JP2004239503A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2004239503A
JP2004239503A JP2003028534A JP2003028534A JP2004239503A JP 2004239503 A JP2004239503 A JP 2004239503A JP 2003028534 A JP2003028534 A JP 2003028534A JP 2003028534 A JP2003028534 A JP 2003028534A JP 2004239503 A JP2004239503 A JP 2004239503A
Authority
JP
Japan
Prior art keywords
refrigerant
microtubes
row
heat exchanger
gas cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028534A
Other languages
English (en)
Inventor
Toshiyuki Ebara
俊行 江原
Hiroyuki Matsumori
裕之 松森
Takashi Sato
孝 佐藤
Masaru Matsuura
大 松浦
Takayasu Saito
隆泰 斎藤
Yoshiaki Kurosawa
美暁 黒澤
Eiju Fukuda
栄寿 福田
Aritomo Yoshida
有智 吉田
Shigeo Takakusaki
茂夫 高草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003028534A priority Critical patent/JP2004239503A/ja
Publication of JP2004239503A publication Critical patent/JP2004239503A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】マイクロチューブを用いた熱交換器の寸法を縮小する。
【解決手段】熱交換器10は、所定間隔を存して並設された複数のマイクロチューブ20から成る列を複数備える。一列を成す複数のマイクロチューブ20の端部をヘッダー部11、12により相互に連通する。一列を成す各マイクロチューブ20の間に、隣接した列を成す各マイクロチューブ20の一部がそれぞれ進入するよう構成する。ヘッダー部11、12の連通路14の幅よりも、連通路14を構成する壁の幅(連通路14と連通路14との間の幅)を大きく構成する。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、所定間隔を存して並設された複数のマイクロチューブから成る列を複数備え、一列を成す複数のマイクロチューブの端部をヘッダー部により相互に連通して成る熱交換器に関するものである。
【0002】
【従来の技術】
近年地球環境問題に対応するためにカーエアコンなどの空調機器に冷媒として二酸化炭素(CO)が用いることが提案されている。COは超臨界で作動するため、冷媒回路のガスクーラにおける熱移動が発生し易く、温度変化が著しいため、凝縮冷媒対応のフィンアンドチューブ式の熱交換器では耐圧対応のため放熱効率が低下してしまう。そこで、マイクロチューブを用いた熱交換器を使用することが考えられる。このマイクロチューブは、微小径の断面略楕円形の長孔から成る貫通孔を複数備えた扁平チューブにて構成される。そして、複数のマイクロチューブを準備し、各マイクロチューブの端部をヘッダーにて連通させる構成が採られていた(特許文献1参照)。また、高効率化のため多層カウンターフローが考えられている。
【0003】
【特許文献1】
特開2001−263861号公報(第2頁、第4頁参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のマイクロチューブ式の熱交換器は、扁平チューブからなるマイクロチューブを所定間隔を存して複数並設して列を作り、この列を複数間隔を存して並べて構成していたため、どうしても熱交換器全体の寸法が大きくなる問題があった。
【0005】
本発明は、係る従来技術の課題を解決するために成されたものであり、高効率なマイクロチューブを用いた熱交換器の寸法を縮小することを目的とする。
【0006】
【課題を解決するための手段】
本発明では、所定間隔を存して並設された複数のマイクロチューブから成る列を複数備え、一列を成す複数のマイクロチューブの端部をヘッダー部により相互に連通して成る熱交換器において、一列を成す各マイクロチューブの間に、隣接した列を成す各マイクロチューブの一部がそれぞれ進入するよう構成したので、従来の如く複数のマイクロチューブから成る複数の列を単に間隔を存して並設していた熱交換器に比してその全体寸法を著しく小型化することが可能となる。
【0007】
また、請求項2の発明の熱交換器は、上記に加えてヘッダー部の通路幅よりも当該通路を構成する壁の幅を大きく構成したので、各マイクロチューブ間に、隣接する他の列の各マイクロチューブを支障無く配置することができるようになるものである。
【0008】
また、請求項3の発明の熱交換器は、上記各発明に加えて各ヘッダー部を、隣接するマイクロチューブの列が相互に直列となるように接続したので、例えば、マイクロチューブ内に流入した冷媒の流れの方向に対して熱交換器に通風される空気を対向流とすることで、熱交換器における冷媒と空気との熱交換効率を著しく改善することができるようになるものである。
【0009】
そして、係る熱交換器は請求項4の如き超臨界で作動する温度変化の著しいCOを使用した冷媒回路のガスクーラとして用いる場合に極めて有効なものとなる。
【0010】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の熱交換器10を備えた実施例の冷却装置1の冷媒回路図である。この図において、1はカーエアコンなどに使用される冷却装置、2は冷却装置1を構成する2段圧縮式のロータリコンプレッサで、この冷媒回路には冷媒としてCO(二酸化炭素)が用いられている。
【0011】
このロータリコンプレッサ2は、密閉容器51内に図示しない電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素52、53を備えて構成されている。そして、冷媒吸入管2Bから吸い込んだ冷媒ガス(CO)を第1の回転圧縮要素52で圧縮し、この圧縮した冷媒を一旦密閉容器51内に吐出する。そして、この密閉容器51内の中間圧の冷媒ガスを第2の回転圧縮要素53に吸い込んで圧縮し、冷媒吐出管2Aより吐出するものである。
【0012】
そして、係るロータリコンプレッサ2の冷媒吐出管2Aには本発明の熱交換器としてのガスクーラ10が接続され、このガスクーラ10の出口側に設けられた配管4Aには膨張弁(減圧装置)4を介して蒸発器(エバポレータ)5が接続されている。この蒸発器5の出口側はアキュムレータ6を介してロータリコンプレッサ2の冷媒吸入管2Bに接続され、これにより、環状の冷媒回路が構成されている。尚、54はガスクーラ10を出た冷媒と蒸発器5を出た冷媒を熱交換させる中間熱交換器である。
【0013】
そして、ロータリコンプレッサ2の第1及び第2の回転圧縮要素52、53で前述の如く二段圧縮された高温高圧のガス冷媒(CO)は、ガスクーラ10においてそこに通風される空気と熱交換し、放熱する。この状態では冷媒は依然凝縮せず、中間熱交換器54で更に冷却され、膨張弁4に流入して絞られる過程で液化していく。そして、蒸発器5に流入し、そこで蒸発して気化することで周囲から熱を奪い、冷却効果を発揮する。この冷却効果を利用して図示しない車室内の空気を冷却して空調する。
【0014】
蒸発器4を出た冷媒は中間熱交換器54でガスクーラ10からの冷媒から熱を奪い、次にアキュムレータ6に流入し、そこで気液分離されてガス冷媒のみが冷媒吸入管2Bからロータリコンプレッサ2に吸い込まれる遷臨界冷媒サイクルを繰り返す。
【0015】
前記ガスクーラ10は相対向して平行に配置された上下(左右でもよい)一対のヘッダー部11、12と、両ヘッダー部11、12間に渡って複数取り付けられたマイクロチューブ20・・・とから構成されている。この場合、両ヘッダー部11、12は同一形状であり、各マイクロチューブ20・・の両端に両ヘッダー部11、12を覆い被せてそれぞれ接続する(図2白抜き矢印)。
【0016】
上記マイクロチューブ20は、例えば、アルミニウムなどの金属にて構成され、断面略楕円形(若しくは長円形。この場合、断面長手方向の寸法約15mm、断面幅寸法約2mm)の扁平チューブである。このマイクロチューブ20の内部には、一端から他端まで延在し、内部を冷媒が流れる微小径の断面長孔(この場合、断面長手方向の寸法約0.5mm、断面幅寸法約0.08mm)から成る冷媒通路21が複数形成されている。
【0017】
複数の冷媒通路21・・は、マイクロチューブ20の長手方向に延在して形成されると共に、これらの冷媒通路21・・は互いに平行に設けられている。実施例では、冷媒通路21は断面楕円形のマイクロチューブ20内に六列設けられている。尚、マイクロチューブ20内の冷媒通路21の数は実施例に限られるものでない。
【0018】
前記両ヘッダー部11、12には、接続孔13が複数形成されており、各接続孔13・・は、マイクロチューブ20の端部が挿入できるようにその端面形状に略合致した楕円状に形成され、ヘッダー部11、12の一面側(相対向する面の側)に開口している。また、これらの接続孔13・・は、一面側の開口からヘッダー部11、12の他面側に行くに従って内寸が縮小せられている。
【0019】
実施例では接続孔13・・は三列所定間隔を存して構成され、各列にはそれぞれ四個と三個と四個所定間隔を存して接続孔13が形成されている。また、ヘッダー部11、12内には連通路14が複数列(実施例では三列)設けられ、各連通路14・・はそれぞれ各列の接続孔13・・・の奥部に連通している(図2、図3)。係る連通路14により、各列を構成する接続孔13・・・はそれぞれ一列ごとに相互に連通されている。
【0020】
尚連通路14は接続孔13の列を相互に連通するものではない。15はヘッダー部11に設けた連通路14を閉塞するための閉塞部、16は中央の連通路14とそれに隣接する冷媒下流側の連通路14とを連通するためのベンド配管である。
【0021】
上側のヘッダー部11に設けられた冷媒上流側の連通路14部分には閉塞部15の上側から前記冷媒吐出管2Aが接続され、係る冷媒上流側の連通路14と冷媒吐出管2Aとは相互に連通する。下側のヘッダー部12には図示しない閉塞部の下側からベンド配管17が取り付けられており、このベンド配管17は下側のヘッダー部12に設けられた図示しない冷媒上流側の連通路と、中央の連通路とを連通する。また、下側のヘッダー部12に設けられた冷媒下流側の連通路、即ち、ガスクーラ10の出口側となる連通路に前記配管4Aが接続される。
【0022】
一方、ヘッダー部11、12間に渡るマイクロチューブ20は、接続孔13・・に対応して三列所定間隔を存して配置され、各列は所定間隔を存して並設された四本、三本、四本のマイクロチューブ20・・にて構成される。そして、各マイクロチューブ20・・の両端がヘッダー部11、12の接続孔13・・内にそれぞれ挿入されて接続されている。
【0023】
この場合、複数列(三列)配設されたマイクロチューブ20は、隣接する一方の列の各マイクロチューブ20・・間に、他方の列の各マイクロチューブ20・・がそれぞれ所定の間隔を存して所定寸法進入したかたちで配置されている(接続孔13・・・も同様の配置とされている)。
【0024】
ここで、ヘッダー部11の連通路14の幅(本発明の通路幅に相当。図4のX)よりも連通路14間の幅(本発明の通路を構成する壁の幅に相当。図4のY。)を大きく構成している。即ち、連通路14の幅(X)より連通路14間の幅(Y)を広く構成している(図4)。これにより、複数並設された一列の各マイクロチューブ20・・の端部に構成されるスペースに隣接する他の列の各マイクロチューブ20・・の端部を支障無く配置することができるようになる。これにより、隣接する列を成す各マイクロチューブ20・・の端部に構成されるスペースを隣接する各マイクロチューブ20・・の端部で埋めること可能となり、従来のようにマイクロチューブの列を単に複数並設する場合に比べてガスクーラ10の全体寸法を大幅にコンパクト化することができるようになる。
【0025】
そして、ロータリコンプレッサ2から冷媒吐出管2Aに吐出された高温の冷媒は上側のヘッダー部11内の上流側一列目の連通路14に入り、そこで当該一列目を成す各マイクロチューブ20・・の冷媒通路21・・・に分流して流下する。そして、下側のヘッダー部12に設けた一列目の連通路14にて合流し、ベンド配管17を経て二列目の連通路14に入り、そこで分流されて二列目を成す各マイクロチューブ20・・の冷媒通路21・・・に流入して上昇する。次に、上側のヘッダー部11内の二列目の連通路14に入り、そこで合流してベンド配管16から三列目の連通路14に流入し、そこで分流して三列目を成すマイクロチューブ20・・の冷媒通路21・・に流入して流下した後、下側のヘッダー部12の三列目の連通路14に入り、そこで合流してヘッダー部12に接続された配管4Aに流出する。
【0026】
即ち、各ベンド配管16、17により、隣接するマイクロチューブ20・・の列が相互に直列となるように、一列目のマイクロチューブ20・・、二列目のマイクロチューブ20・・、三列目のマイクロチューブ20・・の順で直列に接続している。これにより、ガスクーラ10の各列を成すマイクロチューブ20内には、一列目から三列目に向けて直列に冷媒が流れる(一列のマイクロチューブ20・・内には平行して冷媒は流れる)ようになる。そして、一列目を通風の下流側とし、三列目を通風の上流側とすることで、冷媒と通風空気の流れを対向流と成すことが可能となる。
【0027】
以上の構成で、次に冷却装置1の動作を説明する。ロータリコンプレッサ2の図示しない電動要素に通電され、それによって第1及び第2の回転圧縮要素52、53が駆動されると、ロータリコンプレッサ2からは2段圧縮された高温高圧の冷媒(CO)が冷媒吐出管2Aに吐出される。冷媒吐出管2Aに吐出された冷媒はガスクーラ10に流入し、ガスクーラ10に流入した冷媒は上側のヘッダー部11に設けられた一列目の連通路14内に流入する。そこで冷媒は各接続孔13に分かれて一列目の各マイクロチューブ20・・の冷媒通路21・・内を通り、下側のヘッダー部12に設けられた連通路14に流入する。そこで冷媒は合流してベンド配管17から二列目の連通路14及び各接続孔13・・を介して二列目の各マイクロチューブ20・・の冷媒通路21・・内に流入する。
【0028】
以後は前述したように二列目のマイクロチューブ20・・・内を上昇してヘッダー部11に至り、ベンド配管16から今度は三列目のマイクロチューブ20・・内を流下して最終的に配管4Aに流出する。ガスクーラ10は、図示しない送風機で図1の中白抜き矢印方向に通風されている。
【0029】
送風機から送られた風は各マイクロチューブ20・・間を通過し、マイクロチューブ20の冷媒通路21・・内を流通する冷媒と熱交換することにより、冷媒は冷却され、逆に空気は暖められる。この場合、ガスクーラ10のマイクロチューブ20内を流れる冷媒の流れに対して、通風を対向流としているので、ガスクーラ10内の冷媒を効率よく冷却することができる。
【0030】
このガスクーラ10内の冷媒と空気との熱交換の状態を図6で説明する。尚、縦軸には温度、横軸には冷媒ガスの流れ方向を示している。図中各マイクロチューブ20・・内の冷媒ガスの流れは左側から右側に流れる(図中矢印方向)。この場合、図中の左側(マイクロチューブ20内を流れる冷媒の上流側)に冷媒吐出管2A、右側(マイクロチューブ20内を流れる冷媒の下流側)に配管4A、その間には左側から右側にマイクロチューブ20が一列目、二列目、三列目と直列に接続され、送風機にて三列目側から一列目側に送風されている。
【0031】
ガスクーラ10は図中右側から左側に送風されるので、送風機から送風された空気は、まず三列目のマイクロチューブ20・・と熱交換し、次に二列目のマイクロチューブ20・・、一列目のマイクロチューブ20・・と順次熱交換が行われる。詳しくは、送風機から送風された空気は最初に三列目のマイクロチューブ20・・内の冷媒と熱交換し、そこで少し暖まって次に二列目のマイクロチューブ20・・内の冷媒と熱交換し、更に暖まって三列目のマイクロチューブ20・・内の冷媒と熱交換して暖まることによりガスクーラ10と熱交換する。
【0032】
このように直列に接続した各列を成すマイクロチューブ20内を流れる冷媒の下流側から上流側に送風しているので、冷媒の上流側(図中左側)では冷媒ガスの温度は最も高温で、下流側に行くに従って順次低温になっていく。これにより、外気と熱交換したマイクロチューブ20内の冷媒温度はガスクーラ10内から流出する時点で最も外気温度に近づく低い温度となる。ここで、冷媒の流れ方向と風の流れ方向を同一とすると、冷媒の上流側で温められた風が冷媒の下流側に流れることになり、ガスクーラ10から流出する冷媒の温度低下が阻害されるが、実施例では冷媒は下流側の列を成すマイクロチューブ20内でより効果的に冷却されていくので、ガスクーラ10内に流れる冷媒を最も効率よく冷却することができるようになる。
【0033】
尚、実施例では本発明の熱交換器(ガスクーラ10)をカーエアコンなどに使用される冷却装置1に適用したが、それに限らず、冷媒に熱伝導率が高く温度変化が著しい冷媒(実施例のCOなど)が用いられる種々の冷媒回路装置に用いても本発明は有効である。また、請求項1乃至請求項3では冷媒もCOに限るものではない。
【0034】
【発明の効果】
以上詳述した如く本発明によれば、所定間隔を存して並設された複数のマイクロチューブから成る列を複数備え、一列を成す複数のマイクロチューブの端部をヘッダー部により相互に連通して成る熱交換器において、一列を成す各マイクロチューブの間に、隣接した列を成す各マイクロチューブの一部がそれぞれ進入するよう構成したので、従来の如く複数のマイクロチューブから成る複数の列を単に間隔を存して並設していた熱交換器に比してその全体寸法を著しく小型化することが可能となる。また、ガスクーラ出口温度を下げられるため、高圧圧力を低く設定でき、冷媒回路機器及びコンプレッサの信頼性を向上させることができる。
【0035】
また、請求項2の発明の熱交換器は、上記に加えてヘッダー部の通路幅よりも当該通路を構成する壁の幅を大きく構成したので、各マイクロチューブ間に、隣接する他の列の各マイクロチューブを支障無く配置することができるようになるものである。
【0036】
また、請求項3の発明の熱交換器は、上記各発明に加えて各ヘッダー部を、隣接するマイクロチューブの列が相互に直列となるように接続したので、例えば、マイクロチューブ内に流入した冷媒の流れの方向に対して熱交換器に通風される空気を対向流とすることで、熱交換器における冷媒と空気との熱交換効率を著しく改善することができるようになるものである。
【0037】
そして、係る熱交換器は請求項4の如き温度変化の著しいCOを使用した冷媒回路のガスクーラとして用いる場合に極めて有効なものとなる。
【図面の簡単な説明】
【図1】本発明を適用した冷却装置の冷媒回路図である。
【図2】本発明の熱交換器の実施例としてのガスクーラのヘッダー部の拡大斜視図である。
【図3】図2のガスクーラのヘッダー部の下面図である。
【図4】図3のヘッダー部のA−A線断面に相当するガスクーラ上部の断面図である。
【図5】図3のヘッダー部のB−B線断面に相当するガスクーラ上部の断面図である。
【図6】ガスクーラのマイクロチューブ内の冷媒温度と送風された空気の温度との関係を示す図である。
【符号の説明】
1 冷却装置
2 ロータリコンプレッサ
2A 冷媒吐出管
2B 冷媒吸入管
4 膨張弁
4A 配管
5 蒸発器
6 アキュムレータ
10 ガスクーラ(熱交換器)
11 ヘッダー部
12 ヘッダー部
13 接続孔
14 連通路
15 閉塞部
16 ベンド配管
17 ベンド配管
20 マイクロチューブ
21 冷媒通路

Claims (4)

  1. 所定間隔を存して並設された複数のマイクロチューブから成る列を複数備え、一列を成す前記複数のマイクロチューブの端部をヘッダー部により相互に連通して成る熱交換器において、
    一列を成す前記各マイクロチューブの間に、隣接した列を成す前記各マイクロチューブの一部がそれぞれ進入するよう構成したことを特徴とする熱交換器。
  2. 前記ヘッダー部の通路幅よりも当該通路を構成する壁の幅を大きく構成したことを特徴とする請求項1の熱交換器。
  3. 前記各ヘッダー部を、隣接するマイクロチューブの列が相互に直列となるように接続したことを特徴とする請求項1又は請求項2の熱交換器。
  4. CO冷媒を使用する冷媒回路のガスクーラとして用いられることを特徴とする請求項1、請求項2又は請求項3の熱交換器。
JP2003028534A 2003-02-05 2003-02-05 熱交換器 Pending JP2004239503A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028534A JP2004239503A (ja) 2003-02-05 2003-02-05 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028534A JP2004239503A (ja) 2003-02-05 2003-02-05 熱交換器

Publications (1)

Publication Number Publication Date
JP2004239503A true JP2004239503A (ja) 2004-08-26

Family

ID=32955982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028534A Pending JP2004239503A (ja) 2003-02-05 2003-02-05 熱交換器

Country Status (1)

Country Link
JP (1) JP2004239503A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309545A (ja) * 2006-05-16 2007-11-29 Daikin Ind Ltd 熱交換器
JP2009074762A (ja) * 2007-09-21 2009-04-09 Toyota Motor Corp 熱交換器
KR100913141B1 (ko) * 2004-09-15 2009-08-19 삼성전자주식회사 마이크로채널튜브를 이용한 증발기
EP2131131A1 (en) * 2008-06-06 2009-12-09 Scambia Industrial Developments AG Heat exchanger
WO2013132544A1 (ja) * 2012-03-07 2013-09-12 三菱電機株式会社 熱交換器及びこの熱交換器を備えたヒートポンプシステム
WO2015111175A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 ヒートポンプ装置
CN112284179A (zh) * 2019-07-25 2021-01-29 晋江市美田制冷设备有限公司 一种壳管式冷凝器的安装固定结构

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913141B1 (ko) * 2004-09-15 2009-08-19 삼성전자주식회사 마이크로채널튜브를 이용한 증발기
JP2007309545A (ja) * 2006-05-16 2007-11-29 Daikin Ind Ltd 熱交換器
JP2009074762A (ja) * 2007-09-21 2009-04-09 Toyota Motor Corp 熱交換器
EP2131131A1 (en) * 2008-06-06 2009-12-09 Scambia Industrial Developments AG Heat exchanger
WO2013132544A1 (ja) * 2012-03-07 2013-09-12 三菱電機株式会社 熱交換器及びこの熱交換器を備えたヒートポンプシステム
JPWO2013132544A1 (ja) * 2012-03-07 2015-07-30 三菱電機株式会社 熱交換器及びこの熱交換器を備えたヒートポンプシステム
WO2015111175A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 ヒートポンプ装置
JPWO2015111175A1 (ja) * 2014-01-23 2017-03-23 三菱電機株式会社 ヒートポンプ装置
US10605498B2 (en) 2014-01-23 2020-03-31 Mitsubishi Electric Corporation Heat pump apparatus
CN112284179A (zh) * 2019-07-25 2021-01-29 晋江市美田制冷设备有限公司 一种壳管式冷凝器的安装固定结构

Similar Documents

Publication Publication Date Title
CN105229407B (zh) 复式热交换器
KR100765557B1 (ko) 열교환기
CN103635752B (zh) 制冷装置的室外机
JP2006329511A (ja) 熱交換器
KR20060025082A (ko) 마이크로채널튜브를 이용한 증발기
CN103238037A (zh) 热交换器和安装有热交换器的一体化空调机
JP2005055108A (ja) 熱交換器
JP2006284134A (ja) 熱交換器
JP2011127831A (ja) 熱交換器及びこれを備えた冷凍サイクル装置
EP1757869A2 (en) Heat exchanger for air conditioner having different circuit pattern depending on distance from fan
CN101915480B (zh) 热交换器及制冷空调装置
JP2006284133A (ja) 熱交換器
US20160109192A1 (en) Interior heat exchanger
JP2024057108A (ja) 冷凍装置の熱源ユニット
JP2005037054A (ja) 冷媒サイクル装置用熱交換器
JP2004239503A (ja) 熱交換器
CN105737453B (zh) 冷却装置及其使用方法
JP3911604B2 (ja) 熱交換器および冷凍サイクル
JPH0914698A (ja) 空気調和機の室外機
JP2021167676A (ja) 継手
JP7414845B2 (ja) 冷凍サイクル装置
JP6599056B1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
KR101186552B1 (ko) 열교환기
KR20180138488A (ko) 냉장고용 응축기
JP2003222436A (ja) ヒートポンプ型空調用熱交換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127