JP2004216279A - Method and apparatus for manufacturing coating member - Google Patents

Method and apparatus for manufacturing coating member Download PDF

Info

Publication number
JP2004216279A
JP2004216279A JP2003006775A JP2003006775A JP2004216279A JP 2004216279 A JP2004216279 A JP 2004216279A JP 2003006775 A JP2003006775 A JP 2003006775A JP 2003006775 A JP2003006775 A JP 2003006775A JP 2004216279 A JP2004216279 A JP 2004216279A
Authority
JP
Japan
Prior art keywords
coating
thickness
coated
die
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006775A
Other languages
Japanese (ja)
Inventor
Koji Ogawa
耕司 小川
Yoshiyuki Kitamura
義之 北村
Isamu Sakuma
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003006775A priority Critical patent/JP2004216279A/en
Publication of JP2004216279A publication Critical patent/JP2004216279A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a coating member by which coating conditions can very easily be set and manufacturing cost can be reduced, and an apparatus therefor. <P>SOLUTION: A coating liquid to be discharged from a die is applied to a plurality of substrates successively while keeping a gap between the die and each of the substrates within the desired constant value and moving the die and each of the substrates relatively. When the thickness distribution of a coating film formed on optional one of the substrates is calculated in the application direction and the coating liquid is applied to the next substrate, the amount of the coating liquid to be discharged from the die is increased or decreased so that the thickness distribution of the coating film to be formed on the next substrate is made to stay within the allowable range. In the concrete, the amount of the coating film to be discharged is increased at the position of the next substrate corresponding to the position where the coating film thickness of the optional substrate is below the allowable range and decreased at the position of the next substrate corresponding to the position where the coating film thickness of the optional substrate is above the allowable range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば、プラズマディスプレイパネル、液晶ディスプレイ用カラーフィルタ、光学フィルタ、プリント配線用基板、集積回路用基板を製造するような場合に好適な塗布部材の製造方法および製造装置に関する。
【0002】
【従来の技術】
たとえば、プラズマディスプレイ(以下、PDという)は、ブラウン管にくらべて大型化、薄型化、軽量化が可能であることから、これを用いたテレビ受像機が普及しつつある。PDにはいろいろなものがあるが、隔壁によりストライプ状に形成された赤色用、緑色用、青色用のセルを有するガラス基板(背面板パネル)と、走査電極を形成してなるガラス基板(前面板パネル)とを貼り合わせてなるプラズマディスプレイパネル(以下、PDPという)を用いたものが一般的である。
【0003】
さて、そのようなPDPの背面板パネルを製造する方法として、枚葉のガラス基板に隔壁用ペーストの塗膜を形成し、乾燥後、サンドブラスト法やフォトリソグラフィー法等の方法を用いて所定のピッチのストライプ状の溝を彫り込み、焼成する方法がある。塗膜の厚みは焼成後で100〜200μm程度と比較的厚いが、厚みの均一性はPDPの特性を左右するので、隔壁ペーストを均一に塗布することが必要になる。この塗布方法にもいろいろあるが、その一つにダイコータを用いる方法がある。この、いわゆるダイコータ法においては、ダイとガラス基板との間隙を所望の一定値に保ちつつダイとガラス基板とを相対的に移動させながらダイから隔壁ペーストを吐出してガラス基板に塗布する(たとえば、特許文献1参照)。
【0004】
かかるダイコート法においては、塗布方向における塗膜の厚み分布が均一になるように、隔壁ペーストの粘度条件等に基づいて、ダイからの隔壁ペーストの吐出量、塗布速度、ダイとガラス基板との間隙等の条件を設定しているが、隔壁ペーストの粘度が所望の粘度になっていなかったり塗布中に変動したりして、均一な厚み分布を得ることはなかなか難しい。そのため、許容し得る厚み分布の範囲を定め、試行錯誤を繰り返しながら塗布条件を決定して塗膜の厚みが許容範囲内にあるもののみを製品として出荷しており、製造コストが上昇する原因の一つとなっている。
【0005】
ところで、塗布方向における塗膜の厚み分布は、比較的短いサイクルでみると、塗布のたびに同じようなパターンが現れることが多い。また、ガラス基板の、塗布方向における一部の部位のみの厚みが許容範囲を外れることが多い。かかる傾向は、PDPの背面板パネルを製造する場合に限らず、液晶ディスプレイ用カラーフィルタ、光学フィルタ、プリント配線用基板、集積回路用基板を製造するような場合にもみられる。
【0006】
【特許文献1】
特開2000−197844号公報
【0007】
【発明が解決しようとする課題】
本発明は、比較的短いサイクルでみたとき、塗布方向における塗膜の厚み分布は同じようなパターンを示す傾向にあること、塗布方向における一部の部位のみの厚みが許容範囲を外れることが多いことに着目してなされたもので、その目的とするところは、塗布条件の設定を極めて容易に行うことができ、製造コストを下げることができる、塗布部材の製造方法および製造装置を提供するにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、ダイから吐出される塗液を複数個の被塗布部材に次々に塗布する塗布部材の製造方法であって、前の塗布部材について塗布方向における塗膜の厚み分布を測定し、得られた厚み分布に基づいて後に塗布する被塗布部材の塗布方向における塗膜の厚み分布を決定することを特徴とする塗布部材の製造方法を提供する。
【0009】
また、本発明は、上記目的を達成するために、ダイと被塗布部材との間隙を所望の一定値に保ちつつダイと被塗布部材とを相対的に移動させながらダイから塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行う塗布部材の製造方法であって、任意の塗布部材について塗布方向における塗膜の厚み分布を求め、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について求めた塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を増し、任意の塗布部材について求めた塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を減ずることを特徴とする塗布部材の製造方法を提供する。
【0010】
さらに、本発明は、上記目的を達成するために、ダイと被塗布部材とを間隙をおいて相対的に移動させながらダイから定量の塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行う塗布部材の製造方法であって、任意の塗布部材について塗布方向における塗膜の厚み分布を求め、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について求めた塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を大きくし、任意の塗布部材について求めた塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を小さくすることを特徴とする塗布部材の製造方法を提供する。
【0011】
これらの方法において、被塗布部材としては枚葉部材を用いるのが好ましく、また、塗膜の厚み分布は、塗布部材と被塗布部材との厚みの差から求めるのが好ましい。
【0012】
本発明は、また、上述の方法を実施するための装置として、ダイと被塗布部材との間隙を所望の一定値に保ちつつダイと被塗布部材とを相対的に移動させながらダイから塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行うようにした塗布部材の製造装置であって、任意の塗布部材について塗布方向における塗膜の厚み分布を測定する膜厚測定手段と、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について測定した塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を増し、任意の塗布部材について測定した塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を減ずる吐出量制御手段とを設けたことを特徴とする塗布部材の製造装置を提供する。
【0013】
また、本発明は、上述の方法を実施するための装置として、ダイと被塗布部材とを間隙をおいて相対的に移動させながらダイから定量の塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行うようにした塗布部材の製造装置であって、任意の塗布部材について塗布方向における塗膜の厚み分布を測定する膜厚測定手段と、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について測定した塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を大きくし、任意の塗布部材について測定した塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を小さくする間隙制御手段とを設けたことを特徴とする塗布部材の製造装置を提供する。
【0014】
これらの装置において、被測定部材は枚葉部材であるのが好ましく、また、膜厚測定手段は、塗布部材の厚みを測定する手段と、被塗布部材の厚みを測定する手段と、これら両手段から得られる測定値を減算する手段とを包含しているのが好ましい。通常、塗布部材の厚みを測定する手段から得られる測定値から被塗布部材の厚みを測定する手段から得られる測定値を減算する。
【0015】
本発明の方法および装置は、均一な厚みの塗膜が要求されるPDPの背面板パネルを製造するような場合に特に好適であるが、液晶ディスプレイ用カラーフィルタ、光学フィルタ、プリント配線用基板、集積回路用基板等、いろいろな用途に供される塗布部材の製造に用いることができる。
【0016】
【発明の実施の形態】
図1は、本発明の一実施形態に係る塗布部材の製造装置をダイコータについて示すものである。このダイコータは、基板(被塗布部材)移動手段1と、塗液供給手段2と、塗布手段3と、膜厚測定手段4と、膜厚制御手段5と、これら全体を制御する制御手段6とを有している。
【0017】
基板移動手段1は、架台1aと、架台1a上で枚葉の基板7が載置される基板テーブル1bとを有する。基板テーブル1bは、ボス1cを介してボールねじ1dに螺合されており、サーボモータ1eの正逆転に伴って実線で示す位置Aと2点鎖線で示す位置Bとの間を往復動することができる。この往復動は、制御手段6によって制御される。
【0018】
塗液供給手段2は、塗液タンク2aと、塗液タンク2a内の塗液を送出する塗液ポンプ2bと、これら塗液タンク2aと塗液ポンプ2bとを接続する配管2cと、塗液ポンプ2aと後述する塗布手段3とを接続する配管2dとを含んでいる。塗液タンク2aは、好ましくは密閉型のタンクからなり、内部は空気や不活性ガス(たとえば、窒素ガス)によって0.02〜1MPa程度の圧力に加圧されている。また、塗液ポンプ2bは、シリンジポンプであるのが好ましいが、ギアポンプやダイアフラムポンプ等であってもよく、また、空気圧ポンプであってもよい。この塗液ポンプ2bは、膜厚制御手段5からの信号に基づいて作動し、それによって後述するスリットダイ3dからの塗液の吐出量を変更することができる。すなわち、これら塗液ポンプ2bや膜厚制御手段5等が塗液吐出量制御手段を構成している。
【0019】
塗布手段3は、基板移動手段1の架台1aに取り付けられた支柱3aと、この支柱3aに取り付けられたガイド3bと、このガイド3bに案内されるホルダ3cと、このホルダ3cに装着された、塗液供給手段2の配管2dに接続されたスリットダイ3dとを有する。ホルダ3cには、サーボモータ3eによって駆動されるボールねじ3fが螺合されており、膜厚制御手段5からの信号に基づいてサーボモータ3eが正逆転すると、ホルダ3cがガイド3bに案内されて昇降し、それに伴ってスリットダイ3dが昇降するようになっている。すなわち、スリットダイ3dの昇降に伴ってスリットダイ3dと基板7との間隙が変わることになる。これらガイド3b、ホルダ3c、サーボモータ3e、ボールねじ3f、膜厚制御手段5等が間隙制御手段を構成している。
【0020】
膜厚測定手段4は、基板移動手段1の基板テーブル1a上に載置された塗布前の基板7の高さを検出し、また、塗布後の基板、すなわち塗布基板(塗布部材)の高さを検出する、上述の支柱3aに取り付けられた高さ検出器4aと、この高さ検出器4aで得られる高さデータの収集、記憶、演算を行うデータ処理回路4bとを有している。高さ検出器4aは、レーザ式、静電容量式、超音波式等の非接触式であるのが好ましく、特に、外乱の影響を受けにくいレーザフォーカス式であるのが好ましい。レーザフォーカス式とは、レーザの反射光が通過する対物レンズを高速で往復動させ、反射光をピンポイントで受光したときの対物レンズの位置から被測定物体との距離を知ることができるものである。
【0021】
上述の膜厚測定手段4による膜厚の測定は、基板7の幅方向(図面に対して垂直な方向)の中央部において基板7の移動方向に行う。この測定は、まず、基板移動手段1の基板テーブル1bに基板7が載置されていない状態で高さ検出器4aを稼働させ、そのときの信号が零になるようにする。次に、基板テーブル1bに基板7を載置し、基板の高さに基づく信号Sを得る。次に、塗布後の基板、すなわち塗布基板の高さに基づく信号Sを得る。データ処理回路4bは、これら両信号の差S−Sを演算する。結局、塗膜の厚みは、塗布基板の厚みと基板の厚みとの差から求めていることになる。なお、膜厚測定手段4による測定開始、終了や、データ処理回路4bによるデータの収集開始、終了等、膜厚測定手段4の動作は制御手段6によって制御される。また、それぞれの動作は、基板移動手段1の基板テーブル1bの位置をリアルタイムで監視し、基板テーブル1bが所定の位置に到着するタイミングに合わせて行われる。制御手段6は、また、基板テーブル1bの移動制御や、膜厚制御手段5を介して、塗布手段3のスリットダイ3cの昇降や塗液供給手段2による塗液の供給開始、終了の制御を行う。
【0022】
さて、上述したダイコータを用いる塗布基板の製造は、塗布方向における基板の高さ分布の測定(以下、工程1という)、基板への塗液の塗布(以下、工程2という)、塗布方向における塗布基板の高さ分布の測定(以下、工程3という)、塗膜の厚み分布の演算(以下、工程4という)、次の基板への塗液の塗布条件の設定(以下、工程5という)を順次繰り返すことによって行う。以下、これらの工程について詳細に説明する。
工程1:塗布方向における基板の高さ分布の測定
基板7を、基板移動手段1の基板テーブル1bの所定の位置に載置し、基板テーブル1bに密着させる。
【0023】
次に、サーボモータ1eを駆動し、ボールネジ1dを回転させて基板テーブル1bを図1の位置Aから位置Bまで一定速度で移動させる。基板7が膜厚測定手段4の高さ検出器4aの下を通過するとき、高さ検出器4aが基板7の幅方向中央部における高さ分布を検出し、そのデータがデータ処理回路4bに収集、記憶される。記憶されたデータは、必要に応じて平均化処理され、基板7の高さ分布データS1としてデータ処理回路4bに記憶される。この処理が行われている間に、基板テーブル1bは基板7を載置したまま位置Aに復動する。
工程2:基板への塗液の塗布工程
工程1で得られた基板7の高さ分布データS1を考慮し、塗布手段3のスリットダイ3dと基板7との間隙が所望の一定値になるよう、膜厚制御手段5からの指令によりサーボモータ3eを駆動し、スリットダイ3dを下降させる。
【0024】
次に、基板移動手段1の基板テーブル1bを、基板7を載置したまま図1の位置Aから位置Bに向かって一定速度で移動させる。このとき、制御手段6は、基板7の塗布開始部位がスリットダイ3dの下に到達したことを検知し、膜厚制御手段5を介して塗液供給手段2の塗液ポンプ2bに塗液の供給開始を指令する。すると、スリットダイ3dから塗液が吐出され、基板7への塗布が開始される。塗液ポンプ2bによる塗液の供給量は、膜厚制御手段5に目標とする膜厚を設定しておくことによって自動的に設定される。
【0025】
基板7の塗布終了部位がスリットダイ3dの下に到達すると、制御手段6から膜厚制御手段5を介して塗液ポンプ2bに停止指令が送られ、スリットダイ3dからの塗液の吐出が停止されるとともにスリットダイ3dが上昇せしめられる。基板テーブル1bは、位置Bまで移動した後、位置Aに復動する。
工程3:塗布方向における塗布基板の高さ分布の測定
工程1で行った基板の高さ分布の測定と全く同様にして、塗布基板、すなわち塗膜が形成された基板の塗布方向における高さ分布を測定する。
【0026】
すなわち、サーボモータ1eを駆動し、ボールねじ1dを回転させて、塗布基板を載置した基板テーブル1bを図1の位置Aから位置Bまで一定速度で移動させる。塗布基板が膜厚測定手段4の高さ検出器4aの下を通過するとき、高さ検出器4aが塗布基板の幅方向中央部における高さ分布を検出し、そのデータがデータ処理回路4bに収集、記憶される。記憶されたデータは、必要に応じて平均化処理され、塗布基板の高さ分布データS2としてデータ処理回路4bに記憶される。
工程4:塗膜の厚み分布の演算
工程1で得られた基板7の高さ分布データS1と、工程3で得られた塗布基板の高さ分布データS2との差を膜厚測定手段4のデータ処理回路4bで演算し、塗布方向における塗膜の厚み分布データを得る。この厚み分布データは、必要に応じて、たとえば基板番号に対応して記憶される。
工程5:次の基板への塗液の塗布条件の設定
塗膜の厚み分布の許容範囲を膜厚制御手段5にあらかじめ設定しておき、工程4で得られた塗膜の厚み分布データが許容範囲内にあるか否かを膜厚制御手段5でチェックする。許容範囲から外れている部位があるときは、その部位の位置と許容範囲からどれくらい外れているかが膜厚制御手段5に記憶される。そして、膜厚制御手段5は、この記憶に基づいて、次の新しい基板への塗布時に、スリットダイ3dから吐出される塗液の量を変更するか(以下、方法1という)、スリットダイと基板との間隙を変更するか(以下、方法2という)のいずかの方法によって塗膜の厚みが許容範囲になるように制御する。もっとも、これらの方法は組み合わせて用いることも可能である。
【0027】
すなわち、方法1は、スリットダイ3dから吐出される塗液の量を増やせば塗膜の厚みが厚くなり、減らせば薄くなることを利用するもので、次の基板への塗布時に、その次の基板の、前に塗布した基板の塗膜の厚みが許容範囲を外れている部位に対応する部位が到達したとき、その外れが修正されるよう、塗液供給手段2の塗液ポンプ2bの回転数等を制御し、スリットダイ3dからの吐出量を制御する。すなわち、塗液の吐出量を、塗膜の厚みが厚すぎた部位においては減じ、薄すぎた部位においては増やす。
【0028】
また、方法2は、塗布手段3のスリットダイ3dと基板との間隙を広くすると塗膜の厚みが厚くなり、狭くすると薄くなることを利用するもので、次の基板への塗布時に、その次の基板の、前に塗布した基板の塗膜の厚みが許容範囲を外れている部位に対応する部位が到達したとき、その外れが修正されるよう、スリットダイ3dの高さを制御する。すなわち、スリッタダイ3dの高さを、塗膜の厚みが厚すぎた部位においては低くし、薄すぎた部位においては高くする。
【0029】
工程5についてさらに詳細に説明するに、まず、図2に示すように、基板の幅方向中央部において、塗布方向における基板の各部位Pti(i=1〜n)における塗膜の許容される最大厚みTHmax(pti)(i=1〜n)と、許容される最小厚みTHmin(pti)(i=1〜n)とをあらかじめ定めておく。すなわち、許容される厚み分布の範囲をあらかじめ定めておく。
【0030】
次に、基板の各部位Ptiごとに設定されたスリットダイからの塗液吐出量Q(Pti)(i=1〜n)か、所望の一定値の、スリットダイと基板との間隙CL(Pti)(i=1〜n)により基板に塗液を塗布し、塗膜の厚みを測定する。すると、図3に示すように、各部位Ptiにおける膜厚TH(Pti)(i=1〜n)が得られるので、次の基板への塗布時に各部位における塗膜の厚みが許容範囲内になるように、方法1または方法2を実施する。
方法1:
次の基板への塗布時には、図4に示すようにして各部位Ptiにおけるスリットダイからの塗液吐出量Q(Pti)を変更し、前の塗布において塗膜の厚みが厚すぎた部位に対応する部位においては吐出量を減らして薄くなるようにし、薄すぎた部位に対応する部位においては吐出量を増やして厚くなるようにする。
【0031】
すなわち、図4において、ステップ1で、基板の部位を示す部位カウンタを1に初期化する。次に、ステップ2では部位カウンタが基板の終端部位を超えているか否かをチェックし、終端部位を超えていればステップ8に進み、処理を終了する。超えていなければ、次のステップ3に進む。ステップ3では、部位Ptiにおける塗膜の厚みTH(Pti)が許容される最大値THmax(Pti)を超えていないかどうかをチェックし、超えていなければ次のステップ4に進む。超えていればステップ9に進み、超えている割合に応じた係数kqを乗じた値を変数Hoseiに格納する。係数kqは、許容される塗膜の厚みと許容範囲を外れている塗膜の厚みとの比率をスリットダイからの塗液吐出量Q(Pti)の補正割合に変換するたの修正係数であり、ステップ9で算出される変数Hoseiは1よりも小さい値となる。ステップ4では、基板部位Ptiにおける塗膜の厚みTH(Pti)が許容される最小値THmin(Pti)を下回っていないかどうかをチェックし、下回っていなければ次のステップ5に進む。下回っていればステップ10に進み、下回っている割合に応じた係数kqを乗じた値を変数Hoseiに格納する。ステップ10で算出される変数Hoseiは、1よりも大きい値となる。ステップ5では、塗膜の厚みが許容範囲内にあったものと判断し、変数Hoseiを1としておく。ステップ5、9、10のいずれかの処理を行った後は、ステップ6で次回の塗布時の基板の部位Ptiにおけるスリットダイの塗液吐出量Q(Pti)を算出し、膜厚制御手段4のデータ処理回路4aに記憶しておく。次に、ステップ7で部位カウンタをインクリメントし、ステップ2に戻る。
方法2:
次の基板への塗布時には、図5に示すようにして各部位Ptiにおけるスリットダイと基板との間隙CL(Pti)を変更し、前の塗布において塗膜の厚みが厚すぎた部位に対応する部位においては間隙を小さくして薄くなるようにし、薄すぎた部位に対応する部位においては間隙を大きくして厚くなるようにする。
【0032】
すなわち、図5において、ステップ1で基板の部位を表す位置カウンタを1に初期化する。次に、ステップ2で部位カウンタが基板の終端部位を超えているか否かをチェックし、終端部位を超えていればステップ8に進み、処理を終了する。超えていなければ、次のステップ3に進む。ステップ3では、部位Ptiにおける塗膜の厚みTH(Pti)が許容される最大値THmax(Pti)を超えていないかどうかをチェックし、超えていなければ次のステップ4に進む。超えていればステップ9に進み、超えた割合に応じた係数kclを乗じた値を変数Hoseiに格納する。係数kclは、許容される塗膜の厚みと許容範囲を外れている塗膜の厚みとの比率を間隙値CL(Pti)の補正割合に変換するための修正係数であり、ステップ9で算出される変数Hoseiは1よりも小さい値となる。係数Kclは、塗液の粘度等の物性に応じてあらかじめ決めておく。ステップ4では、基板部位Ptiにおける膜厚TH(Pti)が許容される最小値THmin(Pti)を下回っていないかどうかをチェックし、下回っていなければ次のステップ5に進む。下回っていればステップ10に進み、下回っている割合に係数kclを乗じた値を変数Hoseiに格納する。ステップ10で算出された変数Hoseiは、1よりも大きい値となる。ステップ5では、塗膜の厚みが許容範囲内にあったと判断し、変数Hoseiを1としておく。ステップ5、9、10のいずれかの処理を行った後は、ステップ6で次回の塗布時における基板の部位Ptiにおける間隙CL(Pti)を算出し、膜厚制御手段4のデータ処理回路に記憶しておく。次に、ステップ7で部位カウンタをインクリメントし、ステップ2に戻る。
【0033】
このようにすることにより、塗布条件の設定が極めて容易になり、試行錯誤を繰り返さなくても塗布方向における厚み分布の斑を効率的に修正することができるようになる。
【0034】
【実施例】
実施例1:
幅340mm、長さ440mm、厚み2.8mmのガラス基板の全面に感光性銀ペーストを厚みが5μmになるようにスクリーン印刷し、フォトマスクを用いて露光し、現像、焼成の各工程を経て、1,920本のストライプ状銀電極をピッチ220μmで形成した。さらに、その上にガラスペーストをスクリーン印刷し、焼成して10μm厚さの誘電体層を形成した。
【0035】
次に、誘電体層付ガラス基板を図1に示した装置の基板テーブル1bに載置し、基板テーブル1bを10m/minの一定速度で位置Aから位置Bに移動させながら幅方向中央部におけるガラス基板の高さ分布を200Hz周期(0.83mmピッチ)で測定し、塗布前のガラス基板の高さ分布データS1として記憶した。
【0036】
次に、スリットダイとして吐出幅430mm、リップ間隙500μmのスリットダイを用い、これを図1に示した装置の塗布手段3のホルダ3cに取り付け、スリットダイと誘電体層付ガラス基板との間隙が350μmになるようにスリットダイを下降させた後、粘度が20,000cpsの感光性ガラスペーストを、目標とする塗膜の厚みが300μmとなるように、塗液供給手段2の塗液ポンプ2bの吐出量を2.15ml/secに設定し、塗布速度を1m/分として塗布して隔壁層を形成した。
【0037】
塗布が終了した後、感光性ガラスペーストが塗布されたガラス基板を載せた基板テーブル1bを位置Aから位置Bまで10m/minの一定速度で移動させながら幅方向中央部における塗布面の高さ分布を200Hz周期(0.83mmピッチ)で測定し、塗布後の高さ分布データS2として記憶した。
【0038】
次に、上記高さ分布データS1、S2との差から感光性ガラスペーストの塗膜の厚み分布を求めたところ、図6に示すように、基板の、部位aでは285μm、部位bでは282μm、部位cでは309μm、部位dでは315μm、部位eでは312μm、部位fでは278μm、部位gでは286μmと7か所で塗膜の厚みが許容範囲300±5μmを上回っていた。
【0039】
そこで、次回塗布時には、スリッタダイからの塗液吐出量を、基板の、部位aでは2.043ml/sec、部位bでは2.021ml/sec、部位cでは2.214ml/sec、部位dでは2.257ml/sec、部位eでは2.236ml/sec、部位fでは1.993ml/sec、部位gでは2.05ml/secにそれぞれ変更し、その他の部位における吐出量は前回と同一の2.15ml/secに設定して塗布した。
【0040】
かかる条件で2枚目以降の塗布を行い、塗布後の塗膜の厚みを確認したところ、全ての基板について塗膜の厚み分布が許容範囲300μm±5μmの範囲内におさまっていた。すなわち、塗布条件の決定をただ1回の試行で行うことができた。これにより、通常、少なくとも3〜4回の試行錯誤を繰り返す必要のある、上述の方法による修正操作を行わない従来の方法にくらべて、作業時間を15〜20分ほど短縮できた。
【0041】
次に、塗膜の厚み分布が許容範囲内にあることを確認できた2枚目以降の塗布基板を、100℃で20分乾燥した。乾燥後の塗膜の塗布方向における厚み分布を測定したところ、140μm±3μmの許容範囲内にあった。
【0042】
次に、フォトマスクを用いて乾燥塗布基板を露光し、さらに現像、焼成を行ってストライプ状の隔壁を形成した。隔壁はピッチ220μm、幅30μm、高さ130μmであり、本数は1,921本であった。
【0043】
次に、スクリーン印刷法を用いて赤色、緑色、青色の蛍光体ペーストを順次隔壁間に塗布し、80℃で15分乾燥し、さらに460℃で15分焼成し、PDPの背面板パネルを得た。
【0044】
次に、上記背面板パネルに別途用意した前面板パネルを貼り合わせ、封着した後、Xe5体積%、Ne95体積%の混合ガスを封入し、駆動回路を接続してPDPを得た。
実施例2:
幅340mm、長さ440mm、厚み2.8mmのガラス基板の全面に感光性銀ペーストを厚みが5μmになるようにスクリーン印刷し、フォトマスクを用いて露光し、現像、焼成の各工程を経て、1,920本のストライプ状銀電極をピッチ220μmで形成した。さらに、その上にガラスペーストをスクリーン印刷し、焼成して10μm厚さの誘電体層を形成した。
【0045】
次に、誘電体層付ガラス基板を図1に示した装置の基板テーブル1bに載置し、基板テーブル1bを10m/minの一定速度で位置Aから位置Bに移動させながら幅方向中央部におけるガラス基板の高さ分布を200Hz周期(0.83mmピッチ)で測定し、塗布前のガラス基板の高さ分布データS1として記憶した。
【0046】
次に、スリットダイとして吐出幅430mm、リップ間隙500μmのスリットダイを用い、これを図1に示した装置の塗布手段3のホルダ3cに取り付け、スリットダイと誘電体層付ガラス基板との間隙が350μmになるようにスリットダイを下降させた後、粘度が20,000cpsの感光性ガラスペーストを、目標とする塗膜の厚みが300μmとなるように、塗液供給手段2の塗液ポンプ2bの吐出量を2.15ml/secに設定し、塗布速度を1m/分として塗布して隔壁層を形成した。
【0047】
塗布が終了した後、感光性ガラスペーストが塗布されたガラス基板を載せた基板テーブル1bを位置Aから位置Bまで10m/minの一定速度で移動させながら幅方向中央部における塗布面の高さ分布を200Hz周期(0.83mmピッチ)で測定し、塗布後の高さ分布データS2として記憶した。
【0048】
次に、上記高さ分布データS1、S2との差から感光性ガラスペーストの塗膜の厚み分布を求めた、図7に示すように、基板の、部位aでは285μm、部位bでは307μm、部位cでは293μm、部位dでは290μm、部位eでは294μm、部位fでは286μm、部位gでは307μmと7か所で塗膜の厚みが許容範囲300±5μmを上回っていた。実施例1と同一条件で塗布したにもかかわらず、厚み分布が異なっているのは、塗布中の塗液の粘度条件が変わったためであると考えられる。
【0049】
そこで、次回塗布時には、スリットダイと誘電体層付ガラス基板との間隙を、基板の、部位aでは372μm、部位bでは339μm、部位cでは361μm、部位dでは365μm、部位eでは359μm、部位fでは371μm、部位gでは339μmにそれぞれ変更し、その他の部位におけるスリットダイと誘電体層付ガラス基板との間隙は前回と同一の350μmに設定して塗布した。
【0050】
かかる条件で2枚目以降の塗布を行い、塗布後の塗膜の厚みを確認したところ、全ての基板について塗膜の厚み分布が許容範囲300μm±5μmの範囲内におさまっていた。すなわち、塗布条件の決定をただ1回の試行で行うことができた。これにより、通常、少なくとも3〜4回の試行錯誤を繰り返す必要のある、上述の方法による修正操作を行わない従来の方法にくらべて、作業時間を15〜20分ほど短縮できた。
【0051】
次に、塗膜の厚み分布が許容範囲内にあることを確認できた2枚目以降の塗布基板を、100℃で20分乾燥した。乾燥後の塗膜の塗布方向における厚み分布を測定したところ、140μm±3μmの許容範囲内にあった。
【0052】
次に、フォトマスクを用いて乾燥塗布基板を露光し、さらに現像、焼成を行ってストライプ状の隔壁を形成した。隔壁はピッチ220μm、幅30μm、高さ130μmであり、本数は1,921本であった。
【0053】
次に、スクリーン印刷法を用いて赤色、緑色、青色の蛍光体ペーストを順次隔壁間に塗布し、80℃で15分乾燥し、さらに460℃で15分焼成し、PDPの背面板パネルを得た。
【0054】
次に、上記背面板パネルに別途用意した前面板パネルを貼り合わせ、封着した後、Xe5体積%、Ne95体積%の混合ガスを封入し、駆動回路を接続してPDPを得た。
【0055】
【発明の効果】
本発明は、ダイから吐出される塗液を複数個の被塗布部材に次々に塗布する塗布部材の製造方法であって、前の塗布部材について塗布方向における塗膜の厚み分布を測定し、得られた厚み分布に基づいて後に塗布する被塗布部材の塗布方向における塗膜の厚み分布を決定するので、実施例にも示したように、塗布条件の設定を極めて容易に行うことができるようになり、塗布部材の製造コストを下げることができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る塗布部材の製造装置の概略正面図である。
【図2】塗布方向における基板の各部位における塗膜の許容される最大厚みと最小厚みの一例を示すグラフである。
【図3】塗布方向における塗膜の厚み分布の一例を示すグラフである。
【図4】後の塗布時におけるダイからの塗液吐出量の設定方法を示すフローチャートである。
【図5】後の塗布時におけるダイと被塗布部材との間隙の設定方法を示すフローチャートである。
【図6】実施例1における前の塗布部材の塗布方向における塗膜の厚み分布を示すグラフである。
【図7】実施例2における前の塗布部材の塗布方向における塗膜の厚み分布を示すグラフである。
【符号の説明】
1:基板移動手段
1a:架台
1b:基板テーブル
1c:ボス
1d:ボールねじ
1e:サーボモータ
2:塗液供給手段
2a:塗液タンク
2b:塗液ポンプ
2c:配管
2d:配管
3:塗布手段
3a:支柱
3b:ガイド
3c:ホルダ
3d:スリットダイ
3e:サーボモータ
3f:ボールねじ
4:膜厚測定手段
4a:高さ検出器
4b:データ処理回路
5:膜厚制御手段
6:制御手段
7:基板(被塗布部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for manufacturing a coating member suitable for manufacturing, for example, a plasma display panel, a color filter for a liquid crystal display, an optical filter, a substrate for a printed wiring, and a substrate for an integrated circuit.
[0002]
[Prior art]
For example, a plasma display (hereinafter, referred to as a PD) can be larger, thinner, and lighter than a CRT, and television receivers using the same are becoming widespread. There are various types of PDs. A glass substrate (back panel panel) having red, green, and blue cells formed in stripes by partition walls, and a glass substrate formed with scan electrodes (front panel). Generally, a panel using a plasma display panel (hereinafter, referred to as PDP) which is bonded to a face panel is used.
[0003]
Now, as a method of manufacturing such a back panel panel of a PDP, a coating film of a paste for partition walls is formed on a single glass substrate, dried, and then dried at a predetermined pitch using a method such as sandblasting or photolithography. There is a method of engraving a stripe-shaped groove and firing. The thickness of the coating film is relatively thick after firing, which is about 100 to 200 μm. However, since the uniformity of the thickness affects the characteristics of the PDP, it is necessary to apply the partition wall paste uniformly. Although there are various coating methods, one of them is a method using a die coater. In the so-called die coater method, a partition paste is discharged from the die and applied to the glass substrate while the gap between the die and the glass substrate is kept at a desired constant value and the die and the glass substrate are relatively moved. And Patent Document 1).
[0004]
In such a die coating method, the discharge amount of the partition paste from the die, the application speed, the gap between the die and the glass substrate are determined based on the viscosity conditions of the partition paste so that the thickness distribution of the coating film in the coating direction becomes uniform. However, it is very difficult to obtain a uniform thickness distribution because the viscosity of the partition wall paste does not reach the desired viscosity or fluctuates during coating. For this reason, the range of acceptable thickness distribution is determined, and application conditions are determined by repeating trial and error, and only those having a thickness of the coating film within the allowable range are shipped as products, which causes an increase in manufacturing cost. It is one.
[0005]
By the way, regarding the thickness distribution of the coating film in the coating direction, a similar pattern often appears each time coating is performed in a relatively short cycle. In addition, the thickness of only a part of the glass substrate in the coating direction is often out of an allowable range. This tendency is not limited to the case of manufacturing a back panel of a PDP, but also occurs in the case of manufacturing a color filter for a liquid crystal display, an optical filter, a substrate for a printed wiring, and a substrate for an integrated circuit.
[0006]
[Patent Document 1]
JP 2000-197844 A
[0007]
[Problems to be solved by the invention]
In the present invention, when viewed in a relatively short cycle, the thickness distribution of the coating film in the coating direction tends to show a similar pattern, and the thickness of only a part of the coating direction in the coating direction often falls outside the allowable range. The object of the present invention is to provide a method and an apparatus for manufacturing a coating member, in which setting of coating conditions can be performed extremely easily and manufacturing cost can be reduced. is there.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a method for manufacturing a coating member for sequentially coating a coating liquid discharged from a die on a plurality of members to be coated, and a coating film in a coating direction for a previous coating member. A thickness distribution of a coating film in a coating direction of a member to be applied later is determined based on the obtained thickness distribution.
[0009]
Further, in order to achieve the above object, the present invention discharges a coating liquid from a die while relatively moving the die and the member to be coated while maintaining a gap between the die and the member to be coated at a desired constant value. A method of manufacturing a coating member in which an operation of applying a coating to a member to be coated is sequentially performed on a plurality of members to be coated. At the time of application, the portion of the next member to be applied corresponding to the portion where the thickness of the coating film obtained for an arbitrary coating member is below the allowable range so that the thickness distribution of the coating film in the application direction falls within the allowable range. In the above, the discharge amount of the coating liquid is increased, and the discharge amount of the coating liquid is reduced in a portion of the next member to be coated corresponding to a portion in which the thickness of the coating film obtained for an arbitrary coating member exceeds the allowable range. Features of coating members To provide a production method.
[0010]
Further, in order to achieve the above-mentioned object, the present invention includes a plurality of operations for discharging a fixed amount of coating liquid from the die and applying the liquid to the member while relatively moving the die and the member to be coated with a gap therebetween. A method of manufacturing a coating member to be performed one after another for a plurality of members to be coated, wherein a thickness distribution of a coating film in an application direction is obtained for an arbitrary coating member, and at the time of coating on a next member to be coated, the coating film in the coating direction is obtained. The die and the next member to be coated are located at the portion of the next member to be coated corresponding to the portion where the thickness of the coating film obtained for an arbitrary coating member is below the allowable range so that the thickness distribution falls within the allowable range. The gap between the die and the next member to be coated is increased at the portion of the next member to be coated corresponding to the portion where the thickness of the coating film obtained for any coating member exceeds the allowable range. To make it smaller To provide a method of manufacturing a coating member to symptoms.
[0011]
In these methods, it is preferable to use a sheet member as the member to be coated, and it is preferable to obtain the thickness distribution of the coating film from the difference in thickness between the coating member and the member to be coated.
[0012]
The present invention also provides an apparatus for carrying out the above-described method, wherein the coating liquid is transferred from the die while relatively moving the die and the member to be coated while maintaining the gap between the die and the member to be coated at a desired constant value. Is a device for manufacturing a coating member in which a plurality of coating members are successively subjected to an operation of discharging and applying the coating material to the coating member, and measuring a thickness distribution of a coating film in a coating direction for an arbitrary coating member. The thickness of the coating film measured for an arbitrary coating member is less than the allowable range so that the thickness distribution of the coating film in the coating direction is within the allowable range during the application to the next member to be coated. In the part of the next member to be coated corresponding to the part to be applied, the discharge amount of the coating liquid is increased, and the thickness of the coating film measured for an arbitrary part to be coated corresponds to the part where the thickness of the coating film exceeds the allowable range. In the part To provide a manufacturing apparatus for applying member, characterized by comprising a discharge amount control means to reduce the discharge amount.
[0013]
The present invention also provides an apparatus for performing the above-described method, in which a fixed amount of a coating liquid is discharged from a die and applied to a member to be coated while the die and the member to be coated are relatively moved with a gap therebetween. An apparatus for manufacturing a coating member, wherein an operation is sequentially performed on a plurality of members to be coated, wherein a film thickness measuring means for measuring a thickness distribution of a coating film in an application direction with respect to an arbitrary coating member; At the time of application to the member, the next member to be applied corresponding to a portion where the thickness of the coating measured for any applied member is below the allowable range so that the thickness distribution of the coating in the application direction is within the allowable range. In the part of the next, the gap between the die and the next member to be coated is increased, and in the part of the next member to be coated corresponding to the part where the thickness of the coating film measured for any coating member exceeds the allowable range. Die and its To provide a manufacturing apparatus for applying member, characterized in that a and gap control means for reducing the gap between the next to be coated member.
[0014]
In these apparatuses, the member to be measured is preferably a single-wafer member, and the film thickness measuring means includes means for measuring the thickness of the coating member, means for measuring the thickness of the member to be coated, and both of these means. Means for subtracting the measured value obtained from Usually, the measured value obtained from the means for measuring the thickness of the member to be coated is subtracted from the measured value obtained from the means for measuring the thickness of the coated member.
[0015]
The method and apparatus of the present invention are particularly suitable for manufacturing a back panel of a PDP in which a coating film having a uniform thickness is required. However, a color filter for a liquid crystal display, an optical filter, a substrate for printed wiring, The present invention can be used for manufacturing coating members used for various purposes, such as substrates for integrated circuits.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an apparatus for manufacturing a coating member according to an embodiment of the present invention with respect to a die coater. This die coater includes a substrate (member to be coated) moving means 1, a coating liquid supply means 2, a coating means 3, a film thickness measuring means 4, a film thickness controlling means 5, a control means 6 for controlling the whole thereof, have.
[0017]
The substrate moving means 1 includes a gantry 1a and a substrate table 1b on which a single substrate 7 is placed. The substrate table 1b is screwed to the ball screw 1d via the boss 1c, and reciprocates between a position A shown by a solid line and a position B shown by a two-dot chain line with the forward / reverse rotation of the servomotor 1e. Can be. This reciprocation is controlled by the control means 6.
[0018]
The coating liquid supply means 2 includes a coating liquid tank 2a, a coating liquid pump 2b for sending the coating liquid in the coating liquid tank 2a, a pipe 2c connecting the coating liquid tank 2a and the coating liquid pump 2b, It includes a pipe 2d for connecting the pump 2a and a coating unit 3 described later. The coating liquid tank 2a is preferably a closed tank, and the inside thereof is pressurized to a pressure of about 0.02 to 1 MPa by air or an inert gas (for example, nitrogen gas). The coating liquid pump 2b is preferably a syringe pump, but may be a gear pump, a diaphragm pump, or the like, or may be a pneumatic pump. The coating liquid pump 2b operates on the basis of a signal from the film thickness control means 5, thereby changing the discharge amount of the coating liquid from a slit die 3d described later. That is, the coating liquid pump 2b and the film thickness control means 5 constitute a coating liquid discharge amount control means.
[0019]
The coating means 3 includes a support 3a mounted on the gantry 1a of the substrate moving means 1, a guide 3b mounted on the support 3a, a holder 3c guided by the guide 3b, and a holder 3c mounted on the holder 3c. And a slit die 3d connected to the pipe 2d of the coating liquid supply means 2. A ball screw 3f driven by a servomotor 3e is screwed into the holder 3c. When the servomotor 3e rotates forward or reverse based on a signal from the film thickness control means 5, the holder 3c is guided by a guide 3b. The slit die 3d moves up and down accordingly. That is, the gap between the slit die 3d and the substrate 7 changes as the slit die 3d moves up and down. The guide 3b, the holder 3c, the servomotor 3e, the ball screw 3f, the film thickness control means 5 and the like constitute a gap control means.
[0020]
The film thickness measuring means 4 detects the height of the substrate 7 before coating, which is placed on the substrate table 1a of the substrate moving means 1, and detects the height of the substrate after coating, that is, the height of the coating substrate (coating member). And a data processing circuit 4b for collecting, storing, and calculating the height data obtained by the height detector 4a. The height detector 4a is preferably a non-contact type such as a laser type, a capacitance type and an ultrasonic type, and particularly preferably a laser focus type which is hardly affected by disturbance. The laser focus method allows the objective lens through which the reflected light of the laser passes to reciprocate at high speed, and the distance from the object to be measured can be known from the position of the objective lens when the reflected light is received at a pinpoint. is there.
[0021]
The measurement of the film thickness by the film thickness measuring means 4 described above is performed in the moving direction of the substrate 7 at the center in the width direction of the substrate 7 (direction perpendicular to the drawing). In this measurement, first, the height detector 4a is operated in a state where the substrate 7 is not placed on the substrate table 1b of the substrate moving means 1, and the signal at that time becomes zero. Next, the substrate 7 is placed on the substrate table 1b, and a signal S based on the height of the substrate is set. h Get. Next, a signal S based on the height of the substrate after application, that is, the application substrate H Get. The data processing circuit 4b calculates the difference S between these two signals. H -S h Is calculated. After all, the thickness of the coating film is determined from the difference between the thickness of the coated substrate and the thickness of the substrate. The operation of the film thickness measuring means 4 is controlled by the control means 6, such as the start and end of measurement by the film thickness measuring means 4 and the start and end of data collection by the data processing circuit 4b. In addition, each operation monitors the position of the substrate table 1b of the substrate moving means 1 in real time, and is performed according to the timing at which the substrate table 1b arrives at a predetermined position. The control means 6 also controls the movement of the substrate table 1 b, the elevation of the slit die 3 c of the coating means 3 via the film thickness control means 5, and the control of the start and end of the supply of the coating liquid by the coating liquid supply means 2. Do.
[0022]
Now, in the production of a coated substrate using the above-described die coater, measurement of the height distribution of the substrate in the coating direction (hereinafter, referred to as step 1), application of a coating liquid to the substrate (hereinafter, referred to as step 2), and coating in the coating direction Measurement of the height distribution of the substrate (hereinafter, referred to as step 3), calculation of the thickness distribution of the coating film (hereinafter, referred to as step 4), and setting of the application condition of the coating liquid on the next substrate (hereinafter, referred to as step 5) This is performed by repeating sequentially. Hereinafter, these steps will be described in detail.
Step 1: Measurement of substrate height distribution in coating direction
The substrate 7 is placed at a predetermined position on the substrate table 1b of the substrate moving means 1, and is brought into close contact with the substrate table 1b.
[0023]
Next, the servo motor 1e is driven to rotate the ball screw 1d to move the substrate table 1b from the position A to the position B in FIG. 1 at a constant speed. When the substrate 7 passes under the height detector 4a of the film thickness measuring means 4, the height detector 4a detects the height distribution at the center in the width direction of the substrate 7, and the data is sent to the data processing circuit 4b. Collected and stored. The stored data is subjected to an averaging process as necessary, and is stored in the data processing circuit 4b as the height distribution data S1 of the substrate 7. While this process is being performed, the substrate table 1b returns to the position A with the substrate 7 placed thereon.
Step 2: coating step of the coating liquid on the substrate
In consideration of the height distribution data S1 of the substrate 7 obtained in the step 1, the servo is controlled by a command from the film thickness control means 5 so that the gap between the slit die 3d of the coating means 3 and the substrate 7 becomes a desired constant value. The motor 3e is driven to lower the slit die 3d.
[0024]
Next, the substrate table 1b of the substrate moving means 1 is moved at a constant speed from the position A in FIG. At this time, the control means 6 detects that the coating start portion of the substrate 7 has reached below the slit die 3 d, and sends the coating liquid to the coating liquid pump 2 b of the coating liquid supply means 2 via the film thickness control means 5. Command supply start. Then, the coating liquid is discharged from the slit die 3d, and the coating on the substrate 7 is started. The supply amount of the coating liquid by the coating liquid pump 2b is automatically set by setting a target film thickness in the film thickness control means 5.
[0025]
When the application end portion of the substrate 7 reaches below the slit die 3d, a stop command is sent from the control means 6 to the coating liquid pump 2b via the film thickness control means 5, and the discharge of the coating liquid from the slit die 3d is stopped. And the slit die 3d is raised. After moving to the position B, the substrate table 1b returns to the position A.
Step 3: Measurement of height distribution of coated substrate in coating direction
The height distribution in the coating direction of the coated substrate, that is, the substrate on which the coating film is formed, is measured in exactly the same manner as the measurement of the height distribution of the substrate performed in step 1.
[0026]
That is, the servo motor 1e is driven, the ball screw 1d is rotated, and the substrate table 1b on which the application substrate is placed is moved at a constant speed from the position A to the position B in FIG. When the coated substrate passes under the height detector 4a of the film thickness measuring means 4, the height detector 4a detects the height distribution at the center in the width direction of the coated substrate, and the data is sent to the data processing circuit 4b. Collected and stored. The stored data is subjected to an averaging process as necessary, and is stored in the data processing circuit 4b as the height distribution data S2 of the application substrate.
Step 4: Calculation of coating thickness distribution
The difference between the height distribution data S1 of the substrate 7 obtained in the step 1 and the height distribution data S2 of the coated substrate obtained in the step 3 is calculated by the data processing circuit 4b of the film thickness measuring means 4, and the coating direction is calculated. To obtain the thickness distribution data of the coating film. The thickness distribution data is stored as needed, for example, corresponding to the board number.
Step 5: Setting the application condition of the coating liquid on the next substrate
The allowable range of the thickness distribution of the coating film is set in advance in the film thickness control means 5, and the thickness control means 5 checks whether or not the thickness distribution data of the coating film obtained in the step 4 is within the allowable range. I do. When there is a part outside the allowable range, the position of the part and how much the part deviates from the allowable range are stored in the film thickness control means 5. Then, based on this memory, the film thickness control means 5 changes the amount of the coating liquid discharged from the slit die 3d at the time of coating on the next new substrate (hereinafter referred to as method 1), or The thickness of the coating film is controlled so as to be within an allowable range by either changing the gap with the substrate (hereinafter referred to as method 2). However, these methods can be used in combination.
[0027]
That is, the method 1 utilizes the fact that the thickness of the coating film is increased by increasing the amount of the coating liquid discharged from the slit die 3d, and is reduced by decreasing the amount of the coating liquid. The rotation of the coating liquid pump 2b of the coating liquid supply means 2 is performed so that when a portion of the substrate corresponding to a portion of the coating of the previously applied substrate that is out of the allowable range arrives, the deviation is corrected. The number and the like are controlled to control the discharge amount from the slit die 3d. That is, the discharge amount of the coating liquid is reduced in a portion where the thickness of the coating film is too thick, and is increased in a portion where the thickness of the coating film is too thin.
[0028]
The method 2 utilizes the fact that the thickness of the coating film increases when the gap between the slit die 3d of the coating means 3 and the substrate is increased, and decreases when the clearance is decreased. The height of the slit die 3d is controlled so that when a portion corresponding to a portion of the substrate having a thickness of the coating film of the previously applied substrate that is out of the allowable range arrives, the deviation is corrected. That is, the height of the slitter die 3d is reduced at a portion where the thickness of the coating film is too thick, and is increased at a portion where the thickness of the coating film is too thin.
[0029]
Step 5 will be described in further detail. First, as shown in FIG. 2, the allowable maximum thickness of the coating film at each portion Pti (i = 1 to n) of the substrate in the coating direction is determined at the central portion in the width direction of the substrate. The thickness THmax (pti) (i = 1 to n) and the minimum allowable thickness THmin (pti) (i = 1 to n) are determined in advance. That is, the range of the allowable thickness distribution is determined in advance.
[0030]
Next, the coating liquid discharge amount Q (Pti) (i = 1 to n) set from the slit die set for each part Pti of the substrate or a desired constant value of the gap CL (Pti) between the slit die and the substrate. ) (I = 1 to n) to apply the coating liquid to the substrate, and measure the thickness of the coating film. Then, as shown in FIG. 3, the thickness TH (Pti) (i = 1 to n) at each portion Pti is obtained, so that the thickness of the coating film at each portion is within an allowable range at the time of application to the next substrate. Implement Method 1 or Method 2 so that
Method 1:
At the time of application to the next substrate, the coating liquid ejection amount Q (Pti) from the slit die at each site Pti is changed as shown in FIG. 4 to correspond to the site where the thickness of the coating film was too thick in the previous application. The discharge amount is reduced at the part where the discharge is performed, and the discharge amount is increased, and the discharge amount is increased at the part corresponding to the part that is too thin.
[0031]
That is, in FIG. 4, in step 1, a part counter indicating the part of the substrate is initialized to one. Next, in step 2, it is checked whether or not the part counter has exceeded the terminal part of the substrate. If the part counter has exceeded the terminal part, the process proceeds to step 8, and the process is terminated. If not, proceed to the next step 3. In step 3, it is checked whether or not the thickness TH (Pti) of the coating film at the portion Pti does not exceed the allowable maximum value THmax (Pti). If not, the process proceeds to the next step 4. If it exceeds, the process proceeds to step 9, and a value obtained by multiplying by a coefficient kq corresponding to the excess ratio is stored in the variable Josei. The coefficient kq is a correction coefficient for converting the ratio between the allowable thickness of the coating film and the thickness of the coating film outside the allowable range to a correction ratio of the coating liquid ejection amount Q (Pti) from the slit die. , The variable Horsei calculated in step 9 becomes a value smaller than 1. In step 4, it is checked whether the thickness TH (Pti) of the coating film at the substrate portion Pti is not smaller than an allowable minimum value THmin (Pti), and if not, the process proceeds to the next step 5. If it is lower, the process proceeds to step 10, and a value obtained by multiplying by a coefficient kq corresponding to the lower ratio is stored in the variable Josei. The variable Horsei calculated in step 10 has a value larger than 1. In step 5, it is determined that the thickness of the coating film is within the allowable range, and the variable Hosei is set to 1. After performing any of the processes of Steps 5, 9, and 10, in Step 6, the coating liquid discharge amount Q (Pti) of the slit die at the portion Pti of the substrate at the time of the next coating is calculated. Is stored in the data processing circuit 4a. Next, at step 7, the part counter is incremented, and the process returns to step 2.
Method 2:
At the time of application to the next substrate, the gap CL (Pti) between the slit die and the substrate at each site Pti is changed as shown in FIG. 5 to correspond to the site where the thickness of the coating film was too large in the previous application. The gap is made smaller in the part so as to be thinner, and in the part corresponding to the part that is too thin, the gap is made larger and thicker.
[0032]
That is, in FIG. 5, in step 1, the position counter representing the portion of the substrate is initialized to 1. Next, in step 2, it is checked whether or not the part counter has exceeded the terminal part of the substrate. If the part counter has exceeded the terminal part, the process proceeds to step 8, and the process is terminated. If not, proceed to the next step 3. In step 3, it is checked whether or not the thickness TH (Pti) of the coating film at the portion Pti does not exceed the allowable maximum value THmax (Pti). If not, the process proceeds to the next step 4. If it exceeds, the process proceeds to step 9, and a value obtained by multiplying by the coefficient kcl corresponding to the excess ratio is stored in the variable Josei. The coefficient kcl is a correction coefficient for converting the ratio between the allowable thickness of the coating film and the thickness of the coating film outside the allowable range to a correction ratio of the gap value CL (Pti), and is calculated in step 9. The variable Hosei has a value smaller than 1. The coefficient Kcl is determined in advance according to physical properties such as the viscosity of the coating liquid. In step 4, it is checked whether the film thickness TH (Pti) at the substrate portion Pti is not smaller than an allowable minimum value THmin (Pti). If not, the process proceeds to the next step 5. If it is less, the process proceeds to step 10, and a value obtained by multiplying the ratio of the decrease by the coefficient kcl is stored in the variable Josei. The variable Horsei calculated in step 10 has a value larger than 1. In step 5, it is determined that the thickness of the coating film is within the allowable range, and the variable Hosei is set to 1. After performing any one of steps 5, 9, and 10, the gap CL (Pti) at the portion Pti of the substrate at the next coating is calculated in step 6 and stored in the data processing circuit of the film thickness control means 4. Keep it. Next, at step 7, the part counter is incremented, and the process returns to step 2.
[0033]
By doing so, it becomes extremely easy to set the coating conditions, and it is possible to efficiently correct unevenness in the thickness distribution in the coating direction without repeating trial and error.
[0034]
【Example】
Example 1
A photosensitive silver paste is screen-printed on the entire surface of a glass substrate having a width of 340 mm, a length of 440 mm, and a thickness of 2.8 mm so as to have a thickness of 5 μm, exposed using a photomask, developed, and baked. 1,920 striped silver electrodes were formed at a pitch of 220 μm. Further, a glass paste was screen-printed thereon and fired to form a dielectric layer having a thickness of 10 μm.
[0035]
Next, the glass substrate with the dielectric layer is placed on the substrate table 1b of the apparatus shown in FIG. 1, and the substrate table 1b is moved from the position A to the position B at a constant speed of 10 m / min. The height distribution of the glass substrate was measured at a period of 200 Hz (0.83 mm pitch) and stored as height distribution data S1 of the glass substrate before coating.
[0036]
Next, a slit die having a discharge width of 430 mm and a lip gap of 500 μm was used as a slit die and attached to the holder 3 c of the coating means 3 of the apparatus shown in FIG. 1, and the gap between the slit die and the glass substrate with a dielectric layer was reduced. After the slit die is lowered to 350 μm, a photosensitive glass paste having a viscosity of 20,000 cps is applied to the coating liquid pump 2 b of the coating liquid supply means 2 so that the target coating film thickness becomes 300 μm. The discharge amount was set to 2.15 ml / sec, and the coating speed was set to 1 m / min.
[0037]
After the coating is completed, the height distribution of the coating surface at the center in the width direction is moved while moving the substrate table 1b on which the glass substrate coated with the photosensitive glass paste is placed from the position A to the position B at a constant speed of 10 m / min. Was measured at a 200 Hz cycle (0.83 mm pitch) and stored as height distribution data S2 after application.
[0038]
Next, when the thickness distribution of the coating film of the photosensitive glass paste was obtained from the difference from the height distribution data S1 and S2, as shown in FIG. 6, the portion a of the substrate had a thickness of 285 μm, and the portion b had a thickness of 282 μm. The thickness of the coating film was 309 μm at the site c, 315 μm at the site d, 312 μm at the site e, 278 μm at the site f, and 286 μm at the site g.
[0039]
Therefore, at the time of the next coating, the coating liquid discharge amount from the slitter die is 2.043 ml / sec for the portion a of the substrate, 2.021 ml / sec for the portion b, 2.214 ml / sec for the portion c, and 2.14 ml / sec for the portion d. 257 ml / sec, 2.236 ml / sec for site e, 1.993 ml / sec for site f, and 2.05 ml / sec for site g, and the discharge volume at other sites is 2.15 ml / sec, the same as the previous time. sec and applied.
[0040]
Under the above conditions, the second and subsequent coatings were performed, and the thickness of the coated film after the application was confirmed. As a result, the thickness distribution of the coated film was within the allowable range of 300 μm ± 5 μm for all the substrates. That is, the application conditions could be determined by only one trial. As a result, the working time can be reduced by about 15 to 20 minutes as compared with the conventional method that does not perform the correction operation by the above-described method, which usually requires at least 3 to 4 trial and error iterations.
[0041]
Next, the second and subsequent coated substrates, for which it was confirmed that the thickness distribution of the coating film was within the allowable range, were dried at 100 ° C. for 20 minutes. The thickness distribution of the dried coating film in the coating direction was measured and found to be within an allowable range of 140 μm ± 3 μm.
[0042]
Next, the dried coating substrate was exposed to light using a photomask, and further developed and baked to form striped partition walls. The partition walls had a pitch of 220 μm, a width of 30 μm, and a height of 130 μm, and the number thereof was 1,921.
[0043]
Next, using a screen printing method, red, green, and blue phosphor pastes are sequentially applied between the partition walls, dried at 80 ° C. for 15 minutes, and baked at 460 ° C. for 15 minutes to obtain a PDP back panel. Was.
[0044]
Next, a separately prepared front panel was bonded to the rear panel, and after sealing, a mixed gas of 5% by volume of Xe and 95% by volume of Ne was sealed, and a driving circuit was connected to obtain a PDP.
Example 2:
A photosensitive silver paste is screen-printed on the entire surface of a glass substrate having a width of 340 mm, a length of 440 mm, and a thickness of 2.8 mm so as to have a thickness of 5 μm, exposed using a photomask, developed, and baked. 1,920 striped silver electrodes were formed at a pitch of 220 μm. Further, a glass paste was screen-printed thereon and fired to form a dielectric layer having a thickness of 10 μm.
[0045]
Next, the glass substrate with the dielectric layer is placed on the substrate table 1b of the apparatus shown in FIG. 1, and the substrate table 1b is moved from the position A to the position B at a constant speed of 10 m / min. The height distribution of the glass substrate was measured at a period of 200 Hz (0.83 mm pitch) and stored as height distribution data S1 of the glass substrate before coating.
[0046]
Next, a slit die having a discharge width of 430 mm and a lip gap of 500 μm was used as a slit die and attached to the holder 3 c of the coating means 3 of the apparatus shown in FIG. 1, and the gap between the slit die and the glass substrate with a dielectric layer was reduced. After the slit die is lowered to 350 μm, a photosensitive glass paste having a viscosity of 20,000 cps is applied to the coating liquid pump 2 b of the coating liquid supply means 2 so that the target coating film thickness becomes 300 μm. The discharge amount was set to 2.15 ml / sec, and the coating speed was set to 1 m / min.
[0047]
After the coating is completed, the height distribution of the coating surface at the center in the width direction is moved while moving the substrate table 1b on which the glass substrate coated with the photosensitive glass paste is placed from the position A to the position B at a constant speed of 10 m / min. Was measured at a 200 Hz cycle (0.83 mm pitch) and stored as height distribution data S2 after application.
[0048]
Next, the thickness distribution of the coating film of the photosensitive glass paste was determined from the difference from the height distribution data S1 and S2. As shown in FIG. 7, the portion a of the substrate had a thickness of 285 μm and the portion b had a thickness of 307 μm. The thickness of the coating film was 293 μm at c, 290 μm at site d, 294 μm at site e, 286 μm at site f, and 307 μm at site g, and the thickness of the coating film exceeded the allowable range of 300 ± 5 μm at seven sites. It is considered that the reason why the thickness distribution is different despite the application under the same conditions as in Example 1 is that the viscosity condition of the coating liquid during application has changed.
[0049]
Therefore, at the time of the next coating, the gap between the slit die and the glass substrate with the dielectric layer is set to 372 μm at the portion a, 339 μm at the portion b, 361 μm at the portion c, 365 μm at the portion d, 359 μm at the portion e, 359 μm at the portion e, and f And the gap between the slit die and the glass substrate with the dielectric layer in the other portions was set to 350 μm, which was the same as the previous time, and applied.
[0050]
Under the above conditions, the second and subsequent coatings were performed, and the thickness of the coated film after the application was confirmed. As a result, the thickness distribution of the coated film was within the allowable range of 300 μm ± 5 μm for all the substrates. That is, the application conditions could be determined by only one trial. As a result, the working time can be reduced by about 15 to 20 minutes as compared with the conventional method that does not perform the correction operation by the above-described method, which usually requires at least 3 to 4 trial and error iterations.
[0051]
Next, the second and subsequent coated substrates, for which it was confirmed that the thickness distribution of the coating film was within the allowable range, were dried at 100 ° C. for 20 minutes. The thickness distribution of the dried coating film in the coating direction was measured and found to be within an allowable range of 140 μm ± 3 μm.
[0052]
Next, the dried coating substrate was exposed to light using a photomask, and further developed and baked to form striped partition walls. The partition walls had a pitch of 220 μm, a width of 30 μm, and a height of 130 μm, and the number thereof was 1,921.
[0053]
Next, using a screen printing method, red, green, and blue phosphor pastes are sequentially applied between the partition walls, dried at 80 ° C. for 15 minutes, and baked at 460 ° C. for 15 minutes to obtain a PDP back panel. Was.
[0054]
Next, a separately prepared front panel was bonded to the rear panel, and after sealing, a mixed gas of 5% by volume of Xe and 95% by volume of Ne was sealed, and a driving circuit was connected to obtain a PDP.
[0055]
【The invention's effect】
The present invention is a method for manufacturing a coating member in which a coating liquid discharged from a die is sequentially applied to a plurality of members to be coated, wherein a thickness distribution of a coating film in a coating direction is measured with respect to a previous coating member. Since the thickness distribution of the coating film in the application direction of the member to be applied later is determined based on the obtained thickness distribution, the setting of the coating conditions can be performed very easily as shown in the examples. As a result, the manufacturing cost of the application member can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic front view of an apparatus for manufacturing a coating member according to an embodiment of the present invention.
FIG. 2 is a graph showing an example of an allowable maximum thickness and a minimum thickness of a coating film at each part of a substrate in a coating direction.
FIG. 3 is a graph showing an example of a thickness distribution of a coating film in a coating direction.
FIG. 4 is a flowchart illustrating a method for setting a coating liquid discharge amount from a die at the time of subsequent coating.
FIG. 5 is a flowchart illustrating a method of setting a gap between a die and a member to be coated at the time of subsequent coating.
FIG. 6 is a graph showing a thickness distribution of a coating film in a coating direction of a previous coating member in Example 1.
FIG. 7 is a graph showing a thickness distribution of a coating film in a coating direction of a previous coating member in Example 2.
[Explanation of symbols]
1: substrate moving means
1a: Stand
1b: Substrate table
1c: Boss
1d: Ball screw
1e: Servo motor
2: Coating liquid supply means
2a: coating liquid tank
2b: Coating liquid pump
2c: Piping
2d: Piping
3: Application means
3a: Support
3b: Guide
3c: Holder
3d: slit die
3e: Servo motor
3f: Ball screw
4: film thickness measuring means
4a: Height detector
4b: Data processing circuit
5: film thickness control means
6: Control means
7: Substrate (member to be coated)

Claims (11)

ダイから吐出される塗液を複数個の被塗布部材に次々に塗布する塗布部材の製造方法であって、前の塗布部材について塗布方向における塗膜の厚み分布を測定し、得られた厚み分布に基づいて後に塗布する被塗布部材の塗布方向における塗膜の厚み分布を決定することを特徴とする塗布部材の製造方法。A method for manufacturing a coating member in which a coating liquid discharged from a die is sequentially applied to a plurality of members to be coated, wherein a thickness distribution of a coating film in a coating direction is measured for a previous coating member, and the obtained thickness distribution is obtained. A method for determining a thickness distribution of a coating film in a coating direction of a member to be coated later, based on the method. ダイと被塗布部材との間隙を所望の一定値に保ちつつダイと被塗布部材とを相対的に移動させながらダイから塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行う塗布部材の製造方法であって、任意の塗布部材について塗布方向における塗膜の厚み分布を求め、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について求めた塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を増し、任意の塗布部材について求めた塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を減ずることを特徴とする塗布部材の製造方法。While the gap between the die and the member to be coated is kept at a desired constant value, the operation of discharging the coating liquid from the die and applying the coating to the member to be coated is performed by moving the die and the member to be coated relatively. A method for manufacturing a coating member performed one after another on a member, wherein a thickness distribution of a coating film in an application direction is obtained for an arbitrary coating member, and the thickness distribution of the coating film in the coating direction is allowable when the coating is performed on a next member to be coated. In order to fall within the range, the discharge amount of the coating liquid is increased at a portion of the next member to be coated corresponding to a portion where the thickness of the coating film obtained for any coating member is less than the allowable range, and A coating material discharge amount is reduced in a next portion of the member to be coated corresponding to a portion in which the thickness of the coating film determined in step (c) exceeds an allowable range. ダイと被塗布部材とを間隙をおいて相対的に移動させながらダイから定量の塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行う塗布部材の製造方法であって、任意の塗布部材について塗布方向における塗膜の厚み分布を求め、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について求めた塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を大きくし、任意の塗布部材について求めた塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を小さくすることを特徴とする塗布部材の製造方法。A method of manufacturing a coating member in which an operation of discharging a fixed amount of coating liquid from the die and applying the coating liquid to the member to be coated is successively performed on a plurality of members to be coated while relatively moving the die and the member to be coated with a gap therebetween. The thickness distribution of the coating film in the application direction is determined for an arbitrary application member, and when the next coating is performed on the member to be applied, the thickness distribution of the coating film in the application direction is within an allowable range. In the part of the next member to be coated corresponding to the part where the thickness of the coating film obtained for the member is less than the allowable range, the gap between the die and the next member to be coated was increased, and the result was obtained for any coating member. A method of manufacturing a coating member, comprising: reducing a gap between a die and a next member to be coated at a portion of the next member to be coated corresponding to a portion where the thickness of the coating film exceeds an allowable range. 被塗布部材として枚葉部材を用いる、請求項1〜3のいずれかに記載の塗布部材の製造方法。The method for manufacturing an application member according to any one of claims 1 to 3, wherein a sheet member is used as the member to be applied. 塗膜の厚み分布を、塗布部材の厚みと被塗布部材の厚みとの差から求める、請求項1〜4のいずれかに記載の塗布部材の製造方法。The method for producing a coating member according to claim 1, wherein the thickness distribution of the coating film is determined from a difference between the thickness of the coating member and the thickness of the member to be coated. ダイと被塗布部材との間隙を所望の一定値に保ちつつダイと被塗布部材とを相対的に移動させながらダイから塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行うようにした塗布部材の製造装置であって、任意の塗布部材について塗布方向における塗膜の厚み分布を測定する膜厚測定手段と、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について測定した塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を増し、任意の塗布部材について測定した塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においては塗液の吐出量を減ずる吐出量制御手段とを設けたことを特徴とする塗布部材の製造装置。While the gap between the die and the member to be coated is kept at a desired constant value, the operation of discharging the coating liquid from the die and applying the coating to the member to be coated is performed by moving the die and the member to be coated relatively. An apparatus for manufacturing a coating member, which is performed one after another on a member, comprising: a film thickness measuring means for measuring a thickness distribution of a coating film in a coating direction with respect to an arbitrary coating member; So that the thickness distribution of the coating film in the direction falls within the allowable range, the coating liquid is applied at a portion of the next member to be applied corresponding to a portion where the thickness of the coating film measured for any coating member is below the allowable range. Discharge amount control means is provided for increasing the discharge amount and reducing the discharge amount of the coating liquid at the next part of the member to be coated corresponding to the part where the thickness of the coating film measured for any coating member exceeds the allowable range. And that Manufacturing apparatus that the coating member. ダイと被塗布部材とを間隙をおいて相対的に移動させながらダイから定量の塗液を吐出して被塗布部材に塗布する操作を複数個の被塗布部材について次々に行うようにした塗布部材の製造装置であって、任意の塗布部材について塗布方向における塗膜の厚み分布を測定する膜厚測定手段と、次の被塗布部材への塗布時に、塗布方向における塗膜の厚み分布が許容範囲内になるように、任意の塗布部材について測定した塗膜の厚みが許容範囲を下回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を大きくし、任意の塗布部材について測定した塗膜の厚みが許容範囲を上回っている部位に対応する次の被塗布部材の部位においてはダイとその次の被塗布部材との間隙を小さくする間隙制御手段とを設けたことを特徴とする塗布部材の製造装置。An application member that discharges a fixed amount of a coating liquid from the die and applies the application to the application member while sequentially moving the die and the application member with a gap therebetween for a plurality of application members. A film thickness measuring means for measuring a thickness distribution of a coating film in an application direction with respect to an arbitrary coating member; Within, the gap between the die and the next member to be applied is increased at the site of the next member to be applied corresponding to the region where the thickness of the coating film measured for any member to be applied is below the allowable range. And a gap control means for reducing a gap between the die and the next member to be applied at a portion of the next member to be coated corresponding to a portion where the thickness of the coating film measured for an arbitrary member to be coated exceeds the allowable range. And Apparatus for producing a coating member, characterized in that the. 被塗布部材が枚葉部材である、請求項6または7に記載の塗布部材の製造装置。The apparatus for manufacturing an application member according to claim 6, wherein the member to be applied is a single-sheet member. 膜厚測定手段が、塗布部材の厚みを測定する手段と、被塗布部材の厚みを測定する手段と、これら両手段から得られる測定値を減算する手段とを包含している、請求項6〜8のいずれかに記載の塗布部材の製造装置。The film thickness measuring means includes means for measuring the thickness of the coating member, means for measuring the thickness of the member to be coated, and means for subtracting the measurement values obtained from both of these means. 8. The apparatus for manufacturing a coating member according to any one of 8. 請求項1〜5のいずれかに記載の製造方法を用いる、プラズマディスプレイパネル部材の製造方法。A method for manufacturing a plasma display panel member using the manufacturing method according to claim 1. 請求項1〜5のいずれかに記載の製造方法または請求項6〜9のいずれかに記載の製造装置を用いて製造されたプラズマディスプレイパネル部材。A plasma display panel member manufactured by using the manufacturing method according to any one of claims 1 to 5 or the manufacturing apparatus according to any one of claims 6 to 9.
JP2003006775A 2003-01-15 2003-01-15 Method and apparatus for manufacturing coating member Pending JP2004216279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006775A JP2004216279A (en) 2003-01-15 2003-01-15 Method and apparatus for manufacturing coating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006775A JP2004216279A (en) 2003-01-15 2003-01-15 Method and apparatus for manufacturing coating member

Publications (1)

Publication Number Publication Date
JP2004216279A true JP2004216279A (en) 2004-08-05

Family

ID=32897055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006775A Pending JP2004216279A (en) 2003-01-15 2003-01-15 Method and apparatus for manufacturing coating member

Country Status (1)

Country Link
JP (1) JP2004216279A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022217A1 (en) * 2004-08-23 2006-03-02 Kabushiki Kaisha Ishiihyoki Ink jet printer discharge amount control method, ink droplet spread check method, and orientation film formation method
WO2009045745A3 (en) * 2007-09-28 2009-05-22 Abbott Cardiovascular Systems Spray coating stents with a predetermined number of layers of predetermined thickness
JP2014085610A (en) * 2012-10-26 2014-05-12 Hoya Corp Spectacle photochromic lens manufacturing device
CN117839972A (en) * 2024-03-07 2024-04-09 德沪涂膜设备(苏州)有限公司 Coating device and coating method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022217A1 (en) * 2004-08-23 2006-03-02 Kabushiki Kaisha Ishiihyoki Ink jet printer discharge amount control method, ink droplet spread check method, and orientation film formation method
US8342636B2 (en) 2004-08-23 2013-01-01 Kabushiki Kaisha Ishiihyoki Discharge rate control method for ink-jet printer, ink spread inspecting method, and oriented film forming method
US8960844B2 (en) 2004-08-23 2015-02-24 Kabushiki Kaisha Ishiihyoki Discharge rate control method for ink-jet printer, ink spread inspecting method, and oriented film forming method
WO2009045745A3 (en) * 2007-09-28 2009-05-22 Abbott Cardiovascular Systems Spray coating stents with a predetermined number of layers of predetermined thickness
US8003158B2 (en) 2007-09-28 2011-08-23 Abbott Cardiovascular Systems Inc. Spray coating stents with fixed No. of layers
US8936826B2 (en) 2007-09-28 2015-01-20 Abbott Cardiovascular Systems Inc. Method of coating stents
JP2014085610A (en) * 2012-10-26 2014-05-12 Hoya Corp Spectacle photochromic lens manufacturing device
CN117839972A (en) * 2024-03-07 2024-04-09 德沪涂膜设备(苏州)有限公司 Coating device and coating method
CN117839972B (en) * 2024-03-07 2024-05-17 德沪涂膜设备(苏州)有限公司 Coating device and coating method

Similar Documents

Publication Publication Date Title
US7622004B2 (en) Slit die, and method and device for producing base material with coating film
JPH0992134A (en) Nozzle application method and device
JP5098396B2 (en) Manufacturing apparatus for substrate having slot die and coating film, and method for manufacturing substrate having coating film
JP2006134873A (en) Dielectric layer forming device and manufacturing method for plasma display panel using it
JP4010188B2 (en) Method for measuring thickness of coating film and measuring apparatus and method for manufacturing coating film forming member
JP4389607B2 (en) Slit die, and method and apparatus for producing substrate having coating film
JP4366757B2 (en) Coating apparatus, coating method, and method for manufacturing plasma display or display member
JP2014180604A (en) Intermittent coating apparatus and intermittent coating method and method for manufacturing displaying member
JP2002086044A (en) Coating method and coating tool, and manufacturing method and equipment for display member and plasma display
JP2004216279A (en) Method and apparatus for manufacturing coating member
JP3199239B2 (en) Manufacturing method and apparatus for plasma display member
JP2000197844A (en) Method and apparatus for coating and method and apparatus for producing member for plasma display
JP2008212921A (en) Coating method, plasma display member manufacturing method and coating machine
JP5953759B2 (en) Gap measuring method, gap device, coating method and coating device.
JP2009101345A (en) Coating method and coating machine, method for manufacturing plasma display member and manufacturing equipment therefor
JP3912635B2 (en) APPARATUS AND METHOD FOR APPLYING COATING LIQUID ON CONCRETE SUBSTRATE AND APPARATUS AND METHOD FOR PRODUCING PLASMA DISPLAY
JP2010058097A (en) Coating method and device, and method and device for manufacturing member of plasma display
JP4324998B2 (en) Coating apparatus and coating method, and plasma display manufacturing method and manufacturing apparatus
JP2002239445A (en) Coating apparatus and coating method
JP2001062371A (en) Application apparatus and method and production apparatus and method for plasma display and member for display
KR101631527B1 (en) Method for repairing paste pattern and substrate having paste pattern repaired by using the method
JP2011255260A (en) Coating method, coating apparatus, production method of member for plasma display, and production apparatus of member for plasma display
KR101089748B1 (en) Method for controlling despenser appratus
JP2000157905A (en) Coating device and coating method and manufacture of plasma display member and method thereof
JP2021130066A (en) Coating applicator