WO2001059023A1 - Adhesive film and method for manufacturing multilayer printed wiring board - Google Patents

Adhesive film and method for manufacturing multilayer printed wiring board Download PDF

Info

Publication number
WO2001059023A1
WO2001059023A1 PCT/JP2000/005166 JP0005166W WO0159023A1 WO 2001059023 A1 WO2001059023 A1 WO 2001059023A1 JP 0005166 W JP0005166 W JP 0005166W WO 0159023 A1 WO0159023 A1 WO 0159023A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
film
composition layer
adhesive film
base film
Prior art date
Application number
PCT/JP2000/005166
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeo Nakamura
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000031225A external-priority patent/JP2004241394A/en
Priority claimed from JP2000031226A external-priority patent/JP2004237447A/en
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Publication of WO2001059023A1 publication Critical patent/WO2001059023A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Definitions

  • the present invention relates to a method for producing a build-up type multilayer printed wiring board in which a conductive circuit layer and an insulating layer are alternately stacked, a film-like adhesive with an ultrathin metal foil, and a multilayer printed wiring board using the same. It concerns the manufacturing method.
  • the present invention also relates to a method for manufacturing a build-up type multilayer printed wiring board in which conductive circuit layers and insulating layers are alternately stacked, the method comprising manufacturing a film adhesive with a metal foil and a multilayer printed wiring board using the same. It is about the law.
  • the present invention still further relates to a method for manufacturing a build-up type printed wiring board in which conductive circuit layers and insulating layers are alternately stacked, wherein a laminated board using a film adhesive and glass cloth, glass paper or organic nonwoven fabric is provided.
  • the present invention relates to a method for manufacturing a multilayer printed wiring board.
  • Tokudokidaira 8—6 4 960 an undercoat adhesive is applied, preliminarily dried, a film-like additive adhesive is applied, heated and cured, roughened with an alkaline oxidizing agent, and a conductive layer is formed by plating.
  • a method for manufacturing a multilayer printed wiring board is known. Also, the present inventor has disclosed in Japanese Patent Application Laid-open No. Hei 11-87979 (Japanese Patent Application No. Hei 9-135 7420) simultaneous coating of the inner layer circuit pattern and resin filling in the surface via holes and / or through holes. Adhesive film for multi-layer printed wiring board, which can be collectively carried out in one step, and this
  • the method of manufacturing multilayer printed wiring boards by vacuum lamination press using copper foil with thermosetting resin has become widely used for portable electronic devices.
  • the present inventor also disclosed in Japanese Patent Application Laid-Open No. 11-87927 that the coating of the inner layer circuit pattern and the filling of the resin in the surface via holes and / or through holes are simultaneously performed simultaneously. It discloses an interlayer adhesive film for a multilayer printed wiring board, and a method for manufacturing a multilayer printed wiring board using the same. In these build-up methods, since the resin containing no glass cloth or the like is used as the insulating layer, the thin multilayer wiring board, which has low rigidity and meets the demand for light weight, has a drawback of poor mechanical strength.
  • the method of manufacturing multilayer printed wiring boards by vacuum lamination using copper foil with thermosetting resin has become widely used for portable electronic devices.
  • the present inventor also disclosed in Japanese Patent Application Laid-Open No. 11-87927 a multi-layer printed wiring board that can simultaneously coat the inner layer circuit pattern and fill the surface via holes and / or through holes with resin at the same time. It demonstrates the method of manufacturing an interlayer adhesive film and a multilayer printed wiring board using the same. In these build-up methods, the resin that does not contain glass cloth, glass paper, etc. is used as the insulating layer.Therefore, thin wiring boards that have poor rigidity and meet the demand for light weight have poor mechanical strength. There were drawbacks.
  • the present invention relates to a film-like adhesive with an ultrathin metal foil for build-up having excellent surface smoothness after lamination, and a method for producing a multilayer printed wiring board using the same.
  • the present invention relates to a supporting base film and a surface thereof, which are laminated on the surface thereof, have the same or smaller area as the supporting base film, and have a relationship between temperature and melt viscosity in a hatched area S in FIG. 1 of the accompanying drawings.
  • a supporting base film has a metal foil having a thickness of 1 to 1 on the surface of the resin composition and 10 on the opposite surface.
  • An adhesive film for interlayer insulation characterized by having a structure having a peeling carrier having a thickness of 10 to 10; and (a) placing the resin composition layer on one or both sides of a patterned circuit board.
  • At least the pattern-processed portion is directly covered with the resin composition layer, and then, these are partially temporarily bonded, and then sheet-fed, (b) temporarily bonded to one or both surfaces of the circuit board.
  • the resin set On the adhesive film, the resin set The protective film having an area larger than the area of the material layer is sandwiched between the adhesive film and the center thereof at substantially the same position, and is heated from the protective film side under a vacuum condition of 2 mbar or less. Pressurizing and laminating; and (c) a method for producing a multilayer printed wiring board, comprising a step of thermally curing and integrating the circuit board; and (a) a supporting base film and peeling thereof.
  • thermosetting resin composition used in the present invention which forms a resin composition layer that is solid at room temperature and has a fluidity, is softened by heating and has the ability to form a film.
  • the thickness of the resin composition layer is generally equal to or greater than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of conductor thickness + (10 to 120) // in.
  • the resin composition examples include an epoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, a polyacrylate resin, a polyester resin, and a thermosetting polyphenylene ether resin. Combination of two or more It is also possible to use an adhesive film layer having a multilayer structure. Among them, an epoxy resin composition described in JP-A-11-87927 is preferable for an epoxy resin system having excellent reliability and cost as an interlayer insulating material.
  • Desirable physical properties of the resin composition layer can be measured by measuring a dynamic viscoelastic modulus, and can be shown by a relationship between the temperature and the melt viscosity.
  • the dynamic viscoelasticity measurement is a curve measured using a model IUiesol-G3000 manufactured by UBM Co., Ltd.
  • the upper limit of the dynamic viscoelasticity curve is at an average drying temperature of 100 ° C.
  • the curve at the lower limit for 10 minutes also shows the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes.
  • the region between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C.
  • the resin composition layer preferably used in the practice of the present invention.
  • the melt viscosity is 100,000 Poise or more
  • the resin composition layer becomes hard, and when the adhesive film of the present invention is vacuum-laminated, the resin composition layer is poorly embedded in a pattern on a circuit board and has poor adhesion. Inferior. Manufacturing at a temperature exceeding 140 ° C. is not preferable because wrinkles are likely to occur after vacuum lamination due to a difference in thermal expansion coefficient between the support base film and the resin composition.
  • FIG. 1 of the accompanying drawings of this specification was measured at a heating rate of 5 ° C./min. However, when the heating rate is different, the shape of the curve is different.
  • FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Production Example 1 of the adhesive film described below. Therefore, the preferable range of the physical properties of the resin composition layer is that the dynamic viscoelasticity measurement curve must be measured by adjusting the measurement conditions to chitin.
  • the support base film used in claims 1 to 3 of the present application has a metal foil of 1 to 10 zm thick on the surface of the resin composition, and has a metal foil of 10 to 100 zm on the opposite surface for protecting the metal foil.
  • the carrier for peeling may be of a type that peels off from a metal box by chemical etching, or may be of a type that peels off mechanically via a release layer.
  • the use of an ultra-thin metal foil of 1 or less facilitates the subsequent formation of a fine pattern, and the surface smoothness after vacuum lamination is improved due to the thickness and stiffness of the peeling carrier.
  • Examples of the peelable support base film used in claim 4 of the present invention include polyethylene, polyolefins such as polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonate, and metal foils such as release paper and aluminum foil. No.
  • the thickness of the supporting base film is generally 10 to 150 m.
  • the support film may be subjected to a mold treatment, a corona treatment, or a release treatment.
  • the adhesive film used in the present invention comprising the resin composition and the support base film is obtained by applying the resin composition varnish dissolved in a predetermined organic solvent on a support base film, and then drying the solvent by heating and / or hot air blowing. Then, it can be produced by a known and commonly used method. Thereafter, a release film is further laminated as it is or on the surface of the resin composition layer, and stored in a roll shape. At this time, the area of the resin composition layer can be the same as the support base film or a small area having a resin uncoated portion on the support base film.
  • the resin composition layer surface of the adhesive film which has almost the same area as the circuit board, to one side of the circuit board.
  • a commercially available auto-cut lamina for dry film can be used as a method of partially sheeting each piece in a temporary adhesive state so as not to cause displacement on both sides.
  • the roll-shaped adhesive film having a width of about the width of the substrate is heated and pressurized only in the temporarily attached portion by means of an auto-cut laminator, and the laminate roll is pressed to a desired size without being subjected to temperature and pressure. To use.
  • a protective film larger than the resin composition layer area is sandwiched on the adhesive film temporarily bonded to the circuit board so that the center of the protective film is substantially at the same position as that of the adhesive film.
  • Heating and pressurization from the press plate side under vacuum conditions and laminating are performed using, for example, a vacuum applicator manufactured by Nichigo-I-Morton Co., Ltd. and a vacuum pressurized laminator manufactured by Meiki Seisakusho Co., Ltd.
  • a laminating machine can be used. By laminating under the condition that the resin flow during lamination is not less than the conductor thickness of the inner layer circuit, the inner layer circuit pattern can be covered well. By heating and pressing under vacuum conditions of 2 mbar or less, vacuum lamination can be performed without voids.
  • the protective film examples include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polycarbonate, and release paper and metal foil such as aluminum foil.
  • the protective film is used for the purpose of preventing the press surface from being scratched by foreign matters and preventing stains due to adhesive stains, and the thickness is preferably in the range of 5 to 100 ⁇ m.
  • the protective film has been subjected to a matting process and / or an embossing process, air escape in a vacuum state is good, and if the release film has been subjected to a mold releasing process, the press plate and the slip are good, so that the productivity of the laminating process is improved. .
  • the supporting base film After vacuum lamination, the supporting base film has a structure in which a metal foil of 1 to 10 // m thickness is provided on the surface of the resin composition, and a release carrier of 10 to 10 thickness is provided on the opposite surface. In some cases, it is possible to manufacture a multilayer printed wiring board by heat curing and integrating. Can be.
  • the supporting base film is releasable from the other resin composition, after the vacuum lamination, the supporting base film is peeled off, and the area is larger than the area of the resin composition.
  • the metal foil surface of a metal foil having a peeling carrier having a thickness of 10 to 100 / m on a metal foil having a thickness of 10 to 100 / m is arranged on the resin composition by heating and pressure lamination.
  • thermosetting differ depending on the resin, but are selected within a range of 100 to 200 minutes at 100 to 200 ° C.
  • the carrier for peeling is peeled off according to the required process step, and a hole is drilled with a laser and / or drill at a predetermined through hole and / or via hole.
  • a conductor layer is formed by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless plating and electrolytic plating.
  • a plating resist that is reverse to the conductive layer may be formed, and the conductive layer may be formed by a semi-additive method.
  • the use of ultra-thin copper foil makes it easy to form a fine pattern.
  • the present invention relates to a film-form adhesive with a metal foil for build-up having excellent mechanical strength and a method for producing a multilayer printed wiring board using the same. That is, the present invention relates to a support base film and a layer laminated on a surface thereof, which has the same or smaller area as the support base film, and has a relationship between a temperature and a melt viscosity.
  • Thermo-fluidity, room temperature solid thermosetting resin composition with physical properties Heat-resistant film with a metal foil having a support base film of 3 to 2 thick and a heat-resistant film layer of 3 to 30 / m thick with a glass transition point of 200 ° C or more and a temperature of 200 ° C or more
  • An adhesive film for eyebrow insulation characterized by having a structure in which the resin composition layer is formed on a heat-resistant film surface; and heating the film on one or both surfaces of a patterned circuit board by heating,
  • a method for producing a multilayer printed wiring board comprising: laminating under vacuum under pressure, heat-curing and integrating; and (a) laminating on a supporting base film and a peelable surface thereof; It consists of a thermo-fluid, room-temperature solid thermosetting resin composition layer having the same or smaller area as that of the lum and the physical properties of the shaded area S in Fig.
  • the adhesive film (B) a step of directly laminating a resin composition layer on at least one side or both sides of the pattern-processed circuit board by directly covering at least the pattern-processed portion with the resin composition layer, and then applying heat, pressure, and vacuum lamination; After peeling off the supporting base film of the circuit board, a glass transition point of not less than 200 ° C. and a thickness of 3 to 30 m is formed on a metal foil having an area larger than the area of the resin composition and having a thickness of 3 to 20 zm.
  • thermosetting resin composition which forms a resin composition layer of a thermo-fluidity and a room temperature solid used in the present invention is softened by heating and has a film-forming ability.
  • the thickness of the resin composition layer is generally equal to or more than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of conductor thickness + (10 to 120) / m.
  • the resin composition include an epoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, a polycarbonate resin, a polyester resin, and a thermosetting polyphenylene ether resin. It is also possible to use them in combination, or to form an adhesive film layer having a multilayer structure. Above all, epoxy resin compositions described in Tokiwahei 11-87972 are preferred for epoxy resin systems having excellent reliability and cost as interlayer insulating materials.
  • the preferred physical properties of the resin composition layer can be determined by measuring the dynamic viscoelastic modulus and showing the relationship between the temperature and the melt viscosity in the same manner as described above in relation to the first invention.
  • a hatched area S in FIG. 1 of the drawing is a preferable range of the resin composition layer.
  • the dynamic viscoelasticity measurement is a curve measured using a model Rheosol-G3000 manufactured by UBM Co., Ltd.
  • the upper limit of the dynamic viscoelasticity curve is at an average drying temperature of 100 ° C.
  • the curve at the lower limit for 0 minutes also shows the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes.
  • the region sandwiched between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C. or less represents the physical properties of the resin composition layer preferably used in the practice of the present invention. If the melt viscosity is 100,000 Poise or more, the resin composition layer becomes hard, and when vacuum lamination of the adhesive film of the present invention is carried out, the resin composition layer is poorly embedded in a pattern on a circuit board and adheres well. Poor nature. Manufacturing at a temperature exceeding 140 ° C. is not preferred because wrinkles are likely to occur after vacuum lamination due to a difference in thermal expansion coefficient between the supporting base film and the resin composition. This is also the same as that described above with respect to the first invention.
  • FIG. 1 of the accompanying drawings of this specification The dynamic viscoelasticity measurement shown in FIG. 1 of the accompanying drawings of this specification was measured at a heating rate of 5 ° C./min. However, when the heating rate is different, the shape of the curve is different.
  • FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Adhesive Film Production Example 1 according to the present invention. Therefore, the preferable range of the physical properties of the resin composition layer is that the dynamic viscoelasticity measurement curve must be measured while keeping the measurement conditions constant. Absent.
  • the supporting base film used in claims 5 and 6 of the present application is a heat-resistant metal box with a heat-resistant film layer having a glass transition point of 200 ° C. or more and a thickness of 3 to 30 zin on a metal foil of 3 to 2 thickness.
  • Heat-resistant resin varnish such as polyimide is coated on metal foil such as copper foil and aluminum foil, dried and heat-cured cast type, heat-resistant film such as thermoplastic polyimide and liquid crystal polymer is used as copper foil, A laminate type in which aluminum foil or the like is bonded to a metal foil, or a spatter type in which a metal layer such as copper is formed on a heat-resistant film such as polyimide or liquid crystal polymer by vapor deposition, sputtering, etc. Is mentioned.
  • the metal foil may have a structure in which a protective film, a carrier foil and the like are held on the opposite surface of the heat-resistant film layer.
  • a protective film, a carrier foil and the like are held on the opposite surface of the heat-resistant film layer.
  • commercially available products such as those using Neoflex Petrochemical Flex manufactured by Mitsui Chemicals, Inc., Upisel manufactured by Ube Industries, Ltd., and liquid crystal polymer films manufactured by Kuraray Co., Ltd. can be used.
  • the heat-resistant film layer is not particularly limited as long as it has a glass transition point of 200 ° C. or more. When the glass transition point is lower than 200 ° C., the solder heat resistance is poor, and it is difficult to use in the present invention.
  • a structure in which an adhesive is interposed between the heat-resistant film and the metal foil may be used, but a two-layer type is preferable in terms of performance.
  • the thickness if the thickness of the metal foil layer is less than 3 zm, it may be lost during the subsequent substrate manufacturing process, and if it exceeds 2, it is not suitable for forming a fine pattern.
  • the heat-resistant film layer is less than 3 / zm, the effect of improving the mechanical strength is diminished, and if it exceeds 3, the cost is high, and the insulating layer portion is too thick, and the fineness of later via formation is reduced. It becomes difficult and unsuitable for fine patterns.
  • the peelable support base film used in claim 7 of the present invention includes polyethylene, polyolefin such as polyvinyl chloride, polyester such as polyethylene terephthalate, polycarbonate, and metal foil such as release paper and aluminum box. And the like.
  • the thickness of the supporting base film is generally 10 to 150 m It is a target.
  • the support film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
  • the adhesive film used in the present invention comprising the resin composition and a support base film, after applying the resin composition varnish dissolved in a predetermined organic solvent on a support base film, heating and / or hot air spraying the solvent. It can be dried and produced by a known and commonly used method. Thereafter, a release film is further laminated as it is or on the surface of the resin composition layer, and stored in a roll shape. At this time, the area of the resin composition layer can be the same as that of the support base film or a small area having a resin uncoated portion on the support base film.
  • a method of vacuum laminating the adhesive film on a pattern-processed circuit board can be easily performed using a commercially available vacuum laminator.
  • a vacuum applicator manufactured by Nichigo-Morton Co., Ltd. a vacuum pressurized laminator made by Meiki Seisakusho Co., Ltd., a roll-type dry coater manufactured by Hitachi Techno Engineering Co., Ltd., etc. can do.
  • the inner layer circuit pattern can be covered well.
  • the supporting base film is a heat-resistant film with a metal foil after vacuum lamination, it can be thermoset as it is and integrated to produce a multilayer printed wiring board.
  • the support base film is peelable from the rest of the resin composition, after laminating the support base film after vacuum lamination, the area is larger than the area of the resin composition;
  • the glass surface of a heat-resistant film with a metal foil provided with a heat-resistant film layer having a glass transition point of 200 aC or more and a heat-resistant film layer having a thickness of 300 m or more in a metal box having a thickness of 3 to 20 m is placed on the resin composition.
  • a circuit board having the same configuration as that of the present invention can be manufactured by arranging, heating, and pressing and laminating.
  • thermosetting differ depending on the resin, but are selected in the range of 100 to 200 ° C. for 10 to 90 minutes.
  • predetermined through holes and / or via holes are drilled with a laser and / or a drill, and if necessary, the inside of the holes is cleaned by a dry method, a Z method, or a wet method.
  • the conductor layer is formed by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless plating and electrolytic plating.
  • a mask resist having a pattern opposite to that of the conductor layer may be formed, and the conductor layer may be formed by a semi-additive method or the like.
  • the present invention relates to a simple method for producing a laminate using a film-like adhesive for build-up having excellent mechanical strength and glass cloth, glass paper or organic nonwoven fabric.
  • the present invention relates to a supporting base film and a surface thereof, which are laminated on the surface thereof, have the same or smaller area as the supporting base film, and have a relationship between temperature and melt viscosity in a hatched area S in FIG. 1 of the accompanying drawings.
  • An adhesive film comprising a thermosetting, room-temperature solid thermosetting resin composition layer having physical properties, and further comprising a glass cloth or an organic nonwoven fabric layer provided on the surface of the resin composition, characterized by having a structure between eyebrows.
  • a method for producing a laminated plate comprising: laminating an adhesive film for use on one or both sides of a base material under vacuum under heating and pressurizing conditions, and then thermosetting and integrating the laminated film; or a support base Heat fluidity which is laminated on the film and the surface thereof, has the same or smaller area as the support base film, and has the physical properties of the shaded area S in FIG. 1 of the accompanying drawings in relation to temperature and melt viscosity;
  • Always The insulating layer using an adhesive film made of a thermosetting resin composition layer of a solid In the method of forming, a glass cloth or an organic nonwoven fabric is sheeted on one side or both sides of the base material, and the resin composition layer of the adhesive film is directly overlaid thereon.
  • thermosetting resin composition which forms a resin composition layer of a thermo-fluidity and a room temperature solid used in the present invention is softened by heating and has a film-forming ability.
  • the thickness of the resin composition layer is generally equal to or greater than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of (conductor thickness + (10 to 120) m).
  • the resin thickness is preferably in the range of glass cloth or organic nonwoven fabric thickness + (10 to 120) / m.
  • the resin composition examples include an epoxy resin, an acrylic resin, a polyimide resin, a polyamideimide resin, a polyisocyanate resin, a polyester resin, and a thermosetting polyphenylene ether resin. It is also possible to use them in combination, or to form an adhesive film layer having a multilayer structure. Above all, epoxy resin compositions described in Tokiwahei 11-87972 are preferred for epoxy resin systems having excellent reliability and cost as interlayer insulating materials.
  • the dynamic viscoelastic modulus can be measured and represented by the relationship between the temperature and the melt viscosity.
  • the hatched area S in FIG. 1 of the attached drawings of the present specification is a preferable range of the resin composition layer.
  • the dynamic viscoelasticity measurement is a curve measured using a model manufactured by U.B.I.M. Co., Ltd., Rheosol-G3000.
  • the upper limit of the dynamic viscoelasticity curve is at an average drying temperature of 100 ° C.
  • the curve at the lower limit for 10 minutes also shows the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes.
  • the region sandwiched between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C. or less represents the physical properties of the resin composition layer preferably used in the practice of the present invention.
  • the melt viscosity is 100,000 Poise or more
  • the resin composition layer becomes hard, and when the adhesive film of the present invention is vacuum-laminated, the resin composition is poorly embeddable into a substrate and a glass cloth or an organic nonwoven fabric, and adheres well. Poor nature. Manufacturing at a temperature exceeding 140 ° C. is not preferred because wrinkles are likely to occur after vacuum lamination due to the difference in the thermal expansion coefficient between the supporting base film and the resin composition.
  • FIG. 1 of the accompanying drawings of this specification The dynamic viscoelasticity measurement shown in FIG. 1 of the accompanying drawings of this specification was measured at a heating rate of 5 ° C./min. However, when the heating rate is different, the shape of the curve is different.
  • FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Adhesive Film Production Example 1 according to the present invention. Therefore, the range of preferable physical properties of the resin composition layer must be measured under a constant measurement condition to measure a dynamic viscoelasticity measurement curve.
  • the support base film used for the adhesive film of the present invention examples include polyolefins such as polyethylene and polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonates, and metal such as release paper, copper foil, and aluminum foil. Foil and the like.
  • the thickness of the supporting base film is generally from 10 to 150 m. Note that the support film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
  • the adhesive film comprising the resin composition of the present invention and a support base film is as follows: The resin composition varnish dissolved in a given organic solvent is applied onto a support base film, and then the solvent is dried by heating and / or hot air spraying to prepare the resin composition by a known and common method. Thereafter, a glass cloth or an organic nonwoven fabric is heat-laminated on the surface of the resin composition layer, and the laminate is wound into a roll and stored.
  • the surface of the resin composition layer is stored as it is or a release film is laminated thereon and wound into a roll.
  • the area of the resin composition layer can be the same as the supporting base film or a small area having a resin uncoated portion on the supporting base film.
  • glass cloth, glass paper, and organic nonwoven fabric used in the present invention can be used, but a thin material of 20 to 100 m is preferable. Among them, it is preferable to use a type having a small filament diameter, a fine mesh and good flatness, and an organic nonwoven fabric typified by an aramide nonwoven fabric because it is excellent in laser-workability.
  • the glass cloth or the organic nonwoven fabric surface is vacuum-laminated on one or both surfaces of the substrate under heating and pressure.
  • Lamination can be performed using a commercially available vacuum lamination press, Vacuum Lamine Ichiichi. Among them, Nichigo's Morton Co., Ltd. Vacuum Appliqué Ichiichi, Meiki Seisakusho Co., Ltd. Vacuum Pressurized Lamine Ichiichi, Hitachi Techno Engineering Dryco Ichiyu, etc. By using, it is possible to easily perform vacuum lamination without voids.
  • the base material in addition to pre-preda and unclad substrates, it is possible to manufacture multilayer printed wiring boards using flexible films such as polyimide and polyethylene naphthalate, and circuit boards that have been processed into printed circuits. is there.
  • the resin composition surface is vacuum-laminated similarly under heating and pressing conditions with a glass cloth or an organic non-woven fabric interposed on a substrate.
  • the adhesive film is vacuum-laminated on a substrate, and then the supporting base film is peeled off. Thereafter, a glass cloth, a glass paper or an organic nonwoven fabric is sheet-fed on the substrate on which the resin composition has been transferred, and the resin composition layer of the adhesive film is directly covered again, and the vacuum conditions are applied.
  • heating and pressurizing can be used for lamination. Thereby, even when the resin composition layer of the adhesive film is thin, it is possible to easily produce a laminated board with the structure of the base material / resin / glass cloth, glass paper or organic nonwoven fabric / resin. .
  • the support base film can be thermoset as it is and integrated to produce a laminated board.
  • the support base film is peelable from the other resin composition, after vacuum lamination, the support base film is peeled off, and then heat-cured similarly to be integrated to produce a laminated board. can do.
  • the thermosetting condition varies depending on the resin, but is 100 to 200 °. Is selected in the range of 10 to 90 minutes.
  • a predetermined through hole and / or via hole portion is drilled with a laser and / or a drill, and if necessary, the inside of the hole is dry and / or dry.
  • a conductor layer is formed by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless plating and electrolytic plating, and a printed wiring board can be manufactured.
  • FIG. 1 shows a dynamic viscoelasticity measurement, which is a curve measured using a model Rhesol-G 3000 manufactured by U.B.M. Co., Ltd.
  • the upper limit curve of the dynamic viscoelasticity (1) Average drying temperature Curve (2) at 100 ° C for 10 minutes and the lower limit curve also shows the physical properties of the resin composition treated at an average drying temperature of 100 ° C for 4 minutes.
  • the measurement conditions were as follows: a heating rate of 5 ° C / min, a starting temperature of 60 ° C, a measuring temperature interval of 2.5 ° C, and a vibration of lHz / deg.
  • FIG. 2 shows a dynamic viscoelasticity measurement, which is a curve measured using a model Rhesol-G 3000 manufactured by UBM Corporation. This shows the physical properties of the resin composition obtained by treating the obtained resin composition layer at an average drying temperature of 100 ° C. for 5 minutes. The heating rates are 5 ° C / min (curve III), 10 ° C (curve II) and 20 ° C (curve I). The measurement conditions were as follows: the starting temperature was 60 ° C and the measuring temperature interval was 2.5. The vibration is lHz / deg.
  • FIG. 3 shows a dynamic viscoelasticity measurement, which is a curve measured using a model Rhesol-G3000 manufactured by UM Co., Ltd.
  • the obtained resin composition layer was dried at an average drying temperature of 100 ° C. for 2 minutes (curve A) and 8 minutes.
  • Adhesive film production example 1 Adhesive film production example 1
  • YPB-40-PXM40 50 parts, epoxy curing agent 2,4-diamino-6- 2-Methyl-1-imidazolylethyl) _ 1,3,5-triazine / isocyanuric acid adduct 4 parts, finely divided silica 2 parts, antimony trioxide 4 parts, calcium carbonate 5 parts
  • Make a varnish . Apply the varnish on a 5 m copper foil with an aluminum foil carrier with a thickness of 40 zm at Daiko Yuichi so that the resin thickness after drying is 70 m, 80 to 120 ° C (average 100 ° C), and slit to a width of 507 mm to obtain a roll-shaped adhesive film.
  • the dynamic viscoelastic modulus of the resin composition layer of the adhesive film obtained as described above was measured using a model Rhesol-G3000 manufactured by BM Corporation.
  • Figure 1 shows that the upper limit of the dynamic viscoelasticity curve is 10 minutes at an average drying temperature of 100 ° C, and the lower limit curve is the average drying temperature.
  • FIG. 2 shows dynamic viscoelasticity measurement curves when the heating rate was set to 5 ° C./min, 10 ° C./min, and 20 C / min.
  • a roll-shaped adhesive film was obtained in exactly the same manner except that the aluminum foil-carrying copper foil of Adhesive Film Production Example 1 was changed to a 3-polyethylene terephthalate film. Comparative adhesive film production example 1 A roll-shaped adhesive film was obtained in exactly the same manner as in Adhesive Film Production Example 1, except that the copper foil with an aluminum foil carrier was changed to a 12-m thick copper foil. Comparative Example 1
  • the rolled adhesive film obtained in Comparative Production Example 1 was applied to a patterned 50 ⁇ 340 mm glass epoxy inner layer circuit board (conductor thickness: 35 zm),
  • the sheets were cut on both sides of the substrate at a size of 507 x 33 36 mm using Auto Cut Laminate overnight manufactured by Co., Ltd.
  • the conditions were as follows: 70 ° C at the temporary attachment part, 5 seconds of pressure bonding, lamination at room temperature, without load.
  • a protective film for the upper and lower sides of a vacuum applicator made by Morton Inn Yuichi National Co., Ltd., made of polyethylene terephthalate having a width of 540 mm and a thickness of 25 zm, was set. Both sides were simultaneously laminated by a press of 15 msec at a vacuum of 1 mbar and a temperature of 80 ° C. Thereafter, the laminated circuit board was taken out of the protective film and heat-cured at 120 ° C. for 30 minutes and at 170 ° C. for 30 minutes. Line / space after cooling to around room temperature 6400 /
  • the roll-shaped adhesive film obtained in Production Example 1 was placed on a patterned 5110 x 34 mm glass epoxy inner layer circuit board, and the width was 507 x 33 mm. Sized sheets on both sides of the substrate.
  • a vacuum protection film is placed on a vacuum applicator made by Morton Ink-National-Ink-Polytide, a polyethylene terephthalate film with a width of 540 mm and a thickness of 25 ⁇ . Laminated at the same time on both sides with a vacuum of 1 mbar, a temperature of 80 ° C and a press of 15 seconds. After that, remove the laminated circuit board from the protective film and leave it at 130 ° C for 30 minutes.
  • the roll-shaped adhesive film obtained in Production Example 2 was applied to a patterned 50 ⁇ 340 mm glass epoxy inner-layer circuit board in a size of width 507 ⁇ 336 mm. Sheets were formed on both sides of the substrate.
  • a polyethylene terephthalate film having a width of 540 mm and a thickness of 25 ⁇ . ⁇ was set as a protective film on both base rolls of a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd.
  • the substrate was loaded from the vicinity of the center, and the two sides were simultaneously laminated by a press of 1 mbar, a temperature of 80 ° C, a pressure of 5 kg and a press of 15 seconds.
  • the polyethylene terephthalate film was peeled off.
  • an ultra-thin copper foil surface of a copper foil in which a 3 / zm copper foil was formed on a copper foil carrier having a thickness of 35 m via a release layer with a thickness of 5 10 x 340 mm Similarly, the substrate was put in the vicinity of the center of the protective film, and simultaneously laminated on both sides by pressing at a degree of vacuum of 1 mbar, a temperature of 80 ° C., a pressure of 5 kg, and a pressure of 15 kg for 15 seconds. Thereafter, the laminated circuit board was heat-cured at 120 ° C. for 30 minutes and further at 170 ° C.
  • FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained by drying the resin composition layer obtained in Adhesive Film Production Example 1 at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG.
  • the adhesive film obtained by laminating this resin composition layer on a supporting base film could be subjected to a laminating step, but resin dripping occurred in the next thermosetting step, and as a result, the layer thickness of the resin composition layer was reduced. It could not be used for the purpose of the present invention due to the non-uniformity. Comparative Example 3
  • FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained by drying the resin composition layer obtained in Adhesive Film Production Example 1 at an average drying temperature of 100 ° C. for 15 minutes. Obviously, the viscosity shifted to the higher viscosity side outside the shaded area S shown in FIG. This resin composition layer was laminated on a supporting base film to produce an adhesive film. An attempt was made to laminate the resin composition layer of the adhesive film on the pattern portion of the circuit board, but could not find conditions for vacuum lamination without voids. Next, an embodiment of the second invention will be described. Adhesive film production example 1
  • Liquid bisphenol A-type epoxy resin (Epicoco 828 EL) manufactured by Yuka Shell Epoxy Co., Ltd. 20 parts, brominated bisphenol A-type epoxy resin (08-500) manufactured by Toto Kasei Co., Ltd. 2 0 parts, cresol nopolak type epoxy resin (epoxy equivalent: 21.5, softening point: 78 ° C, Epiclone N—673, manufactured by Dainippon Ink & Chemicals, Inc.) 20 parts, epoxidized polybutadiene rubber ( Denase from Nagase Kasei Kogyo Co., Ltd.
  • the varnish was placed on a 12-m-thick copper foil / polyimide layer 25 m thick polyimide layer of Ube Industries, Ltd. Upisel Co., Ltd., and the whole resin was dried overnight so that the resin thickness after drying was 70 m.
  • Fig. 1 shows that the upper limit of the dynamic viscoelasticity curve is 10 minutes at an average drying temperature of 100 ° C, and the lower limit curve is the physical properties of a resin composition treated at an average drying temperature of 100 ° C for 4 minutes.
  • Figure 2 shows the dynamic viscoelasticity measurement curves when the heating rate was 5 ° C / min, 10 ° C / min, and 20 ° C / min.
  • Adhesive film manufacturing example 2
  • Adhesive film production example The sheet was made in exactly the same manner except that the polyimide film with copper foil in 1 was replaced with a 5 zm copper foil / polyimide layer 25 / m Etchflex manufactured by Mitsui Chemicals, Inc. An adhesive film was obtained. Comparative adhesive film production example 1
  • Adhesive film production example 1 Polyimide film with copper foil of 38 mm thick A sheet-like adhesive film was obtained in exactly the same manner, except that the rate was changed to Tylene terephthalate. Comparative Example 1
  • a sheet-like adhesive obtained in Production Example 1 was applied to a patterned 0.2 mm thick, 51 O x 34 Omm glass epoxy inner layer circuit board (conductor thickness: 35 zm).
  • the films were sheeted on both sides of the substrate.
  • both sides were simultaneously laminated using a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd. with a vacuum of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 , and 15 seconds.
  • the laminated circuit board was thermally cured at 120 ° C. for 30 minutes and further at 170 ° C. for 30 minutes to obtain a four-layer board.
  • the modulus of elasticity of the four-layer plate obtained from the universal hardness tester after the copper foil etching was 6. OGPa at room temperature and 4.5 GPa at 150 ° C.
  • Example 2 The modulus of elasticity of the four-layer plate obtained from the universal hardness tester after the copper foil etching was 6. OGPa
  • the patterned thickness was 0.2 mm, and the size was 51 O x
  • the sheet-like adhesive film obtained in Production Example 2 was sheeted on both sides of the board.
  • both sides were simultaneously laminated with a vacuum press of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 and a 15-second press using a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd.
  • the laminated circuit board was heat-cured at 12 CTC for 30 minutes and then at 17 (TC for 30 minutes to obtain a four-layer board.
  • the elastic modulus of the four-layer board obtained from the universal hardness tester after the copper foil etching was determined. It was 7.2 GPa at room temperature and 5.4 GPa at 150 ° C.
  • FIG. 3 shows a dynamic viscoelastic modulus measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film, which was dried at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG. Although the adhesive film formed on the supporting base film with the resin composition layer could be subjected to the laminating step, resin sagging occurs in the next thermosetting step, and the thickness of the resin composition layer is not sufficient. Since it became uniform, it could not be used for the purpose of the present invention. Comparative Example 3
  • FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film obtained by drying the resin composition layer at an average drying temperature of 100 ° C. for 15 minutes. Obviously, the viscosity shifted to the higher viscosity side outside the shaded area S shown in FIG. An adhesive film was produced by laminating the resin composition layer on a support base film. An attempt was made to laminate the resin composition layer of this adhesive film on the pattern portion of the circuit board. It was not possible to find the conditions under which vacuum lamination was possible without any problems. Finally, an embodiment of the third invention will be described. Adhesive film production example 1
  • YPB-40-PXM40 50 parts, epoxy curing agent 2,4-diamino-1-6- —Methyl-1—imidazolylethyl) 1,1,3,5-Triazine / isocyanuric acid adduct 4 parts, 2 parts of finely ground silica, 4 parts of antimony trioxide, 5 parts of calcium carbonate are added to the resin composition.
  • Make a varnish .
  • the varnish is applied on a 38 mm thick polyethylene terephthalate film using a die coater so that the resin thickness after drying is 70 // m. (° C), apply a 0.05mm thick glass cloth to the resin surface at a temperature of 50 ° C and a linear pressure.
  • Adhesive film production example 3 A sheet-like adhesive film was obtained in exactly the same manner except that the glass cloth of Adhesive Film Production Example 1 was changed to a polypropylene film having a thickness of 15 mm.
  • Adhesive film production example 3 A sheet-like adhesive film was obtained in exactly the same manner except that the glass cloth of Adhesive Film Production Example 1 was changed to a polypropylene film having a thickness of 15 mm.
  • a roll-shaped adhesive film was obtained in exactly the same manner except that the polyethylene terephthalate film as the support base film of Adhesive Film Production Example 1 was changed to a copper foil having a thickness of 18 m. Comparative Example 1
  • the patterned thickness was 0.2 mm, and the size was 51 O x
  • the sheet-like adhesive film obtained in Production Example 1 was sheet-patterned on both sides of the glass epoxy inner layer circuit board with the glass cloth surface of the adhesive film obtained in Production Example 1 as the pattern side.
  • both sides were simultaneously laminated by a press of 1 mbar, a temperature of 110 ° C, a pressure of 6 kg / cm 2 , and a pressure of 30 seconds. Thereafter, the supporting base film was peeled off, and the laminated circuit board was thermally cured at 100 ° C. for 30 minutes to obtain a four-layer board.
  • the elastic modulus obtained from the universal hardness tester of the four-layer plate is 7.
  • the polypropylene film of the sheet-like adhesive film obtained in Production Example 2 was peeled off on both sides of a patterned glass epoxy inner layer circuit board having a thickness of 0.2 mm and a size of 51 O x 34 Omm as in Comparative Example 1. After that, the resin surface was turned into the pattern side and the wafer was sheet-fed on both sides of the substrate.
  • the supporting base film was peeled off, and a 0.05 mm thick non-woven fabric of the same size as the substrate was sandwiched on the laminated circuit board. Further, the resin surface of the sheet-like adhesive film obtained in Production Example 2 was further removed. Was turned to the nonwoven fabric side and the sheets were sheeted on both sides. Using a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., both surfaces were simultaneously laminated by a vacuum of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 , and a 30-second press. Thereafter, the support base film was peeled off, and the laminated circuit board was thermoset at 170 ° C. for 30 minutes to obtain a four-layer board. The elastic modulus obtained from the universal hardness tester of the four-layer plate was 5.9 GPa at room temperature and 4.4 GPa at 150 ° C.
  • FIG. 3 shows a dynamic viscoelastic modulus measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film, which was dried at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG. Although the laminating process could be performed on the adhesive film having the resin composition layer formed on the supporting base film, resin sagging occurred in the next thermosetting process, and thus the thickness of the resin composition layer was uneven. Therefore, it could not be used for the purpose of the present invention. Comparative Example 3
  • FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film obtained by drying the resin composition layer at an average drying temperature of 100 ° C. for 15 minutes. Obviously, the viscosity shifted to the higher viscosity side outside the shaded area S shown in FIG.
  • This resin composition layer was laminated on a supporting pace film to produce an adhesive film. An attempt was made to laminate the resin composition layer of the adhesive film on the pattern portion of the circuit board, but could not find conditions for vacuum lamination without voids. (Industrial applicability)

Abstract

An adhesive film for inter-layer insulation having a supporting base film and, formed thereon, a thermoplastic resin composition layer which exhibits a property of the diagonally shaded area (S) in Fig. 1 with respect to the relationship of temperature vs. melt viscosity and thus is flowable when heated and solid at an ordinary temperature, characterized in that (1) the supporting base film has a metal foil having a thickness of 1 to 10 νm and a releasing carrier having a thickness of 10 to 100 νm on the other face, (2) the supporting base film has a metal foil having a thickness of 3 to 20 νm and, formed thereon, a heat-resistan t film layer having a glass transition temperature of 200 °C or higher and a thickness of 3 to 30 νm, or (3) the adhesive film has a structure wherein the thermoplastic resin composition layer is sandwiched by sheets of glass cloth or organic non-woven fabric. The adhesive film for inter-layer insulation can be used for manufacturing with ease a multilayer printed wiring board of build-up type being excellent in mechanical strength or smoothness of its surface.

Description

接着フィルム及びこれを用いた多層プリント配線板の製造法 (技術分野)  Adhesive film and method for manufacturing multilayer printed wiring board using the same (Technical field)
本発明は、 先ず、 導体回路層と絶縁層とを交互に積み上げたビルドアップ方式 の多層プリント配線板の製造法において、 極薄金属箔付きフィルム状接着剤及び これらを用いた多層プリント配線板の製造法に関するものである。  First, the present invention relates to a method for producing a build-up type multilayer printed wiring board in which a conductive circuit layer and an insulating layer are alternately stacked, a film-like adhesive with an ultrathin metal foil, and a multilayer printed wiring board using the same. It concerns the manufacturing method.
本発明は、 また、 導体回路層と絶縁層とを交互に積み上げたビルドアップ方式 の多層プリント配線板の製造法において、 金属箔付きフィルム状接着剤及びこれ らを用いた多層プリント配線板の製造法に関するものである。  The present invention also relates to a method for manufacturing a build-up type multilayer printed wiring board in which conductive circuit layers and insulating layers are alternately stacked, the method comprising manufacturing a film adhesive with a metal foil and a multilayer printed wiring board using the same. It is about the law.
本発明は、 さらにまた、 導体回路層と絶縁層とを交互に積み上げたビルドアッ プ方式のプリント配線板の製造法において、 フィルム状接着剤及びガラスクロス、 ガラスペーパー又は有機不織布を用いた積層板及び多層プリント配線板の製造法 に関するものである。  The present invention still further relates to a method for manufacturing a build-up type printed wiring board in which conductive circuit layers and insulating layers are alternately stacked, wherein a laminated board using a film adhesive and glass cloth, glass paper or organic nonwoven fabric is provided. The present invention relates to a method for manufacturing a multilayer printed wiring board.
(背景技術) (Background technology)
近年内層回路板の導体層上に有機絶縁層を交互に積み上げていくビルドアップ 方式の多層プリント配線板の製造技術が注目されている。  In recent years, attention has been focused on a build-up type multilayer printed wiring board manufacturing technique in which organic insulating layers are alternately stacked on conductor layers of an inner circuit board.
特鬨平 8— 6 4 9 6 0には、 下塗り接着剤を塗布、 仮乾燥後フィルム状アディ ティブ接着剤を貼り合わせて加熱硬化させ、 アルカリ性酸化剤で粗化、 導体層を メツキにより形成し多層プリント配線板を製造する方法が知られている。 また、 本発明者も特開平 1 1— 8 7 9 2 7 (特願平 9一 3 5 7 4 2 0 ) において内層回 路パターンの被覆と表面ビアホール及び/又はスルーホール内の樹脂充填を同時 に一括して行うことのできる多層プリント配線板用層間接着フィルム、 及びこれ  Tokudokidaira 8—6 4 960, an undercoat adhesive is applied, preliminarily dried, a film-like additive adhesive is applied, heated and cured, roughened with an alkaline oxidizing agent, and a conductive layer is formed by plating. A method for manufacturing a multilayer printed wiring board is known. Also, the present inventor has disclosed in Japanese Patent Application Laid-open No. Hei 11-87979 (Japanese Patent Application No. Hei 9-135 7420) simultaneous coating of the inner layer circuit pattern and resin filling in the surface via holes and / or through holes. Adhesive film for multi-layer printed wiring board, which can be collectively carried out in one step, and this
1 を用いた多層プリント配線板の製造法を開示している。 また、 さらに特開平 1 1 - 3 4 3 7 1 0 (特願平 1 0— 3 4 2 4 1 3 ) 、 特願平 1 1— 6 9 9 9 4におい てこの接着フィルムを表面平滑良く真空積層する方法を開示しているが、 金属箔 を支持ベースフィルム及び導体層として使用した場合、 本発明の方法によりいく ら表面を平滑に仕上げても、 金属箔が接着フィルムの製造上 1 2 zm以上必要で あるため、 その導体厚により上層パターン形成のフアイン化に限界があった。 また、 熱硬化性樹脂付き銅箔を使用し真空積層プレスにより多層プリント配線 板を製造する工法は、 携帯用電子機器向けに広く行われるようになった。 また、 上に言及したように、 本発明者も特開平 1 1— 8 7 9 2 7において内層回路パ夕 ーンの被覆と表面ビアホール及び/又はスルーホール内の樹脂充填を同時に一括 して行うことのできる多層プリント配線板用層間接着フィルム、 及びこれを用い た多層プリント配線板の製造法を開示している。 それらのビルドアップ工法では ガラスクロス等を含まない樹脂を絶縁層とするため、 剛性に乏しく軽量化の要求 に応えた薄板多層配線板においては、 機械的強度に劣るという欠点があった。一 方、 熱可塑性ポリイミ ドなどを使用した耐熱フィルム付き銅箔を使用したビルド アップ工法も開発されてはいるが、 その高いガラス転移点故、 積層温度が高く一 般のプリント基板での使用は困難であった。 1 Discloses a method for manufacturing a multilayer printed wiring board using the same. Further, in Japanese Patent Application Laid-Open Nos. Hei 11-343710 (Japanese Patent Application No. Hei 10-342413) and Japanese Patent Application No. Hei 1-1699994, this adhesive film is vacuum-cleaned with a smooth surface. Although a method of laminating is disclosed, when a metal foil is used as a supporting base film and a conductor layer, even if the surface is smoothed by the method of the present invention, the metal foil is not more than 12 zm in production of the adhesive film. Because of the above requirements, there was a limit to fine patterning of the upper layer pattern due to the conductor thickness. Also, the method of manufacturing multilayer printed wiring boards by vacuum lamination press using copper foil with thermosetting resin has become widely used for portable electronic devices. Also, as mentioned above, the present inventor also disclosed in Japanese Patent Application Laid-Open No. 11-87927 that the coating of the inner layer circuit pattern and the filling of the resin in the surface via holes and / or through holes are simultaneously performed simultaneously. It discloses an interlayer adhesive film for a multilayer printed wiring board, and a method for manufacturing a multilayer printed wiring board using the same. In these build-up methods, since the resin containing no glass cloth or the like is used as the insulating layer, the thin multilayer wiring board, which has low rigidity and meets the demand for light weight, has a drawback of poor mechanical strength. On the other hand, although a build-up method using copper foil with a heat-resistant film using thermoplastic polyimide, etc., has been developed, its high glass transition point makes it difficult to use it on general printed circuit boards because of its high lamination temperature. It was difficult.
さらにまた、 上に言及したように、 熱硬化性樹脂付き銅箔を使用し真空積層プ レスにより多層プリント配線板を製造する工法は、 携帯用電子機器向けに広く行 われるようになった。 一方、 本発明者も特開平 1 1一 8 7 9 2 7において内層回 路パターンの被覆と表面ビアホール及び/又はスルーホール内の樹脂充填を同時 に一括して行うことのできる多層プリント配線板用層間接着フィルム、 及びこれ を用いた多層プリント配線板の製造法を鬨示している。 それらのビルドアップェ 法ではガラスクロスやガラスペーパー等を含まない樹脂を絶縁層とするため、 剛 性に乏しく軽量化の要求に応えた薄物配線板においては、 機械的強度に劣るとい う欠点があった。 Furthermore, as mentioned above, the method of manufacturing multilayer printed wiring boards by vacuum lamination using copper foil with thermosetting resin has become widely used for portable electronic devices. On the other hand, the present inventor also disclosed in Japanese Patent Application Laid-Open No. 11-87927 a multi-layer printed wiring board that can simultaneously coat the inner layer circuit pattern and fill the surface via holes and / or through holes with resin at the same time. It demonstrates the method of manufacturing an interlayer adhesive film and a multilayer printed wiring board using the same. In these build-up methods, the resin that does not contain glass cloth, glass paper, etc. is used as the insulating layer.Therefore, thin wiring boards that have poor rigidity and meet the demand for light weight have poor mechanical strength. There were drawbacks.
(発明の鬨示) (Indication of invention)
前項記載の従来技術の背景下に、 本発明者は、 従来技術の問題点を解消すべく 鋭意研究の結果、 単一の一般的発明概念を形成するように連関している一群の発 明を完成するに到った。 以下、 順次これらを説明する。 先ず、 第一の発明について説明する。  Under the background of the prior art described in the preceding paragraph, the present inventor has conducted intensive studies to solve the problems of the prior art, and as a result, has found a group of inventions linked to form a single general inventive concept. It was completed. Hereinafter, these will be sequentially described. First, the first invention will be described.
上記問題点を顧みて、 本発明は、 積層後の表面平滑性に優れたビルドアップ用 極薄金属箔付フィルム状接着剤及びこれらを用いた多層プリント配線板の製造法 に関する。  In view of the above problems, the present invention relates to a film-like adhesive with an ultrathin metal foil for build-up having excellent surface smoothness after lamination, and a method for producing a multilayer printed wiring board using the same.
すなわち、 本発明は、 支持ベースフィルムとその表面に積層され、 該支持べ一 スフイルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付 図面の図 1の斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成 物層からなる接着フィルムにおいて、 支持べ一スフイルムが 1乃至 1 厚の 金属箔を該樹脂組成物面に有し、 反対面に 1 0乃至 1 0 厚の剥離用キヤリ ァを備えた構造であることを特徴とする層間絶縁用接着フィルム ;及び (a ) 該 樹脂組成物層を、 パターン加工された回路基板上の片面又は両面上に、 少なくと も該パターン加工部分を該樹脂組成物層で直接覆い重ねた後、 部分的にこれらを 仮接着し、 枚葉する工程、 (b ) 回路基板上の片面又は両面に仮接着された接着 フィルム上に、 該樹脂組成物層の面積よりも大きい面積を有する保護用フィルム を、 該接着フィルムとその中心がほぽ同じ位置となるとよう挟んだ状態で、 2ミ リバール以下の真空条件下、 保護用フィルム側より加熱、 加圧し積層する工程、 および (c ) 該回路基板を熱硬化させ一体化する工程を有することを特徴とする 多層プリント配線板の製造法;さらには、 (a ) 支持ベースフィルムとその剥離 可能な表面に積層され、 該支持ベースフィルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の斜線領域 Sの物性を有する熱流 動性、 常温固形の熱硬化性樹脂組成物層からなる接着フィルムの該樹脂組成物層 を、 パターン加工された回路基板上の片面又は両面上に、 少なくとも該パターン 加工部分を該樹脂組成物層で直接覆い重ねた後、 部分的にこれらを仮接着し、 枚 葉する工程、 (b ) 回路基板上の片面又は両面に仮接着された接着フィルム上に、 該樹脂組成物層の面積よりも大きい面積を有する保護用フィルムを該接着フィル ムとその中心がほぼ同じ位置となるとよう挟んだ状態で、 2ミリバール以下の真 空条件下、 保護用フィルム側より加熱、 加圧し積層する工程、 (c ) 該回路基板 の支持べ一スフイルムを剥離した後、 該樹脂組成物の面積よりも大きく、 1乃至 1 0 z m厚の金属箔に厚み 1 0乃至 1 0 0 Π1厚の剥離用キャリアを備えた金属 箔を該樹脂組成物上に加熱、 加圧し積層する工程、 および (d ) 該回路基板を熱 硬化させ一体化する工程、 を有することを特徴とする多層プリント配線板の製造 法; に関する。 以下、 本発明を詳細に説明する。 That is, the present invention relates to a supporting base film and a surface thereof, which are laminated on the surface thereof, have the same or smaller area as the supporting base film, and have a relationship between temperature and melt viscosity in a hatched area S in FIG. 1 of the accompanying drawings. In an adhesive film comprising a thermosetting, room temperature solid thermosetting resin composition layer having physical properties, a supporting base film has a metal foil having a thickness of 1 to 1 on the surface of the resin composition and 10 on the opposite surface. An adhesive film for interlayer insulation characterized by having a structure having a peeling carrier having a thickness of 10 to 10; and (a) placing the resin composition layer on one or both sides of a patterned circuit board. At least the pattern-processed portion is directly covered with the resin composition layer, and then, these are partially temporarily bonded, and then sheet-fed, (b) temporarily bonded to one or both surfaces of the circuit board. On the adhesive film, the resin set The protective film having an area larger than the area of the material layer is sandwiched between the adhesive film and the center thereof at substantially the same position, and is heated from the protective film side under a vacuum condition of 2 mbar or less. Pressurizing and laminating; and (c) a method for producing a multilayer printed wiring board, comprising a step of thermally curing and integrating the circuit board; and (a) a supporting base film and peeling thereof. Laminated on a possible surface, having the same or smaller area as the supporting base film, and having the physical properties of the hatched area S in FIG. 1 of the accompanying drawings in relation to the temperature and the melt viscosity. After laminating the resin composition layer of the adhesive film composed of the thermosetting resin composition layer on one side or both sides of a patterned circuit board, at least the pattern processed portion is directly covered with the resin composition layer. (B) a protective film having an area larger than the area of the resin composition layer on the adhesive film temporarily bonded to one or both surfaces of the circuit board; (C) laminating by heating and pressing from the protective film side under a vacuum condition of 2 mbar or less while sandwiching the film so that the center of the film is substantially at the same position as the center of the circuit board; Support After peeling the film, a metal foil having a thickness of 10 to 100 mm, which is larger than the area of the resin composition and having a thickness of 10 to 100 mm and a release carrier of 1 to 10 zm, is placed on the resin composition. And (d) a step of thermosetting and integrating the circuit board to produce a multilayer printed wiring board. Hereinafter, the present invention will be described in detail.
本発明に用いる熱流動性、 常温固形の樹脂組成物層を形成する熱硬化性樹脂組 成物は加熱により軟化し、 かつフィルム形成能があり、 さらに高温で熱硬化によ り耐熱性、 電気特性など層間絶縁材に要求される特性を満足するものであれば特 に限定されるものではない。 該樹脂組成物層の厚みはラミネートされる内層回路 基板の導体厚以上で、 導体厚 + ( 1 0〜 1 2 0 ) // inの範囲であるのが一般的で ある。  The thermosetting resin composition used in the present invention, which forms a resin composition layer that is solid at room temperature and has a fluidity, is softened by heating and has the ability to form a film. There is no particular limitation as long as the characteristics required for the interlayer insulating material such as the characteristics are satisfied. The thickness of the resin composition layer is generally equal to or greater than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of conductor thickness + (10 to 120) // in.
該樹脂組成物は、 例えば、 エポキシ樹脂系、 アクリル樹脂系、 ポリイミ ド樹脂 系、 ポリアミ ドイミ ド樹脂系、 ポリシァネート樹脂系、 ポリエステル樹脂系、 熱 硬化型ポリフエ二レンエーテル樹脂系等が挙げられ、 これらを 2種以上組み合わ せて使用したり、 多層構造を有する接着フィルム層とすることも可能である。 中 でも、 層間絶縁材として信頼性とコスト的に優れたエポキシ樹脂系においては、 特開平 1 1一 8 7 9 2 7記載のエポキシ樹脂組成物が好ましい。 Examples of the resin composition include an epoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, a polyacrylate resin, a polyester resin, and a thermosetting polyphenylene ether resin. Combination of two or more It is also possible to use an adhesive film layer having a multilayer structure. Among them, an epoxy resin composition described in JP-A-11-87927 is preferable for an epoxy resin system having excellent reliability and cost as an interlayer insulating material.
該樹脂組成物層の好ましい物性は動的粘弾性率を測定し、 この温度と溶融粘度 との関係で示すことができ、 本願明細書添付図面の図 1の斜線領域 Sはこの樹脂 組成物層の好ましい範囲である。 動的粘弾性率測定は (株) ユー · ビー ·ェム社 製型式 IUiesol-G3000を用いて測定した曲線であり、 動的粘弾性率曲線の上限は平 均乾燥温度 1 0 0 °Cで 1 0分、 同じく下限の曲線は平均乾燥温度 1 0 0 °Cで 4分 間処理した樹脂組成物層の物性を示している。 実験的にこの曲線に挟まれる領域 で、 かつ溶融粘度 10万 Poise以下及び温度 1 4 0 °C以下の領域が本願発明の実施 に好ましく用いられる樹脂組成物層の物性をあらわしている。 溶融粘度 1 0万 Po ise以上では樹脂組成物層が硬くなり本願発明の接着フィルムの真空積層を実施 した場合回路基板上のパターンへの該樹脂組成物層の埋め込み性が悪い上に密着 性が劣る。 温度 1 4 0 °Cを超える温度で製造すると支持べ一スフイルムと樹脂組 成物の熱膨張率の差により真空積層後しわが発生しやすく好ましくない。  Desirable physical properties of the resin composition layer can be measured by measuring a dynamic viscoelastic modulus, and can be shown by a relationship between the temperature and the melt viscosity. A hatched area S in FIG. Is a preferable range. The dynamic viscoelasticity measurement is a curve measured using a model IUiesol-G3000 manufactured by UBM Co., Ltd. The upper limit of the dynamic viscoelasticity curve is at an average drying temperature of 100 ° C. The curve at the lower limit for 10 minutes also shows the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes. The region between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C. or less represents the physical properties of the resin composition layer preferably used in the practice of the present invention. When the melt viscosity is 100,000 Poise or more, the resin composition layer becomes hard, and when the adhesive film of the present invention is vacuum-laminated, the resin composition layer is poorly embedded in a pattern on a circuit board and has poor adhesion. Inferior. Manufacturing at a temperature exceeding 140 ° C. is not preferable because wrinkles are likely to occur after vacuum lamination due to a difference in thermal expansion coefficient between the support base film and the resin composition.
本願明細書添付図面の図 1に示した動的粘弾性率測定は昇温速度 5 °C/分で測 定されたが、 昇温速度が異なると曲線の形状も異なってくる。 後掲接着フィルム 製造例 1で得られた樹脂組成物層について異なる昇温速度で測定した動的粘弾性 率測定曲線を図 2に示した。 したがって、 該樹脂組成物層の好ましい物性の範囲 は測定条件をキチンと合わせて動的粘弾性率測定曲線を測定しなくてはならない。 本願請求項 1乃至 3に用いられる支持べ一スフイルムは、 1乃至 1 0 z m厚の 金属箔を該樹脂組成物面に有し、 反対面に金属箔の保護用として 1 0乃至 1 0 0 z m厚の剥離用キャリアを備えた構造である。 銅箔、 アルミニウム箔の如きを金 属箔に、 ポリエチレンテレフタレ一ト等のポリエステル、 ポリカーボネート、 離 型紙さらには銅箔、 アルミニウム箱の如き金属箔などを剥離用キヤリアとして使 用できる。 剥離用キヤリアとしては金属箱から化学的エッチングにより剥離する タイプの他、 離型層を介して機械的に剥離するタイプであっても良い。 本発明に よれば、 1 以下の極薄金属箔の使用によりその後のファインパターン形成 が容易になるとともに、 剥離用キャリアの厚みとコシにより真空積層後の表面平 滑性が向上する。 The dynamic viscoelasticity measurement shown in FIG. 1 of the accompanying drawings of this specification was measured at a heating rate of 5 ° C./min. However, when the heating rate is different, the shape of the curve is different. FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Production Example 1 of the adhesive film described below. Therefore, the preferable range of the physical properties of the resin composition layer is that the dynamic viscoelasticity measurement curve must be measured by adjusting the measurement conditions to chitin. The support base film used in claims 1 to 3 of the present application has a metal foil of 1 to 10 zm thick on the surface of the resin composition, and has a metal foil of 10 to 100 zm on the opposite surface for protecting the metal foil. This is a structure provided with a thick release carrier. Use copper foil and aluminum foil as metal foil, and use polyester such as polyethylene terephthalate, polycarbonate, release paper, and metal foil such as copper foil and aluminum box as carrier for peeling. Can be used. The carrier for peeling may be of a type that peels off from a metal box by chemical etching, or may be of a type that peels off mechanically via a release layer. According to the present invention, the use of an ultra-thin metal foil of 1 or less facilitates the subsequent formation of a fine pattern, and the surface smoothness after vacuum lamination is improved due to the thickness and stiffness of the peeling carrier.
本願請求項 4に用いられる剥離可能な支持ベースフィルムとしては、 ポリェチ レン、 ポリ塩化ビニル等のポリオレフイン、 ポリエチレンテレフ夕レート等のポ リエステル、 ポリカーボネート、 さらには離型紙やアルミニウム箔の如き金属箔 などが挙げられる。 支持べ一スフイルムの厚みとしては 1 0〜 1 5 0〃mが一般 的である。 なお、 支持フィルムにはマッド処理、 コロナ処理の他、 離型処理を施 してあってもよい。  Examples of the peelable support base film used in claim 4 of the present invention include polyethylene, polyolefins such as polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonate, and metal foils such as release paper and aluminum foil. No. The thickness of the supporting base film is generally 10 to 150 m. The support film may be subjected to a mold treatment, a corona treatment, or a release treatment.
該樹脂組成物と支持ベースフィルムとからなる本発明に用いる接着フィルムは、 所定の有機溶剤に溶解した該樹脂組成物ワニスを支持ベースフィルム上に塗布後、 加熱及び/又は熱風吹き付けにより溶剤を乾燥させて公知慣用の方法で作製する ことができる。 その後、 そのまま又は樹脂組成物層の表面に離形フィルムをさら に積層し、 ロール状に卷きとって貯蔵される。 この時、 樹脂組成物層の面積とし ては支持べ一スフィルムと同じか又は支持ベースフィルム上に樹脂未塗工部分を 有する小さい面積とすることができる。  The adhesive film used in the present invention comprising the resin composition and the support base film is obtained by applying the resin composition varnish dissolved in a predetermined organic solvent on a support base film, and then drying the solvent by heating and / or hot air blowing. Then, it can be produced by a known and commonly used method. Thereafter, a release film is further laminated as it is or on the surface of the resin composition layer, and stored in a roll shape. At this time, the area of the resin composition layer can be the same as the support base film or a small area having a resin uncoated portion on the support base film.
次に該接着フィルムをパターン加工された回路基板上に真空積層する方法であ るが、 簡便には市販のロール方式連続式真空ラミネ一夕一を使用して行える。 し かし、 現行巿販機では真空度が 4 0ミリバール程度しが低下しないため、 ボイド を巻き込むことなく安定的に連続ラミネートするのは困難である。 真空度の向上 により可能と思われるが、 現状以下に説明する本願請求項 3、 4記載の方法が好 ましい。  Next, a method of vacuum laminating the adhesive film on a pattern-processed circuit board can be easily performed using a commercially available roll-type continuous vacuum laminator. However, with current vending machines, the degree of vacuum is only about 40 mbar and does not decrease, so it is difficult to carry out continuous continuous lamination without involving voids. Although it seems that this is possible by improving the degree of vacuum, the methods described in claims 3 and 4 of the present application described below are preferred at present.
回路基板とほぼ同面積である接着フィルムの樹脂組成物層面を回路基板の片面 又は両面に位置ずれを生じない程度に各々部分的に仮接着状態で枚葉する方法と しては、 市販のドライフィルム用オートカツトラミネ一夕一を使用することがで きる。 基板の幅程度の幅を有するロール状該接着フィルムを、 オートカットラミ ネ一夕一にて仮付け部分のみ加温、 加圧し、 ラミネートロールには温度、 圧力の かからない状態で所望のサイズに力ットして使用する。 Apply the resin composition layer surface of the adhesive film, which has almost the same area as the circuit board, to one side of the circuit board. Alternatively, a commercially available auto-cut lamina for dry film can be used as a method of partially sheeting each piece in a temporary adhesive state so as not to cause displacement on both sides. The roll-shaped adhesive film having a width of about the width of the substrate is heated and pressurized only in the temporarily attached portion by means of an auto-cut laminator, and the laminate roll is pressed to a desired size without being subjected to temperature and pressure. To use.
次に回路基板上に仮接着された該接着フィルム上に、 該樹脂組成物層面積より も大きい保護用フィルムを接着フィルムとその中心がほぼ同じ位置となるとよう 挟んだ状態で、 2ミリバール以下の真空条件下、 プレス板側より加熱、 加圧し積 層するには、 例えば、 二チゴ一 ' モートン (株) 製バキュームアップリケ一夕一、 (株) 名機製作所製真空加圧式ラミネーター等市販の真空積層機を使用すること ができる。 ラミネート時の樹脂流れが内層回路の導体厚以上である条件でラミネ —トすることにより、 内層回路パターンの被覆が良好に行われる。 真空条件が 2 ミリバール以下で加熱、 加圧することによりボイ ド無く真空積層することが可能 となる。  Next, a protective film larger than the resin composition layer area is sandwiched on the adhesive film temporarily bonded to the circuit board so that the center of the protective film is substantially at the same position as that of the adhesive film. Heating and pressurization from the press plate side under vacuum conditions and laminating are performed using, for example, a vacuum applicator manufactured by Nichigo-I-Morton Co., Ltd. and a vacuum pressurized laminator manufactured by Meiki Seisakusho Co., Ltd. A laminating machine can be used. By laminating under the condition that the resin flow during lamination is not less than the conductor thickness of the inner layer circuit, the inner layer circuit pattern can be covered well. By heating and pressing under vacuum conditions of 2 mbar or less, vacuum lamination can be performed without voids.
保護用フィルムとしてはポリエチレン、 ポリプロピレン等のポリオレフイン、 ポリエチレンテレフ夕レート等のポリエステル、 ポリカーボネート、 さらには離 型紙やアルミニウム箔の如き金属箔などが挙げられる。 保護用フィルムはプレス 面が異物で傷付いたり、 接着剤のシミだしによる汚れを防止する目的で使用する もので、 その厚みとしては 5乃至 1 0 0〃mの範囲が好ましい。 なお、 保護用フ イルムがマツド処理及び/又はエンボス加工されていると真空状態での空気抜け がよいし、 離型処理されているとプレス板とスベリが良いので積層工程の生産性 が向上する。  Examples of the protective film include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polycarbonate, and release paper and metal foil such as aluminum foil. The protective film is used for the purpose of preventing the press surface from being scratched by foreign matters and preventing stains due to adhesive stains, and the thickness is preferably in the range of 5 to 100 μm. In addition, if the protective film has been subjected to a matting process and / or an embossing process, air escape in a vacuum state is good, and if the release film has been subjected to a mold releasing process, the press plate and the slip are good, so that the productivity of the laminating process is improved. .
真空積層後、 支持べ一スフイルムが 1乃至 1 0 // m厚の金属箔を該樹脂組成物 面に有し、 反対面に 1 0乃至 1 0 厚の剥離用キャリアを備えた構造のもの である場合には、 そのまま熱硬化させ一体化し多層プリント配線板を製造するこ とができる。 また、 支持ベースフィルムがそれ以外の該樹脂組成物から剥離可能 なものである場合には、 真空積層後、 該支持べ一スフイルムを剥離した後、 該樹 脂組成物の面積よりも大きく、 1乃至 1 0 / m厚の金属箔に厚み 1 0乃至 1 0 0 / m厚の剥離用キヤリアを備えた金属箔の金属箔面を該樹脂組成物上に配して加 熱、 加圧積層することにより前記本発明と同じ構成の回路基板を製造することが できる。 本積層においては、 ほぼ平滑な樹脂表面上への金属箔の積層であるので、 常態又は減圧下のロール方式連続ラミネ一トであっても、 本発明の工程同様の真 空ラミネートであっても良い。 その後、 同様に該回路基板を熱硬化させ一体化し 多層プリント配線板を製造することができる。 熱硬化の条件は樹脂によって異な るが 1 0 0〜2 0 0 °Cで 1 0〜9 0分の範囲で選択される。 After vacuum lamination, the supporting base film has a structure in which a metal foil of 1 to 10 // m thickness is provided on the surface of the resin composition, and a release carrier of 10 to 10 thickness is provided on the opposite surface. In some cases, it is possible to manufacture a multilayer printed wiring board by heat curing and integrating. Can be. When the supporting base film is releasable from the other resin composition, after the vacuum lamination, the supporting base film is peeled off, and the area is larger than the area of the resin composition. The metal foil surface of a metal foil having a peeling carrier having a thickness of 10 to 100 / m on a metal foil having a thickness of 10 to 100 / m is arranged on the resin composition by heating and pressure lamination. Thus, a circuit board having the same configuration as that of the present invention can be manufactured. In the present lamination, since the metal foil is laminated on a substantially smooth resin surface, it can be a continuous laminating roll system under normal or reduced pressure, or a vacuum lamination similar to the process of the present invention. good. Thereafter, the circuit board is similarly thermally cured and integrated to produce a multilayer printed wiring board. The conditions of thermosetting differ depending on the resin, but are selected within a range of 100 to 200 minutes at 100 to 200 ° C.
本発明の方法に従って積層回路基板を得た後、 必要工程段階に応じて剥離用キ ャリアを剥離し、 所定のスル一ホール及び/又はビアホール部にレーザ一及び/ 又はドリルによる穴鬨けを行い、 必要に応じて穴内を乾式及び/又は湿式法によ りクリーニングした後、 蒸着、 スパッタリング、 イオンプレ一ティング等の乾式 メツキ及び/又は無電解、 電解メツキ等の湿式メヅキにより導体層を形成する。 その時、 導体層とは逆パ夕一ンのメツキレジストを形成し、 セミアディティブ法 で導体層を形成してもよい。 いずれにせよ、 極薄銅箔の使用によりファインパタ —ンの形成が容易に行えるようになる。 次に、 第二の発明について説明する。  After obtaining the laminated circuit board according to the method of the present invention, the carrier for peeling is peeled off according to the required process step, and a hole is drilled with a laser and / or drill at a predetermined through hole and / or via hole. After the inside of the hole is cleaned by a dry and / or wet method as necessary, a conductor layer is formed by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless plating and electrolytic plating. At this time, a plating resist that is reverse to the conductive layer may be formed, and the conductive layer may be formed by a semi-additive method. In any case, the use of ultra-thin copper foil makes it easy to form a fine pattern. Next, the second invention will be described.
上記問題点を顧みて、 本発明は、 機械的強度に優れたビルドアップ用金属箔付 フィルム状接着剤及びこれらを用いた多層プリント配線板の製造法に関する。 すなわち、 本発明は、 支持べ一スフイルムとその表面に積層され、 該支持べ一 スフイルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付 図面の図 1の斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成 物層からなる接着フィルムにおいて、 支持べ一スフイルムが 3乃至 2 厚の 金属箔にガラス転移点 2 0 0 °C以上、 3乃至 3 0 /m厚の耐熱フィルム層を備え た金属箔付き耐熱フィルムであり、 耐熱フィルム面に該樹脂組成物層が形成され た構造であることを特徴とする眉間絶縁用接着フィルム;及びこれをパターン加 ェされた回路基板上の片面又は両面上に、 加熱、 加圧条件下真空積層した後、 熱 硬化させ一体化したことを特徴とする多層プリント配線板の製造法;さらには、 ( a ) 支持ベースフィルムとその剥離可能な表面に積層され、 該支持ベースフィ ルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の 図 1の斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成物層か らなる接着フィルムの該樹脂組成物層を、 パターン加工された回路基板上の片面 又は両面上に、 少なくとも該パターン加工部分を該樹脂組成物層で直接覆い重ね た後、 加熱、 加圧し真空積層する工程、 (b ) 該回路基板の支持べ一スフイルム を剥離した後、 該樹脂組成物の面積よりも大きく、 3乃至 2 0 z m厚の金属箔に ガラス転移点 2 0 0 °C以上、 3乃至 3 0 m厚の耐熱フィルム層を備えた金属箔 付き耐熱フィルムのフィルム面を該樹脂組成物上に加熱、 加圧し積層する工程、 および (c ) 該回路基板を熱硬化させ一体化する工程を有することを特徴とする 多層プリント配線板の製造法;に関する。 以下、 本発明を詳細に説明する。 In view of the above problems, the present invention relates to a film-form adhesive with a metal foil for build-up having excellent mechanical strength and a method for producing a multilayer printed wiring board using the same. That is, the present invention relates to a support base film and a layer laminated on a surface thereof, which has the same or smaller area as the support base film, and has a relationship between a temperature and a melt viscosity. Thermo-fluidity, room temperature solid thermosetting resin composition with physical properties Heat-resistant film with a metal foil having a support base film of 3 to 2 thick and a heat-resistant film layer of 3 to 30 / m thick with a glass transition point of 200 ° C or more and a temperature of 200 ° C or more An adhesive film for eyebrow insulation characterized by having a structure in which the resin composition layer is formed on a heat-resistant film surface; and heating the film on one or both surfaces of a patterned circuit board by heating, A method for producing a multilayer printed wiring board, comprising: laminating under vacuum under pressure, heat-curing and integrating; and (a) laminating on a supporting base film and a peelable surface thereof; It consists of a thermo-fluid, room-temperature solid thermosetting resin composition layer having the same or smaller area as that of the lum and the physical properties of the shaded area S in Fig. 1 of the attached drawing in relation to temperature and melt viscosity. The adhesive film (B) a step of directly laminating a resin composition layer on at least one side or both sides of the pattern-processed circuit board by directly covering at least the pattern-processed portion with the resin composition layer, and then applying heat, pressure, and vacuum lamination; After peeling off the supporting base film of the circuit board, a glass transition point of not less than 200 ° C. and a thickness of 3 to 30 m is formed on a metal foil having an area larger than the area of the resin composition and having a thickness of 3 to 20 zm. A step of heating and pressurizing the film surface of the heat-resistant film with a metal foil provided with a heat-resistant film layer on the resin composition and laminating; and (c) a step of thermally curing and integrating the circuit board. A method for manufacturing a multilayer printed wiring board. Hereinafter, the present invention will be described in detail.
本発明に用いる熱流動性、 常温固形の樹脂組成物層を形成する熱硬化性樹脂組 成物は加熱により軟化し、 かつフィルム形成能があり、 さらに高温で熱硬化によ り耐熱性、 電気特性など層間絶縁材に要求される特性を満足するものであれば特 に限定されるものではない。 該樹脂組成物層の厚みはラミネートされる内層回路 基板の導体厚以上で、 導体厚 + ( 1 0〜 1 2 0 ) / mの範囲であるのが一般的で ある。 該樹脂組成物は例えば、 エポキシ樹脂系、 アクリル樹脂系、 ポリイミ ド樹脂系、 ポリアミ ドイミ ド樹脂系、 ポリシァネート樹脂系、 ポリエステル樹脂系、 熱硬化 型ポリフェニレンエーテル樹脂系等が挙げられ、 これらを 2種以上組み合わせて 使用したり、 多層構造を有する接着フィルム層とすることも可能である。 中でも、 層間絶縁材として信頼性とコスト的に優れたエポキシ樹脂系においては、 特鬨平 1 1 - 8 7 9 2 7記載のエポキシ樹脂組成物が好ましい。 The thermosetting resin composition which forms a resin composition layer of a thermo-fluidity and a room temperature solid used in the present invention is softened by heating and has a film-forming ability. There is no particular limitation as long as the characteristics required for the interlayer insulating material such as the characteristics are satisfied. The thickness of the resin composition layer is generally equal to or more than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of conductor thickness + (10 to 120) / m. Examples of the resin composition include an epoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, a polycarbonate resin, a polyester resin, and a thermosetting polyphenylene ether resin. It is also possible to use them in combination, or to form an adhesive film layer having a multilayer structure. Above all, epoxy resin compositions described in Tokiwahei 11-87972 are preferred for epoxy resin systems having excellent reliability and cost as interlayer insulating materials.
該樹脂組成物層の好ましい物性は、 第一の発明に関して先に説明したところと 同じく、 動的粘弾性率を測定し、 この温度と溶融粘度との関係で示すことができ、 本願明細書添付図面の図 1の斜線領域 Sはこの樹脂組成物層の好ましい範囲であ る。 動的粘弾性率測定は (株) ユー · ビー .ェム社製型式 Rheosol- G3000を用い て測定した曲線であり、 動的粘弾性率曲線の上限は平均乾燥温度 1 0 0 °Cで 1 0 分、 同じく下限の曲線は平均乾燥温度 1 0 0 °Cで 4分間処理した樹脂組成物層の 物性を示している。 実験的にこの曲線に挟まれる領域で、 かつ溶融粘度 10万 Pois e以下及び温度 1 4 0 °C以下の領域が本願発明の実施に好ましく用いられる樹脂 組成物層の物性をあらわしている。 溶融粘度 1 0万 Poise以上では樹脂組成物層 が硬くなり本願発明の接着フィルムの真空積層を実施した場合回路基板上のパ夕 —ンへの該樹脂組成物層の埋め込み性が悪い上に密着性が劣る。 温度 1 4 0 °Cを 超える温度で製造すると支持ベースフィルムと樹脂組成物の熱膨張率の差により 真空積層後しわが発生しやすく好ましくない。 これもまた、 第一の発明に関して 先に説明したところと同じである。  The preferred physical properties of the resin composition layer can be determined by measuring the dynamic viscoelastic modulus and showing the relationship between the temperature and the melt viscosity in the same manner as described above in relation to the first invention. A hatched area S in FIG. 1 of the drawing is a preferable range of the resin composition layer. The dynamic viscoelasticity measurement is a curve measured using a model Rheosol-G3000 manufactured by UBM Co., Ltd. The upper limit of the dynamic viscoelasticity curve is at an average drying temperature of 100 ° C. The curve at the lower limit for 0 minutes also shows the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes. The region sandwiched between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C. or less represents the physical properties of the resin composition layer preferably used in the practice of the present invention. If the melt viscosity is 100,000 Poise or more, the resin composition layer becomes hard, and when vacuum lamination of the adhesive film of the present invention is carried out, the resin composition layer is poorly embedded in a pattern on a circuit board and adheres well. Poor nature. Manufacturing at a temperature exceeding 140 ° C. is not preferred because wrinkles are likely to occur after vacuum lamination due to a difference in thermal expansion coefficient between the supporting base film and the resin composition. This is also the same as that described above with respect to the first invention.
本願明細書添付図面の図 1に示した動的粘弾性率測定は昇温速度 5 °C/分で測 定されたが、 昇温速度が異なると曲線の形状も異なってくる。 本発明に関する接 着フィルム製造例 1で得られた樹脂組成物層について異なる昇温速度で測定した 動的粘弾性率測定曲線を図 2に示した。 したがって、 該樹脂組成物層の好ましい 物性の範囲は測定条件を一定にして動的粘弾性率測定曲線を測定しなくてはなら ない。 The dynamic viscoelasticity measurement shown in FIG. 1 of the accompanying drawings of this specification was measured at a heating rate of 5 ° C./min. However, when the heating rate is different, the shape of the curve is different. FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Adhesive Film Production Example 1 according to the present invention. Therefore, the preferable range of the physical properties of the resin composition layer is that the dynamic viscoelasticity measurement curve must be measured while keeping the measurement conditions constant. Absent.
本願請求項 5乃至 6に用いられる支持べ一スフイルムは、 3乃至 2 厚の 金属箔にガラス転移点 2 0 0 °C以上、 3乃至 3 0 zin厚の耐熱フィルム層を備え た金属箱付き耐熱フィルムである。 銅箔、 アルミニウム箔の如き金属箔に、 ポリ イミド等の耐熱樹脂ワニスを塗工、 乾燥、 熱硬化させたキャストタイプや、 熱可 塑性のポリイミ ド、 液晶ポリマ一等の耐熱フィルムに銅箔、 アルミニウム箔の如 きを金属箔貼り合わせたラミネートタイプ、 さらにはポリイミ ド、 液晶ポリマ一 等の耐熱フィルム上に、 銅などの金属層を蒸着、 スパッタリング等で形成さらに メツキを施したスパッ夕タイプなどが挙げられる。 また、 金属箔は耐熱フィルム 層反対面に保護フィルム、 キヤリア一箔等を保持した構造のものであってもよい。 具体的には、 三井化学 (株) 製ネオフレックスゃェヅチヤ一フレックス、 宇部興 産 (株) 製ュピセル、 (株) クラレ製液晶ポリマーフィルムを使用したもの等、 市販のものが使用できる。 耐熱フィルム層は、 ガラス転移点が 2 0 0 °C以上のも のであれば、 特に限定されるものでは無い。 ガラス転移点が 2 0 0 °C未満である と、 半田耐熱性に劣り本願発明には使用困難である。 また、 耐熱フィルムと金属 箔の間に接着剤を介する構造のものであってもよいが、 2層タイプの方が性能的 に好ましい。 厚みに関しては、 金属箔層が 3 z m未満であるとその後の基板製造 工程中に消失される恐れがあるし、 2 を超えるとフアインパターンの形成 に不向きとなる。 一方、 耐熱フィルム層は 3 /zm未満であるとその機械的強度向 上の効果が薄れるし、 3 を超えるとコスト高の上、 絶縁層部分が厚くなり 過ぎ、 後のビア形成の微細化が困難となりファインパターンに適さなくなる。 本願請求項 7に用いられる剥離可能な支持べ一スフィルムとしては、 ポリェチ レン、 ポリ塩化ビニル等のポリオレフイン、 ポリエチレンテレフ夕レート等のポ リエステル、 ポリカーボネート、 さらには離型紙やアルミニウム箱の如き金属箔 などが挙げられる。 支持べ一スフイルムの厚みとしては 1 0〜 1 5 0 mが一般 的である。 なお、 支持フィルムにはマッド処理、 コロナ処理の他、 離型処理を施 してあってもよい。 The supporting base film used in claims 5 and 6 of the present application is a heat-resistant metal box with a heat-resistant film layer having a glass transition point of 200 ° C. or more and a thickness of 3 to 30 zin on a metal foil of 3 to 2 thickness. Film. Heat-resistant resin varnish such as polyimide is coated on metal foil such as copper foil and aluminum foil, dried and heat-cured cast type, heat-resistant film such as thermoplastic polyimide and liquid crystal polymer is used as copper foil, A laminate type in which aluminum foil or the like is bonded to a metal foil, or a spatter type in which a metal layer such as copper is formed on a heat-resistant film such as polyimide or liquid crystal polymer by vapor deposition, sputtering, etc. Is mentioned. The metal foil may have a structure in which a protective film, a carrier foil and the like are held on the opposite surface of the heat-resistant film layer. Specifically, commercially available products such as those using Neoflex Petrochemical Flex manufactured by Mitsui Chemicals, Inc., Upisel manufactured by Ube Industries, Ltd., and liquid crystal polymer films manufactured by Kuraray Co., Ltd. can be used. The heat-resistant film layer is not particularly limited as long as it has a glass transition point of 200 ° C. or more. When the glass transition point is lower than 200 ° C., the solder heat resistance is poor, and it is difficult to use in the present invention. Further, a structure in which an adhesive is interposed between the heat-resistant film and the metal foil may be used, but a two-layer type is preferable in terms of performance. Regarding the thickness, if the thickness of the metal foil layer is less than 3 zm, it may be lost during the subsequent substrate manufacturing process, and if it exceeds 2, it is not suitable for forming a fine pattern. On the other hand, if the heat-resistant film layer is less than 3 / zm, the effect of improving the mechanical strength is diminished, and if it exceeds 3, the cost is high, and the insulating layer portion is too thick, and the fineness of later via formation is reduced. It becomes difficult and unsuitable for fine patterns. The peelable support base film used in claim 7 of the present invention includes polyethylene, polyolefin such as polyvinyl chloride, polyester such as polyethylene terephthalate, polycarbonate, and metal foil such as release paper and aluminum box. And the like. The thickness of the supporting base film is generally 10 to 150 m It is a target. The support film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
該樹脂組成物と支持べ一スフイルムとからなる本発明に用いる接着フィルムは、 所定の有機溶剤に溶解した該樹脂組成物ワニスを支持ベースフィルム上に塗布後、 加熱及び/又は熱風吹き付けにより溶剤を乾燥させて公知慣用の方法で作製する ことができる。 その後、 そのまま又は樹脂組成物層の表面に離形フィルムをさら に積層し、 ロール状に巻きとつて貯蔵される。 この時、 樹脂組成物層の面積とし ては支持ベースフィルムと同じか又は支持ベースフィルム上に樹脂未塗工部分を 有する小さい面積とすることができる。  The adhesive film used in the present invention comprising the resin composition and a support base film, after applying the resin composition varnish dissolved in a predetermined organic solvent on a support base film, heating and / or hot air spraying the solvent. It can be dried and produced by a known and commonly used method. Thereafter, a release film is further laminated as it is or on the surface of the resin composition layer, and stored in a roll shape. At this time, the area of the resin composition layer can be the same as that of the support base film or a small area having a resin uncoated portion on the support base film.
次に該接着フィルムをパターン加工された回路基板上に真空積層する方法であ るが、 簡便には市販の真空ラミネ一夕一を使用して行える。 例えば、 ニチゴ一- モートン (株) 製バキュームアップリケ一ター、 (株) 名機製作所製真空加圧式 ラミネ一夕一、 日立テクノエンジニアリング (株) 製ロール式ドライコー夕等巿 販の真空積層機を使用することができる。 ラミネ一ト時の樹脂流れが内層回路の 導体厚以上である条件でラミネートすることにより、 内層回路パターンの被覆が 良好に行われる。  Next, a method of vacuum laminating the adhesive film on a pattern-processed circuit board can be easily performed using a commercially available vacuum laminator. For example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurized laminator made by Meiki Seisakusho Co., Ltd., a roll-type dry coater manufactured by Hitachi Techno Engineering Co., Ltd., etc. can do. By laminating under the condition that the resin flow at the time of lamination is not less than the conductor thickness of the inner layer circuit, the inner layer circuit pattern can be covered well.
真空積層後、 支持ベースフィルムが金属箔付き耐熱フィルムであるものの場合 には、 そのまま熱硬化させ一体化し多層プリント配線板を製造することができる。 また、 支持べ一スフイルムがそれ以外の該樹脂組成物から剥離可能なものである 場合には、 真空積層後、 該支持べ一スフイルムを剥離した後、 該樹脂組成物の面 積よりも大きく、 3乃至 2 0 m厚の金属箱にガラス転移点 2 0 0 aC以上、 3乃 至 3 0; m厚の耐熱フィルム層を備えた金属箔付き耐熱フィルムのフィルム面を 該樹脂組成物上に配して加熱、 加圧積層することにより前記本発明と同じ構成の 回路基板を製造することができる。 本積層においては、 ほぼ平滑な樹脂表面上へ の金属箔付き耐熱フィルムの積層であるので、 常態又は減圧下のロール方式連続 ラミネートであっても、 本発明の工程同様の真空ラミネートであっても良い。 そ の後、 同様に該回路基板を熱硬化させ一体化し多層プリント配線板を製造するこ とができる。 熱硬化の条件は樹脂によって異なるが 1 0 0〜2 0 0 °Cで 1 0〜9 0分の範囲で選択される。 If the supporting base film is a heat-resistant film with a metal foil after vacuum lamination, it can be thermoset as it is and integrated to produce a multilayer printed wiring board. When the support base film is peelable from the rest of the resin composition, after laminating the support base film after vacuum lamination, the area is larger than the area of the resin composition; The glass surface of a heat-resistant film with a metal foil provided with a heat-resistant film layer having a glass transition point of 200 aC or more and a heat-resistant film layer having a thickness of 300 m or more in a metal box having a thickness of 3 to 20 m is placed on the resin composition. A circuit board having the same configuration as that of the present invention can be manufactured by arranging, heating, and pressing and laminating. In this lamination, a heat-resistant film with metal foil is laminated on a substantially smooth resin surface, so it can be rolled continuously under normal conditions or under reduced pressure. It may be a laminate or a vacuum laminate similar to the process of the present invention. Thereafter, the circuit board is similarly cured by heat and integrated to produce a multilayer printed wiring board. The conditions for thermosetting differ depending on the resin, but are selected in the range of 100 to 200 ° C. for 10 to 90 minutes.
本発明の方法に従って積層回路基板を得た後、 所定のスルーホール及び/又は ビアホール部にレーザ一及び/又はドリルによる穴開けを行い、 必要に応じて穴 内を乾式及び Z又は湿式法によりクリーニングした後、 蒸着、 スパッタリング、 イオンプレーティング等の乾式メツキ及び/又は無電解、 電解メツキ等の湿式メ ツキにより導体層を形成する。 その時、 導体層とは逆パターンのメツキレジスト を形成し、 セミアディティブ法等で導体層を形成してもよい。 最後に、 第三の発明について説明する。  After obtaining a laminated circuit board according to the method of the present invention, predetermined through holes and / or via holes are drilled with a laser and / or a drill, and if necessary, the inside of the holes is cleaned by a dry method, a Z method, or a wet method. After that, the conductor layer is formed by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless plating and electrolytic plating. At this time, a mask resist having a pattern opposite to that of the conductor layer may be formed, and the conductor layer may be formed by a semi-additive method or the like. Finally, the third invention will be described.
上記問題点を顧みて、 本発明は、 機械強度に優れたビルドアップ用フィルム状 接着剤及びガラスクロス、 ガラスペーパー又は有機不織布を用いた簡便な積層板 の製造法に関する。  In view of the above problems, the present invention relates to a simple method for producing a laminate using a film-like adhesive for build-up having excellent mechanical strength and glass cloth, glass paper or organic nonwoven fabric.
すなわち、 本発明は、 支持ベースフィルムとその表面に積層され、 該支持べ一 スフイルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付 図面の図 1の斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成 物層からなる接着フィルムにおいて、 さらに該樹脂組成物表面にガラスクロス又 は有機不織布層を設けた構造であることを特徴とする眉間絶縁用接着フィルム; 及びこれを基材上の片面又は両面上に、 加熱、 加圧条件下真空積層した後、 熱硬 化させ一体化したことを特徴とする積層板の製造法;又は、 支持ベースフィルム とその表面に積層され、 該支持べ一スフィルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の斜線領域 Sの物性を有する熱流 動性、 常温固形の熱硬化性樹脂組成物層からなる接着フィルムを用いて絶縁層を 形成する方法において、 基材上の片面又は両面上にガラスクロス又は有機不織布 を枚葉し、 さらにその上に接着フィルムの樹脂組成物層を直接覆い重ねた状態で、 真空条件下、 加熱、 加圧し積層する工程を必須とする積層板の製造法;さらには、That is, the present invention relates to a supporting base film and a surface thereof, which are laminated on the surface thereof, have the same or smaller area as the supporting base film, and have a relationship between temperature and melt viscosity in a hatched area S in FIG. 1 of the accompanying drawings. An adhesive film comprising a thermosetting, room-temperature solid thermosetting resin composition layer having physical properties, and further comprising a glass cloth or an organic nonwoven fabric layer provided on the surface of the resin composition, characterized by having a structure between eyebrows. A method for producing a laminated plate, comprising: laminating an adhesive film for use on one or both sides of a base material under vacuum under heating and pressurizing conditions, and then thermosetting and integrating the laminated film; or a support base Heat fluidity which is laminated on the film and the surface thereof, has the same or smaller area as the support base film, and has the physical properties of the shaded area S in FIG. 1 of the accompanying drawings in relation to temperature and melt viscosity; Always The insulating layer using an adhesive film made of a thermosetting resin composition layer of a solid In the method of forming, a glass cloth or an organic nonwoven fabric is sheeted on one side or both sides of the base material, and the resin composition layer of the adhesive film is directly overlaid thereon. A method of manufacturing a laminated plate that requires a step of pressing and laminating;
( a ) 基材上の片面又は両面上に該接着フィルムの樹脂組成物層を直接覆い重ね た状態で、 真空条件下、 加熱、 加圧し積層する工程、 および (b ) 支持べ一スフ イルムを剥離し、 該樹脂組成物層が転写された基材のその上層にガラスクロス、 ガラスペーパー又は有機不織布を枚葉し、 さらにその上に該接着フィルムの樹脂 組成物層を直接覆い重ねた状態で、 真空条件下、 加熱、 加圧し積層する工程を必 須とする積層板の製造法;に関する。 以下、 本発明を詳細に説明する。 (a) a step of heating and pressurizing and laminating the resin composition layer of the adhesive film directly on one side or both sides of the base material under vacuum conditions, and (b) a supporting base film. In a state in which a glass cloth, a glass paper or an organic nonwoven fabric is sheeted on the upper layer of the substrate on which the resin composition layer has been transferred, and the resin composition layer of the adhesive film is directly overlaid thereon. A method for producing a laminate, which requires a step of laminating by heating and pressing under vacuum conditions. Hereinafter, the present invention will be described in detail.
本発明に用いる熱流動性、 常温固形の樹脂組成物層を形成する熱硬化性樹脂組 成物は加熱により軟化し、 かつフィルム形成能があり、 さらに高温で熱硬化によ り耐熱性、 電気特性など眉間絶縁材に要求される特性を満足するものであれば特 に限定されるものではない。 該樹脂組成物層の厚みはラミネートされる内層回路 基板の導体厚以上で、 導体厚 + ( 1 0〜 1 2 0 ) mの範囲であるのが一般的で ある。 かつ、 本願請求項 1〜 3の場合は樹脂厚がガラスクロス又は有機不織布厚 + ( 1 0〜 1 2 0 ) /mの範囲にあるのが好ましい。  The thermosetting resin composition which forms a resin composition layer of a thermo-fluidity and a room temperature solid used in the present invention is softened by heating and has a film-forming ability. There is no particular limitation as long as it satisfies the characteristics required for the inter-glove insulation, such as the characteristics. The thickness of the resin composition layer is generally equal to or greater than the conductor thickness of the inner circuit board to be laminated, and is generally in the range of (conductor thickness + (10 to 120) m). In addition, in the case of claims 1 to 3 of the present application, the resin thickness is preferably in the range of glass cloth or organic nonwoven fabric thickness + (10 to 120) / m.
該樹脂組成物は例えば、 エポキシ樹脂系、 アクリル樹脂系、 ポリイミド樹脂系、 ポリアミ ドイミ ド樹脂系、 ポリシァネート樹脂系、 ポリエステル樹脂系、 熱硬化 型ポリフヱニレンェ一テル樹脂系等が挙げられ、 これらを 2種以上組み合わせて 使用したり、 多層構造を有する接着フィルム層とすることも可能である。 中でも、 層間絶縁材として信頼性とコスト的に優れたエポキシ樹脂系においては、 特鬨平 1 1 - 8 7 9 2 7記載のエポキシ樹脂組成物が好ましい。  Examples of the resin composition include an epoxy resin, an acrylic resin, a polyimide resin, a polyamideimide resin, a polyisocyanate resin, a polyester resin, and a thermosetting polyphenylene ether resin. It is also possible to use them in combination, or to form an adhesive film layer having a multilayer structure. Above all, epoxy resin compositions described in Tokiwahei 11-87972 are preferred for epoxy resin systems having excellent reliability and cost as interlayer insulating materials.
該樹脂組成物層の好ましい物性は、 第一の発明に関して先に説明したところと 同じく、 動的粘弾性率を測定し、 この温度と溶融粘度との関係で示すことができ、 本願明細書添付図面の図 1の斜線領域 Sはこの樹脂組成物層の好ましい範囲であ る。 動的粘弾性率測定は (株) ユー . ビ一 .ェム社製型式 Rheosol- G3000を用い て測定した曲線であり、 動的粘弾性率曲線の上限は平均乾燥温度 1 0 0 °Cで 1 0 分、 同じく下限の曲線は平均乾燥温度 1 0 0 °Cで 4分間処理した樹脂組成物層の 物性を示している。 実験的にこの曲線に挟まれる領域で、 かつ溶融粘度 10万 Pois e以下及び温度 1 4 0 °C以下の領域が本願発明の実施に好ましく用いられる樹脂 組成物層の物性をあらわしている。 溶融粘度 1 0万 Poise以上では樹脂組成物層 が硬くなり本願発明の接着フィルムの真空積層を実施した場合、 基材及びガラス クロス又は有機不織布への該樹脂組成物の埋め込み性が悪い上に密着性が劣る。 温度 1 4 0 °Cを超える温度で製造すると支持べ一スフイルムと樹脂組成物の熱膨 張率の差により真空積層後しわが発生しやすく好ましくない。 Preferred physical properties of the resin composition layer are as described above with respect to the first invention. Similarly, the dynamic viscoelastic modulus can be measured and represented by the relationship between the temperature and the melt viscosity. The hatched area S in FIG. 1 of the attached drawings of the present specification is a preferable range of the resin composition layer. The dynamic viscoelasticity measurement is a curve measured using a model manufactured by U.B.I.M. Co., Ltd., Rheosol-G3000. The upper limit of the dynamic viscoelasticity curve is at an average drying temperature of 100 ° C. The curve at the lower limit for 10 minutes also shows the physical properties of the resin composition layer treated at an average drying temperature of 100 ° C. for 4 minutes. The region sandwiched between the curves experimentally and having a melt viscosity of 100,000 Poise or less and a temperature of 140 ° C. or less represents the physical properties of the resin composition layer preferably used in the practice of the present invention. When the melt viscosity is 100,000 Poise or more, the resin composition layer becomes hard, and when the adhesive film of the present invention is vacuum-laminated, the resin composition is poorly embeddable into a substrate and a glass cloth or an organic nonwoven fabric, and adheres well. Poor nature. Manufacturing at a temperature exceeding 140 ° C. is not preferred because wrinkles are likely to occur after vacuum lamination due to the difference in the thermal expansion coefficient between the supporting base film and the resin composition.
本願明細書添付図面の図 1に示した動的粘弾性率測定は昇温速度 5 °C/分で測 定されたが、 昇温速度が異なると曲線の形状も異なってくる。 本発明に関する接 着フィルム製造例 1で得られた樹脂組成物層について異なる昇温速度で測定した 動的粘弾性率測定曲線を図 2に示した。 したがって、 該樹脂組成物層の好ましい 物性の範囲は測定条件を一定にして動的粘弾性率測定曲線を測定しなくてはなら ない。  The dynamic viscoelasticity measurement shown in FIG. 1 of the accompanying drawings of this specification was measured at a heating rate of 5 ° C./min. However, when the heating rate is different, the shape of the curve is different. FIG. 2 shows dynamic viscoelasticity measurement curves measured at different heating rates for the resin composition layer obtained in Adhesive Film Production Example 1 according to the present invention. Therefore, the range of preferable physical properties of the resin composition layer must be measured under a constant measurement condition to measure a dynamic viscoelasticity measurement curve.
本願発明の接着フィルムに用いられる支持べ一スフィルムとしては、 ポリェチ レン、 ポリ塩化ビニル等のポリオレフイン、 ポリエチレンテレフ夕レート等のポ リエステル、 ポリカーボネート、 さらには離型紙や銅箔、 アルミニウム箔の如き 金属箔などが挙げられる。 支持べ一スフイルムの厚みとしては 1 0〜 1 5 0〃m が一般的である。 なお、 支持フィルムにはマッド処理、 コロナ処理の他、 離型処 理を施してあってもよい。  Examples of the support base film used for the adhesive film of the present invention include polyolefins such as polyethylene and polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonates, and metal such as release paper, copper foil, and aluminum foil. Foil and the like. The thickness of the supporting base film is generally from 10 to 150 m. Note that the support film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
本願発明の該樹脂組成物と支持べ一スフイルムとからなる接着フィルムは、 所 定の有機溶剤に溶解した該樹脂組成物ワニスを支持べ一スフイルム上に塗布後、 加熱及び/又は熱風吹き付けにより溶剤を乾燥させて公知慣用の方法で作製する ことができる。 その後、 樹脂組成物層の表面にガラスクロス又は有機不織布を熱 ラミネートして貼り合わせロール状に巻きとつて貯蔵される。 あるいは本願請求 項 1 0、 1 1の場合には、 樹脂組成物層の表面をそのまま又は離形フィルムを積 層し、 ロール状に卷きとって貯蔵される。 この時、 樹脂組成物層の面積としては 支持ベースフィルムと同じか又は支持ベースフィルム上に樹脂未塗工部分を有す る小さい面積とすることができる。 The adhesive film comprising the resin composition of the present invention and a support base film is as follows: The resin composition varnish dissolved in a given organic solvent is applied onto a support base film, and then the solvent is dried by heating and / or hot air spraying to prepare the resin composition by a known and common method. Thereafter, a glass cloth or an organic nonwoven fabric is heat-laminated on the surface of the resin composition layer, and the laminate is wound into a roll and stored. Alternatively, in the case of claims 10 and 11 of the present application, the surface of the resin composition layer is stored as it is or a release film is laminated thereon and wound into a roll. At this time, the area of the resin composition layer can be the same as the supporting base film or a small area having a resin uncoated portion on the supporting base film.
本願発明に用いられるガラスクロス、 ガラスペ一パ一、 有機不織布としては巿 販のものが使用できるが、 2 0〜 1 0 0 mの薄物が好ましい。 中でもフィラメ ント径が細めで、 目が細かく平坦性の良いタイプや、 ァラミ ド不織布に代表され る有機不織布を使用すればレーザ一加工性に優れており好ましい。  Commercially available glass cloth, glass paper, and organic nonwoven fabric used in the present invention can be used, but a thin material of 20 to 100 m is preferable. Among them, it is preferable to use a type having a small filament diameter, a fine mesh and good flatness, and an organic nonwoven fabric typified by an aramide nonwoven fabric because it is excellent in laser-workability.
次に具体的工法について説明する。  Next, a specific construction method will be described.
該接着フィルムが樹脂組成物面にガラスクロス又は有機不織布を有する構造の 場合には、 ガラスクロス又は有機不織布面を基材上の片面又は両面上に、 加熱、 加圧条件下真空積層する。 積層には市販の真空積層プレス機、 真空ラミネ一夕一 を使用して行える。 なかでも、 二チゴー 'モートン (株) 製バキュームァヅプリ ケ一夕一、 (株) 名機製作所製真空加圧式ラミネ一夕一、 日立テクノエンジニァ リング製ドライコ一夕等市販の真空積層機を使用すれば、 簡便にボイド無く真空 積層することが可能である。 これにより、 基材ノ樹脂/ガラスクロス又は有機不 織布/樹脂の構成で剛性に優れた積層板を簡便に製造することが可能である。 基 材についてはプリプレダ、 アンクラッド基板の他、 ポリイミ ド、 ポリエチレンナ フ夕レートの如きフレキシブルフィルム、 さらにはパ夕一ン加工された回路基板 を使用し多層プリント配線板を製造することも可能である。  When the adhesive film has a structure having a glass cloth or an organic nonwoven fabric on the surface of the resin composition, the glass cloth or the organic nonwoven fabric surface is vacuum-laminated on one or both surfaces of the substrate under heating and pressure. Lamination can be performed using a commercially available vacuum lamination press, Vacuum Lamine Ichiichi. Among them, Nichigo's Morton Co., Ltd. Vacuum Appliqué Ichiichi, Meiki Seisakusho Co., Ltd. Vacuum Pressurized Lamine Ichiichi, Hitachi Techno Engineering Dryco Ichiyu, etc. By using, it is possible to easily perform vacuum lamination without voids. This makes it possible to easily produce a laminate having excellent rigidity with a configuration of base resin / glass cloth or organic nonwoven cloth / resin. As for the base material, in addition to pre-preda and unclad substrates, it is possible to manufacture multilayer printed wiring boards using flexible films such as polyimide and polyethylene naphthalate, and circuit boards that have been processed into printed circuits. is there.
ガラスクロス又は有機不織布を有さない接着フィルムを使用する場合には、 該 樹脂組成物面を基材上にガラスクロス又は有機不織布を挟んで加熱、 加圧条件下 同様に真空積層する。 これにより、 上記同様の基材 /樹脂/ガラスクロス又は有 機不織布/樹脂の構成の積層板を製造することが可能である。 さらに本願発明で は、 まず該接着フィルムを基材上に真空積層後、 支持べ一スフイルムを剥離する。 その後、 該樹脂組成物が転写された基材上にガラスクロス、 ガラスべ一パ一又は 有機不織布を枚葉し、 さらにもう一度該接着フィルムの樹脂組成物層を直接覆い 重ねた状態で、 真空条件下、 加熱、 加圧し積層することもできる。 これにより、 該接着フィルムの樹脂組成物層が薄い場合にも基材 /樹脂/ガラスクロス、 ガラ スぺ一パ一又は有機不織布/樹脂の構成で簡便に積層板を製造することが可能で ある。 When using an adhesive film without glass cloth or organic nonwoven fabric, The resin composition surface is vacuum-laminated similarly under heating and pressing conditions with a glass cloth or an organic non-woven fabric interposed on a substrate. This makes it possible to produce a laminate having the same structure as the above-mentioned base material / resin / glass cloth or organic nonwoven fabric / resin. Further, in the present invention, first, the adhesive film is vacuum-laminated on a substrate, and then the supporting base film is peeled off. Thereafter, a glass cloth, a glass paper or an organic nonwoven fabric is sheet-fed on the substrate on which the resin composition has been transferred, and the resin composition layer of the adhesive film is directly covered again, and the vacuum conditions are applied. Underneath, heating and pressurizing can be used for lamination. Thereby, even when the resin composition layer of the adhesive film is thin, it is possible to easily produce a laminated board with the structure of the base material / resin / glass cloth, glass paper or organic nonwoven fabric / resin. .
真空積層後、 支持ベースフィルムが銅箔の如き金属箔の場合にはそのまま熱硬 化させ一体化し積層板を製造することができる。 また、 支持べ一スフイルムがそ れ以外の該樹脂組成物から剥離可能なものである場合には、 真空積層後、 該支持 ベースフィルムを剥離した後、 同様に熱硬化させ一体化し積層板を製造すること ができる。 熱硬化の条件は樹脂によって異なるが 1 0 0〜 2 0 0 °。で 1 0〜 9 0 分の範囲で選択される。  After the vacuum lamination, when the supporting base film is a metal foil such as a copper foil, the support base film can be thermoset as it is and integrated to produce a laminated board. When the support base film is peelable from the other resin composition, after vacuum lamination, the support base film is peeled off, and then heat-cured similarly to be integrated to produce a laminated board. can do. The thermosetting condition varies depending on the resin, but is 100 to 200 °. Is selected in the range of 10 to 90 minutes.
本発明の方法に従って積層板を得た後、 所定のスル一ホール及び/又はビアホ ール部にレ一ザ一及び/又はドリルによる穴鬨けを行い、 必要に応じて穴内を乾 式及び/又は湿式法によりクリーニングした後、 蒸着、 スパッタリング、 イオン プレーティング等の乾式メツキ及び/又は無電解、 電解メツキ等の湿式メツキに より導体層を形成しプリント配線板が製造できる。  After obtaining a laminated board according to the method of the present invention, a predetermined through hole and / or via hole portion is drilled with a laser and / or a drill, and if necessary, the inside of the hole is dry and / or dry. Alternatively, after cleaning by a wet method, a conductor layer is formed by dry plating such as vapor deposition, sputtering and ion plating and / or wet plating such as electroless plating and electrolytic plating, and a printed wiring board can be manufactured.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 動的粘弾性率測定を示し、 (株) ユー . ビー .ェム社製型式 Rhesol-G 3000を用いて測定した曲線であり、 動的粘弾性率の上限の曲線( 1 )の平均乾燥温 度 100°Cで 1 0分、 同じく下限の曲線(2)は平均乾燥温度 100度 Cで 4分間 処理した樹脂組成物の物性を示している。 測定条件は昇温速度は 5 °C/分、 開始 温度 60°C、 測定温度間隔 2. 5°C、 振動 lHz/degである。 FIG. 1 shows a dynamic viscoelasticity measurement, which is a curve measured using a model Rhesol-G 3000 manufactured by U.B.M. Co., Ltd. The upper limit curve of the dynamic viscoelasticity (1) Average drying temperature Curve (2) at 100 ° C for 10 minutes and the lower limit curve also shows the physical properties of the resin composition treated at an average drying temperature of 100 ° C for 4 minutes. The measurement conditions were as follows: a heating rate of 5 ° C / min, a starting temperature of 60 ° C, a measuring temperature interval of 2.5 ° C, and a vibration of lHz / deg.
図 2は、 動的粘弾性率測定を示し、 (株) ユー . ビ一 .ェム社製型式 Rhesol- G 3000を用いて測定した曲線であり、 本願各発明に関する接着フィルム製造例 1に より得られた樹脂組成物層を平均乾燥温度 100°Cで 5分間処理した樹脂組成物 の物性を示している。 昇温速度は 5 °C/分 (曲線 III)、 10°C (曲線 II) 及び 2 0°C (曲線 I) である。 測定条件は鬨始温度 60°C、 測定温度間隔 2. 5。 振 動 lHz/degである。  FIG. 2 shows a dynamic viscoelasticity measurement, which is a curve measured using a model Rhesol-G 3000 manufactured by UBM Corporation. This shows the physical properties of the resin composition obtained by treating the obtained resin composition layer at an average drying temperature of 100 ° C. for 5 minutes. The heating rates are 5 ° C / min (curve III), 10 ° C (curve II) and 20 ° C (curve I). The measurement conditions were as follows: the starting temperature was 60 ° C and the measuring temperature interval was 2.5. The vibration is lHz / deg.
図 3は、 動的粘弾性率測定を示し、 (株) ュ一 . ビー ·ェム社製型式 Rhesol - G 3000を用いて測定した曲線であり、 本願各発明に関する接着フィルム製造例 1に より得られた樹脂組成物層を平均乾燥温度 1 00度 Cで 2分 (曲線 A) 、 8分 FIG. 3 shows a dynamic viscoelasticity measurement, which is a curve measured using a model Rhesol-G3000 manufactured by UM Co., Ltd. The obtained resin composition layer was dried at an average drying temperature of 100 ° C. for 2 minutes (curve A) and 8 minutes.
(曲線 B) 及び 15分間 (曲線 C) で処理した樹脂組成物の物性を示している。 測定条件は昇温速度は 5 °C/分、 鬨始温度 60°C、 測定温度間隔 2. 5°C、 振動 lHz/degである。 (Curve B) and the physical properties of the resin composition treated for 15 minutes (Curve C). The measurement conditions were as follows: a temperature rise rate of 5 ° C / min, a starting temperature of 60 ° C, a measurement temperature interval of 2.5 ° C, and a vibration of lHz / deg.
(発明を実施するための最良の形態) (Best mode for carrying out the invention)
以下、 実施例を示して本発明を具体的に説明するが、 本発明はこれに限定され るものではない。 先ず、 第一の発明に関する実施例を掲げる。 接着フィルム製造例 1  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. First, embodiments of the first invention will be described. Adhesive film production example 1
液状ビスフヱノール A型エポキシ樹脂 (油化シェルエポキシ (株) 製ェピコ一 ト 82 8 E L) 20部、 臭素化ビスフヱノール A型エポキシ樹脂 (東都化成 (株) 製 YDB— 500) 20部、 クレゾ一ルノボラック型エポキシ樹脂 (ェポ キシ当量 2 1 5、 軟化点 78°C、 大日本ィンキ化学 (株) 製ェピクロン N— 67 3) 20部、 末端エポキシ化ポリブタジエンゴム (ナガセ化成工業 (株) 製デナ レックス R— 45EPT) 1 5部とを ME Kに攪拌しながら加熱溶解させ、 そこ へ臭素化フエノキシ樹脂ワニス (不揮発分 40重量%、 臭素含有量 25重量%、 溶剤組成、 キシレン:メトキシプロパノール:メチルェチルケトン = 5 : 2 : 8、 東都化成 (株) 製 YPB— 40— PXM40) 50部、 エポキシ硬化剤として 2, 4—ジアミノー 6— (2—メチルー 1 _イミダゾリルェチル) _ 1, 3, 5—ト リアジン ·イソシァヌル酸付加物 4部、 さらに微粉砕シリカ 2部、 三酸化アンチ モン 4部、 炭酸カルシウム 5部を添加し樹脂組成物ワニスを作製した。 そのヮニ スを厚さ 40 zmのアルミニウム箔キャリア付 5 m銅箔上に、 乾燥後の樹脂厚 みが 70 mとなるようにダイコー夕一にて塗布、 80~1 20°C (平均 100 °C) で乾燥した後、 幅 507 mmにスリットしロール状接着フィルムを得た。 上記により得られた接着フィルムの樹脂組成物層の動的粘弾性率測定は (株) ュ— · ビー ·ェム社製型式 Rhesol- G3000を用いて測定した。 図 1は動的粘弾性率 曲線の上限は平均乾燥温度 1 00 °Cで 1 0分、 同じく下限の曲線は平均乾燥温度20 parts of liquid bisphenol A type epoxy resin (Epicoat 82 8 EL manufactured by Yuka Shell Epoxy Co., Ltd.), brominated bisphenol A type epoxy resin (Toto Kasei 20 parts, Cresol monovolak type epoxy resin (epoxy equivalent: 21.5, softening point: 78 ° C, Epiclon N-673, manufactured by Dainippon Ink & Chemicals, Inc.) 20 parts, terminal 15 parts of epoxidized polybutadiene rubber (Denalex R-45EPT, manufactured by Nagase Kasei Kogyo Co., Ltd.) is heated and dissolved in MEK with stirring, and then a brominated phenoxy resin varnish (non-volatile content: 40% by weight, bromine content) 25% by weight, solvent composition, xylene: methoxypropanol: methyl ethyl ketone = 5: 2: 8, Toto Kasei Co., Ltd. YPB-40-PXM40) 50 parts, epoxy curing agent 2,4-diamino-6- 2-Methyl-1-imidazolylethyl) _ 1,3,5-triazine / isocyanuric acid adduct 4 parts, finely divided silica 2 parts, antimony trioxide 4 parts, calcium carbonate 5 parts Make a varnish . Apply the varnish on a 5 m copper foil with an aluminum foil carrier with a thickness of 40 zm at Daiko Yuichi so that the resin thickness after drying is 70 m, 80 to 120 ° C (average 100 ° C), and slit to a width of 507 mm to obtain a roll-shaped adhesive film. The dynamic viscoelastic modulus of the resin composition layer of the adhesive film obtained as described above was measured using a model Rhesol-G3000 manufactured by BM Corporation. Figure 1 shows that the upper limit of the dynamic viscoelasticity curve is 10 minutes at an average drying temperature of 100 ° C, and the lower limit curve is the average drying temperature.
1 00°Cで 4分間処理した樹脂組成物の物性を示している。 図 2は昇温速度を 5 °C /分、 10°C/分及び 20 C/分にした時の動的粘弾性率測定曲線である。 接着フィルム製造例 2 It shows the physical properties of the resin composition treated at 100 ° C. for 4 minutes. FIG. 2 shows dynamic viscoelasticity measurement curves when the heating rate was set to 5 ° C./min, 10 ° C./min, and 20 C / min. Adhesive film manufacturing example 2
接着フィルム製造例 1のアルミニウム箔キヤリア付銅箔を厚さ 3 ポリエ チレンテレフ夕レートフィルムに変更する以外は全く同様にしてロール状接着フ イルムを得た。 比較接着フィルム製造例 1 接着フィルム製造例 1のアルミニウム箔キヤリア付銅箔を厚さ 1 2 m銅箔に 変更する以外は全く同様にしてロール状接着フィルムを得た。 比較実施例 1 A roll-shaped adhesive film was obtained in exactly the same manner except that the aluminum foil-carrying copper foil of Adhesive Film Production Example 1 was changed to a 3-polyethylene terephthalate film. Comparative adhesive film production example 1 A roll-shaped adhesive film was obtained in exactly the same manner as in Adhesive Film Production Example 1, except that the copper foil with an aluminum foil carrier was changed to a 12-m thick copper foil. Comparative Example 1
パターン加工された 5 1 0 x 3 4 0 mmのガラスエポキシ内層回路基板に (導 体厚 3 5 z m) 、 比較製造例 1で得られたロール状接着フィルムを、 ソマ一ル The rolled adhesive film obtained in Comparative Production Example 1 was applied to a patterned 50 × 340 mm glass epoxy inner layer circuit board (conductor thickness: 35 zm),
(株) 製オートカツトラミネ一夕一を使用して幅 5 0 7 x 3 3 6 mmのサイズで 基板両面に枚葉した。 条件は仮付け部分の温度 7 0 °C、 5秒圧着、 ラミネート口 —ルは室温、 荷重無しで行った。 次にモートン .イン夕一ナショナル .インコ一 ポレーティ ド製バキューム ·アプリケ一夕 7 2 5に上下保護フイルム;幅 5 4 0 mm、 厚さ 2 5 z mのポリエチレンテレフ夕レートフィルムをセヅトした状態で、 真空度 1ミリバール、 温度 8 0 °C、 1 5秒プレスで両面同時にラミネートした。 その後積層回路板を保護フィルムより取り出し、 1 2 0 °Cで 3 0 さらに 1 7 0 °Cで 3 0分熱硬化させた。 室温付近まで放冷した後ライン/スペース = 6 4 0 /The sheets were cut on both sides of the substrate at a size of 507 x 33 36 mm using Auto Cut Laminate overnight manufactured by Co., Ltd. The conditions were as follows: 70 ° C at the temporary attachment part, 5 seconds of pressure bonding, lamination at room temperature, without load. Next, a protective film for the upper and lower sides of a vacuum applicator made by Morton Inn Yuichi National Co., Ltd., made of polyethylene terephthalate having a width of 540 mm and a thickness of 25 zm, was set. Both sides were simultaneously laminated by a press of 15 msec at a vacuum of 1 mbar and a temperature of 80 ° C. Thereafter, the laminated circuit board was taken out of the protective film and heat-cured at 120 ° C. for 30 minutes and at 170 ° C. for 30 minutes. Line / space after cooling to around room temperature = 6400 /
6 4 0 m回路上の銅箔表面を (株) 東京精密製表面粗さ測定器にて測定したと ころ、 最大高さ 1 であった。 実施例 1 When the surface of the copper foil on the 640 m circuit was measured with a surface roughness tester manufactured by Tokyo Seimitsu Co., Ltd., the maximum height was 1. Example 1
比較実施例 1と同様に、 パターン加工された 5 1 0 x 3 4 0 mmのガラスェポ キシ内層回路基板に、 製造例 1で得られたロール状接着フィルムを、 幅 5 0 7 X 3 3 6 mmのサイズで基板両面に枚葉した。 次にモートン ·ィン夕ーナショナル - ィンコ一ポレ一ティ ド製バキューム ·アプリケ一夕 7 2 5に上下保護フィルム ;幅 5 4 0 mm、 厚さ 2 5 πιのポリエチレンテレフタレ一トフイルムをセット した状態で真空度 1ミリバール、 温度 8 0 °C、 1 5秒プレスで両面同時にラミネ ートした。 その後積層回路板を保護フィルムより取り出し、 1 2 0 °Cで 3 0分さ らに 1 7 0°Cで 3◦分熱硬化させた。 次に、 アルミニウム箔キャリアを化学的ェ ツチングにより除去しした後、 ライン スペース = 64 0/640〃m回路上の 銅箔表面を (株) 東京精密製表面粗さ測定器にて測定したところ、 最大高さ 5 / mであった。 実施例 2 In the same manner as in Comparative Example 1, the roll-shaped adhesive film obtained in Production Example 1 was placed on a patterned 5110 x 34 mm glass epoxy inner layer circuit board, and the width was 507 x 33 mm. Sized sheets on both sides of the substrate. Next, a vacuum protection film is placed on a vacuum applicator made by Morton Ink-National-Ink-Polytide, a polyethylene terephthalate film with a width of 540 mm and a thickness of 25 πι. Laminated at the same time on both sides with a vacuum of 1 mbar, a temperature of 80 ° C and a press of 15 seconds. After that, remove the laminated circuit board from the protective film and leave it at 130 ° C for 30 minutes. Furthermore, it was thermally cured at 170 ° C for 3 °. Next, after the aluminum foil carrier was removed by chemical etching, the copper foil surface on the circuit with a line space of 640 / 640〃m was measured with a surface roughness meter manufactured by Tokyo Seimitsu Co., Ltd. Maximum height was 5 / m. Example 2
比較実施例 1と同様に、 パターン加工された 5 1 0 x 340 mmのガラスェポ キシ内層回路基板に、 製造例 2で得られたロール状接着フィルムを、 幅 5 0 7 X 3 3 6mmのサイズで基板両面に枚葉した。 次に (株) 名機製作所製真空プレス 機 MV LPの両基材ロールに保護用フィルムとして幅 540mm、 厚さ 2 5 μ.το. のポリエチレンテレフ夕レートフィルムをセヅトした状態で、 保護用フィルムの 中央付近から該基板を投入し、 真空度 1ミリバール、 温度 8 0°C、 圧力 5 kg、 1 5秒プレスで両面同時にラミネートした。 室温付近まで放冷した後ポリエチレ ンテレフタレ一トフイルムを剥離した。 次に、 厚さ 3 5 mの銅箔キャリアに剥 離層を介して 3 /zm銅箔が形成された銅箔の、 極薄銅箔面を該樹脂組成物両面に 5 1 0 x 340mmの大きさで枚葉し、 同様に保護用フィルムの中央付近から該 基板を投入し、 真空度 1ミリバール、 温度 8 0°C、 圧力 5 k g、 1 5秒プレスで 両面同時にラミネ一トした。 その後、 該積層回路板を 1 2 0°Cで 3 0分さらに 1 7 0°Cで 3 0分熱硬化させ、 銅箔キャリアを機械的に除去しした後、 ライン/ス ペース = 640Z64 0/ m回路上の銅箔表面を (株) 東京精密製表面粗さ測定 器にて測定したところ、 最大高さ 4 zmであった。  In the same manner as in Comparative Example 1, the roll-shaped adhesive film obtained in Production Example 2 was applied to a patterned 50 × 340 mm glass epoxy inner-layer circuit board in a size of width 507 × 336 mm. Sheets were formed on both sides of the substrate. Next, a polyethylene terephthalate film having a width of 540 mm and a thickness of 25 μ.το was set as a protective film on both base rolls of a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd. The substrate was loaded from the vicinity of the center, and the two sides were simultaneously laminated by a press of 1 mbar, a temperature of 80 ° C, a pressure of 5 kg and a press of 15 seconds. After cooling to near room temperature, the polyethylene terephthalate film was peeled off. Next, an ultra-thin copper foil surface of a copper foil in which a 3 / zm copper foil was formed on a copper foil carrier having a thickness of 35 m via a release layer with a thickness of 5 10 x 340 mm Similarly, the substrate was put in the vicinity of the center of the protective film, and simultaneously laminated on both sides by pressing at a degree of vacuum of 1 mbar, a temperature of 80 ° C., a pressure of 5 kg, and a pressure of 15 kg for 15 seconds. Thereafter, the laminated circuit board was heat-cured at 120 ° C. for 30 minutes and further at 170 ° C. for 30 minutes, and after the copper foil carrier was mechanically removed, line / space = 640Z64 0 / The maximum height of the copper foil on the circuit was 4 zm when measured with a surface roughness tester manufactured by Tokyo Seimitsu Co., Ltd.
実施例 1乃至 2の結果から明らかなように、 本発明の方法に従えば 1 0 zm以 下の極薄銅箔を有する積層回路基板を、 従来の薄物限界の 1 2 ζπι銅箔使用の比 較実施例 1よりも、 表面平滑性に優れた状態で効率的に積層することができ、 簡 便にフアインパターンな多層プリント配線板を製造することが可能である。 比較例 2 As is evident from the results of Examples 1 and 2, according to the method of the present invention, a laminated circuit board having an ultra-thin copper foil of 10 zm or less was used in comparison with the conventional thin-film limit of using 12 2πι copper foil. Compared with Comparative Example 1, the layers can be efficiently laminated with excellent surface smoothness, and a multilayer printed wiring board having a fine pattern can be easily manufactured. Comparative Example 2
接着フィルム製造例 1により得られた樹脂組成物層を平均乾燥温度 1 0 0 °Cで 2分、 乾燥した樹脂組成物層の動的粘弾性率測定曲線を図 3に示した。 明らかに 図 1で示された斜線領域 Sの外側である。 この樹脂組成物層を支持ベースフィル ム上にラミネ一トした接着フィルムはラミネート工程は実施できたものの、 次の 熱硬化工程で樹脂ダレが発生し、 このために樹脂組成物層に層厚が不均一となつ たため本発明の目的には使用できなかった。 比較例 3  FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained by drying the resin composition layer obtained in Adhesive Film Production Example 1 at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG. The adhesive film obtained by laminating this resin composition layer on a supporting base film could be subjected to a laminating step, but resin dripping occurred in the next thermosetting step, and as a result, the layer thickness of the resin composition layer was reduced. It could not be used for the purpose of the present invention due to the non-uniformity. Comparative Example 3
接着フィルム製造例 1により得られた樹脂組成物層を平均乾燥温度 1 0 0 °Cで 1 5分、 乾燥した樹脂組成物層の動的粘弾性率測定曲線を図 3に示した。 明らか に図 1で示された斜線領域 Sの外側で高粘度側にシフトした。 この樹脂組成物層 を支持べ一スフイルム上にラミネ一トした接着フィルムの製造した。 この接着フ イルムの樹脂組成物層を回路基板のパターン部分に積層することを試みたがボイ ドなく真空積層できる条件を見出すことができなかった。 次に、 第二の発明に関する実施例を掲げる。 接着フィルム製造例 1  FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained by drying the resin composition layer obtained in Adhesive Film Production Example 1 at an average drying temperature of 100 ° C. for 15 minutes. Obviously, the viscosity shifted to the higher viscosity side outside the shaded area S shown in FIG. This resin composition layer was laminated on a supporting base film to produce an adhesive film. An attempt was made to laminate the resin composition layer of the adhesive film on the pattern portion of the circuit board, but could not find conditions for vacuum lamination without voids. Next, an embodiment of the second invention will be described. Adhesive film production example 1
液状ビスフエノール A型エポキシ樹脂 (油化シェルエポキシ (株) 製ェピコ一 ト 8 2 8 E L ) 2 0部、 臭素化ビスフヱノール A型エポキシ樹脂 (東都化成 (株) 製 0 8 _ 5 0 0 ) 2 0部、 クレゾ一ルノポラック型エポキシ樹脂 (ェポ キシ当量 2 1 5、 軟化点 7 8 °C、 大日本ィンキ化学 (株) 製ェピクロン N— 6 7 3 ) 2 0部、 末端エポキシ化ポリブタジエンゴム (ナガセ化成工業 (株) 製デナ レックス R— 45EPT) 15部とを ME Kに攪拌しながら加熱溶解させ、 そこ へ臭素化フヱノキシ樹脂ワニス (不揮発分 40重量%、 臭素含有量 25重量%、 溶剤組成、 キシレン:メトキシプロパノール:メチルェチルケトン =5 : 2 : 8、 東都化成 (株) 製 YPB— 40— PXM40) 50部、 エポキシ硬化剤として 2, 4—ジァミノー 6— ( 2—メチル一 1 _イ ミダゾリルェチル) 一1 , 3, 5—ト リァジン ·イソシァヌル酸付加物 4部、 さらに微粉砕シリカ 2部、 三酸化アンチ モン 4部、 炭酸カルシウム 5部を添加し樹脂組成物ワニスを作製した。 そのヮニ スを厚さ 12〃m銅箔/ポリイミド層 25 mの (株) 宇部興産製ュピセルのポ リイミド層上に、 乾燥後の樹脂厚みが 70 mとなるようにダイコ一夕一にて塗 布、 80〜: L 20°C (平均 100°C) で乾燥した後、 幅 507 mmにスリットし ロール状接着フィルムを得た。 その後、 507 x 336 mmサイズのシート状に した。 Liquid bisphenol A-type epoxy resin (Epicoco 828 EL) manufactured by Yuka Shell Epoxy Co., Ltd. 20 parts, brominated bisphenol A-type epoxy resin (08-500) manufactured by Toto Kasei Co., Ltd. 2 0 parts, cresol nopolak type epoxy resin (epoxy equivalent: 21.5, softening point: 78 ° C, Epiclone N—673, manufactured by Dainippon Ink & Chemicals, Inc.) 20 parts, epoxidized polybutadiene rubber ( Denase from Nagase Kasei Kogyo Co., Ltd. 15 parts of Rex R-45EPT) were dissolved in MEK with stirring and heated, and the brominated phenoxy resin varnish (non-volatile content 40% by weight, bromine content 25% by weight, solvent composition, xylene: methoxypropanol: methyle) Tylketone = 5: 2: 8, 50 parts of YPB-40-PXM40 manufactured by Toto Kasei Co., Ltd., 2,4-Diamino 6- (2-methyl-1-Imidazolylethyl) 1,3,3 as epoxy curing agent A resin composition varnish was prepared by adding 4 parts of 5-triazine / isocyanuric acid adduct, 2 parts of finely ground silica, 4 parts of antimony trioxide, and 5 parts of calcium carbonate. The varnish was placed on a 12-m-thick copper foil / polyimide layer 25 m thick polyimide layer of Ube Industries, Ltd. Upisel Co., Ltd., and the whole resin was dried overnight so that the resin thickness after drying was 70 m. Coating, 80 ~: L After drying at 20 ° C (average 100 ° C), slit to 507 mm width to obtain a roll-shaped adhesive film. After that, it was formed into a sheet of 507 x 336 mm size.
上記により得られた接着フィルムの樹脂組成物層の動的粘弾性率測定は (株) ユー . ビ一 .ェム社製型式 Rheosol-G3000を用いて測定した。 図 1は動的粘弾性 率曲線の上限は平均乾燥温度 100 °Cで 10分、 同じく下限の曲線は平均乾燥温 度 100°Cで 4分間処理した樹脂組成物の物性を示している。 図 2は昇温速度を 5°C/分、 10°C/分及び 20°C/分にした時の動的粘弾性率測定曲線である。 接着フィルム製造例 2  The dynamic viscoelastic modulus of the resin composition layer of the adhesive film obtained as described above was measured using a model Rheosol-G3000 manufactured by UB Corporation. Fig. 1 shows that the upper limit of the dynamic viscoelasticity curve is 10 minutes at an average drying temperature of 100 ° C, and the lower limit curve is the physical properties of a resin composition treated at an average drying temperature of 100 ° C for 4 minutes. Figure 2 shows the dynamic viscoelasticity measurement curves when the heating rate was 5 ° C / min, 10 ° C / min, and 20 ° C / min. Adhesive film manufacturing example 2
接着フィルム製造例 1の銅箔箔付ポリイミドフィルムを厚さ 5 zm銅箔/ポリ イミ ド層 25 /mの三井化学 (株) 製ェヅチヤ一フレックスに変更する以外は全 く同様にしてシ一ト状接着フィルムを得た。 比較接着フィルム製造例 1  Adhesive film production example The sheet was made in exactly the same manner except that the polyimide film with copper foil in 1 was replaced with a 5 zm copper foil / polyimide layer 25 / m Etchflex manufactured by Mitsui Chemicals, Inc. An adhesive film was obtained. Comparative adhesive film production example 1
接着フィルム製造例 1の銅箔箔付ポリイミ ドフィルムを厚さ 38〃mのポリエ チレンテレフ夕レートに変更する以外は全く同様にしてシート状接着フィルムを 得た。 比較実施例 1 Adhesive film production example 1 Polyimide film with copper foil of 38 mm thick A sheet-like adhesive film was obtained in exactly the same manner, except that the rate was changed to Tylene terephthalate. Comparative Example 1
パターン加工された厚さ 0. 2mm、 サイズ 5 1 0 X 34 Ommのガラスェポ キシ内層回路基板に (導体厚 3 5 Π1) 、 比較製造例 1で得られたシート状接着 フィルムを基板両面に枚葉した。 次に (株) 名機製作所製真空プレス機 MVLP により、 真空度 1ミリバール、 温度 1 0 0°C、 圧力 6 k g/c 1 5秒プレス で両面同時にラミネートした。 その後、 支持ペースフィルムを剥離し、 積層回路 板を 1 7 0°Cで 30分熱硬化させ 4層板を得た。 その 4層板のユニバーサル硬度 計 (F I S CHER S COPE H 1 0 0) から求められた弾性率は、 室温で 5. 0 GP a、 1 5 0°Cで 3. 5 GP aであった。 実施例 1  On a glass epoxy inner-layer circuit board with a patterned thickness of 0.2 mm and a size of 5110 x 34 Omm (conductor thickness: 35Π1), the sheet-like adhesive film obtained in Comparative Production Example 1 was applied on both sides of the board did. Next, both sides were simultaneously laminated using a vacuum press machine MVLP manufactured by Meiki Seisakusho Co., Ltd. with a vacuum of 1 mbar, a temperature of 100 ° C, and a pressure of 6 kg / c for 15 seconds. Thereafter, the supporting pace film was peeled off, and the laminated circuit board was heat-cured at 170 ° C. for 30 minutes to obtain a four-layer board. The elastic moduli of the four-layer plate obtained from a universal hardness tester (FIS CHER S COPE H100) were 5.0 GPa at room temperature and 3.5 GPa at 150 ° C. Example 1
比較実施例 1と同様に、 パターン加工された厚さ 0. 2mm、 サイズ 5 1 O x 34 Ommのガラスエポキシ内層回路基板に (導体厚 3 5 zm) 、 製造例 1で得 られたシート状接着フィルムを基板両面に枚葉した。 次に (株) 名機製作所製真 空プレス機 MV LPにより、 真空度 1ミリバール、 温度 1 0 0°C、 圧力 6 k g/ cm2, 1 5秒プレスで両面同時にラミネートした。 その後、 積層回路板を 1 2 0°Cで 3 0分、 さらに 1 7 0°Cで 3 0分熱硬化させ 4層板を得た。 その 4層板に ついて銅箔エッチァゥト後のユニバーサル硬度計から求められた弾性率は、 室温 で 6. O GP a、 1 5 0°Cで 4. 5 GP aであった。 実施例 2 As in Comparative Example 1, a sheet-like adhesive obtained in Production Example 1 was applied to a patterned 0.2 mm thick, 51 O x 34 Omm glass epoxy inner layer circuit board (conductor thickness: 35 zm). The films were sheeted on both sides of the substrate. Then, both sides were simultaneously laminated using a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd. with a vacuum of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 , and 15 seconds. Thereafter, the laminated circuit board was thermally cured at 120 ° C. for 30 minutes and further at 170 ° C. for 30 minutes to obtain a four-layer board. The modulus of elasticity of the four-layer plate obtained from the universal hardness tester after the copper foil etching was 6. OGPa at room temperature and 4.5 GPa at 150 ° C. Example 2
比較実施例 1と同様に、 パターン加工された厚さ 0. 2mm、 サイズ 5 1 O x 340mmのガラスエポキシ内層回路基板に (導体厚 35〃m) 、 製造例 2で得 られたシート状接着フィルムを基板両面に枚葉した。 次に (株) 名機製作所製真 空プレス機 MV LPにより、 真空度 1ミリバール、 温度 100°C、 圧力 6 kg/ cm2、 15秒プレスで両面同時にラミネ一トした。 その後、 積層回路板を 12 CTCで 30分、 さらに 17 (TCで 30分熱硬化させ 4層板を得た。 その 4層板に ついて銅箔エッチァゥト後のユニバーサル硬度計から求められた弾性率は、 室温 で 7. 2 GPa、 150°Cで 5. 4 GP aであった。 As in Comparative Example 1, the patterned thickness was 0.2 mm, and the size was 51 O x On a 340 mm glass epoxy inner layer circuit board (conductor thickness: 35 m), the sheet-like adhesive film obtained in Production Example 2 was sheeted on both sides of the board. Next, both sides were simultaneously laminated with a vacuum press of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 and a 15-second press using a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd. Thereafter, the laminated circuit board was heat-cured at 12 CTC for 30 minutes and then at 17 (TC for 30 minutes to obtain a four-layer board. The elastic modulus of the four-layer board obtained from the universal hardness tester after the copper foil etching was determined. It was 7.2 GPa at room temperature and 5.4 GPa at 150 ° C.
実施例 1乃至 2の結果から明らかなように、 本発明の方法に従えば、 ビルドア ップ方式により簡便に機械的強度に優れた多層プリント配線板を製造することが 可能である。 比較例 2  As is clear from the results of Examples 1 and 2, according to the method of the present invention, it is possible to easily manufacture a multilayer printed wiring board having excellent mechanical strength by a build-up method. Comparative Example 2
接着フィルム製造例 1により得られた樹脂組成物層を平均乾燥温度 100°Cで 2分、 乾燥した樹脂組成物層の動的粘弾性率測定曲線を図 3に示した。 明らかに 図 1で示された斜線領域 Sの外側である。 この樹脂組成物層を支持べ一スフィル ム上に形成した接着フィルムはラミネート工程は実施できたものの、 次の熱硬化 工程で樹脂ダレが発生し、 このために樹脂組成物層に層厚が不均一となったため 本発明の目的には使用できなかった。 比較例 3  FIG. 3 shows a dynamic viscoelastic modulus measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film, which was dried at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG. Although the adhesive film formed on the supporting base film with the resin composition layer could be subjected to the laminating step, resin sagging occurs in the next thermosetting step, and the thickness of the resin composition layer is not sufficient. Since it became uniform, it could not be used for the purpose of the present invention. Comparative Example 3
接着フィルム製造例 1により得られた樹脂組成物層を平均乾燥温度 100°Cで 15分、 乾燥した樹脂組成物層の動的粘弾性率測定曲線を図 3に示した。 明らか に図 1で示された斜線領域 Sの外側で高粘度側にシフトした。 この樹脂組成物層 を支持べ一スフイルム上にラミネートした接着フィルムの製造した。 この接着フ イルムの樹脂組成物層を回路基板のパターン部分に積層することを試みたがボイ ドなく真空積層できる条件を見出すことができなかった。 最後に、 第三の発明に関する実施例を掲げる。 接着フィルム製造例 1 FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film obtained by drying the resin composition layer at an average drying temperature of 100 ° C. for 15 minutes. Obviously, the viscosity shifted to the higher viscosity side outside the shaded area S shown in FIG. An adhesive film was produced by laminating the resin composition layer on a support base film. An attempt was made to laminate the resin composition layer of this adhesive film on the pattern portion of the circuit board. It was not possible to find the conditions under which vacuum lamination was possible without any problems. Finally, an embodiment of the third invention will be described. Adhesive film production example 1
液状ビスフエノール A型エポキシ樹脂 (油化シェルエポキシ (株) 製ェピコ一 ト 82 8 E L) 20部、 臭素化ビスフヱノール A型エポキシ樹脂 (東都化成 20 parts of liquid bisphenol A-type epoxy resin (Epicoat 82 8 EL manufactured by Yuka Shell Epoxy Co., Ltd.), brominated bisphenol A-type epoxy resin (Toto Kasei
(株) 製 YDB— 500) 20部、 クレゾ一ルノボラック型エポキシ樹脂 (ェポ キシ当量 215、 軟化点 78°C、 大日本ィンキ化学 (株) 製ェピクロン N— 67 3) 20部、 末端エポキシ化ポリブタジエンゴム (ナガセ化成工業 (株) 製デナ レックス R— 45EPT) 15部とを ME Kに攪拌しながら加熱溶解させ、 そこ へ臭素化フヱノキシ樹脂ワニス (不揮発分 40重量%、 臭素含有量 25重量%、 溶剤組成、 キシレン :メ トキシプロパノール:メチルェチルケトン = 5 : 2 : 8、 東都化成 (株) 製 YPB— 40— PXM40) 50部、 エポキシ硬化剤として 2, 4—ジァミノ一 6— (2—メチル一 1—イミダゾリルェチル) 一1 , 3, 5—ト リアジン ·イソシァヌル酸付加物 4部、 さらに微粉砕シリカ 2部、 三酸化アンチ モン 4部、 炭酸カルシウム 5部を添加し樹脂組成物ワニスを作製した。 そのヮニ スを厚さ 38〃mのポリエチレンテレフ夕レートフィルム上に、 乾燥後の樹脂厚 みが 70//mとなるようにダイコーターにて塗布、 80〜: L 20°C (平均 100 °C) で乾燥した後、 樹脂面に 0. 05mm厚のガラスクロスを温度 50°C、 線圧20 parts of YDB-500 manufactured by Co., Ltd., 20 parts of cresol novolak type epoxy resin (epoxy equivalent: 215, softening point 78 ° C, Epiclone N-67 3 manufactured by Dainippon Ink & Chemicals, Inc.), terminal epoxidation 15 parts of polybutadiene rubber (Denalex R-45EPT, manufactured by Nagase Kasei Kogyo Co., Ltd.) is dissolved by heating in MEK with stirring. , Solvent composition, xylene: methoxypropanol: methyl ethyl ketone = 5: 2: 8, Toto Kasei Co., Ltd. YPB-40-PXM40) 50 parts, epoxy curing agent 2,4-diamino-1-6- —Methyl-1—imidazolylethyl) 1,1,3,5-Triazine / isocyanuric acid adduct 4 parts, 2 parts of finely ground silica, 4 parts of antimony trioxide, 5 parts of calcium carbonate are added to the resin composition. Make a varnish . The varnish is applied on a 38 mm thick polyethylene terephthalate film using a die coater so that the resin thickness after drying is 70 // m. (° C), apply a 0.05mm thick glass cloth to the resin surface at a temperature of 50 ° C and a linear pressure.
2 k g/cmの条件で熱ラミネ一トした。 その後、 幅 507mniにスリヅトし口 ール状接着フィルムとし、 さらに 507 x 336 mmサイズのシート状にした。 上記により得られた接着フィルムの樹脂組成物層の動的粘弾性率測定は (株) ユー · ビ一 ·ェム社製型式 Rheosol-G3000を用いて測定した。 図 1は動的粘弾性 率曲線の上限は平均乾燥温度 100 °Cで 10分、 同じく下限の曲線は平均乾燥温 度 100°Cで 4分間処理した樹脂組成物の物性を示している。 図 2は昇温速度を 5°C/分、 10°C/分及び 20°C/分にした時の動的粘弾性率測定曲線である。 接着フィルム製造例 2 Heat lamination was performed under the condition of 2 kg / cm. Then, it was slit to a width of 507mni to form an adhesive adhesive film, and further formed into a sheet of 507 x 336mm size. The dynamic viscoelasticity of the resin composition layer of the adhesive film obtained as described above was measured using a model Rheosol-G3000 manufactured by UBM Corporation. Figure 1 shows that the upper limit of the dynamic viscoelasticity curve is 10 minutes at an average drying temperature of 100 ° C, and the lower limit curve is the average drying temperature. It shows the physical properties of the resin composition treated at a temperature of 100 ° C for 4 minutes. Figure 2 shows the dynamic viscoelasticity measurement curves when the heating rate was 5 ° C / min, 10 ° C / min, and 20 ° C / min. Adhesive film manufacturing example 2
接着フィルム製造例 1のガラスクロスを厚さ 15 ΛΖΠΙのポリプロピレンフィル ムに変更する以外は全く同様にしてシ一ト状接着フィルムを得た。 接着フィルム製造例 3  A sheet-like adhesive film was obtained in exactly the same manner except that the glass cloth of Adhesive Film Production Example 1 was changed to a polypropylene film having a thickness of 15 mm. Adhesive film production example 3
接着フィルム製造例 1の支持ベースフィルムであるポリエチレンテレフタレ一 トフイルムを厚さ 18 mの銅箔に変更する以外は全く同様にしてロール状接着 フィルムを得た。 比較実施例 1  A roll-shaped adhesive film was obtained in exactly the same manner except that the polyethylene terephthalate film as the support base film of Adhesive Film Production Example 1 was changed to a copper foil having a thickness of 18 m. Comparative Example 1
パターン加工された厚さ 0. 2mm、 サイズ 510 X 34 Ommのガラスェポ キシ内層回路基板に (導体厚 35//m) 、 製造例 2で得られたシート状接着フィ ルムのポリプロピレンフィルムを剥離し、 樹脂面をパターン側にして基板両面に 枚葉した。 次に (株) 名機製作所製真空プレス機 MV LPにより、 真空度 1ミリ バ一ル、 温度 1 00°C、 圧力 6kg/cm2、 15秒プレスで両面同時にラミネー トした。 その後、 支持ベースフィルムを剥離し、 積層回路板を 170°Cで 30分 熱硬化させ 4層板を得た。 その 4層板のユニバーサル硬度計 (F I SCHERSOn a patterned 0.2mm thick, 510 x 34 Omm glass epoxy inner layer circuit board (conductor thickness 35 // m), peel off the polypropylene film of the sheet adhesive film obtained in Production Example 2, Sheets were formed on both sides of the board with the resin side as the pattern side. Next, both sides were simultaneously laminated by a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., Ltd. with a vacuum of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 and a 15-second press. Thereafter, the supporting base film was peeled off, and the laminated circuit board was thermoset at 170 ° C. for 30 minutes to obtain a four-layer board. The 4-layer universal hardness tester (FI SCHERS
COPE H 100) から求められた弾性率は、 室温で 5. 0 GPa、 1 50 °C で 3. 5 GP aであった。 実施例 1 The elastic modulus determined from COPE H 100) was 5.0 GPa at room temperature and 3.5 GPa at 150 ° C. Example 1
比較実施例 1と同様に、 パターン加工された厚さ 0. 2mm、 サイズ 5 1 O x 340mmのガラスエポキシ内層回路基板商面に、 製造例 1で得られたシ一ト状 接着フィルムのガラスクロス面をパターン側にして基板両面に枚葉した。 次にAs in Comparative Example 1, the patterned thickness was 0.2 mm, and the size was 51 O x The sheet-like adhesive film obtained in Production Example 1 was sheet-patterned on both sides of the glass epoxy inner layer circuit board with the glass cloth surface of the adhesive film obtained in Production Example 1 as the pattern side. next
(株) 名機製作所製真空プレス機 MV LPにより、 真空度 1ミリバール、 温度 1 10°C、 圧力 6kg/cm2、 30秒プレスで両面同時にラミネートした。 その後、 支持ベースフィルムを剥離し、 積層回路板を 1 Ί 0°Cで 30分熱硬化させ 4層板 を得た。 その 4層板のユニバーサル硬度計から求められた弾性率は、 室温で 7.Using a vacuum press machine MV LP manufactured by Meiki Seisakusho, both sides were simultaneously laminated by a press of 1 mbar, a temperature of 110 ° C, a pressure of 6 kg / cm 2 , and a pressure of 30 seconds. Thereafter, the supporting base film was peeled off, and the laminated circuit board was thermally cured at 100 ° C. for 30 minutes to obtain a four-layer board. The elastic modulus obtained from the universal hardness tester of the four-layer plate is 7.
4 GP a, 150°Cで 6. 6 GP aであった。 実施例 2 It was 6.6 GPa at 4 GPa and 150 ° C. Example 2
比較実施例 1と同様に、 パターン加工された厚さ 0. 2mm、 サイズ 5 1 O x 34 Ommのガラスエポキシ内層回路基板両面に、 製造例 2で得られたシート状 接着フィルムのポリプロピレンフィルムを剥離した後、 樹脂面をパターン側にし て基板両面に枚葉し、 (株) 名機製作所製真空プレス機 MVLPにより、 真空度 1ミリバール、 温度 100°C、 圧力 6 kg/cm2、 1 5秒プレスで両面同時にラ ミネ一トした。 その後、 支持べ一スフイルムを剥離し、 その積層回路板上に基板 と同じサイズの厚さ 0. 05 mmァラミド不織布を挟んだ状態で、 さらに製造例 2で得られたシート状接着フィルムの樹脂面を不織布側にして両面に枚葉した。 そして、 (株) 名機製作所製真空プレス機 MV LPにより、 真空度 1ミリバール、 温度 100°C、 圧力 6kg/cm2、 30秒プレスで両面同時にラミネ一トした。 その後、 支持べ一スフイルムを剥離し、 積層回路板を 170°Cで 30分熱硬化さ せ 4層板を得た。 その 4層板のユニバーサル硬度計から求められた弾性率は、 室 温で 5. 9 GP a、 150°Cで 4. 4 GP aであった。 実施例 3 In the same manner as in Comparative Example 1, the polypropylene film of the sheet-like adhesive film obtained in Production Example 2 was peeled off on both sides of a patterned glass epoxy inner layer circuit board having a thickness of 0.2 mm and a size of 51 O x 34 Omm as in Comparative Example 1. After that, the resin surface was turned into the pattern side and the wafer was sheet-fed on both sides of the substrate. The vacuum press machine MVLP manufactured by Meiki Seisakusho Co., Ltd., vacuum 1 mbar, temperature 100 ° C, pressure 6 kg / cm 2 , 15 seconds The two sides were simultaneously laminated by a press. Thereafter, the supporting base film was peeled off, and a 0.05 mm thick non-woven fabric of the same size as the substrate was sandwiched on the laminated circuit board. Further, the resin surface of the sheet-like adhesive film obtained in Production Example 2 was further removed. Was turned to the nonwoven fabric side and the sheets were sheeted on both sides. Using a vacuum press machine MV LP manufactured by Meiki Seisakusho Co., both surfaces were simultaneously laminated by a vacuum of 1 mbar, a temperature of 100 ° C, a pressure of 6 kg / cm 2 , and a 30-second press. Thereafter, the support base film was peeled off, and the laminated circuit board was thermoset at 170 ° C. for 30 minutes to obtain a four-layer board. The elastic modulus obtained from the universal hardness tester of the four-layer plate was 5.9 GPa at room temperature and 4.4 GPa at 150 ° C. Example 3
厚さ 0. 1mmのポリエチレンナフ夕レートフィルムを基材として、 製造例 3 で得られた口ール状接着フイルムを日立テクノエンジニアリング製ロール式ドラ イコー夕を使用し、 ガラスクロス面を基材側にして両面同時に真空積層した。 条 件は温度 1 10°C、 線圧 2kg/cm、 50 c m/分で行った。 その後、 120 °Cで 30分、 さらに 170°Cで 30分熱硬化させて両面板を得た。 その両面板の 銅箔エッチァゥト後のユニバーサル硬度計から求められた弾性率は、 室温で 6. 4GPa、 1 50°Cで 5. OGPaであった。 Production example 3 using a 0.1 mm thick polyethylene naphtholate film as the base material Using the roll-type dry roll manufactured by Hitachi Techno Engineering Co., Ltd., the mouth-like adhesive film obtained in the above was vacuum-laminated on both sides simultaneously with the glass cloth side as the base material side. The conditions were as follows: temperature 110 ° C, linear pressure 2kg / cm, 50cm / min. Then, it was heat-cured at 120 ° C for 30 minutes and further at 170 ° C for 30 minutes to obtain a double-sided board. The modulus of elasticity of the double-sided board measured by a universal hardness tester after copper foil etching was 6.4 GPa at room temperature and 5.OGPa at 150 ° C.
実施例 1乃至 3の結果から明らかなように、 本発明の方法に従えば、 簡便に 機械的強度に優れた積層板並びに多層プリント配線板を製造することが可能であ る。 比較例 2  As is clear from the results of Examples 1 to 3, according to the method of the present invention, it is possible to easily produce a laminated board and a multilayer printed wiring board having excellent mechanical strength. Comparative Example 2
接着フィルム製造例 1により得られた樹脂組成物層を平均乾燥温度 100°Cで 2分、 乾燥した樹脂組成物層の動的粘弾性率測定曲線を図 3に示した。 明らかに 図 1で示された斜線領域 Sの外側である。 この樹脂組成物層を支持ベースフィル ム上に形成した接着フィルムはラミネート工程は実施できたものの、 次の熱硬化 工程で樹脂ダレが発生し、 このために樹脂組成物層に層厚が不均一となったため 本発明の目的には使用できなかった。 比較例 3  FIG. 3 shows a dynamic viscoelastic modulus measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film, which was dried at an average drying temperature of 100 ° C. for 2 minutes. This is clearly outside the shaded area S shown in FIG. Although the laminating process could be performed on the adhesive film having the resin composition layer formed on the supporting base film, resin sagging occurred in the next thermosetting process, and thus the thickness of the resin composition layer was uneven. Therefore, it could not be used for the purpose of the present invention. Comparative Example 3
接着フィルム製造例 1により得られた樹脂組成物層を平均乾燥温度 100°Cで 1 5分、 乾燥した樹脂組成物層の動的粘弾性率測定曲線を図 3に示した。 明らか に図 1で示された斜線領域 Sの外側で高粘度側にシフトした。 この樹脂組成物層 を支持ペースフィルム上にラミネ一トした接着フィルムの製造した。 この接着フ イルムの樹脂組成物層を回路基板のパターン部分に積層することを試みたがボイ ドなく真空積層できる条件を見出すことができなかった。 (産業上の利用可能性) FIG. 3 shows a dynamic viscoelasticity measurement curve of the resin composition layer obtained in Production Example 1 of the adhesive film obtained by drying the resin composition layer at an average drying temperature of 100 ° C. for 15 minutes. Obviously, the viscosity shifted to the higher viscosity side outside the shaded area S shown in FIG. This resin composition layer was laminated on a supporting pace film to produce an adhesive film. An attempt was made to laminate the resin composition layer of the adhesive film on the pattern portion of the circuit board, but could not find conditions for vacuum lamination without voids. (Industrial applicability)
本発明の方法に従うと、 極薄銅箔を有する積層回路基板を優れた表面平滑性を 持った状態で、 簡便に製造することが可能である。  According to the method of the present invention, it is possible to easily manufacture a laminated circuit board having an extremely thin copper foil while having excellent surface smoothness.
また、 本発明の方法に従うと、 ビルドアップ方式により簡便に機械的特性に優 れた多層プリント配線板を製造することが可能である。  Further, according to the method of the present invention, it is possible to easily manufacture a multilayer printed wiring board having excellent mechanical properties by a build-up method.
さらにまた、 本発明の方法に従うと、 ビルドアップ方式により簡便に機械的強 度に優れた積層板及び多層プリント配線板を製造することが可能である。  Furthermore, according to the method of the present invention, it is possible to easily produce a laminated board and a multilayer printed wiring board having excellent mechanical strength by a build-up method.

Claims

' 請求の範囲 ' The scope of the claims
1 . 支持べ一スフイルムとその表面に積層され、 該支持べ一スフイルムと同 じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の斜 線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成物層からなる接 着フィルムにおいて、 支持べ一スフイルムが 1乃至 1 0 / m厚の金属箔を該樹脂 組成物面に有し、 反対面に 1 0乃至 1 0 0 m厚の剥離用キヤリアを備えた構造 であることを特徴とする層間絶縁用接着フィルム。 1. The support base film and the surface thereof are laminated and have the same or smaller area as the support base film, and the physical properties of the hatched area S in FIG. An adhesive film comprising a thermosetting, room-temperature solid thermosetting resin composition layer having a support base film having a metal foil having a thickness of 1 to 10 / m on the resin composition surface, and an opposite surface. An adhesive film for interlayer insulation, characterized in that it has a structure provided with a release carrier having a thickness of 10 to 100 m.
2 . 請求項 1記載の層間絶縁用接着フィルムの該樹脂組成物層を、 パターン 加工された回路基板上の片面又は両面上に、 加熱、 加圧条件下真空積層した後、 熱硬化させ一体化したことを特徴とする多層プリント配線板の製造法。  2. The resin composition layer of the adhesive film for interlayer insulation according to claim 1 is vacuum-laminated on one or both sides of a patterned circuit board under heating and pressure conditions, and then thermally cured to be integrated. A method for manufacturing a multilayer printed wiring board, characterized in that:
3 . ( a ) 請求項 1記載の層間絶縁用接着フィルムの該樹脂組成物層を、 パ ターン加工された回路基板上の片面又は両面上に、 少なくとも該パターン加工部 分を該樹脂組成物層で直接覆い重ねた後、 部分的にこれらを仮接着し、 枚葉する 工程、 (b ) 回路基板上の片面又は両面に仮接着された接着フィルム上に、 該樹 脂組成物層の面積よりも大きい面積を有する保護用フィルムを、 該接着フィルム とその中心がほぼ同じ位置となるとよう挟んだ状態で、 2ミリバール以下の真空 条件下、 保護用フィルム側より加熱、 加圧し積層する工程、 および (c ) 該回路 基板を熱硬化させ一体化する工程、 を有することを特徴とする多層プリント配線 板の製造法。  3. (a) The resin composition layer of the adhesive film for interlayer insulation according to claim 1 is coated on one or both sides of a patterned circuit board, and at least the pattern processing portion is formed of the resin composition layer. (B) a step of: (b) temporarily bonding these to a single sheet or two sides on a circuit board, and then temporarily bonding them to one side or both sides of the circuit board. Heating and pressurizing from the side of the protective film under a vacuum condition of 2 mbar or less while sandwiching the protective film having a large area so that the center of the protective film and the center of the protective film are substantially at the same position, and (C) a step of thermally curing and integrating the circuit board; and a method for producing a multilayer printed wiring board.
4 . ( a ) 支持ペースフィルムとその剥離可能な表面に積層され、 該支持べ 一スフィルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添 付図面の図 1の斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組 成物層からなる接着フィルムの該樹脂組成物層を、 パターン加工された回路基板 上の片面又は両面上に、 少なくとも該パターン加工部分を該樹脂組成物層で直接 覆い重ねた後、 部分的にこれらを仮接着し、 枚葉する工程、 (b ) 回路基板上の 片面又は両面に仮接着された接着フィルム上に、 該樹脂組成物層の面積よりも大 きい面積を有する保護用フィルムを該接着フィルムとその中心がほぼ同じ位置と なるとよう挟んだ状態で、 2ミリバール以下の真空条件下、 保護用フィルム側よ り加熱、 加圧し積層する工程、 (c ) 該回路基板の支持べ一スフイルムを剥離し た後、 該樹脂組成物の面積よりも大きく、 1乃至 1 0 /z m厚の金属箔に厚み 1 0 乃至 1 0 0 m厚の剥離用キャリア一を備えた金属箔を該樹脂組成物上に加熱、 加圧し積層する工程、 および (d ) 該回路基板を熱硬化させ一体化する工程、 を 有することを特徴とする多層プリント配線板の製造法。 4. (a) Laminated on a supporting base film and a peelable surface thereof, having the same or smaller area as the supporting base film, and having a relationship between temperature and melt viscosity as shown in FIG. The resin composition layer of an adhesive film composed of a thermosetting, room temperature solid thermosetting resin composition layer having the properties of the shaded region S is placed on at least one side or both sides of the patterned circuit board. Patterned part directly with the resin composition layer (C) a step of temporarily adhering and partially sheeting these pieces after covering, and (b) an area larger than the area of the resin composition layer on the adhesive film temporarily adhered to one or both sides of the circuit board. (C) laminating the protective film having an area from the protective film side under a vacuum condition of 2 mbar or less under a vacuum condition of 2 mbar or less while sandwiching the protective film with the adhesive film and the center thereof at substantially the same position. After peeling the support base film of the circuit board, a peeling carrier having a thickness of 10 to 100 m thick, which is larger than the area of the resin composition and has a thickness of 1 to 10 / zm, is provided. A method for producing a multilayer printed wiring board, comprising: a step of heating and pressurizing the provided metal foil on the resin composition to laminate the same; and (d) a step of thermally curing and integrating the circuit board.
5 . 支持ベースフィルムとその表面に積層され、 該支持ベースフィルムと同 じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の斜 線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成物層からなる接 着フィルムにおいて、 支持べ一スフイルムが 3乃至 2 0 m厚の金属箔にガラス 転移点 2 0 0 °C以上、 3乃至 3 厚の耐熱フィルム層を備えた金属箔付き耐 熱フィルムであり、 耐熱フィルム面に該辫脂組成物層が形成された構造であるこ とを特徴とする層間絶縁用接着フィルム。  5. Laminated on the supporting base film and its surface, has the same or smaller area as the supporting base film, and has the properties of the shaded area S in FIG. 1 of the accompanying drawings in relation to the temperature and the melt viscosity. In an adhesive film composed of a thermosetting resin composition layer that is heat-fluid and solid at room temperature, the supporting base film has a glass transition point of at least 200 ° C and a thickness of 3 to 3 on a metal foil having a thickness of 3 to 20 m. An adhesive film for interlayer insulation, comprising: a heat-resistant film with a metal foil provided with the heat-resistant film layer described above; and a structure in which the resin composition layer is formed on the heat-resistant film surface.
6 . 請求項 5記載の層間絶縁用接着フィルムの該樹脂組成物層を、 パターン 加工された回路基板上の片面又は両面上に、 加熱、 加圧条件下真空積層した後、 熱硬化させ一体化したことを特徴とする多層プリント配線板の製造法。  6. The resin composition layer of the adhesive film for interlayer insulation according to claim 5 is vacuum-laminated on one or both sides of a pattern-processed circuit board under heating and pressure conditions, and then thermally cured to be integrated. A method for manufacturing a multilayer printed wiring board, characterized in that:
7 . ( a ) 支持ベースフィルムとその剥離可能な表面に積層され、 該支持べ —スフイルムと同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添 付図面の図 1の斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組 成物層からなる接着フィルムの該樹脂組成物層を、 パターン加工された回路基板 上の片面又は両面上に、 少なくとも該パターン加工部分を該樹脂組成物層で直接 覆い重ねた後、 加熱、 加圧し真空積層する工程、 (b ) 該回路基板の支持ベース フィルムを剥離した後、 該樹脂組成物の面積よりも大きく、 3乃至 2 0 z m厚の 金属箔にガラス転移点 2 0 0 °C以上、 3乃至 3 0 m厚の耐熱フィルム層を備え た金属箔付き耐熱フイルムのフィルム面を該樹脂組成物上に加熱、 加圧し積層す る工程、 および (c ) 該回路基板を熱硬化させ一体化する工程、 を有することを 特徴とする多層プリント配線板の製造法。 7. (a) Laminated on a supporting base film and its peelable surface, having the same or smaller area as the supporting base film, and oblique lines in FIG. 1 of the accompanying drawings in relation to temperature and melt viscosity. The resin composition layer of an adhesive film composed of a thermosetting, room temperature solid thermosetting resin composition layer having the physical properties of the region S is provided on at least one side or both sides of a patterned circuit board by at least the pattern A step of directly covering the processed portion with the resin composition layer and then heating and pressurizing to laminate by vacuum; (b) a support base for the circuit board After peeling the film, a metal having a heat-resistant film layer having a glass transition point of 200 ° C. or more and a thickness of 3 to 30 m on a metal foil larger than the area of the resin composition and having a thickness of 3 to 20 zm. A step of heating and pressurizing the film surface of the heat-resistant film with a foil on the resin composition to laminate, and (c) a step of thermally curing and integrating the circuit board. Manufacturing method.
8 . 支持べ一スフイルムとその表面に積層され、 該支持ベースフィルムと同 じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の斜 線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成物層からなる接 着フィルムにおいて、 さらに該樹脂組成物表面にガラスクロス又は有機不織布層 を設けた構造であることを特徴とする眉間絶縁用接着フィルム。  8. The support base film and the surface of the support base film are laminated and have the same or smaller area as the support base film, and the properties of the hatched area S in FIG. An adhesive film comprising a thermosetting resin composition layer having a thermofluidity and a solid at room temperature, further comprising a glass cloth or an organic nonwoven fabric layer provided on the surface of the resin composition; the film.
9 . 請求項 8記載の眉間絶縁用接着フィルムのガラスクロス又は有機不織布 面を、 基材上の片面又は両面上に、 加熱、 加圧条件下真空積層した後、 熱硬化さ せ一体化したことを特徴とする積層板の製造法。  9. The glass cloth or the organic nonwoven fabric surface of the adhesive film for eyebrows insulation according to claim 8 is vacuum-laminated on one or both surfaces of the base material under heating and pressurizing conditions, and then thermally cured and integrated. A method for producing a laminate, characterized by the following.
1 0 . 支持ベースフィルムとその表面に積層され、 該支持べ一スフイルムと 同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の 斜線領域 sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成物層からなる 接着フィルムを用いて絶縁層を形成する方法において、 基材上の片面又は両面上 にガラスクロス又は有機不織布を枚葉し、 さらにその上に接着フィルムの樹脂組 成物層を直接覆い重ねた状態で、 真空条件下、 加熱、 加圧し積層する工程を必須 とする積層板の製造法。  10. Laminated on the supporting base film and its surface, has the same or smaller area as the supporting base film, and has the physical properties of the hatched area s in FIG. 1 of the accompanying drawings in relation to the temperature and the melt viscosity. In a method of forming an insulating layer using an adhesive film formed of a thermosetting resin composition layer having a thermofluidity and a solid at room temperature, a glass cloth or an organic nonwoven fabric is formed on one or both surfaces of a substrate, and A method of manufacturing a laminated board that requires a process of heating and pressing under vacuum conditions and laminating the resin composition layer of the adhesive film directly on top of it.
1 1 . 支持べ一スフイルムとその表面に積層され、 該支持ベースフィルムと 同じか又は小さい面積を有し、 かつ温度と溶融粘度との関係で添付図面の図 1の 斜線領域 Sの物性を有する熱流動性、 常温固形の熱硬化性樹脂組成物層からなる 接着フィルムを用いて絶縁層を形成する方法において、 (a ) 基材上の片面又は 両面上に接着フィルムの樹脂組成物層を直接覆い重ねた状態で、 真空条件下、 加 熱、 加圧し積層する工程、 および (b ) 支持ベースフィルムを剥離し、 該樹脂組 成物層が転写された基材のその上層にガラスクロス、 ガラスペーパー又は有機不 織布を枚葉し、 さらにその上に該接着フィルムの樹脂組成物層を直接覆い重ねた 状態で、 真空条件下、 加熱、 加圧し積層する工程、 を必須とする積層板の製造法。 11. The support base film and the surface thereof are laminated, have the same or smaller area as the support base film, and have the properties of the shaded area S in FIG. 1 of the accompanying drawings in relation to the temperature and the melt viscosity. In a method of forming an insulating layer using an adhesive film comprising a thermosetting resin composition layer of a thermo-fluidity and a solid at room temperature, (a) directing the resin composition layer of the adhesive film directly on one side or both sides of a substrate In a vacuum condition, Heating, pressing and laminating, and (b) peeling off the supporting base film, and sheeting a glass cloth, glass paper or organic nonwoven cloth on the upper layer of the substrate on which the resin composition layer has been transferred, And a step of heating and pressurizing and laminating under a vacuum condition in a state where the resin composition layer of the adhesive film is directly overlaid thereon.
1 2 . 請求項 9乃至 1 1記載の基材がプリプレダ又はフレキシブルフィルム であることを特徴とする積層板の製造法。  12. A method for producing a laminate, wherein the substrate according to any one of claims 9 to 11 is a pre-preda or a flexible film.
1 3 . 請求項 9乃至 1 1記載の基材がパターン加工された回路基板であるこ とを特徴とする多層プリント配線板の製造法。  13. A method for producing a multilayer printed wiring board, characterized in that the substrate according to claim 9 is a circuit board subjected to pattern processing.
PCT/JP2000/005166 2000-02-08 2000-08-02 Adhesive film and method for manufacturing multilayer printed wiring board WO2001059023A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-31225 2000-02-08
JP2000031225A JP2004241394A (en) 2000-02-08 2000-02-08 Adhesive film and process for manufacturing laminate board using the same
JP2000-31226 2000-02-08
JP2000031226A JP2004237447A (en) 2000-02-08 2000-02-08 Adhesive film, and method for manufacturing multilayered printed wiring board using the film

Publications (1)

Publication Number Publication Date
WO2001059023A1 true WO2001059023A1 (en) 2001-08-16

Family

ID=26585074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005166 WO2001059023A1 (en) 2000-02-08 2000-08-02 Adhesive film and method for manufacturing multilayer printed wiring board

Country Status (1)

Country Link
WO (1) WO2001059023A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346750A (en) * 1992-05-06 1994-09-13 Matsushita Electric Industrial Co., Ltd. Porous substrate and conductive ink filled vias for printed circuits
JPH07106765A (en) * 1993-09-30 1995-04-21 Hitachi Chem Co Ltd Multilayered adhesive sheet and manufacture of multilayered wiring board using same
JPH07197007A (en) * 1993-12-28 1995-08-01 Nippon Steel Chem Co Ltd Heat-resistant adhesive film for printed circuit board
JPH07254782A (en) * 1994-03-15 1995-10-03 Ibiden Co Ltd Multilayer electronic component mounting board and manufacture thereof
JPH08186376A (en) * 1994-12-28 1996-07-16 Hitachi Ltd High-density thin film maltilayer wiring board, mounting structure thereof, and manufacture thereof
JPH09296156A (en) * 1996-05-01 1997-11-18 Ajinomoto Co Inc Thin metal layer-having interlayer adhesive film for multilayered printed wiring board, and multilayered printed wiring board using the same and its production
JPH1168326A (en) * 1997-08-20 1999-03-09 Jsr Corp Manufacture of multilayer wiring board
JPH11340625A (en) * 1998-03-23 1999-12-10 Ajinomoto Co Inc Method for vacuum lamination of adhesive film
JP2000269638A (en) * 1999-03-16 2000-09-29 Ajinomoto Co Inc Vacuum laminating method for adhesive film and manufacturing multilayer printed wiring board using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346750A (en) * 1992-05-06 1994-09-13 Matsushita Electric Industrial Co., Ltd. Porous substrate and conductive ink filled vias for printed circuits
JPH07106765A (en) * 1993-09-30 1995-04-21 Hitachi Chem Co Ltd Multilayered adhesive sheet and manufacture of multilayered wiring board using same
JPH07197007A (en) * 1993-12-28 1995-08-01 Nippon Steel Chem Co Ltd Heat-resistant adhesive film for printed circuit board
JPH07254782A (en) * 1994-03-15 1995-10-03 Ibiden Co Ltd Multilayer electronic component mounting board and manufacture thereof
JPH08186376A (en) * 1994-12-28 1996-07-16 Hitachi Ltd High-density thin film maltilayer wiring board, mounting structure thereof, and manufacture thereof
JPH09296156A (en) * 1996-05-01 1997-11-18 Ajinomoto Co Inc Thin metal layer-having interlayer adhesive film for multilayered printed wiring board, and multilayered printed wiring board using the same and its production
JPH1168326A (en) * 1997-08-20 1999-03-09 Jsr Corp Manufacture of multilayer wiring board
JPH11340625A (en) * 1998-03-23 1999-12-10 Ajinomoto Co Inc Method for vacuum lamination of adhesive film
JP2000269638A (en) * 1999-03-16 2000-09-29 Ajinomoto Co Inc Vacuum laminating method for adhesive film and manufacturing multilayer printed wiring board using the same

Similar Documents

Publication Publication Date Title
JP6477631B2 (en) Manufacturing method of multilayer printed wiring board
JP2009105446A (en) Method for manufacturing multilayer printed wiring board
JP5751284B2 (en) Adhesive sheet
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JP6085919B2 (en) Film with ultra-thin copper layer, adhesive film with ultra-thin copper layer, manufacturing method thereof, copper-clad laminate, and wiring board
US20050186434A1 (en) Thermosetting resin composition, adhesive film and multilayer printed wiring board using same
JP2010028036A (en) Production method of multilayer printed wiring board
JP3861537B2 (en) Vacuum lamination method of adhesive film
WO2001059023A1 (en) Adhesive film and method for manufacturing multilayer printed wiring board
JP6627944B2 (en) Circuit board manufacturing method
JP2004237447A (en) Adhesive film, and method for manufacturing multilayered printed wiring board using the film
JP3698863B2 (en) Bonding material for single-sided metal-clad laminate production
JP2001105555A (en) Adhesive film and method for manufacturing multi-layer printed wiring board using adhesive film
JP2000269638A (en) Vacuum laminating method for adhesive film and manufacturing multilayer printed wiring board using the same
JP2000345119A (en) Adhesive film and production of multilayered printed circuit board by using the same
JP2010194930A (en) Method of manufacturing supporting material with insulating layer, supporting material with insulating layer, printed wiring board, and method of manufacturing supporting material with insulating layer
JP2004241394A (en) Adhesive film and process for manufacturing laminate board using the same
JP6287004B2 (en) Manufacturing method of multilayer printed wiring board
JP2006173638A (en) Method for vacuum-lamination of adhesive film
JP4460719B2 (en) Manufacturing method of prepreg
JP2003191377A (en) Fibrous base material with copper foil, prepreg with copper foil and method of manufacture thereof
JPH11340625A (en) Method for vacuum lamination of adhesive film
JP2000101233A (en) Vacuum laminating method for adhesive film
JPH07245480A (en) Method of manufacturing multilayer printed interconnection board
JPH11238965A (en) Manufacture of multilayered printed wiring board

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase