board
JP3280604B2 (en) Method of manufacturing metal-clad laminate, method of manufacturing printed wiring board, and method of manufacturing multilayer board
JPS62295495A (en) Multilayer printed interconnection board
JP2005150424A (en) Multilayer wiring board and manufacturing method thereof