JP2004221225A - Thin dc power supply unit and its manufacturing method - Google Patents

Thin dc power supply unit and its manufacturing method Download PDF

Info

Publication number
JP2004221225A
JP2004221225A JP2003005374A JP2003005374A JP2004221225A JP 2004221225 A JP2004221225 A JP 2004221225A JP 2003005374 A JP2003005374 A JP 2003005374A JP 2003005374 A JP2003005374 A JP 2003005374A JP 2004221225 A JP2004221225 A JP 2004221225A
Authority
JP
Japan
Prior art keywords
power supply
thin
supply device
power
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005374A
Other languages
Japanese (ja)
Inventor
Toshiaki Ono
敏明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003005374A priority Critical patent/JP2004221225A/en
Publication of JP2004221225A publication Critical patent/JP2004221225A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin DC power supply unit capable of improving heat radiation characteristics and reducing the size and thickness, and to provide a method for manufacturing the thin DC power supply unit. <P>SOLUTION: The thin DC power supply unit is equipped with components including semiconductors for power supplies, inductors, capacitors, and the like required for converting power. In the thin DC power supply unit, the input terminal wiring pattern 31, the output terminal wiring pattern 32, and the ground terminal wiring pattern 33 are formed on an IC bare chip for power supply control for composing the semiconductor for power supplies; and the components, such as the inductors 42 and the capacitors 43, required for converting power are provided on the input, output, and ground terminal wiring patterns 31, 32, and 33. Arrangement is made on a silicon substrate having high thermal conductivity, thus obtaining the thin DC power supply unit in which the heat radiation characteristics are improved and the size and thickness are reduced, and a method for manufacturing the thin-type DC power supply unit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電源用半導体やインダクタ、コンデンサ等の電力変換用部品を用いて小型・薄型化を図った直流電源であり、特に携帯機器等に使用される小型・軽量化を図る電源に好適な薄型直流電源装置及びその製造方法に関する。
【0002】
【従来の技術】
電子機器の小型・薄型・高性能化が急速に進んでいる。特に、半導体メモリーの高速化、大容量処理化の急速な進展に対応してLSIの発熱を押さえるため、これの駆動電圧をいかに低くするかが各メーカのターゲットになっている。低電圧LSIを使用するデバイスは、電池電圧を2V以下の電圧に降圧する方法として、抵抗を入れて電圧を降下する方法とか、DC/DCコンバータを使用して降圧する方法が用いられている。特に、低電圧化、高密度化するLSIの電圧の高精度化要求により、DC/DCコンバータを用いた電源は必要不可欠となっている。最近では、小容量品の電力変換素子の多くがIC化されており、わずかな点数の外付け部品でDC/DCコンバータや直流電源が構成できるようになっている。
【0003】
従来の直流電源装置に関する特許としては、例えば特許文献1がある。特許文献1には、パワ半導体素子と、電子部品とを、一体樹脂成形した内容が記載されている。
【0004】
【特許文献1】
特開2001−085613号公報
【0005】
ここで、直流電源装置の一つであるDC/DCコンバータを例に、説明する。図1は、DC/DCコンバータの回路構成を示す図である。図1のDC/DCコンバータは、スイッチング用トランジスタ1、整流用ダイオード2、インダクタ3、コンデンサ4、及び制御回路5より構成されている。
【0006】
図2は、DC/DCコンバータの回路構成に、電源制御用ICベアチップの範囲を示す図である。また、図3は、電源制御用ICベアチップの回路構成を示す図である。図2に示すように、扱う電力にもよるが、通常は、スイッチング用トランジスタ1、整流用ダイオード2、及び制御回路5の部分が電源制御用IC回路6となり、サイズの比較的大きくなるインダクタ3、コンデンサ4は外部接続で使われる。
【0007】
これらを構成する部品が非常に小型化された。しかし、多くの電源はパターニングした配線を有するエポキシ樹脂やセラミックス類の硬質回路基板上に、各々個別の部品として制御用のパワーICやコンデンサ部品、インダクタ部品といった表面実装部品単体を平面的にもしくは2次元的に実装し、その後、樹脂モールドしたハイブリッド型の直流電源である。
【0008】
図15に、従来の直流電源装置の製造方法の説明図を示す。エポキシ樹脂やセラミックスの類の硬質回路基板上30上に入力端子配線パターン31、出力端子配線パターン32、グランド端子配線パターン33を形成し、該配線パターン上に電源制御用ICベアチップ36、インダクタ34、コンデンサ35を搭載し、それぞれが入力端子配線パターン31、出力端子配線パターン32、グランド端子配線パターン33、及びワイヤボンディング40により接続されている。
【0009】
電極引き出しのために、入力端子引き出し電極37、出力端子引き出し電極38、グランド端子引き出し電極39を入力端子配線パターン31、出力端子配線パターン32、グランド端子配線パターン33の一部に配置し、前記入力端子引き出し電極37、出力端子引き出し電極38、グランド端子引き出し電極39の一部が露出し、硬質回路基板30上の入力端子配線パターン31、出力端子配線パターン32、グランド端子配線パターン33、電源制御用ICベアチップ36、インダクタ34、コンデンサ35を覆うようにモールド樹脂41を施し、DC/DCコンバータや直流電源装置を構成している。
【0010】
完成形状を図16に示す。エポキシ樹脂やセラミックス類の硬質回路基板30の入力端子配線パターン31、出力端子配線パターン32、グランド端子配線パターン33、電源制御用ICベアチップ36、インダクタ34、コンデンサ35、DC/DCコンバータや直流電源を覆うようにモールド樹脂41され、入力端子引き出し電極37、出力端子引き出し電極38、グランド端子引き出し電極39のみが露出したDC/DCコンバータや直流電源装置を構成している。
【0011】
【発明が解決しようとする課題】
本構造では、エポキシ樹脂やセラミックス類の熱伝導率の良くない硬質回路基板上に各部品を搭載していることから、発熱源となる電源制御用ICベアチップ36、インダクタ34の放熱効果が悪く、本来必要のないエポキシ樹脂やセラミックス類の硬質回路基板を用いているため、薄型化に限界があった。また、本構造では、薄型化のために各種部品を2次元的に配置しているため、平面面積が大きくなり、実装面積の縮小化を阻む要因となっていた。
【0012】
半導体メモリーの高速化が進められるなか、これに呼応した電源の要求に応えるべく、小型かつ薄型の電源の開発が求められている。こうした状況下で、最近では、外付けの部品点数が少なくて済む電源用コンバータ用ICやレギュレータの開発が進んでいる。発熱量が大きい電源用半導体やインダクタを用いた電力変換装置の大電流容量化のためには、放熱性能が高く薄型のDC/DCコンバータや直流電源が要求されている。
【0013】
従って、本発明の目的は、放熱特性の向上、また小型化、薄型化を実現した薄型直流電源装置及びその製造方法を提供することである。
【0014】
【課題を解決するための手段】
上記の課題解決のため、本発明の薄型直流電源装置は、エポキシ樹脂やセラミックス類の硬質回路基板を用いず、熱伝導率の高いシリコンからなる電源制御用IC上に直接、絶縁膜を形成し、前記電源制御用ICの絶縁膜上に、DC/DCコンバータや直流電源の配線パターンを形成し、本配線パターン上に直接、インダクタやコンデンサを搭載し、DC/DCコンバータや直流電源をワイヤボンディングなし構造で、実現するものである。
【0015】
即ち、本発明は、電源用半導体、インダクタ、コンデンサ等の電力変換に必要な部品を配設した薄型直流電源装置であって、前記電源用半導体を構成する電源制御用ICベアチップ上に配線パターンを形成した薄型直流電源装置である。
【0016】
また、本発明は、前記配線パターン上に、インダクタ、コンデンサ等の電力変換に必要な部品を配設し、前記電源制御用ICベアチップ、インダクタ、コンデンサ等の電極取り出しのために電極ブロックを取り付けた構造とした薄型直流電源装置である。
【0017】
また、本発明は、前記配線パターン上において、インダクタ、コンデンサ等の電力変換に必要な部品を直接配線パターンに接続した薄型直流電源装置である。
【0018】
また、本発明は、前記薄型直流電源装置において、前記インダクタ、コンデンサ等の受動部品取付面だけをモールド封止し、前記電源制御用ICベアチップ裏面は露出した構造とした薄型直流電源装置である。
【0019】
また、本発明は、前記薄型直流電源装置において、引き出し電極をモールド封止後の平面及び側面の少なくとも2面にまたがるように電極が露出するようにモールド封止した構造とした薄型直流電源装置である。
【0020】
また、本発明は、前記薄型直流電源装置において、引き出し電極をモールド封止後の表面及び側面の1辺に電極が露出する構造とした薄型直流電源装置である。
【0021】
また、本発明は、前記薄型直流電源装置において、引き出し電極表面に半田ホールを施した構造とした薄型直流電源装置である。
【0022】
また、本発明は、前記薄型直流電源装置において、発熱源となるシリコンからなる電源制御用ICベアチップの裏面を露出した構造とした薄型直流電源装置である。
【0023】
また、本発明は、電源用半導体、インダクタ、コンデンサ等の電力変換に必要な部品を配設する薄型直流電源装置の製造方法であって、前記電源用半導体を構成する電源制御用ICベアチップ上に配線パターンを形成し、前記配線パターン上に、インダクタ、コンデンサ等の電力変換に必要な部品を配設し、前記電源制御用ICベアチップ、インダクタ、コンデンサ等の電極取り出しのための引き出し電極を、モールド封止後の平面及び側面の少なくとも2面にまたがるように電極が露出するようにモールド封止する構造とする薄型直流電源装置の製造方法である。
【0024】
また、本発明は、電源用半導体、インダクタ、コンデンサ等の電力変換に必要な部品を配設する薄型直流電源装置の製造方法であって、前記電源用半導体を構成する電源制御用ICベアチップ上に配線パターンを形成し、前記配線パターン上に、インダクタ、コンデンサ等の電力変換に必要な部品を配設し、前記電源制御用ICベアチップ、インダクタ、コンデンサ等の電極取り出しのための引き出し電極表面に半田ホールを施し、モールド封止後の平面に電極が露出するようにモールド封止する構造とする薄型直流電源装置の製造方法である。
【0025】
【発明の実施の形態】
本発明の実施の形態による薄型直流電源装置及びその製造方法について、以下に説明する。
【0026】
(実施の形態1)
本発明の実施の形態1による薄型直流電源装置およびその製造方法について、図4から図10を使用して説明する。
【0027】
図4は、本発明の実施の形態1による薄型直流電源装置の電源制御用ICベアチップ7の説明図である。図4(a)は、電源制御用ICベアチップの外観斜視図、図4(b)は、図4(a)の側面図、図4(c)は、電源制御用ICベアチップの回路図である。
【0028】
本発明の電源制御用ICベアチップ7は、シリコン基板8上にスイッチング用トランジスタ1、整流ダイオード2、制御回路5で構成されており、入出端子10Vin、出力端子11Vout、グランド13G、出力モニタ用端子12SYNよりなっている。スイッチング用トランジスタ1、整流ダイオード2、制御回路5、入出端子10Vin(IC)、出力端子11Vout(IC)、グランド13G(IC)、出力モニタ用端子12SYN(IC)は、シリコン基板8内に構成、配線されており、その表面をSiO、Si等の膜9で保護し、入出端子10Vin、出力端子11Vout、グランド13G、出力モニタ用端子12SYNのみが表面に露出した構造となっている。
【0029】
図5から図10までは、本発明の実施の形態1による薄型直流電源装置の製造方法の説明図である。
【0030】
(1)図5に示すように、電源制御用ICベアチップ7を準備する。
【0031】
(2)図6に示すように、電源制御用ICベアチップ7上にSiO、Si等を形成し保護膜14とし、その保護膜14の開口部を介して、保護膜14上に入出端子10Vin(IC)、出力端子11Vout(IC)、グランド13G(IC)、出力モニタ用端子12SYN(IC)を引き出し、その上に、DC/DCコンバータ用の配線パターンを施し、入力端子15Vin、出力端子16Vout、グランド端子18G、出力モニタ用端子17SYNを形成する。
【0032】
(3)図7(a)に示すように、SiO、Si等の保護膜14上に、入出端子15Vin、出力端子16Vout、グランド端子18G、出力モニタ用端子17SYN上と電気的な接続を持つように、インダクタ42、コンデンサ43を搭載し、図7(c)に示すDC/DCコンバータ回路構成とする。
【0033】
(4)図8に示すように、電極取り出しのために、入力端子15Vin、出力端子16Vout、グランド端子18G、出力モニタ用端子17SYN上に、入力端子引き出し電極19、出力端子引き出し電極20、グランド端子引き出し電極21を搭載する。ここで、半田接続、導電性ペースト接続とする。
【0034】
(5)図9の透し図に示すように、入力端子引き出し電極19、出力端子引き出し電極20、グランド端子引き出し電極21の一部を除いて、シリコン基板8上に、配線パターン、入力端子15Vin、出力端子16Vout、グランド端子18G、出力モニタ用端子17SYN、インダクタ42、コンデンサ43を覆うようにモールド樹脂22で封止する。
【0035】
(6)図10に示すように、電源制御用ICベアチップ7のシリコン基板8上をモールド樹脂22で封止され、入力端子引き出し電極19、出力端子引き出し電極20、グランド端子引き出し電極21の一部が露出し、入力端子引き出し電極19Vin、出力端子引き出し電極20Vout、グランド端子引き出し21GとしたDC/DCコンバータが完成する。電極は、モールド封止後の表面及び側面の2辺に露出する構造となる。
【0036】
(実施の形態2)
本発明の実施の形態2による薄型直流電源装置およびその製造方法について説明する。図11から図14までは、本発明の実施の形態2による薄型直流電源装置の製造方法の説明図である。
【0037】
先の実施の形態1と同一の製造方法を施し、
(1)図11に示すように、電極取り出しのために、入出端子15Vin、出力端子16Vout、グランド端子18G、出力モニタ用端子17SYN上に、入力端子引き出し電極23、出力端子引き出し電極24、グランド端子引き出し電極25を搭載する。ここで、半田接続、導電性ペースト接続とする。
【0038】
(2)図12の透し図に示すように、入力端子引き出し電極23、出力端子引き出し電極24、グランド端子引き出し電極25の一部を除いて、シリコン基板8上に、配線パターン、入力端子15Vin、出力端子16Vout、グランド端子18G、出カモニタ用端子17SYN、インダクタ42、コンデンサ43を覆うようにモールド樹脂26で封止する。
【0039】
(3)図13に示すように、電源制御用ICベアチップ7のシリコン基板8上をモールド樹脂26で封止され、入力端子引き出し電極23、出力端子引き出し電極24、グランド端子引き出し電極25の一部が露出し、入力端子Vin23、出力端子Vout24、グランドG25としたDC/DCコンバータが完成する。電極はモールド封止後の表面内に埋め込まれた構造となる。
【0040】
(4)図14に示すように、入力端子引き出し電極23、出力端子引き出し電極24、グランド端子引き出し電極25上に半田ホールを搭載し、入力端子半田ホールVin27、出力端子半田ホールVout28、グランド端子半田ホールG29としたDC/DCコンバータが完成する。
【0041】
本発明により、従来、0.5mmのエポキシ樹脂やセラミックス類の硬質回路基板上に、電源制御用ICベアチップ、インダクタ、コンデンサを搭載していた場合の容積は、幅8.0×長さ8.0×高さ1.5mmあったものが、電源制御用ICベアチップ上に直接配線パターンを形成し、インダクタ、コンデンサを搭載したことにより、制御ICを載せる硬質回路基板が不要となり、また、配線引き回し分のスペースも不要となり、また、電源制御用ICベアチップは0.3mmと薄くでき、ワイヤボンディングも不要となったことで、高さも低くでき、幅5.0×長さ5.0×高さ1.0mmとなり、実装面積で64mmから25mmと約60%小さくでき、容積では、96mmから25mmと75%小型化できた。
【0042】
また、従来構造でのガラスエポキシ基板を用いた場合は、熱伝導率0.4(W/mK)のガラスエポキシ基板上に、発熱源となる電源制御用ICベアチップと、さらに発熱源となるインダクタが搭載されているため、放熱特性が悪かったが、本発明では、発熱源となる電源制御用ICベアチップの裏面、つまり、熱伝導率168(W/mK)のシリコン面が直接放熱面となり、また、インダクタの発熱も同シリコンを介して放熱されるため著しく放熱特性が改善された。
【0043】
【発明の効果】
以上、本発明により、熱伝導率の高いシリコン上への配置により、放熱特性の向上、また、小型化、薄型化を実現した薄型直流電源装置及びその製造方法を提供できる。
【図面の簡単な説明】
【図1】DC/DCコンバータの回路構成を示す図。
【図2】DC/DCコンバータの回路構成に、電源制御用ICベアチップの範囲を示す図。
【図3】電源制御用ICベアチップの回路構成を示す図。
【図4】本発明の実施の形態1による電源制御用ICベアチップの説明図。図4(a)は電源制御用ICベアチップの外観斜視図、図4(b)は図4(a)の側面図、図4(c)は電源制御用ICベアチップの回路図。
【図5】本発明の実施の形態1による薄型直流電源装置の製造方法の説明図。図5(a)は、電源制御用ICベアチップの外観斜視図、図5(b)は、図5(a)の側面図。
【図6】本発明の実施の形態1による薄型直流電源装置の製造方法の説明図。図6(a)は、電源制御用ICベアチップの外観斜視図、図6(b)は、図6(a)の側面図。
【図7】本発明の実施の形態1による薄型直流電源装置の製造方法の説明図。図7(a)は、薄型直流電源装置の外観斜視図、図7(b)は、図7(a)の側面図、図7(c)は 、薄型直流電源装置の回路図。
【図8】本発明の実施の形態1による薄型直流電源装置の製造方法の説明図、図8(a)は、薄型直流電源装置の外観斜視図、図8(b)は、図8(a)の側面図、図8(c)は、薄型直流電源装置の回路図。
【図9】本発明の実施の形態1による薄型直流電源装置の製造方法の説明図。図9(a)は、薄型直流電源装置の外観斜視図、図9(b)は、図9(a)の側面図。
【図10】本発明の実施の形態1による薄型直流電源装置の製造方法の説明図、図10(a)は、薄型直流電源装置の外観斜視図、図10(b)は、図10(a)の側面図、図10(c)は、薄型直流電源装置の回路図。
【図11】本発明の実施の形態2による薄型直流電源装置の製造方法の説明図、図11(a)は、薄型直流電源装置の外観斜視図、図11(b)は、図11(a)の側面図。
【図12】本発明の実施の形態2による薄型直流電源装置の製造方法の説明図、図12(a)は、薄型直流電源装置の外観斜視図、図12(b)は、図12(a)の側面図。
【図13】本発明の実施の形態2による薄型直流電源装置の製造方法の説明図、図13(a)は、薄型直流電源装置の外観斜視図、図13(b)は、図13(a)の側面図。
【図14】本発明の実施の形態2による薄型直流電源装置の製造方法の説明図、図14(a)は、薄型直流電源装置の外観斜視図、図14(b)は、図14(a)の側面図、図14(c)は、薄型直流電源装置の回路図。
【図15】従来の直流電源装置の製造方法の説明図、図15(a)は、従来の薄型直流電源装置の外観斜視図、図15(b)は、図15(a)の側面図、図15(c)は、従来の薄型直流電源装置の回路図。
【図16】従来の直流電源装置の製造方法の説明図、図16(a)は、従来の薄型直流電源装置の外観斜視図、図16(b)は、図16(a)の側面図、図16(c)は、従来の薄型直流電源装置の回路図。
【符号の説明】
1 スイッチング用トランジスタ
2 整流用ダイオード
3 インダクタ
4 コンデンサ
5 制御回路
6 電源制御用IC回路
7 電源制御用ICベアチップ
8 シリコン基板
9 保護膜(パッシベーション)
10 電源制御用IC入力端子
11 電源制御用IC出力端子
12 電源制御用IC制御端子
13 電源制御用ICグランド端子
14 保護膜
15 入力端子
16 出力端子
17 出力モニタ用端子
18 グランド端子
19 入力端子引き出し電極
20 出力端子引き出し電極
21 グランド端子引き出し電極
22 モールド樹脂
23 入力端子引き出し電極
24 出力端子引き出し電極
25 グランド端子引き出し電極
26 モールド樹脂
27 入力端子半田ホール
28 出力端子半田ホール
29 グランド端子半田ホール
30 (エポキシ樹脂やセラミックス類の)硬質回路基板
31 入力端子配線パターン
32 出力端子配線パターン
33 グランド端子配線パターン
34 インダクタ
35 コンデンサ
36 電源制御用ICベアチップ
37 入力端子引き出し電極
38 出力端子引き出し電極
39 グランド端子引き出し電極
40 ワイヤボンディング
41 モールド樹脂
42 インダクタ
43 コンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a DC power supply that is reduced in size and thickness by using power conversion components such as a power supply semiconductor, an inductor, and a capacitor, and is particularly suitable for a power supply that is used in portable devices and the like and that is reduced in size and weight. The present invention relates to a thin DC power supply device and a method of manufacturing the same.
[0002]
[Prior art]
Electronic devices are rapidly becoming smaller, thinner, and more sophisticated. In particular, in order to suppress the heat generation of the LSI in response to the rapid progress of the high speed and large capacity processing of the semiconductor memory, the target of each manufacturer is how to lower the driving voltage of the LSI. Devices using a low-voltage LSI employ a method of reducing the battery voltage to a voltage of 2 V or less, such as a method of reducing the voltage by inserting a resistor or a method of reducing the voltage by using a DC / DC converter. In particular, a power supply using a DC / DC converter has become indispensable due to a demand for a high-precision voltage of an LSI to be reduced in voltage and increased in density. Recently, many of the small-capacity power conversion elements have been integrated into ICs, and a DC / DC converter or a DC power supply can be configured with a small number of external components.
[0003]
As a patent related to a conventional DC power supply device, there is, for example, Patent Document 1. Patent Literature 1 describes the content of a power semiconductor element and an electronic component formed by integral resin molding.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-085613
Here, a DC / DC converter which is one of the DC power supply devices will be described as an example. FIG. 1 is a diagram showing a circuit configuration of a DC / DC converter. The DC / DC converter of FIG. 1 includes a switching transistor 1, a rectifying diode 2, an inductor 3, a capacitor 4, and a control circuit 5.
[0006]
FIG. 2 is a diagram showing a range of a power control IC bare chip in a circuit configuration of a DC / DC converter. FIG. 3 is a diagram showing a circuit configuration of a power control IC bare chip. As shown in FIG. 2, although it depends on the power to be handled, normally, the switching transistor 1, the rectifying diode 2, and the control circuit 5 become the power supply control IC circuit 6, and the inductor 3 becomes relatively large in size. , The capacitor 4 is used for external connection.
[0007]
The components that make them up have been made very small. However, many power supplies are mounted on a rigid circuit board made of an epoxy resin or ceramics having patterned wiring, and a surface mount component such as a power IC for control, a capacitor component, or an inductor component is individually or separately provided on a flat surface or in two or more. This is a hybrid DC power supply that is mounted three-dimensionally and then resin-molded.
[0008]
FIG. 15 shows an explanatory view of a method for manufacturing a conventional DC power supply device. An input terminal wiring pattern 31, an output terminal wiring pattern 32, and a ground terminal wiring pattern 33 are formed on a hard circuit board 30, such as an epoxy resin or ceramics, and a power control IC bare chip 36, an inductor 34, A capacitor 35 is mounted, and each is connected by an input terminal wiring pattern 31, an output terminal wiring pattern 32, a ground terminal wiring pattern 33, and a wire bonding 40.
[0009]
In order to lead the electrodes, the input terminal lead electrode 37, the output terminal lead electrode 38, and the ground terminal lead electrode 39 are arranged on a part of the input terminal wiring pattern 31, the output terminal wiring pattern 32, and the ground terminal wiring pattern 33, and A part of the terminal lead electrode 37, the output terminal lead electrode 38, and the ground terminal lead electrode 39 is exposed, and the input terminal wiring pattern 31, the output terminal wiring pattern 32, the ground terminal wiring pattern 33 on the hard circuit board 30, and the power control A mold resin 41 is applied so as to cover the IC bare chip 36, the inductor 34, and the capacitor 35, thereby constituting a DC / DC converter and a DC power supply.
[0010]
FIG. 16 shows the completed shape. An input terminal wiring pattern 31, an output terminal wiring pattern 32, a ground terminal wiring pattern 33, a power control IC bare chip 36, an inductor 34, a capacitor 35, a DC / DC converter, and a DC power supply of a hard circuit board 30 made of epoxy resin or ceramics. A DC / DC converter or a DC power supply device in which only the input terminal lead-out electrode 37, the output terminal lead-out electrode 38, and the ground terminal lead-out electrode 39 are exposed so as to cover the mold resin 41 is formed.
[0011]
[Problems to be solved by the invention]
In this structure, since each component is mounted on a hard circuit board having poor thermal conductivity such as epoxy resin and ceramics, the heat radiation effect of the power control IC bare chip 36 and the inductor 34 which are heat sources is poor. Since a hard circuit board made of epoxy resin or ceramics, which is not originally required, is used, there is a limit to thinning. Further, in this structure, since various components are two-dimensionally arranged for thinning, the planar area becomes large, which is a factor that hinders a reduction in mounting area.
[0012]
As the speed of semiconductor memories has been increased, there has been a demand for the development of small and thin power supplies in order to respond to the demand for power supplies corresponding to this. Under these circumstances, recently, power converter ICs and regulators requiring a small number of external components have been developed. In order to increase the current capacity of a power conversion device using a power supply semiconductor or an inductor that generates a large amount of heat, a thin DC / DC converter or a DC power supply having high heat radiation performance is required.
[0013]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a thin DC power supply device which has improved heat radiation characteristics and which has been reduced in size and thickness, and a method of manufacturing the same.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the thin DC power supply device of the present invention forms an insulating film directly on a power control IC made of silicon having high thermal conductivity without using a hard circuit board made of epoxy resin or ceramics. Forming a wiring pattern of a DC / DC converter or a DC power supply on the insulating film of the power supply control IC, mounting an inductor or a capacitor directly on the wiring pattern, and wire bonding the DC / DC converter or the DC power supply. Without the structure, it is realized.
[0015]
That is, the present invention is a thin DC power supply device provided with components necessary for power conversion, such as a power supply semiconductor, an inductor, and a capacitor, wherein a wiring pattern is formed on a power control IC bare chip constituting the power supply semiconductor. It is a formed thin DC power supply device.
[0016]
According to the present invention, on the wiring pattern, components necessary for power conversion such as an inductor and a capacitor are provided, and an electrode block is attached for taking out electrodes of the power control IC bare chip, the inductor and the capacitor. This is a thin DC power supply device with a structure.
[0017]
Further, the present invention is a thin DC power supply device in which components required for power conversion, such as an inductor and a capacitor, are directly connected to the wiring pattern on the wiring pattern.
[0018]
Further, the present invention is the thin DC power supply device, wherein only the passive component mounting surfaces such as the inductor and the capacitor are molded and sealed, and the back surface of the power control IC bare chip is exposed.
[0019]
The present invention also relates to the thin DC power supply device, wherein in the thin DC power supply device, the extraction electrode is molded and sealed so that the electrode is exposed so as to extend over at least two of the plane and the side surface after the mold sealing. is there.
[0020]
Further, the present invention is the thin DC power supply device having a structure in which the extraction electrode is exposed on one side of the surface and the side surface after mold sealing in the thin DC power supply device.
[0021]
Further, the present invention is the thin DC power supply device, wherein the thin DC power supply device has a structure in which a solder hole is formed on a surface of an extraction electrode.
[0022]
Further, the present invention is a thin DC power supply device having a structure in which the back surface of a power control IC bare chip made of silicon as a heat source is exposed in the thin DC power supply device.
[0023]
Further, the present invention is a method for manufacturing a thin DC power supply device in which components required for power conversion, such as a power supply semiconductor, an inductor, and a capacitor, are provided. Forming a wiring pattern, disposing components necessary for power conversion such as an inductor and a capacitor on the wiring pattern, and molding a lead electrode for extracting an electrode of the power control IC bare chip, an inductor and a capacitor. This is a method for manufacturing a thin DC power supply device having a structure in which a mold is sealed so that an electrode is exposed so as to extend over at least two of a flat surface and a side surface after sealing.
[0024]
Further, the present invention is a method for manufacturing a thin DC power supply device in which components required for power conversion, such as a power supply semiconductor, an inductor, and a capacitor, are provided. Forming a wiring pattern, disposing components necessary for power conversion such as inductors and capacitors on the wiring pattern, and soldering to the surface of a lead electrode for taking out electrodes of the power control IC bare chip, inductor, capacitor, etc. This is a method for manufacturing a thin DC power supply device having a structure in which a hole is formed and a mold is sealed so that an electrode is exposed on a plane after the mold sealing.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a thin DC power supply device and a method of manufacturing the same according to an embodiment of the present invention will be described.
[0026]
(Embodiment 1)
A thin DC power supply device and a method of manufacturing the same according to a first embodiment of the present invention will be described with reference to FIGS.
[0027]
FIG. 4 is an explanatory diagram of the power control IC bare chip 7 of the thin DC power supply device according to the first embodiment of the present invention. 4A is an external perspective view of a power control IC bare chip, FIG. 4B is a side view of FIG. 4A, and FIG. 4C is a circuit diagram of the power control IC bare chip. .
[0028]
The power control IC bare chip 7 of the present invention includes a switching transistor 1, a rectifier diode 2, and a control circuit 5 on a silicon substrate 8, and has an input / output terminal 10Vin, an output terminal 11Vout, a ground 13G, and an output monitoring terminal 12SYN. Is made up of The switching transistor 1, the rectifier diode 2, the control circuit 5, the input / output terminal 10Vin (IC), the output terminal 11Vout (IC), the ground 13G (IC), and the output monitoring terminal 12SYN (IC) are configured in the silicon substrate 8. It is wired, and its surface is protected by a film 9 of SiO 2 , Si 3 N 4 or the like, and only the input / output terminal 10Vin, the output terminal 11Vout, the ground 13G, and the output monitoring terminal 12SYN are exposed on the surface. .
[0029]
5 to 10 are explanatory diagrams of a method of manufacturing the thin DC power supply according to the first embodiment of the present invention.
[0030]
(1) As shown in FIG. 5, a power control IC bare chip 7 is prepared.
[0031]
(2) As shown in FIG. 6, SiO 2 , Si 3 N 4 and the like are formed on the power control IC bare chip 7 to form a protective film 14, and the protective film 14 is formed on the protective film 14 through the opening of the protective film 14. The input / output terminal 10Vin (IC), the output terminal 11Vout (IC), the ground 13G (IC), and the output monitoring terminal 12SYN (IC) are pulled out, and a wiring pattern for a DC / DC converter is applied thereon. An output terminal 16Vout, a ground terminal 18G, and an output monitoring terminal 17SYN are formed.
[0032]
(3) As shown in FIG. 7A, on the protective film 14 of SiO 2 , Si 3 N 4 or the like, the input / output terminal 15Vin, the output terminal 16Vout, the ground terminal 18G, and the output monitor terminal 17SYN are electrically connected. An inductor 42 and a capacitor 43 are mounted so as to have a connection, and a DC / DC converter circuit configuration shown in FIG.
[0033]
(4) As shown in FIG. 8, in order to take out the electrodes, the input terminal lead-out electrode 19, the output terminal lead-out electrode 20, and the ground terminal are provided on the input terminal 15Vin, the output terminal 16Vout, the ground terminal 18G, and the output monitor terminal 17SYN. The extraction electrode 21 is mounted. Here, solder connection and conductive paste connection are used.
[0034]
(5) As shown in the transparent view of FIG. 9, except for a part of the input terminal lead-out electrode 19, the output terminal lead-out electrode 20, and the ground terminal lead-out electrode 21, a wiring pattern and an input terminal 15Vin are formed on the silicon substrate 8. , The output terminal 16Vout, the ground terminal 18G, the output monitoring terminal 17SYN, the inductor 42, and the capacitor 43 are sealed with the mold resin 22.
[0035]
(6) As shown in FIG. 10, the silicon substrate 8 of the power control IC bare chip 7 is sealed with the mold resin 22, and the input terminal lead electrode 19, the output terminal lead electrode 20, and a part of the ground terminal lead electrode 21. Are exposed, and a DC / DC converter having an input terminal lead electrode 19Vin, an output terminal lead electrode 20Vout, and a ground terminal lead 21G is completed. The electrodes have a structure that is exposed on two sides of the surface and the side surface after mold sealing.
[0036]
(Embodiment 2)
A thin DC power supply device and a method of manufacturing the same according to a second embodiment of the present invention will be described. 11 to 14 are explanatory diagrams of a method of manufacturing a thin DC power supply according to Embodiment 2 of the present invention.
[0037]
By performing the same manufacturing method as in the first embodiment,
(1) As shown in FIG. 11, for taking out the electrodes, the input terminal lead electrode 23, the output terminal lead electrode 24, and the ground terminal are provided on the input / output terminal 15Vin, the output terminal 16Vout, the ground terminal 18G, and the output monitoring terminal 17SYN. The extraction electrode 25 is mounted. Here, solder connection and conductive paste connection are used.
[0038]
(2) As shown in the transparent view of FIG. 12, except for a part of the input terminal lead-out electrode 23, the output terminal lead-out electrode 24, and the ground terminal lead-out electrode 25, a wiring pattern and an input terminal 15Vin are formed on the silicon substrate 8. The output terminal 16Vout, the ground terminal 18G, the output monitoring terminal 17SYN, the inductor 42, and the capacitor 43 are sealed with the mold resin 26.
[0039]
(3) As shown in FIG. 13, the silicon substrate 8 of the power control IC bare chip 7 is sealed with the mold resin 26, and the input terminal lead electrode 23, the output terminal lead electrode 24, and a part of the ground terminal lead electrode 25. Are exposed, and the DC / DC converter having the input terminal Vin23, the output terminal Vout24, and the ground G25 is completed. The electrodes have a structure embedded in the surface after mold sealing.
[0040]
(4) As shown in FIG. 14, solder holes are mounted on the input terminal lead electrode 23, the output terminal lead electrode 24, and the ground terminal lead electrode 25, and the input terminal solder hole Vin27, the output terminal solder hole Vout28, and the ground terminal solder are provided. The DC / DC converter with the hole G29 is completed.
[0041]
According to the present invention, when a power control IC bare chip, an inductor, and a capacitor are conventionally mounted on a 0.5 mm epoxy resin or ceramic hard circuit board, the volume is 8.0 × 8. What was 0x1.5mm in height, the wiring pattern was formed directly on the power control IC bare chip, and the inductor and capacitor were mounted, eliminating the need for a hard circuit board on which to mount the control IC. Space is not required, and the IC bare chip for power supply control can be made as thin as 0.3 mm and wire bonding is also unnecessary, so that the height can be reduced, and the width is 5.0 × length 5.0 × height 1.0mm, and the can about 60% smaller by 64 mm 2 and 25 mm 2 in the mounting area, the volume could be 25 mm 3 75% smaller from 96 mm 3.
[0042]
When a glass epoxy substrate having a conventional structure is used, a power control IC bare chip serving as a heat source and an inductor serving as a heat source are formed on a glass epoxy substrate having a thermal conductivity of 0.4 (W / mK). However, in the present invention, the back surface of the power control IC bare chip, which is a heat source, that is, the silicon surface having a thermal conductivity of 168 (W / mK) directly serves as a heat radiation surface. In addition, since the heat generated by the inductor is also radiated through the silicon, the heat radiation characteristic is remarkably improved.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a thin DC power supply device that has improved heat radiation characteristics, and has been reduced in size and thickness by being arranged on silicon having high thermal conductivity, and a method of manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a diagram showing a circuit configuration of a DC / DC converter.
FIG. 2 is a diagram showing a range of a power control IC bare chip in a circuit configuration of a DC / DC converter.
FIG. 3 is a diagram showing a circuit configuration of a power control IC bare chip.
FIG. 4 is an explanatory diagram of a power control IC bare chip according to the first embodiment of the present invention. 4A is an external perspective view of a power control IC bare chip, FIG. 4B is a side view of FIG. 4A, and FIG. 4C is a circuit diagram of the power control IC bare chip.
FIG. 5 is a diagram illustrating a method for manufacturing the thin DC power supply device according to the first embodiment of the present invention. 5A is an external perspective view of a power control IC bare chip, and FIG. 5B is a side view of FIG. 5A.
FIG. 6 is an explanatory diagram of the method for manufacturing the thin DC power supply device according to the first embodiment of the present invention. 6A is an external perspective view of a power control IC bare chip, and FIG. 6B is a side view of FIG. 6A.
FIG. 7 is an explanatory diagram of the method for manufacturing the thin DC power supply device according to the first embodiment of the present invention. 7A is an external perspective view of the thin DC power supply, FIG. 7B is a side view of FIG. 7A, and FIG. 7C is a circuit diagram of the thin DC power supply.
8 (a) is an explanatory perspective view of a thin DC power supply device according to Embodiment 1 of the present invention, FIG. 8 (b) is an external perspective view of the thin DC power supply device, and FIG. FIG. 8C is a circuit diagram of the thin DC power supply device.
FIG. 9 is an explanatory diagram of the method for manufacturing the thin DC power supply device according to the first embodiment of the present invention. 9A is an external perspective view of the thin DC power supply device, and FIG. 9B is a side view of FIG. 9A.
10A and 10B are explanatory diagrams of a method of manufacturing the thin DC power supply device according to the first embodiment of the present invention, FIG. 10A is an external perspective view of the thin DC power supply device, and FIG. FIG. 10C is a circuit diagram of the thin DC power supply device.
11A and 11B are explanatory diagrams of a method of manufacturing a thin DC power supply according to Embodiment 2 of the present invention, FIG. 11A is an external perspective view of the thin DC power supply, and FIG. 11B is FIG. ) Side view.
FIG. 12 is an explanatory view of a method of manufacturing a thin DC power supply according to Embodiment 2 of the present invention, FIG. 12 (a) is an external perspective view of the thin DC power supply, and FIG. 12 (b) is FIG. ) Side view.
13A and 13B are explanatory diagrams of a method of manufacturing a thin DC power supply according to Embodiment 2 of the present invention, FIG. 13A is an external perspective view of the thin DC power supply, and FIG. 13B is FIG. ) Side view.
14A and 14B are explanatory views of a method of manufacturing a thin DC power supply according to Embodiment 2 of the present invention, FIG. 14A is an external perspective view of the thin DC power supply, and FIG. 14B is FIG. FIG. 14C is a circuit diagram of the thin DC power supply device.
15 (a) is an external perspective view of a conventional thin DC power supply, FIG. 15 (b) is a side view of FIG. 15 (a), and FIG. FIG. 15C is a circuit diagram of a conventional thin DC power supply device.
16 (a) is an external perspective view of a conventional thin DC power supply, FIG. 16 (b) is a side view of FIG. 16 (a), and FIG. FIG. 16C is a circuit diagram of a conventional thin DC power supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Switching transistor 2 Rectifier diode 3 Inductor 4 Capacitor 5 Control circuit 6 Power control IC circuit 7 Power control IC bare chip 8 Silicon substrate 9 Protective film (passivation)
DESCRIPTION OF SYMBOLS 10 Power control IC input terminal 11 Power control IC output terminal 12 Power control IC control terminal 13 Power control IC ground terminal 14 Protective film 15 Input terminal 16 Output terminal 17 Output monitor terminal 18 Ground terminal 19 Input terminal lead electrode Reference Signs List 20 output terminal lead electrode 21 ground terminal lead electrode 22 molding resin 23 input terminal lead electrode 24 output terminal lead electrode 25 ground terminal lead electrode 26 mold resin 27 input terminal solder hole 28 output terminal solder hole 29 ground terminal solder hole 30 (epoxy resin Hard circuit board 31 (of ceramics or the like) 31 input terminal wiring pattern 32 output terminal wiring pattern 33 ground terminal wiring pattern 34 inductor 35 capacitor 36 power control IC bare chip 37 input terminal lead electrode 38 output Child lead electrode 39 ground terminal lead electrode 40 wire bonding 41 mold resin 42 inductor 43 capacitor

Claims (10)

電源用半導体、インダクタ、コンデンサ等の電力変換に必要な部品を配設した薄型直流電源装置であって、前記電源用半導体を構成する電源制御用ICベアチップ上に配線パターンを形成したことを特徴とする薄型直流電源装置。A thin DC power supply device provided with components required for power conversion such as a power supply semiconductor, an inductor, and a capacitor, wherein a wiring pattern is formed on a power control IC bare chip constituting the power supply semiconductor. Thin DC power supply. 前記配線パターン上に、インダクタ、コンデンサ等の電力変換に必要な部品を配設し、前記電源制御用ICベアチップ、インダクタ、コンデンサ等の電極取り出しのために電極ブロックを取り付けた構造としたことを特徴とする請求項1に記載の薄型直流電源装置。On the wiring pattern, components necessary for power conversion such as inductors and capacitors are arranged, and an electrode block is attached to take out electrodes of the power control IC bare chip, inductors, capacitors and the like. The thin DC power supply device according to claim 1. 前記配線パターン上において、インダクタ、コンデンサ等の電力変換に必要な部品を直接配線パターンに接続したことを特徴とする請求項1または2に記載の薄型直流電源装置。The thin DC power supply device according to claim 1, wherein components required for power conversion, such as an inductor and a capacitor, are directly connected to the wiring pattern on the wiring pattern. 請求項1ないし3のいずれかに記載の薄型直流電源装置において、前記インダクタ、コンデンサ等の受動部品取付面だけをモールド封止し、前記電源制御用ICベアチップ裏面は露出した構造としたことを特徴とする薄型直流電源装置。4. The thin DC power supply device according to claim 1, wherein only the mounting surface of the passive component such as the inductor and the capacitor is molded and the back surface of the power control IC bare chip is exposed. Thin DC power supply. 請求項1ないし3のいずれかに記載の薄型直流電源装置において、引き出し電極をモールド封止後の平面及び側面の少なくとも2面にまたがるように電極が露出するようにモールド封止した構造としたことを特徴とする薄型直流電源装置。4. The thin DC power supply device according to claim 1, wherein the extraction electrode is molded and sealed so that the electrode is exposed so as to extend over at least two of the flat surface and the side surface after the molding. A thin DC power supply device characterized by the following. 請求項4または5の記載の薄型直流電源装置において、引き出し電極をモールド封止後の表面及び側面の1辺に電極が露出する構造としたことを特徴とする薄型直流電源装置。6. The thin DC power supply device according to claim 4, wherein the extraction electrode has a structure in which the electrode is exposed on one side of a surface and a side surface after mold sealing. 請求項6に記載の薄型直流電源装置において、引き出し電極表面に半田ホールを施した構造としたことを特徴とする薄型直流電源装置。7. The thin DC power supply device according to claim 6, wherein a solder hole is provided on a surface of the extraction electrode. 請求項1ないし7のいずれかに記載の薄型直流電源装置において、発熱源となるシリコンからなる電源制御用ICベアチップの裏面を露出した構造としたことを特徴とする薄型直流電源装置。The thin DC power supply device according to any one of claims 1 to 7, wherein a back surface of a power control IC bare chip made of silicon as a heat source is exposed. 電源用半導体、インダクタ、コンデンサ等の電力変換に必要な部品を配設する薄型直流電源装置の製造方法であって、前記電源用半導体を構成する電源制御用ICベアチップ上に配線パターンを形成し、前記配線パターン上に、インダクタ、コンデンサ等の電力変換に必要な部品を配設し、前記電源制御用ICベアチップ、インダクタ、コンデンサ等の電極取り出しのための引き出し電極を、モールド封止後の平面及び側面の少なくとも2面にまたがるように電極が露出するようにモールド封止することを特徴とする薄型直流電源装置の製造方法。A power supply semiconductor, an inductor, a method of manufacturing a thin DC power supply device for arranging components necessary for power conversion such as a capacitor, forming a wiring pattern on a power control IC bare chip constituting the power supply semiconductor, On the wiring pattern, components necessary for power conversion such as inductors and capacitors are provided, and the power control IC bare chip, inductors, extraction electrodes for taking out electrodes of the capacitors, etc. A method for manufacturing a thin DC power supply device, comprising molding and sealing so that an electrode is exposed so as to extend over at least two side surfaces. 電源用半導体、インダクタ、コンデンサ等の電力変換に必要な部品を配設する薄型直流電源装置の製造方法であって、前記電源用半導体を構成する電源制御用ICベアチップ上に配線パターンを形成し、前記配線パターン上に、インダクタ、コンデンサ等の電力変換に必要な部品を配設し、前記電源制御用ICベアチップ、インダクタ、コンデンサ等の電極取り出しのための引き出し電極表面に半田ホールを施し、モールド封止後の平面に電極が露出するようにモールド封止することを特徴とする薄型直流電源装置の製造方法。A power supply semiconductor, an inductor, a method of manufacturing a thin DC power supply device for arranging components necessary for power conversion such as a capacitor, forming a wiring pattern on a power control IC bare chip constituting the power supply semiconductor, Parts required for power conversion, such as inductors and capacitors, are arranged on the wiring pattern, and a solder hole is formed on a surface of a lead electrode for taking out electrodes of the power control IC bare chip, inductor, capacitor, etc. A method for manufacturing a thin DC power supply device, comprising: molding and sealing to expose an electrode on a flat surface after stopping.
JP2003005374A 2003-01-14 2003-01-14 Thin dc power supply unit and its manufacturing method Pending JP2004221225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005374A JP2004221225A (en) 2003-01-14 2003-01-14 Thin dc power supply unit and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005374A JP2004221225A (en) 2003-01-14 2003-01-14 Thin dc power supply unit and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004221225A true JP2004221225A (en) 2004-08-05

Family

ID=32896042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005374A Pending JP2004221225A (en) 2003-01-14 2003-01-14 Thin dc power supply unit and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004221225A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017730A (en) * 2007-07-06 2009-01-22 Sanyo Electric Co Ltd Switching power supply
JP2013046509A (en) * 2011-08-25 2013-03-04 Murata Mfg Co Ltd Dc-dc converter
JP2016001744A (en) * 2009-12-25 2016-01-07 ローム株式会社 Function element module
WO2016076162A1 (en) * 2014-11-12 2016-05-19 株式会社村田製作所 Composite electronic component, circuit module, and dc-dc converter module
CN111886787A (en) * 2018-03-19 2020-11-03 株式会社村田制作所 Control circuit module, connection structure of electronic components, and power conversion device
EP3432458B1 (en) * 2016-04-21 2021-07-28 Murata Manufacturing Co., Ltd. Power supply module and power supply device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017730A (en) * 2007-07-06 2009-01-22 Sanyo Electric Co Ltd Switching power supply
JP2016001744A (en) * 2009-12-25 2016-01-07 ローム株式会社 Function element module
JP2013046509A (en) * 2011-08-25 2013-03-04 Murata Mfg Co Ltd Dc-dc converter
WO2016076162A1 (en) * 2014-11-12 2016-05-19 株式会社村田製作所 Composite electronic component, circuit module, and dc-dc converter module
JPWO2016076162A1 (en) * 2014-11-12 2017-07-20 株式会社村田製作所 Composite electronic component and DCDC converter module
EP3432458B1 (en) * 2016-04-21 2021-07-28 Murata Manufacturing Co., Ltd. Power supply module and power supply device
CN111886787A (en) * 2018-03-19 2020-11-03 株式会社村田制作所 Control circuit module, connection structure of electronic components, and power conversion device

Similar Documents

Publication Publication Date Title
EP1900022B1 (en) Complete power management system implemented in a single surface mount package
JP3960230B2 (en) Semiconductor module, method for manufacturing the same, and switching power supply device
US8488316B2 (en) Power module
US8619428B2 (en) Electronic package structure
US20080001279A1 (en) Chip module for complete power train
US10381286B2 (en) Power module
WO2007026944A1 (en) Circuit device and method for manufacturing same
KR20080087161A (en) High power module with open frame package
JP5285224B2 (en) Circuit equipment
JPH064595Y2 (en) Hybrid IC
JP2004221225A (en) Thin dc power supply unit and its manufacturing method
CN112968025A (en) Intelligent power module and manufacturing method thereof
TW201616621A (en) Electronic module and the fabrication method thereof
JP2005129826A (en) Power semiconductor device
JP2021182575A (en) Semiconductor device internal snubber circuit connection structure and power module structure using the same
JP2010251582A (en) Dc-dc converter
JP5039388B2 (en) Circuit equipment
TW575952B (en) Lower profile package with power supply in package
JP2013004912A (en) Semiconductor module
JP2007005746A (en) Semiconductor device
JP2001257306A (en) Hybrid ic device and method of manufacturing the same
JP2004349300A (en) Semiconductor device and its manufacturing method
JP2005229766A (en) Power supply module and method for manufacturing same
JPH06132441A (en) Resin-sealed semiconductor device and manufacture thereof
JP2004165525A (en) Semiconductor device and its manufacture