JP2004230375A - 半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置 - Google Patents

半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置 Download PDF

Info

Publication number
JP2004230375A
JP2004230375A JP2003394626A JP2003394626A JP2004230375A JP 2004230375 A JP2004230375 A JP 2004230375A JP 2003394626 A JP2003394626 A JP 2003394626A JP 2003394626 A JP2003394626 A JP 2003394626A JP 2004230375 A JP2004230375 A JP 2004230375A
Authority
JP
Japan
Prior art keywords
liquid
membrane
casing
processing
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003394626A
Other languages
English (en)
Other versions
JP3875231B2 (ja
Inventor
Toshihiro Kaneda
俊宏 金田
Hisahide Ohira
久英 大平
Fusao Kawamura
房雄 川村
Mihoko Nakada
三保子 中田
Michiharu Nakao
通治 中尾
Yoichi Jinbo
陽一 神保
Toshiaki Chiba
敏昭 千葉
Takayoshi Yokoyama
喬剛 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2003394626A priority Critical patent/JP3875231B2/ja
Publication of JP2004230375A publication Critical patent/JP2004230375A/ja
Application granted granted Critical
Publication of JP3875231B2 publication Critical patent/JP3875231B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】 親水化剤の保持量を一層高めることができ、効率良く製造できる液体処理モジュールの製造方法を提供する。
【解決手段】 膜基材を内部に装填したケーシング2を血液排出ポート13及び血液注入ポート15が上下方向に位置する状態にセットし、親水化剤を所定濃度で含有する処理液を、透析液注入ポート8及び透析液排出ポート9を栓部材38にて閉塞した状態で血液注入ポート15を通じてケーシング2内に注入する。その後、透析液注入ポート8及び透析液排出ポート9を開放すると共に血液注入ポート15を閉じ、この状態で、血液排出ポート13から圧縮気体を導入することで処理液を移動させる。
【選択図】 図4

Description

本発明は、体液処理や水処理などに使用される半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置に関し、特に、ケーシング内に備えた半透膜の表面処理(表面加工)に関する。
液体処理モジュールは、医療分野や工業分野を始めとする幅広い分野で用いられている。例えば、医療分野においては血液浄化器として腎臓や肝臓に疾患を持つ患者の血液浄化などに使用され、工業分野においては水処理装置としてジュースなど飲料物の濃縮や精製等に使用されている。そして、この液体処理モジュールに用いられる半透膜には、表面処理(表面からの処理を意味し、表面そのものの処理に加えて膜内部の処理も含まれる。以下同様。)が施されたものがある。表面処理が施された半透膜の一種に親水化膜がある。この親水化膜は、疎水性の膜基材に対して親水性を付与したものである。ここで、疎水性の膜基材を用いているのは、この膜基材の紡糸が容易で、一部のものは強度が高く、耐熱性、及び耐薬品性に優れているからである。しかし、膜基材が疎水性のままでは、本来の透過能を直ちに発揮することが困難である。また、血液浄化機器の材料として使用する前に賦活処理を行わなければならず、煩雑である。このため、膜基材本来の透過能を直ちに発揮させるべく、さらには、治療の準備段階での操作性や生体適合性を改善すべく、膜基材に表面処理を行って親水性を付与している。
膜基材に対する表面処理方法は種々あるが、その一種に、処理剤を含有する処理液を膜基材における一方の膜表面に流した後、この処理液を洗浄液にて洗浄除去する方法が提案されている(例えば、特許文献1参照。)。この方法では、処理剤(例えば、親水化剤)と膜基材表面の吸着力を利用して処理剤を膜基材表面に付着保持させているので、特別な不溶化処理を用いる必要がなく簡便であり、設備の簡素化が図れると共に処理の簡素化が図れる。また、膜基材における一方の表面を選択的に処理できるので、特定用途において好適に用いることができる。例えば、疎水性膜基材の一方の表面を表面処理した親水化膜を用いて血液浄化器を構成すると、血液中の余剰水分を透析開始直後から透析液側に排出できると共に、エンドトキシン等の発熱物質を疎水性面に吸着させることができる。
特開平10−151196号公報(第5−6頁,第1図)
ところで、上記の方法では、膜表面に付着保持させる処理剤の量は、処理液中の処理剤の濃度に依存する。従って、膜表面に付着保持される処理剤の量を増やすためには、処理剤の濃度を高めた処理液を用いたり、処理液と膜表面との接触時間(通液時間)を増やしたりする等の対策が必要となる。ここで、処理液中の処理剤濃度を高めた場合には、処理液の粘性が高くなるので、送液圧力を上昇させる必要がある。この場合、送液圧力が過度に上昇して膜基材に強い機械的ストレスを与えてしまう可能性があり、ひいては、膜基材の変形や破損等の原因となりうる。また、処理液と膜表面との接触時間を増やした場合には、その分だけ生産性が低下してしまう。
本発明は、このような事情に鑑みてなされたものであり、処理剤の付着量を一層高めることができ、効率良く製造できる半透膜の製造方法、液体処理モジュールの製造方法、及び、液体処理モジュールの製造装置を提供することを目的とする。
本発明は、上記目的を達成するために提案されたものであり、請求項1に記載のものは、膜基材に処理剤を保持させた半透膜の製造方法において、
前記膜基材の一方の膜表面側と他方の膜表面側との間に圧力差を付与することで、前記処理剤を所定濃度で含有する処理液を一方の膜表面側から他方の膜表面側へ向けて移動し、前記処理剤を膜基材に保持させる膜通液工程を経て製造されることを特徴とする半透膜の製造方法である。
請求項2に記載のものは、前記膜通液工程は、一方の膜表面側からの加圧及び/または他方の膜表面側の減圧によって行われることを特徴とする請求項1に記載の半透膜の製造方法である。
請求項3に記載のものは、前記膜基材が疎水性膜基材であり、前記処理剤が親水化剤であり、前記処理液が前記親水化剤の溶液であることを特徴とする請求項1または請求項2に記載の半透膜の製造方法である。
請求項4に記載のものは、前記親水化剤がポリビニルピロリドン、またはグリセリン、またはポリエチレングリコールであり、前記疎水性膜基材がポリエステル系ポリマーアロイを主たる膜素材としていることを特徴とする請求項3に記載の半透膜の製造方法である。
請求項5に記載のものは、請求項1から請求項4の何れかに記載の製造方法により製造され、膜基材1平方メートルあたりの処理剤の保持量が20mg以上であることを特徴とする半透膜である。
請求項6に記載のものは、膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、
前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造方法において、
前記膜基材を内部に装填したケーシングに対し、前記処理剤を含有した処理液を第1注入ポート及び第1排出ポートの一方を通じて前記第1通液空間に注入する処理液注入工程と、
前記第1通液空間と第2通液空間との間に圧力差を生じさせ、該圧力差により該処理液の溶媒成分を第1通液空間から第2通液空間に移動させることで前記処理剤を膜基材に保持させる膜通液工程と、
を経て製造されることを特徴とする液体処理モジュールの製造方法である。
請求項7に記載のものは、前記膜通液工程は、第2ポートを開放した状態で第1通液空間に注入された処理液を加圧することで行われることを特徴とする請求項6に記載の液体処理モジュールの製造方法である。
請求項8に記載のものは、前記膜通液工程は、第1通液空間に注入された処理液を加圧し、及び/または第2通液空間を減圧することで行われることを特徴とする請求項7に記載の液体処理モジュールの製造方法である。
請求項9に記載のものは、前記第1注入ポート及び第1排出ポートをケーシングの両端部に設ける一方、前記第2ポートをケーシングの側面に設け、
膜基材を内部に装填したケーシングを第1注入ポート及び第1排出ポートが上下方向に位置する状態にセットし、
前記処理液注入工程では下側に位置するポートから処理液を注入し、前記膜通液工程では上側に位置するポートから処理液を加圧することを特徴とする請求項7または請求項8に記載の液体処理モジュールの製造方法である。
請求項10に記載のものは、前記膜通液工程における処理液の加圧を、第1通液空間への圧縮気体の導入、または処理液のさらなる導入によって行うことを特徴とする請求項7から請求項9の何れかに記載の液体処理モジュールの製造方法である。
請求項11に記載のものは、前記処理液注入工程では、前記第2ポートを閉じた状態で前記第1注入ポート及び第1排出ポートの一方を通じ、前記処理剤を規定量含有する処理液を前記第1通液空間に注入し、
前記膜通液工程では、前記第1注入ポート及び/または第1排出ポートから、圧縮気体を導入、または処理液をさらに導入することを特徴とする請求項10に記載の液体処理モジュールの製造方法である。
請求項12に記載のものは、前記第1注入ポート及び第1排出ポートを開放し、当該開放状態で第1通液空間内に気体を導入することにより第1通液空間内に残った処理液を排出するパージ工程を、前記膜通液工程よりも後に行うことを特徴とする請求項6から請求項11の何れかに記載の液体処理モジュールの製造方法である。
請求項13に記載のものは、前記パージ工程は、圧力を段階的に上昇させながら気体の導入を複数回に分けて行うことを特徴とする請求項12に記載の液体処理モジュールの製造方法である。
請求項14に記載のものは、少なくとも第2通液空間を減圧する減圧工程を前記処理液注入工程よりも前に行い、
前記膜通液工程は、減圧工程により減圧状態となった第2通液空間と、処理液注入工程により処理液が注入された第1通液空間との圧力差により行われることを特徴とする請求項6に記載の液体処理モジュールの製造方法である。
請求項15に記載のものは、前記第2ポートは、第2注入ポートと第2排出ポートとから構成され、
前記膜通液工程の後に、第1通液空間内に残った処理液を排出する第1パージ工程と、第2通液空間内に残った処理液を排出する第2パージ工程を行い、
前記第1パージ工程では、前記第1注入ポート及び第1排出ポートを開放するとともに、前記第2注入ポート及び第2排出ポートを閉塞した状態で、第1通液空間内に気体を導入し、
前記第2パージ工程では、前記第2注入ポート及び第2排出ポートを開放するとともに、前記第1注入ポート及び第1排出ポートを閉塞した状態で、第2通液空間内に気体を導入することを特徴とする請求項14に記載の液体処理モジュールの製造方法である。
請求項16に記載のものは、前記膜基材が疎水性膜基材であり、前記処理剤が親水化剤であることを特徴とする請求項6から請求項15の何れかに記載の液体処理モジュールの製造方法である。
請求項17に記載のものは、前記親水化剤がポリビニルピロリドン、またはグリセリン、またはポリエチレングリコールであり、前記疎水性膜基材がポリエステル系ポリマーアロイを主たる膜素材としていることを特徴とする請求項16に記載の液体処理モジュールの製造方法である。
請求項18に記載のものは、請求項6から請求項17の何れかに記載の製造方法により製造され、膜基材1平方メートルあたりの処理剤の保持量が20mg以上であることを特徴とする液体処理モジュールである。
請求項19に記載のものは、膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造装置において、
前記膜基材を内部に装填したケーシングがセットされるケーシング装着部と、
途中に開閉弁を設けた処理液供給管を通じて前記ケーシング装着部に連通され、前記処理液を供給可能な処理液供給部と、
前記ケーシング装着部に装着されたケーシングの第2ポートを開閉可能な栓機構と、
前記開閉弁、及び、栓機構の動作を制御可能な制御部とを有し、
該制御部は、
第2ポートが閉状態になるように栓機構を制御すると共に処理液供給管の開閉弁を開放状態に制御することで、前記処理液を第1通液空間に注入し、
処理液の注入後、第2ポートが開放状態となるように栓機構を制御し、第1通液空間内の処理液を加圧し、前記処理液の溶媒成分を第1通液空間から第2通液空間に移動させることを特徴とする液体処理モジュールの製造装置である。
請求項20に記載のものは、膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造装置において、
前記膜基材を内部に装填したケーシングがセットされるケーシング装着部と、
途中に開閉弁を設けた気体供給管を通じて前記ケーシング装着部に連通され、圧縮気体を供給可能な気体供給源と、
途中に開閉弁を設けた処理液供給管を通じて前記ケーシング装着部に連通され、前記処理液を供給可能な処理液供給部と、
前記ケーシング装着部に装着されたケーシングの第2ポートを開閉可能な栓機構と、
前記開閉弁、及び、栓機構の動作を制御可能な制御部とを有し、
該制御部は、
第2ポートが閉状態になるように栓機構を制御すると共に処理液供給管の開閉弁を開放状態に制御することで、前記処理液を第1通液空間に注入し、
処理液の注入後、第2ポートが開放状態になるように栓機構を制御すると共に処理液供給管の開閉弁を閉状態に制御し、尚且つ、気体供給管の開閉弁を開放状態にすることで第1通液空間内に圧縮気体を導入し、前記処理液の溶媒成分を第1通液空間から第2通液空間に移動させることを特徴とする液体処理モジュールの製造装置である。
請求項21に記載のものは、膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造装置において、
前記膜基材を内部に装填したケーシングがセットされるケーシング装着部と、
途中に開閉弁を設けた吸気管を通じて前記ケーシング装着部に連通され、ケーシング内を減圧する減圧手段と、
途中に開閉弁を設けた処理液供給管を通じて前記ケーシング装着部に連通され、前記処理液を供給可能な処理液供給部と、
前記開閉弁の動作を制御可能な制御部とを有し、
該制御部は、
前記吸気管の開閉弁を開放状態に制御し、減圧手段を作動させることでケーシング内の第1通液空間及び第2通液空間を減圧し、
各通液空間の減圧後、吸気管の開閉弁を閉塞状態に制御すると共に処理液供給管の開閉弁を開放状態に制御することで、前記処理液を第1通液空間に注入し、
処理液の注入後、減圧状態の第2通液空間と処理液が注入された第1通液空間との圧力差により、前記処理液の溶媒成分を第1通液空間から第2通液空間に移動させることを特徴とする液体処理モジュールの製造装置である。
請求項22に記載のものは、前記膜基材が疎水性膜基材であり、前記処理剤が親水化剤であることを特徴とする請求項19から請求項21の何れかに記載の液体処理モジュールの製造装置である。
上記構成を採ったことにより、本発明は次の効果を奏する。即ち、膜基材の一方の膜表面側と他方の膜表面側との間に圧力差を付与することで、処理剤を所定濃度で含有する処理液を一方の膜表面側から他方の膜表面側へ向けて移動し、処理剤を膜基材に保持させる膜通液工程を経て製造するようにしたので、処理剤を膜基材に対して確実に保持させることができる。また、処理液中の処理剤の濃度や膜通液工程時の流量を調整することで保持させる処理剤の量を精度良くコントロールすることもできる。さらに、処理剤を濃縮して膜基材に保持させることができるため、取り扱いが容易な希薄な処理液によっても十分な量の処理剤を保持させることができ、膜基材に過度な機械的ストレスを与えずに処理剤を保持させることができる。また、多量の処理剤を容易に膜基材へ付着させることができ、しかも付着した処理剤が剥離し難い。
そして、膜基材を内部に装填したケーシングに対し、処理剤を含有した処理液を第1注入ポート及び第1排出ポートの一方を通じて第1通液空間に注入する処理液注入工程と、前記第1通液空間と第2通液空間との間に圧力差を生じさせ、該圧力差により処理液の溶媒成分を第1通液空間から第2通液空間に移動させることで前記処理剤を膜基材に保持させる膜通液工程と、を経て液体処理モジュールが製造されるので、処理液を移動する過程で処理剤が膜基材に保持され、処理液中の処理剤を膜基材に対して効率よく保持させることができる。また、処理剤の保持量は処理液の移動量に依存するので、処理液の移動量を設定することにより、保持量を精度良くコントロールすることができる。さらに、取り扱いが容易な希薄な処理液によっても十分な量の処理剤を、膜基材から剥離し難い状態で保持させることができ、膜基材に過度な機械的ストレスを与えずに液体処理モジュールの製造を行える。
また、処理液注入工程にて下側に位置するポートから処理液を注入し、膜通液工程にて上側に位置するポートから圧縮気体を導入するようにした場合には、処理液の注入によってケーシング内の空気を順次上方に排出できるので、処理液注入後において残存する気泡を少なくすることができる。また、処理液の加圧時において圧縮気体を上方から導入するので、比重が処理液よりも軽い気体であっても支障なく処理液を押圧することができる。
また、膜通液工程よりも後にパージ工程を行い、このパージ工程にて圧力を段階的に上昇させながら気体の導入を複数回に分けて行った場合には、残存する処理液を確実に排出することができる。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下は、液体処理モジュールの一種である透析器、具体的には血液浄化器を例に挙げることとし、疎水性半透膜の膜基材に対して親水化処理を行う場合について説明する。まず、図1及び図2に基づいて血液浄化器1の構成について説明する。例示した血液浄化器1は、ケーシング2の内部に中空糸束3を備えた構成である。
ケーシング2は、前記中空糸束3を収納可能な筒状のケーシング本体4と、このケーシング本体4の筒長手方向一端(図1の上側)に接続される排出側キャップ部材5と、ケーシング本体4の筒長手方向他端(図1の下側)に接続される注入側キャップ部材6とを備えている。ケーシング本体4は、筒長手方向の両端部に拡径部7を設けた円筒状部材であり、例えばポリカーボネイトにより構成される。そして、筒長手方向の一端側に位置する拡径部7には、ケーシング本体4の内部空間に連通した透析液注入ポート8を、筒の側方に向けて突設している。一方、筒長手方向の他端側に位置する拡径部7には、ケーシング本体4の内部空間に連通した透析液排出ポート9を、筒の側方に向けて突設している。なお、透析液注入ポート8は第2の液体(例えば透析液)を注入するための第2注入ポート(本発明の第2ポートの一部)として機能し、透析液排出ポート9は第2の液体を排出するための第2排出ポート(本発明の第2ポートの一部)として機能する。
このケーシング本体4における筒長手方向の両端部には封止部10を設けている。この封止部10は、中空糸束3の端部をケーシング本体4に接着固定するための部分であり、例えば、シーリング材11によって構成される。このシーリング材11としては例えばウレタン系の接着剤が用いられている。そして、シーリング材11は、中空糸束3とケーシング本体4との間、及び、中空糸束3を構成する中空糸膜12同士の間に充填されている。これにより、ケーシング本体4の両端面は、端部が開口した複数の中空糸膜12…が密集した状態となるとともに、シーリング材11が中空糸膜12同士の間隙を塞いだ封止状態となっている。
そして、図1に示すように、この封止部10は、透析液注入ポート8や透析液排出ポート9の開口位置よりも筒長手方向の端部側に設けられる。このため、中空糸膜12及び封止部10によってケーシング本体4の内部空間は、中空糸膜12の内側空間と外側空間とに区画される。さらに、中空糸膜12の外側空間は、透析液注入ポート8及び透析液排出ポート9を通じてケーシング4の外部に連通される。そして、中空糸膜12の内側空間は、第1の液体(例えば血液)を通じるための第1通液空間として機能し、中空糸膜12の外側空間は、第2の液体を通じるための第2通液空間として機能する。なお、中空糸膜12の外側空間を第1通液空間、内側空間を第2通液空間としてもよい。
排出側キャップ部材5は、血液排出ポート13を有する略漏斗形状のキャップ部材であり、筒長手方向他端側に螺着される。そして、この排出側キャップ部材5には、封止部外表面の外周部分に密着可能なOリング14を配設している。このOリング14は、封止部外表面に密着することで、ケーシング本体4と排出側キャップ部材5との境界部分を液密にシールしている。また、注入側キャップ部材6は、排出側キャップ部材5と同様な構造であり、血液注入ポート15を設けた略漏斗形状のキャップ部材である。そして、この注入側キャップ部材6は、ケーシング本体4の筒長手方向一端側に螺着され、螺着状態においてOリング16が封止部外表面に密着し、ケーシング本体4と注入側キャップ部材6との境界部分を液密にシールする。
ここで、血液排出ポート13は第1の液体を排出するための第1排出ポートとして機能し、血液注入ポート15は第1の液体を注入するための第1注入ポートとして機能する。そして、キャップ部材5,6の螺着状態において、排出側キャップ部材5の内部空間、及び、注入側キャップ部材6の内部空間は、各中空糸膜12…の内側空間と共に血液が通る血液流路を構成する。本実施形態では、この血液流路が第1の液体を通じるための第1通液空間として機能する。
上記の中空糸膜12は、本発明における親水化膜の一種であり、図2(b)に示すように、中空糸状の膜基材17と、この膜基材17に保持された親水化剤18とからなる半透膜である。そして、この中空糸膜12は、膜厚が5〜50マイクロメートル、内径が100〜500マイクロメートル程度の極めて細いものである。
上記の膜基材17は、ポリエステル系樹脂とポリスルホン系樹脂を主たる膜素材とした疎水性高分子製の半透膜である。ここで、前記ポリエステル系樹脂は、例えば、次式(1)で表される繰り返し単位を有するポリアリレート樹脂である。
Figure 2004230375
また、前記ポリスルホン系樹脂は、例えば、次式(2)で表される繰り返し単位、及び、次式(3)で表される繰り返し単位の少なくとも何れかを有するポリスルホン樹脂である。
Figure 2004230375
Figure 2004230375
この疎水性膜基材17を紡糸するための製膜原液は、ポリエステル系樹脂(A)とポリスルホン系樹脂(B)との混合重量比(A/B)を0.1〜10の範囲で定めると共に、両樹脂の合計量(A+B)が10重量%〜25重量%の割合となるように有機溶媒に溶解することで調製される。このように調製された製膜原液を、二重管紡糸口金を用いて芯液とともに凝固液中に吐出すると、ポリエステル系ポリマーアロイを膜素材とした中空糸状の膜基材17が得られる。そして、この膜基材17は3000〜15000本程度を一単位として束ねられる。
この中空糸状の膜基材17は、その内側表面に緻密層が形成されていると共に、この緻密層の外側を覆うように多孔質層が形成されている。緻密層は、この膜基材17において、物質の選択透過性並びに透過速度を規定する部分であり、例えば、500オングストローム未満の平均孔径を有する孔、具体的には、孔半径30〜200オングストロームの孔が形成されている。また、多孔質層は緻密層を支持し膜の強度を保つ支持層として機能しており、緻密層よりもかなり粗い孔が形成される。
そして、この膜基材17は、図3に示す分子量分画特性を有している。この図に示すように、例えば、分子量35,000の物質については、篩係数(SC)が約0.5、即ち、全体量の約50%がこの膜基材17を透過し(具体的には、緻密層に形成された孔を通過してしまい)、分子量70,000の物質については、篩係数が約0.05、即ち全体量の約5%がこの膜基材17を透過し、残りの約95%が透過できないことが判る。さらに、分子量100,000以上の物質については、ほぼ全量(100%)が膜基材17を透過できない。
また、膜基材17に保持される親水化剤18は、本発明における処理剤の一種であり、親水性を有する親水性高分子が用いられる。そして、この親水化剤18としては、使用時において膜基材17から容易に離脱しない物質が選択される。したがって、この親水化剤18としては、上記の条件を充足する限りにおいて種々の物質が選択できる。そして、本発明者等の研究により、上述の条件を満足する親水化剤18(親水性高分子)として、ポリビニルピロリドン(PVP)が最も適しているこという知見を得た。これは、ポリビニルピロリドンが生体適合性が良好であることに因るところが大きい。
但し、このポリビニルピロリドンも分子量に応じて複数の種類がある。実験的には、平均分子量1,200,000のK−90では、膜基材17の透過を防止でき、一旦付着保持されると膜表面から容易に離脱しないことが確認された。これにより、K−90であれば、膜基材17の一方の表面に選択的に親水性を付与する際において好適に使用できる。これに対し、平均分子量が約40,000のK−30では、多くのポリビニルピロリドンが膜基材17を透過することが確認できた。このため、膜基材17の厚さ方向全域に亘って親水性を付与する際において、言い換えれば、膜基材17の両面に親水性を付与する際において好適に使用できる。
そして、膜基材17の一方の表面に選択的に親水性を付与する場合において、好適に使用できるポリビニルピロリドンは、これらのK−30及びK−90の範囲、即ち、平均分子量40,000から平均分子量1,200,000の範囲内に存在することが予測されるが、現時点においては、K−30とK−90との間の平均分子量を有し、医療用として使用可能なポリビニルピロリドンが入手困難であることから確認はできていない。しかし、膜基材17の細孔よりも大きい平均分子量であれば好適に使用できると考えられる。なお、膜基材17の細孔よりも小さな分子量の親水化剤は全てが膜基材17を透過するわけではない。これは、細孔には広狭の分布があり、細孔の狭い部分では分子量の小さな親水化剤が通過し難くて保持され易い。そのために細孔がさらに狭くなり、より小さな分子量の親水化剤も保持され易くなるためである。そして、後述の親水化処理液が多量に膜基材の内側から外側へ移動すれば、小さな親水化剤であっても細孔に保持され易くなり、膜基材に付着保持され易くなる。
また、本実施形態では、親水化剤18にポリビニルピロリドンを適用したが、本発明はこれに限定されない。例えば、ポリエチレングリコールやグリセリンであってもよい。しかしながら、生体適合性の観点から、ポリビニルピロリドンを血液浄化器1の親水化剤18として採用するのが好適である。
そして、この血液浄化器1では、透析治療時において、注入側キャップ部材6の血液注入ポート15には流入側血液チューブが接続され、排出側キャップ部材5の血液排出ポート13には排出側血液チューブが接続される(何れも図示せず)。ここで、流入側血液チューブは、患者の体内から導出された血液が通る合成樹脂製の可撓性チューブであり、排出側血液チューブは、患者の体内へ戻す血液(処理後の血液)が通る合成樹脂製の可撓性チューブである。また、ケーシング本体4の透析液注入ポート8には供給側透析液チューブが接続され、透析液排出ポート9には排出側透析液チューブが接続される(何れも図示せず)。ここで、供給側透析液チューブは、透析液貯留部から供給される新しい透析液が通る合成樹脂製の可撓性チューブであり、排出側透析液チューブは、処理後の透析液が通る合成樹脂製の可撓性チューブである。この場合において、上記の血液は液体処理モジュールにおける第1液の一種であり、透析液は液体処理モジュールにおける第2液の一種である。
次に、膜基材17に親水化剤18を保持させる親水化膜の製造方法について詳細に説明する。ここで、図4は、この製造方法に用いられる処理装置19(即ち、液体処理モジュールの製造装置の一種)を説明する模式図である。なお、親水化膜の製造は、束ねられた膜基材17(便宜上、膜基材束という。)をケーシング2内に装填した後に行う。言い換えれば、膜基材束の状態で組み立てた血液浄化器1に対して親水化処理を行う。
例示した処理装置19は、廃液貯留部20と、気体供給源21と、処理液貯留部22(本発明の処理液供給部の一部)と、浄化器装着部23と、気体供給管24と、第1排出管25と、処理液供給管26と、第2排出管27と、栓機構28と、制御部(図示せず)とを備えている。
廃液貯留部20は、排出された親水化処理液を貯留可能な部分(室)である。気体供給源21は、圧縮空気等の圧縮気体を供給する部分であり、例えば、コンプレッサによって構成される。処理液貯留部22は、親水化処理液(本発明の処理液の一種)を貯留する部分である。浄化器装着部23は、処理対象となる血液浄化器1がセットされる部分であり、本実施形態では、血液排出ポート13及び血液注入ポート15を上下方向(縦方向)に向けた状態で血液浄化器1がセットされる。気体供給管24は、気体供給源21と浄化器装着部23との間を連通する管である。具体的には、この気体供給管24によって、セットされた血液浄化器1における血液排出ポート13と血液注入ポート15の一方と、気体供給源21との間が連通される。第1排出管25は、浄化器装着部23と廃液貯留部20との間を連通する管である。具体的には、この第1排出管25によって、血液排出ポート13と血液注入ポート15の一方と、廃液貯留部20との間が連通される。処理液供給管26は、処理液貯留部22と浄化器装着部23との間を連通する管である。具体的には、この処理液供給管26によって、血液排出ポート13と血液注入ポート15の他方と処理液貯留部22との間が連通される。第2排出管27は、浄化器装着部23と廃液貯留部20との間を連通する管である。具体的には、この第2排出管27によって、血液排出ポート13と血液注入ポート15の他方と、廃液貯留部20との間が連通される。栓機構28は、浄化器装着部23にセットされたケーシング本体4の透析液注入ポート8及び透析液排出ポート9を開放したり閉塞したりするものである。制御部は、CPU,ROM,RAM等を備えており、栓機構28や後述する開閉弁32〜37等の動作を制御する。
なお、本実施形態において、気体供給源21からは圧縮された空気を供給し、処理液貯留部22には親水化処理液としてポリビニルピロリドン水溶液を貯留しているが、これらに限定されるものではない。例えば、圧縮気体として圧縮窒素を供給してもよい。そして、他の親水化処理剤として、ポリエチレングリコールやグリセリンを用いてもよい。また、上記の浄化器装着部23は、膜基材束を内部に装填したケーシング2がセットされるケーシング装着部として機能する。
また、上記の例では、気体供給管24と第1排出管25とを浄化器装着部23側の端部で合流させている。このため、気体供給管24と第1排出管25との合流箇所Aから浄化器装着部23側の端部までの部分は、気体供給管24の一部として機能すると共に第1排出管25の一部としても機能する。そして、浄化器装着部23側の端部は、処理対象となる血液浄化器1の血液注入ポート15と血液排出ポート13の一方に接続される第1接続部29として構成されている。一方、処理液供給管26及び第2排出管27についても、合流箇所Bから浄化器装着部23側の端部までの部分は、処理液供給管26の一部として機能すると共に第2排出管27の一部としても機能している。そして、浄化器装着部23側の端部も同様に、処理対象となる血液浄化器1の血液注入ポート15と血液排出ポート13の他方に接続される第2接続部30として構成されている。
さらに、これらの第1接続部29及び第2接続部30は、制御部によって上下移動可能に構成されており、浄化器装着部23側に移動したり、浄化器装着部23から退避したりする。また、便宜上、以下の説明では、第1接続部29は血液排出ポート13に接続され、第2接続部30は血液注入ポート15に接続されるものとする。
気体供給管24の途中には、調整弁機構31及び第1開閉弁32とが設けられている。調整弁機構31は第1開閉弁32よりも上流側(気体供給源21側)に配設され、第1開閉弁32は気体供給管24と第1排出管25の分岐点A(合流箇所A)よりも少し上流側に配設される。なお、この第1開閉弁32に関し、閉状態を黒塗りで示し、開放状態を白抜きで示している(図7参照)。これは、後述する第2開閉弁33〜第4開閉弁37についても同様である。そして、本実施形態では、第1開閉弁32よりも上流側(気体供給源21側)の気体供給管24を第1気体供給枝管24aと第2気体供給枝管24bとに分岐しており、第1気体供給枝管24aの途中にはリリーフバルブを有する低圧側弁31Aを配設し、第2気体供給枝管24bの途中には高圧側弁31Bを配設している。低圧側弁31Aと高圧側弁31Bとは開放時における出口側圧力が異なっており、低圧側弁31Aの出口側圧力の方が高圧側弁31Bの出口側圧力よりも低く設定されている。本実施形態では、リリーフバルブによって低圧側弁31Aの出口側圧力を0.2kgf/cm(1.96×10Pa)に設定している。また、高圧側弁31Bの出口側圧力は0.5kgf/cm(4.90×10Pa)に設定している。
これらの低圧側弁31A及び高圧側弁31Bは、制御部により開閉状態が電気的に制御可能とされる。例えば、低圧側弁31A及び高圧側弁31Bの両方を閉じた閉状態と、低圧側弁31Aを開放すると共に高圧側弁31Bを閉じた低圧状態と、高圧側弁31Bを開放すると共に低圧側弁31Aを閉じた高圧状態とに制御される。また、第1開閉弁32も制御部により開閉状態が電気的に制御される。即ち、この第1開閉弁32で流路を遮断する閉状態(遮断状態)と、上流側と下流側とを連通する開放状態(連通状態)とに制御される。
第1排出管25の途中には、第2開閉弁33と流量計34とが設けられている。本実施形態では、第2開閉弁33を気体供給管24と第1排出管25の分岐点Aよりも少し下流側(廃液貯留部20側)に配設し、流量計34を第2開閉弁33の近傍であって第2開閉弁33よりも下流側に配設している。第1開閉弁32は、上記した第1開閉弁32と同様な構成であり、制御部によって電気的に制御され、閉状態と開放状態とに変換される。流量計34は、この第1排出管25を流れる流体(親水化処理液)の流量を検出するものであり、その検出信号は制御部に出力される。
処理液供給管26の途中には、送液ポンプ35(本発明の処理液供給部の一部)と第3開閉弁36とが設けられている。また、第2排出管27の途中には、第4開閉弁37が設けられている。送液ポンプ35は、制御部によって動作が制御される。例えば、送液開始、送液停止、送液中における流量などを制御することができる。第3開閉弁36及び第4開閉弁37は、上記した第1開閉弁32と同様な構成であり、制御部によって電気的に制御され、閉状態と開放状態とに変換される。
上記の栓機構28は、例えば、取付ベースに取り付けた樹脂製の栓部材38を駆動機構(図示せず)によって移動させる構成である。そして、この栓機構28によって、透析液注入ポート8及び透析液排出ポート9を開放したり閉塞したりする。具体的には、ポート8,9の開口に栓部材38を密着させた閉状態と、栓部材38をポート8,9の開口から離隔させた開放状態とに変換する。なお、上記の駆動機構も制御部によって電気的に制御される。
次に、上記構成の処理装置19による親水化処理、即ち、親水化膜の製造方法について説明する。まず、セット工程にて、親水化処理対象となる血液浄化器1を浄化器装着部23にセットする。この場合、例えば、ロボットアーム(図示せず)によってケーシング本体4を掴み、このロボットアームを移動させることで、血液排出ポート13を第1接続部29側に、血液注入ポート15を第2接続部30側にそれぞれ向けた状態に位置付ける。血液浄化器1がセットされると、制御部はそれを認識し、第1接続部29を血液排出ポート13に、第2接続部30を血液注入ポート15にそれぞれ接続して液密状態とする。また、制御部は栓機構28も制御し、栓部材38によって透析液注入ポート8及び透析液排出ポート9を気密状態で閉じる。
血液浄化器1が浄化器装着部23にセットされたならば、処理液注入工程に移行する。処理液注入工程では、親水化処理液(ポリビニルピロリドンの水溶液として0.1〜1.0%)を血液浄化器1内に注入する。このため、制御部は、図5に示すように、第2開閉弁33と第3開閉弁36とを開放状態に制御すると共に第1開閉弁32と第4開閉弁37とを閉状態に制御し、その後送液ポンプ35を作動させる。これにより、図中太線で示すように、処理液貯留部22に貯留された親水化処理液は、処理液供給管26を通って血液浄化器1内(第1通液空間としての血液流路)に下側から注入される。注入された親水化処理液は、注入側キャップ部材6の内部空間を満たした後、各膜基材17における内側空間を上昇する。この場合において、透析液注入ポート8及び透析液排出ポート9が気密状態で閉じられているので、膜基材外側への親水化処理液の漏出が防止され、該処理液は膜基材17内を上昇する。膜基材17から流出した親水化処理液は、排出側キャップ部材5の内部空間を満たし、血液浄化器1から排出される。このとき、処理液の注入によってケーシング2内の空気を順次上方に排出できるので、処理液注入後において残存する気泡を可及的に少なくできる。そして、排出された親水化処理液は、第1排出管25内に導かれ、その後廃液貯留部20へ排出される。なお、この通液期間中において、制御部は、流量計34からの検出信号を監視しており、この検出信号に基づいて送液ポンプ35の作動を制御する。
親水化処理液を十分に通液したならば、例えば、規定時間に亘って通液動作を行ったならば、制御部は、送液ポンプ35を停止させて親水化処理液の通液を止める。なお、本実施形態では時間で通液を管理しており、20秒間に亘って通液した時点で終了と判断する。親水化処理液の通液を止めたならば、膜通液工程に移行する。この膜通液工程では、まず図6に示すように、制御部は第2開閉弁33及び第3開閉弁36を制御して閉状態にする。また、制御部は栓機構28も制御し、栓部材38を離隔させて透析液注入ポート8及び透析液排出ポート9を開放状態に変換する。なお、本実施形態では、透析液注入ポート8と透析液排出ポート9の両方を開放しているが、何れか一方のポート8,9が開放されていればよい。
透析液注入ポート8及び透析液排出ポート9を開放状態にしたならば、続いて図7に示すように、制御部は、第1開閉弁32を開放状態に変換すると共に、低圧側弁31Aを開放状態に変換する。この状態では、低圧側弁31Aで規定圧力(0.2kgf/cm)に調整された空気が気体供給管24内を満たす。そして、この空気と大気圧との差により、分岐点Aよりも血液浄化器1側に充填されている親水化処理液が押し出される。ここで、第2開閉弁33〜第4開放弁37は閉状態であるので、親水化処理液の溶媒成分は膜基材17を透過して膜基材17の外側へ移動することになる。そのため、親水化処理液の液面がケーシング本体4内を徐々に下がる。親水化処理液で濡れた膜基材17は気体を通さないので、膜基材17の内側空間の圧力は低下しない。
このとき、親水化剤18として膜基材17の緻密層よりも大きいポリビニルピロリドン(例えば、K−90)を用いた場合には、このポリビニルピロリドンは、緻密層を透過できずに膜基材17の内側表面に付着保持される。即ち、親水化剤18は濾過によって膜基材17の表面に付着保持される。なお、親水化剤18の内、分子量が平均分子量よりも十分に小さい分子は、その一部が緻密層の細孔内に進入する可能性があるが、緻密層を通り抜けるのは困難であり、緻密層内に留まる。従って、膜基材17の内側表面は親水化剤18によって親水性が付与され、膜基材17の外側表面は膜基材17による疎水性が残った状態になる。
一方、親水化剤18として膜基材17の緻密層よりも小さいポリビニルピロリドンを用いた場合には、このポリビニルピロリドンは緻密層を透過する。このため、膜基材17の厚さ方向全域に亘ってポリビニルピロリドンが保持され、膜基材17の両面に親水性が付与される。このように、膜基材17の両面に親水性を付与するにあたっては、透析液注入ポート8及び透析液排出ポート9のうち下側に位置するポート、即ち、透析液排出ポート9を閉状態にすることが好ましい。これは、このポート9が閉じられることで親水化処理液が第2通液空間内に貯留され、膜基材外表面における親水化剤の接触時間を増やすことができ、親水化剤の付着量を増やすことができるからである。
血液浄化器1の血液流路側に存在する親水化処理液を規定量濾過したならば、例えば、親水化処理液の液面が下側(注入側キャップ部材6側)の封止部表面まで達したならば膜内への通液を終了する。この濾過を終了させるにあたり、本実施形態では図8に示すように、制御部は、第4開閉弁37を制御して開放状態に変換する。これにより、太線で示すように、気体供給管24から血液浄化器1(血液流路)及び第2排出管27を通る抵抗の少ない流路が形成される。その結果、膜基材17における濾過は終了し、余剰の親水化処理液は第2排出管27を通じて廃液貯留部に排出される。
このように、本実施形態では、膜基材17の内表面側と外表面側との間に付与した圧力差によって規定量の親水化処理液を濾過し、親水化剤18(ポリビニルピロリドン)を膜基材17に保持させている。この場合、処理液を濾過する過程で親水化剤18が保持されるので、親水化処理液中の親水化剤18を効率よく保持させることができる。
また、加圧を伴う濾過によって親水化剤18を保持させているので、単に親水化処理液を膜表面に流した後に余剰の処理液を洗浄除去する方法に比べて、多くの親水化剤18を保持させることができる。即ち、親水化処理液中の親水化剤18を濃縮して保持させることができる。従って、取り扱いが容易である希薄な親水化処理液を用いても必要十分な量の親水化剤18を保持させることができる。本実施形態では、1mあたり20mg以上のポリビニルピロリドン(K−90)を付着保持させることができた。また、これにより、膜基材17に過度な機械的ストレスを与えずに親水化することもできる。なお、本発明の他の実施形態では、1mあたり1000mgまでの付着保持が可能であるが、膜基材17の1mあたり50〜500mg程度の付着保持量が好ましい。
なお、ポリビニルピロリドンの量の測定は、窒素分がポリビニルピロリドン由来のもののみであるとの観点から、窒素分を分析することで行った。この窒素分の分析には微量窒素分析装置やケルダール法等が用いられる。
そして、親水化剤18の保持量は、処理液の濾過量に依存するので、処理液の濾過量を設定することにより、保持量を精度良くコントロールすることができる。また、加圧を伴う濾過によって親水化剤18を保持させているので、処理の効率化も図れる。本実施形態では、親水化処理液の充填が約20秒、充填した親水化処理液の濾過が約20秒であるので、処理時間が40秒程度であり、比較的短時間で必要十分な量のポリビニルピロリドンを付着保持させることができた。さらに、膜基材17がポリエステル系ポリマーアロイを主たる構成成分とする疎水性高分子によって作製されているので、他の疎水性高分子を用いた場合に比べて親水化剤18を確実に保持させることができる。
処理液の濾過が終了したならば、パージ工程に移行する。このパージ工程では、血液浄化器1の血液流路内に空気を通すことで、余剰の親水化処理液を除去すると共に、不安定な保持状態(保持力が弱く容易に離脱し得る状態)の親水性高分子も除去する。本実施形態では、このパージ工程を低圧の初期パージ工程と、高圧の本パージ工程とに分けて2回行う。初期パージ工程は、低圧側弁31Aを用い0.2kgf/cmの圧力に調整した空気を血液流路内に供給する。また、本パージ工程は、図9に示すように、高圧側弁31Bを用いて0.5kgf/cmの圧力に調整した空気を血液流路内に供給する。このように、パージ工程を2回に分け、供給する空気の圧力を段階的に高めるようにすると、膜に余計なストレスを掛けないで済む。また、余剰の処理液が濾過されてしまう不具合を確実に防止でき、ポリビニルピロリドンの保持量を正確に管理することができる。
パージ工程の終了により、この血液浄化器1に対する一連の親水化処理が終了する。この場合、図10に示すように、制御部は、第1開閉弁32〜第4開閉弁37を閉状態に制御する。そして、ロボットアームを移動させる等し、処理が終了した血液浄化器1を浄化器装着部23から離脱させる。その後、次の血液浄化器1を浄化器装着部23にセットして上記と同様の処理を繰り返し行う。
ところで、上記実施形態では、充填された親水化処理液の液面が下側の封止部10に達するまで濾過をする例について説明したが、規定量の親水化処理液を濾過できれば、この例に限定されるものではない。例えば、親水化処理液の液面が上側の封止部10に達するまで濾過をするようにしてもよい。この場合、膜基材17の長さ方向全体に亘って均一にポリビニルピロリドンを付着保持させることができる。
また、上記実施形態では、膜基材17の内側表面からの加圧によって親水化処理液を濾過していたが、膜基材17の外側表面に面する空間を減圧することによって濾過を行ってもよい(陰圧法)。このように膜基材17の外側空間を減圧すれば、膜基材17の膜厚内部の空気が取り除かれ易く、ポリビニルピロリドンが膜基材17に均一に付着することができて好適である。なお、陰圧法においては、予めケーシング内を減圧しておいてから処理液を注入して、中空糸膜12の内側空間と外側空間との間に圧力差を付与してもよい。この減圧工程を伴う陰圧法については、後で詳細に説明する。
さらに、加圧と減圧とを組み合わせてもよい。即ち、膜基材17の内側表面から加圧すると共に外側表面から減圧してもよい。つまり、本発明では、膜基材17の内側表面と外側表面との間に圧力差を付与して親水化処理を行えばよい。そして、本実施形態のように、膜基材17の内側表面からの加圧によって濾過を行うと、圧力管理が容易であるため、ポリビニルピロリドンの保持量を高い精度で管理できる。また、濾過時において圧縮気体をケーシング2内の上方から導入するので、比重が処理液よりも軽い気体であっても支障なく処理液を押圧することができる。
また、親水化処理液の加圧を送液ポンプ35を用いて行ってもよい。この場合、親水化処理液の注入後、透析液注入ポート8及び透析液排出ポート9の少なくとも一方が開放状態になるように栓機構28を制御し、送液ポンプ35を作動させることで第1通液空間内の処理液を加圧して、この処理液の溶媒成分を第1通液空間から第2通液空間に移動させるようにしても良い。
具体的に説明すると次の通りである。まず、処理液注入工程にて、第2開閉弁33と第3開閉弁36とを開放状態に制御すると共に第1開閉弁32と第4開閉弁37とを閉状態に制御し、その後送液ポンプ35を作動させ、親水化処理液を血液浄化器1内に注入する。親水化処理液を血液浄化器1内に注入したならば、膜通液工程に移行する。この膜通液工程では、第1開閉弁32、第2開閉弁33及び第4開閉弁37を閉状態に変換すると共に、第3開閉弁36については開放状態を維持する。あわせて、透析液注入ポート8及び透析液排出ポート9の少なくとも一方が開放状態になるように栓機構28を制御する。その後、送液ポンプ35を作動させる。送液ポンプ35の作動によって第1通液空間内の処理液が加圧されるので、この処理液の溶媒成分を第1通液空間から第2通液空間に移動させることができる。
なお、急激な圧力変化に伴う膜基材17への過度な衝撃を防止すべく、加圧によって容積を膨張させる緩衝部を液体流路内に設ける構成が好ましい。この緩衝部は、例えば、第1開閉弁32及び第2開閉弁33よりも下流側(浄化器装着部23側)に設けた気体溜(図示せず)や、弾性を有するチューブ部材で構成されて処理液供給管26の途中に設けられた弾性変形部(図示せず)によって構成することができる。このような緩衝部を設けることにより、膜基材17の保護が図れ、液漏れ等の不具合を防止することができる。
そして、上記実施形態では、処理液注入工程において血液注入ポート15から親水化処理液を注入していたが、本発明はこれに限定されない。例えば、処理液供給管26と血液排出ポート13とを連通するバイパス配管を設けて、親水化処理液を血液排出ポート13から注入してもよいし、あるいは血液排出ポート13及び血液注入ポート15の両方から注入してもよい。また、膜通液工程において血液排出ポート13から圧縮空気、あるいは血液注入ポート15からさらに親水化処理液を供給したが、これに限定されない。例えば、前記したバイパス配管を通じて、圧縮空気を血液注入ポート15から供給してもよいし、あるいは血液排出ポート13及び血液注入ポート15の両方から供給してもよい。また、バイバス配管を通じて、血液排出ポート13から更に親水化処理液を供給してもよいし、あるいは血液排出ポート13及び血液注入ポート15の両方から供給してもよい。
また、上記実施形態では、処理液を血液浄化器1内に注入後、膜基材17の内側表面と外側表面との間に圧力差を付与することによって親水化処理液を限外濾過していたが、本発明はこれに限定されない。例えば、処理液注入前にあらかじめ血液浄化器1のケーシング2内、すなわち中空糸膜12の内側空間および外側空間を減圧しておき、その後、膜基材17の内側表面に処理液を注入することで内側表面と外側表面との間に圧力差を付与し、この圧力差によって陰圧法の限外濾過を行ってもよい。以下、本発明の第2実施形態として、この陰圧法による親水化膜の製造方法について具体的に説明する。ここで図11は、陰圧法による製造方法に用いられる処理装置41を説明する模式図である。この第2実施形態の処理装置41は、血液浄化器1内を減圧する構成を備えている点、栓機構を備えず透析液注入ポート8及び透析液排出ポート9と気体供給源21等とを連通している点などで上記の第1実施形態と相違している。なお、この第2実施形態の説明において、第1実施形態と同じ構成要素には同じ符号を付し、その説明は省略する。
陰圧法による処理を行う処理装置41は、廃液貯留部20と、気体供給源21と、処理液貯留部22と、浄化器装着部23と、減圧ポンプ43(本発明の減圧手段に相当)と、気体供給管44と、排出管45と、処理液供給管46と、吸気管47と、制御部(図示せず)とを備えている。
減圧ポンプ43は、浄化器装着部23にセットされたケーシング本体4の内部を減圧するものであり、処理装置41の稼動中、常時運転している。
気体供給管44は、気体供給源21と浄化器装着部23との間を連通する管であり、浄化器装着部23側(下流側)を第1気体供給枝管44aと第2気体供給枝管44bとに分岐して構成されている。第1気体供給枝管44aは、下流側端部を浄化器装着部23のうち、セットされた血液浄化器1の血液排出ポート13と血液注入ポート15の一方(図11では、血液排出ポート13)へ接続している。したがって、この第1気体供給枝管44aによって、血液浄化器1内のうち、中空糸膜12の内側空間と気体供給源21とが連通される。なお、第1気体供給枝管44aは、途中で処理液供給管46と合流しているが、詳細については後述する。
また、第2気体供給枝管44bは、下流側端部を浄化器装着部23のうち、セットされた血液浄化器1の透析液注入ポート8と透析液排出ポート9の一方(図11では、透析液注入ポート8)へ接続している。したがって、この第2気体供給枝管44bによって、血液浄化器1内のうち、中空糸膜12の外側空間と気体供給源21とが連通される。なお、第2気体供給枝管44bは、途中で吸気管47と合流しているが、詳細については後述する。
そして、気体供給管44の分岐点Hよりも気体供給源21側(上流側)には第1開閉弁51が設けられている。また、第1気体供給枝管44aの途中には第2開閉弁52が、および第2気体供給枝管44bの途中には第3開閉弁53がそれぞれ設けられている。
排出管45は、浄化器装着部23と廃液貯留部20との間を連通する管であり、浄化器装着部23側(上流側)を第1排出枝管45aと第2排出枝管45bとに分岐して構成されている。第1排出枝管45aは、上流側端部を血液排出ポート13と血液注入ポート15の他方(図11では血液注入ポート15)へ接続している。したがって、この第1排出枝管45aによって、血液浄化器1内のうち、中空糸膜12の内側空間と廃液貯留部20とが連通される。なお、第1排出枝管45aは、途中で処理液供給管46と合流しているが、詳細については後述する。
また、第2排出枝管45bは、上流側端部を透析液注入ポート8と透析液排出ポート9の他方(図11では、透析液排出ポート9)へ接続している。したがって、この第2排出枝管45bによって、血液浄化器1内のうち、中空糸膜12の外側空間と廃液貯留部20とが連通される。
そして、第1排出枝管45aの途中には第5開閉弁55が設けられている。
処理液供給管46は、処理液貯留部22と浄化器装着部23との間を連通する管であり、浄化器装着部23側(下流側)を第1処理液供給枝管46aと第2処理液供給枝管46bとに分岐して構成されている。第1処理液供給枝管46aは、下流側端部を血液排出ポート13と血液注入ポート15の一方(図11では、血液排出ポート13)へ接続している。したがって、この第1処理液供給枝管46aによって、中空糸膜12の内側空間と処理液貯留部22とが連通される。
また、第2処理液供給枝管46bは、下流側端部を血液排出ポート13と血液注入ポート15の他方(図11では血液注入ポート15)へ接続している。したがって、この第2処理液供給枝管46bによって、血液浄化器1内のうち、中空糸膜12の内側空間と処理液貯留部22とが連通される。
なお、本実施形態では、第1処理液供給枝管46aと第1気体供給枝管44aとを、浄化器装着部23側の途中で合流させている。このため、第1処理液供給枝管46aと第1気体供給枝管44aとの合流箇所Cから浄化器装着部23側の端部までの配管(第1共通管)60は、処理液供給管46の一部として機能すると共に気体供給管44の一部としても機能する。そして、第1共通管60の浄化器装着23側の端部は、血液注入ポート15と血液排出ポート13の一方に接続される第1接続部29として構成される。
さらに、第2処理液供給枝管46bと第1排出枝管45aとを、浄化器装着部23側の途中で合流させている。このため、第2処理液供給枝管46bと第1排出枝管45aとの合流箇所Dから浄化器装着部23側の端部までの配管(第2共通管)61は、処理液供給管46の一部として機能するとともに、排出管45の一部としても機能する。そして、第2共通管61の浄化器装着部23側の端部は、血液注入ポート15と血液排出ポート13の他方に接続される第2接続部30として構成される。
そして、処理液供給管46のうち処理液貯留部22と分岐点との間には送液ポンプ35が設けられている。また、第1処理液供給枝管46aの途中であって第1共通管60よりも上流側(分岐点側)には第7開閉弁62が、第2処理液供給枝管46bの途中であって第2共通管61よりも上流側(分岐点側)には第8開閉弁63が、第1共通管60の途中には第9開閉弁64が、第2共通管61の途中には第10開閉弁65がそれぞれ設けられている。
なお、第1処理液供給枝管46aの途中であって、第7開閉弁62よりも上流側には第1手動弁66が設けられ、また、第2処理液供給枝管46bの途中であって、第8開閉弁63よりも上流側には第2手動弁67が設けられている。この第1手動弁66,第2手動弁67は、血液注入ポート15および血液排出ポート13から流入する処理液の流量バランスが取れるように、あらかじめ開度を調整して常時開状態にしてある。
吸気管47は、減圧ポンプ43と浄化器装着部23との間を連通する管であり、第2気体供給枝管44bの途中であって第3開閉弁53よりも浄化器装着部23側の合流箇所Eに接続されている。そして、この吸気管47は、第2気体供給枝管44bのうち接続箇所Eから上流側の部分、気体供給管44の分岐箇所H、第1気体供給枝管44aおよび第1共通管60を介して、血液排出ポート13と血液注入ポート15の一方(図11では血液排出ポート13)に連通している。さらには、第2気体供給枝管44bのうち接続箇所Eから下流側の部分を介して、透析液注入ポート8と透析液排出ポート9の一方(図11では、透析液注入ポート8)へも接続している。したがって、この吸気管47によって、血液浄化器1内(すなわち中空糸膜12の内側空間および外側空間)と減圧ポンプ43とが連通される。
そして、吸気管47の途中には第11開閉弁71が設けられている。また、第2気体供給枝管44bのうち接続箇所Eから浄化液装着部23側(下流側)の部分の途中には第12開閉弁72が設けられている。
さらに、処理装置41は、第2気体供給枝管44bと第2排出枝管45bとの間を接続管73により接続している。具体的に説明すると、この接続管73は、一端を第2気体供給枝管44bのうち接続箇所Eと第12開閉弁72との間の合流箇所Fに、他端を第2排出枝管45bの途中の合流箇所Gにそれぞれ接続している。そして、接続管73の途中には、第13開閉弁74が設けられている。なお、この第13開閉弁74が後述の親水化処理において常時閉状態であるので、接続管73および第13開閉弁74は設けなくてもよい。
そして、接続管73の途中には第13開閉弁74が、また、第2排出枝管45bの途中であって、接続管73と第2排出枝管45bとの合流箇所Gよりも浄化器装着部23側には第14開閉弁75がそれぞれ設けられている。
なお、上記第1開閉弁51〜第14開閉弁75は、制御部によって電気的に制御され、それぞれ独立して閉状態と開状態とに変換される。
次に、処理装置41による陰圧法の親水化処理について説明する。まず、セット工程にて、親水化処理対象となる血液浄化器1を浄化器装着部23にセットし、例えば、ロボットアーム(図示せず)によってケーシング本体4を掴み、このロボットアームを移動させることで、血液排出ポート13を第1接続部29側に、血液注入ポート15を第2接続部30側にそれぞれ向けた状態に位置付ける。血液浄化器1がセットされると、制御部はそれを認識し、第1接続部29を血液排出ポート13に、第2接続部30を血液注入ポート15にそれぞれ接続して液密状態とする。
血液浄化器1が浄化器装着部23にセットされたならば、減圧工程に移行する。減圧工程では制御部は、減圧ポンプ43を作動させた状態で、図12に示すように、第11開閉弁71、第2開閉弁52、第3開閉弁53、第9開閉弁64、第12開閉弁72、第10開閉弁65を開状態に制御すると共に、その他の開閉弁を閉状態に制御する。これにより、図中太線で示すように、血液浄化器1内の気体(空気)が各ポート8,13から吸引される。具体的には、中空糸膜12の内側空間の空気が、血液排出ポート13から第1共通管60、第1気体供給枝管44aおよび吸気管47を通じて吸引される。そして、中空糸膜12の外側空間の空気が、透析液注入ポート8から第2気体供給枝管44bおよび吸気管47を通じて吸引される。これにより、中空糸膜12の外側空間および内側空間が減圧する。なお、血液浄化器1の内部は、−90kPa以下に減圧するのが好ましい。これは、減圧度合(真空度)が高いと、親水化処理が中空糸膜12の全体に亘って均一に行われるため、また、親水化処理の進み具合が早くなり、作業効率が向上するためである。
また、減圧工程では、血液排出ポート13と血液注入ポート15の両方より中空糸膜12の内側空間の空気を吸引するようにしてもよい。さらに、透析液注入ポート8と透析液排出ポート9の両方より中空糸膜12の外側空間の空気を吸引するようにしてもよい。
血液浄化器1内を十分に減圧したならば、処理液注入工程に移行する。処理液注入工程では、親水化処理液を血液浄化器1内に注入する。このため、制御部は、送液ポンプ35を作動させ、図13に示すように、第1開閉弁51、第2開閉弁52、第3開閉弁53、第11開閉弁71、第12開閉弁72、第14開閉弁75、第5開閉弁55を閉状態に制御すると共に、第7開閉弁62、第9開閉弁64、第8開閉弁63、第10開閉弁65を開状態に制御する。すると、処理液貯留部22に貯留された親水化処理液が送液ポンプ35により加圧され、親水化処理液と血液浄化器1の内部との圧力差が大きくなる。これにより、図中太線で示すように、処理液貯留部22に貯留された親水化処理液は、処理液供給管46(第1処理液供給枝管46aおよび第2処理液供給枝管46b)を通って血液浄化器1内(第1通液空間としての血液流路)に上下両側から注入される。注入された親水化処理液は、排出側キャップ部材5および注入側キャップ部材6の内部空間を満たした後、中空糸膜12の内側空間を満たす。なお、このとき減圧ポンプ43を作動させたままで第11開閉弁71および第12開閉弁72を開状態にし、中空糸膜12の外側空間を減圧し続けてもよい。
そして、親水化処理液が中空糸膜12の内側空間に通液されると、膜通液工程に移行する。すなわち、中空糸膜12の内側空間(あるいは、内側空間内に満たされた親水化処理液)と減圧状態の外側空間との間に圧力差が生じる。この圧力差により親水化処理液の溶媒成分は、膜基材17を透過して膜基材17の外側へ移動することになる。このようにして、親水化処理液の濾過が開始される。
血液浄化器1の血液流路側に存在する親水化処理液を規定量濾過したならば、制御部は、各開閉弁を閉状態にして親水化処理液の通液を止め、第1パージ工程に移行する。この第1パージ工程では、血液浄化器1の血液流路内(中空糸膜12の内側空間)に空気を通すことで、血液流路内に余剰した親水化処理液を除去すると共に、不安定な保持状態(保持力が弱く容易に離脱し得る状態)の親水性高分子も除去する。具体的に説明すると、第1パージ工程において、制御部は、図14に示すように、第1開閉弁51、第2開閉弁52、第9開閉弁64、第10開閉弁65、第5開閉弁55を開状態に制御すると共に、その他の開閉弁を閉状態に制御する。その後、気体供給源21から気体、例えば圧縮空気を供給する。すると、図中太線で示すように、圧縮空気が第1気体供給枝管44a、第1共通管60を通って中空糸膜12の内側空間に流入し、第1排出枝管45aから廃液貯留部20へ流出する。したがって、余剰の親水化処理液は、圧縮空気により血液浄化器1から押し出され、第1排出枝管45aを通って廃液貯留部20に排出される。
第1パージ工程が終了したならば、第2パージ工程に移行する。この第2パージ工程では、中空糸膜12の外側空間に空気を通すことで、中空糸膜12の内側空間から移動してきた親水化処理液の溶媒成分を除去する。具体的に説明すると、第2パージ工程において、制御部は、図15に示すように、第1開閉弁51、第3開閉弁53、第12開閉弁72、第14開閉弁75を開状態に制御すると共に、その他の開閉弁を閉状態に制御する。その後、気体供給源21から圧縮空気を供給する。すると、図中太線で示すように、圧縮空気が第2気体供給枝管44bを通って中空糸膜12の外側空間に流入し、第2排出枝管45bから廃液貯留部20へ流出する。したがって、上記親水化処理液の溶媒成分は、圧縮空気により中空糸膜12の外側空間から押し出され、第2排出枝管45bを通って廃液貯留部20に排出される。
第2パージ工程の終了により、この陰圧法による親水化処理が終了する。そして、ロボットアームを移動させる等し、処理が終了した血液浄化器1を浄化器装着部23から離脱させる。その後、次の血液浄化器1を浄化器装着部23にセットして上記と同様の処理を繰り返し行う。
このように、第2実施形態の処理装置41では、予め血液浄化器1内の空気を抜いてから親水化処理液を注入するので、処理液注入時に気泡が膜基材17の表面に残ることがない。したがって、気泡により処理液と膜表面との接触が邪魔されず、中空糸膜12の全体に亘って親水化処理が均一に行われる。このことから、膜基材17の親水化処理を効率よく行うことができる。また、過度な機械的ストレスを膜基材17に付与することなく親水化処理を行うことができる。なお、減圧工程においては、中空糸膜12の外側空間および内側空間を減圧したが、本発明はこれに限定されない。例えば、外側空間のみを減圧してもよく、この場合も、膜通液工程において中空糸膜12の外側空間と内側空間との間に圧力差を設定することができ、親水化処理液を内側空間から外側空間へ移動することができる。
また、上記した第2実施形態では、第1パージ工程の後に第2パージ工程を行ったが、本発明はこれに限定されない。例えば、第2パージ工程の後に第1パージ工程を行い、まず中空糸膜12の外側に移動した溶媒成分を血液浄化器1の外へ排出し、その後血液流路に残った親水化処理液を排出するようにしてもよい。これらのパージ工程を行う順序は、中空糸膜12の強度によって変えるのが好ましい。すなわち、中空糸膜12が内圧により伸び易く、細孔の大きさが変わり易いものである場合には、第2パージ工程(膜外パージ工程)を行う前に第1パージ工程(膜内パージ工程)を行うのが好適である。この順にすると、中空糸膜12の内部に空気圧がかかる時は、外側空間の処理液で中空糸膜12が伸びて細孔の大きさが変わってしまうのを抑えることができる。なお、中空糸膜12の強度が高ければ、どちらのパージ工程を先に行ってもよい。
上記した各実施形態では、透析器の一例である血液浄化器1は、ケーシング本体4に透析液注入ポート8および透析液排出ポート9を備え、キャップ部材5,6に血液排出ポート13および血液注入ポート15を備えていたが、本発明はこれに限定されない。例えば、処理装置にセットされる透析器は、キャップ部材に血液用ポートおよび透析用ポートを設けたものでもよい。
そして、上記実施形態では、中空糸膜12の内側空間から外側空間へ親水化処理液を移動させて、膜基材17の内側表面に親水化剤を付着保持させたが、本発明はこれに限定されない。すなわち、中空糸膜の外側空間に親水化処理液を注入し、この親水化処理液を中空糸膜の外側空間から内側空間へ移動させることで、膜基材の外側表面に親水化剤を付着保持させてもよい。要するに、膜表面の一方と他方との間に圧力差を付与し、親水化処理液を注入する空間の圧力が高ければよい。
また、上記実施形態では、中空糸束3を装填した血液浄化器1を例示したが、本発明は、平膜を層状に重ねた積層型の血液浄化器にも適用できる。
さらに、上記した親水化膜の製造方法は、例示した透析用の液体処理モジュールだけでなく、他の液体処理モジュールにも応用できる。例えば、第2注入ポートがない液体処理モジュールであって、中空糸の半透膜を透過して第1通液空間内の第1の液体から抽出される所定の成分を、第2通液空間から第2排出ポートを通じて取り出すものに応用してもよい。具体的には、第1注入ポートとしての血液入口ポートと第1排出ポート血液出口ポートとを第1通液空間に連通した状態で設け、第2ポートとしての血漿出口ポートを第2通液空間に連通した状態で設けた血漿分離用フィルタに応用してもよい。そして、例えば、このタイプの液体処理モジュールを第1実施形態の処理装置19に装着した場合は、第2排出ポートに対応する栓部材38のみを作動させて各工程を行うことで、親水化処理を施すことができる。
また、第1注入ポートと第2排出ポートのみを備えた液体処理モジュールであって、第1注入ポートから流入した液体を半透膜で濾過して第2排出ポートから流出させ、液体中の異物を濾し取るタイプ(例えば、除菌フィルタ)に対しても、第1通液空間と第2通液空間との間に圧力差を付与して、処理液中の処理剤を膜基材に保持させることで、半透膜の親水化処理を施すことができる。
そして、本発明は、血液浄化器1に限定されるものではなく、ケーシング2内を一方の膜表面側に位置する第1通液空間と他方の膜表面側に位置する第2通液空間とに区画した液体処理モジュールに適用できる。したがって、疎水性膜基材と親水化剤の組み合わせに限らず、種々の表面処理に使用することができる。
長手方向の途中を部分的に切断して示した中空糸型血液浄化器の断面図である。 (a)及び(b)は、ケーシングの端部における中空糸束の切断面を説明する図である。 製膜した膜基材の分子量分画特性を説明する図である。 親水化膜の製造装置を説明する模式図である。 処理液注入工程を説明する模式図である。 膜通液工程を説明する模式図である。 膜通液工程を説明する模式図である。 膜通液工程の終了とパージ工程を説明する模式図である。 パージ工程を説明する模式図である。 一連の処理が終了した状態を説明する模式図である。 第2実施形態における処理装置を説明する模式図である。 第2実施形態における処理装置の減圧工程を説明する模式図である。 第2実施形態における処理装置の処理液注入工程および膜通液工程を説明する模式図である。 第2実施形態における処理装置の第1パージ工程を説明する模式図である。 第2実施形態における処理装置の第2パージ工程を説明する模式図である。
符号の説明
1 血液浄化器
2 ケーシング
3 中空糸束
4 ケーシング本体
5 排出側キャップ部材
6 注入側キャップ部材
7 拡径部
8 透析液注入ポート
9 透析液排出ポート
10 封止部
11 シーリング材
12 中空糸膜
13 血液排出ポート
14 Oリング
15 血液注入ポート
16 Oリング
17 膜基材
18 親水化剤
19 処理装置
20 廃液貯留部
21 気体供給源
22 処理液貯留部
23 浄化器装着部
24 気体供給管
24a 第1気体供給枝管
24b 第2気体供給枝管
25 第1排出管
26 処理液供給管
27 第2排出管
28 栓機構
29 第1接続部
30 第2接続部
31 調整弁機構
31A 低圧側弁
31B 高圧側弁
32 第1開閉弁
33 第2開閉弁
34 流量計
35 送液ポンプ
36 第3開閉弁
37 第4開閉弁
38 栓部材
41 処理装置
43 減圧ポンプ
44 気体供給管
44a 第1気体供給枝管
44b 第2気体供給枝管
45 排出管
45a 第1排出枝管
45b 第2排出枝管
46 処理液供給管
46a 第1処理液供給管
46b 第2処理液供給管
47 吸気管
51 第1開閉弁
52 第2開閉弁
53 第3開閉弁
55 第5開閉弁
60 第1共通管
61 第2共通管
62 第7開閉弁
63 第8開閉弁
64 第9開閉弁
65 第10開閉弁
71 第11開閉弁
72 第12開閉弁
73 接続管
74 第13開閉弁
75 第14開閉弁

Claims (22)

  1. 膜基材に処理剤を保持させた半透膜の製造方法において、
    前記膜基材の一方の膜表面側と他方の膜表面側との間に圧力差を付与することで、前記処理剤を所定濃度で含有する処理液を一方の膜表面側から他方の膜表面側へ向けて移動し、前記処理剤を膜基材に保持させる膜通液工程を経て製造されることを特徴とする半透膜の製造方法。
  2. 前記膜通液工程は、一方の膜表面側からの加圧及び/または他方の膜表面側の減圧によって行われることを特徴とする請求項1に記載の半透膜の製造方法。
  3. 前記膜基材が疎水性膜基材であり、前記処理剤が親水化剤であり、前記処理液が前記親水化剤の溶液であることを特徴とする請求項1または請求項2に記載の半透膜の製造方法。
  4. 前記親水化剤がポリビニルピロリドン、またはグリセリン、またはポリエチレングリコールであり、前記疎水性膜基材がポリエステル系ポリマーアロイを主たる膜素材としていることを特徴とする請求項3に記載の半透膜の製造方法。
  5. 請求項1から請求項4の何れかに記載の製造方法により製造され、膜基材1平方メートルあたりの処理剤の保持量が20mg以上であることを特徴とする半透膜。
  6. 膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、
    前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造方法において、
    前記膜基材を内部に装填したケーシングに対し、前記処理剤を含有した処理液を第1注入ポート及び第1排出ポートの一方を通じて前記第1通液空間に注入する処理液注入工程と、
    前記第1通液空間と第2通液空間との間に圧力差を生じさせ、該圧力差により該処理液の溶媒成分を第1通液空間から第2通液空間に移動させることで前記処理剤を膜基材に保持させる膜通液工程と、
    を経て製造されることを特徴とする液体処理モジュールの製造方法。
  7. 前記膜通液工程は、第2ポートを開放した状態で第1通液空間に注入された処理液を加圧することで行われることを特徴とする請求項6に記載の液体処理モジュールの製造方法。
  8. 前記膜通液工程は、第1通液空間に注入された処理液を加圧し、及び/または第2通液空間を減圧することで行われることを特徴とする請求項7に記載の液体処理モジュールの製造方法。
  9. 前記第1注入ポート及び第1排出ポートをケーシングの両端部に設ける一方、前記第2ポートをケーシングの側面に設け、
    膜基材を内部に装填したケーシングを第1注入ポート及び第1排出ポートが上下方向に位置する状態にセットし、
    前記処理液注入工程では下側に位置するポートから処理液を注入し、前記膜通液工程では上側に位置するポートから処理液を加圧することを特徴とする請求項7または請求項8に記載の液体処理モジュールの製造方法。
  10. 前記膜通液工程における処理液の加圧を、第1通液空間への圧縮気体の導入、または処理液のさらなる導入によって行うことを特徴とする請求項7から請求項9の何れかに記載の液体処理モジュールの製造方法。
  11. 前記処理液注入工程では、前記第2ポートを閉じた状態で前記第1注入ポート及び第1排出ポートの一方を通じ、前記処理剤を規定量含有する処理液を前記第1通液空間に注入し、
    前記膜通液工程では、前記第1注入ポート及び/または第1排出ポートから、圧縮気体を導入、または処理液をさらに導入することを特徴とする請求項10に記載の液体処理モジュールの製造方法。
  12. 前記第1注入ポート及び第1排出ポートを開放し、当該開放状態で第1通液空間内に気体を導入することにより第1通液空間内に残った処理液を排出するパージ工程を、前記膜通液工程よりも後に行うことを特徴とする請求項6から請求項11の何れかに記載の液体処理モジュールの製造方法。
  13. 前記パージ工程は、圧力を段階的に上昇させながら気体の導入を複数回に分けて行うことを特徴とする請求項12に記載の液体処理モジュールの製造方法。
  14. 少なくとも第2通液空間を減圧する減圧工程を前記処理液注入工程よりも前に行い、
    前記膜通液工程は、減圧工程により減圧状態となった第2通液空間と、処理液注入工程により処理液が注入された第1通液空間との圧力差により行われることを特徴とする請求項6に記載の液体処理モジュールの製造方法。
  15. 前記第2ポートは、第2注入ポートと第2排出ポートとから構成され、
    前記膜通液工程の後に、第1通液空間内に残った処理液を排出する第1パージ工程と、第2通液空間内に残った処理液を排出する第2パージ工程を行い、
    前記第1パージ工程では、前記第1注入ポート及び第1排出ポートを開放するとともに、前記第2注入ポート及び第2排出ポートを閉塞した状態で、第1通液空間内に気体を導入し、
    前記第2パージ工程では、前記第2注入ポート及び第2排出ポートを開放するとともに、前記第1注入ポート及び第1排出ポートを閉塞した状態で、第2通液空間内に気体を導入することを特徴とする請求項14に記載の液体処理モジュールの製造方法。
  16. 前記膜基材が疎水性膜基材であり、前記処理剤が親水化剤であることを特徴とする請求項6から請求項15の何れかに記載の液体処理モジュールの製造方法。
  17. 前記親水化剤がポリビニルピロリドン、またはグリセリン、またはポリエチレングリコールであり、前記疎水性膜基材がポリエステル系ポリマーアロイを主たる膜素材としていることを特徴とする請求項16に記載の液体処理モジュールの製造方法。
  18. 請求項6から請求項17の何れかに記載の製造方法により製造され、膜基材1平方メートルあたりの処理剤の保持量が20mg以上であることを特徴とする液体処理モジュール。
  19. 膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造装置において、
    前記膜基材を内部に装填したケーシングがセットされるケーシング装着部と、
    途中に開閉弁を設けた処理液供給管を通じて前記ケーシング装着部に連通され、前記処理液を供給可能な処理液供給部と、
    前記ケーシング装着部に装着されたケーシングの第2ポートを開閉可能な栓機構と、
    前記開閉弁、及び、栓機構の動作を制御可能な制御部とを有し、
    該制御部は、
    第2ポートが閉状態になるように栓機構を制御すると共に処理液供給管の開閉弁を開放状態に制御することで、前記処理液を第1通液空間に注入し、
    処理液の注入後、第2ポートが開放状態となるように栓機構を制御し、第1通液空間内の処理液を加圧し、前記処理液の溶媒成分を第1通液空間から第2通液空間に移動させることを特徴とする液体処理モジュールの製造装置。
  20. 膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造装置において、
    前記膜基材を内部に装填したケーシングがセットされるケーシング装着部と、
    途中に開閉弁を設けた気体供給管を通じて前記ケーシング装着部に連通され、圧縮気体を供給可能な気体供給源と、
    途中に開閉弁を設けた処理液供給管を通じて前記ケーシング装着部に連通され、前記処理液を供給可能な処理液供給部と、
    前記ケーシング装着部に装着されたケーシングの第2ポートを開閉可能な栓機構と、
    前記開閉弁、及び、栓機構の動作を制御可能な制御部とを有し、
    該制御部は、
    第2ポートが閉状態になるように栓機構を制御すると共に処理液供給管の開閉弁を開放状態に制御することで、前記処理液を第1通液空間に注入し、
    処理液の注入後、第2ポートが開放状態になるように栓機構を制御すると共に処理液供給管の開閉弁を閉状態に制御し、尚且つ、気体供給管の開閉弁を開放状態にすることで第1通液空間内に圧縮気体を導入し、前記処理液の溶媒成分を第1通液空間から第2通液空間に移動させることを特徴とする液体処理モジュールの製造装置。
  21. 膜基材に処理剤を保持させた半透膜をケーシング内に備え、該半透膜によりケーシング内を一方の膜表面側の第1通液空間と他方の膜表面側の第2通液空間とに区画し、前記ケーシングには、第1通液空間に連通する第1注入ポート及び第1排出ポートと、第2通液空間に連通する第2ポートを設けた液体処理モジュールの製造装置において、
    前記膜基材を内部に装填したケーシングがセットされるケーシング装着部と、
    途中に開閉弁を設けた吸気管を通じて前記ケーシング装着部に連通され、ケーシング内を減圧する減圧手段と、
    途中に開閉弁を設けた処理液供給管を通じて前記ケーシング装着部に連通され、前記処理液を供給可能な処理液供給部と、
    前記開閉弁の動作を制御可能な制御部とを有し、
    該制御部は、
    前記吸気管の開閉弁を開放状態に制御し、減圧手段を作動させることでケーシング内の第1通液空間及び第2通液空間を減圧し、
    各通液空間の減圧後、吸気管の開閉弁を閉塞状態に制御すると共に処理液供給管の開閉弁を開放状態に制御することで、前記処理液を第1通液空間に注入し、
    処理液の注入後、減圧状態の第2通液空間と処理液が注入された第1通液空間との圧力差により、前記処理液の溶媒成分を第1通液空間から第2通液空間に移動させることを特徴とする液体処理モジュールの製造装置。
  22. 前記膜基材が疎水性膜基材であり、前記処理剤が親水化剤であることを特徴とする請求項19から請求項21の何れかに記載の液体処理モジュールの製造装置。
JP2003394626A 2002-11-22 2003-11-25 液体処理モジュールの製造方法、及び、液体処理モジュールの製造装置 Expired - Lifetime JP3875231B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394626A JP3875231B2 (ja) 2002-11-22 2003-11-25 液体処理モジュールの製造方法、及び、液体処理モジュールの製造装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002339846 2002-11-22
JP2003004683 2003-01-10
JP2003394626A JP3875231B2 (ja) 2002-11-22 2003-11-25 液体処理モジュールの製造方法、及び、液体処理モジュールの製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006147763A Division JP2006231333A (ja) 2002-11-22 2006-05-29 半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置

Publications (2)

Publication Number Publication Date
JP2004230375A true JP2004230375A (ja) 2004-08-19
JP3875231B2 JP3875231B2 (ja) 2007-01-31

Family

ID=32966266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394626A Expired - Lifetime JP3875231B2 (ja) 2002-11-22 2003-11-25 液体処理モジュールの製造方法、及び、液体処理モジュールの製造装置

Country Status (1)

Country Link
JP (1) JP3875231B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198611A (ja) * 2004-12-24 2006-08-03 Toray Ind Inc 分離膜の製造方法およびその分離膜を用いた分離膜モジュールの製造方法
JP2006288866A (ja) * 2005-04-13 2006-10-26 Toyobo Co Ltd 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
JP2006288942A (ja) * 2005-04-14 2006-10-26 Toyobo Co Ltd 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
JP2007000785A (ja) * 2005-06-24 2007-01-11 Nikkiso Co Ltd 中空糸型モジュールの製造方法、及び中空糸型モジュール
WO2007114308A1 (ja) * 2006-03-29 2007-10-11 Kurita Water Industries Ltd. ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
JP2008161755A (ja) * 2006-12-27 2008-07-17 Mitsubishi Rayon Co Ltd 中空糸膜の製造方法
JP2009262147A (ja) * 2008-03-31 2009-11-12 Toray Ind Inc ポリスルホン系分離膜およびポリスルホン系分離膜モジュールの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198611A (ja) * 2004-12-24 2006-08-03 Toray Ind Inc 分離膜の製造方法およびその分離膜を用いた分離膜モジュールの製造方法
JP2006288866A (ja) * 2005-04-13 2006-10-26 Toyobo Co Ltd 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
JP2006288942A (ja) * 2005-04-14 2006-10-26 Toyobo Co Ltd 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
JP2007000785A (ja) * 2005-06-24 2007-01-11 Nikkiso Co Ltd 中空糸型モジュールの製造方法、及び中空糸型モジュール
WO2007114308A1 (ja) * 2006-03-29 2007-10-11 Kurita Water Industries Ltd. ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
JP2008161755A (ja) * 2006-12-27 2008-07-17 Mitsubishi Rayon Co Ltd 中空糸膜の製造方法
JP2009262147A (ja) * 2008-03-31 2009-11-12 Toray Ind Inc ポリスルホン系分離膜およびポリスルホン系分離膜モジュールの製造方法

Also Published As

Publication number Publication date
JP3875231B2 (ja) 2007-01-31

Similar Documents

Publication Publication Date Title
JP6810233B2 (ja) クロスフローろ過装置
CN108368839B (zh) 一次性交替切向流过滤单元
US9872951B2 (en) Blood purification apparatus and priming method for the same
JP4091873B2 (ja) 透析装置
JPH10504996A (ja) 中空ファイバ膜の洗滌
FR2626180A1 (fr) Cartouche, appareil et procedes d'hemodiafiltration
TW200803961A (en) A membrane contactor
CN112076628A (zh) 用于冗余无菌过滤的方法和装置
JP2005253555A (ja) 血液浄化装置のプライミング方法および血液浄化装置
JP3875231B2 (ja) 液体処理モジュールの製造方法、及び、液体処理モジュールの製造装置
JP6810686B2 (ja) 血液浄化装置およびプライミング方法
JP2006231333A (ja) 半透膜の製造方法、半透膜、液体処理モジュールの製造方法、液体処理モジュール、及び、液体処理モジュールの製造装置
JP2006231333A5 (ja)
EP0414515A2 (en) Multi-pass blood washing and plasma removal device and method
EP0122920A1 (en) Filter
JP4322716B2 (ja) 液体処理モジュール、及び液体処理モジュールの製造方法
JPH10118472A (ja) 中空糸膜及びその製造方法
EP2163270A1 (en) Double filtration blood purification apparatus and method of priming therefor
JP3821557B2 (ja) 血液浄化器の製造方法
JP4245597B2 (ja) 血液浄化器
US20170266362A1 (en) System for removal of pro-inflammatory mediators as well as granulocytes and monocytes from blood
JPS6287206A (ja) 精密濾過用管材の洗浄方法
JP2006181522A (ja) 中空糸型モジュールの製造方法、及び中空糸型モジュール
JP3664083B2 (ja) 中空糸膜モジュールのリーク試験方法
JP2018139791A (ja) 血液浄化装置、及び、血液浄化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3875231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250