JP2004207660A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2004207660A
JP2004207660A JP2002377965A JP2002377965A JP2004207660A JP 2004207660 A JP2004207660 A JP 2004207660A JP 2002377965 A JP2002377965 A JP 2002377965A JP 2002377965 A JP2002377965 A JP 2002377965A JP 2004207660 A JP2004207660 A JP 2004207660A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
emitting element
glass lens
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377965A
Other languages
Japanese (ja)
Inventor
Yoshinobu Suehiro
好伸 末広
Mitsuhiro Inoue
光宏 井上
Hideaki Kato
英昭 加藤
達哉 ▲高▼島
Tatsuya Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2002377965A priority Critical patent/JP2004207660A/en
Priority to US10/731,104 priority patent/US6998777B2/en
Publication of JP2004207660A publication Critical patent/JP2004207660A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent disconnection in a wire at sealing, and to prevent peeling in an interface between a sealing material and a substrate and disconnection of the wire even at a high temperature processing in a light emitting diode. <P>SOLUTION: In the light emitting diode 1, the light emitting element 3 is mounted on a ceramic substrate 2, and a surface electrode is bonded to a prescribed position of a circuit pattern 7 by two gold wires 4. A glass lens 5 is covered from above where a necessarily minimum space in which the light emitting element 3 and the wires 4 are stored and a resin injected hole 9a are formed. Sealing glass 8 is applied to four corners of plate-like parts of the glass lens 5 by a quarter of a circle. The plate-like part of the glass lens 5 and the ceramic substrate 2 are rigidly sealed at a high temperature (before or after 400°C). Transparent silicon resin 6 whose viscosity is low and which does not have possibility of disconnection of the wires 4 is injected from the resin injectied hole 9a after cooling. The space is filled with it and the light emitting element 3 and the wires 4 are sealed. Transparent silicon resin 6 is thermo-set and the diode is completed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子に対して低熱膨張率で耐熱性の基板とガラスレンズを用いることによって、熱膨張率の差を小さくしてワイヤ断線や界面剥離を防止することができるSMD(表面実装型)発光ダイオードに関するものである。
【0002】
なお、本明細書中においては、LEDチップそのものは「発光素子」と呼び、LEDチップを搭載したパッケージ樹脂またはレンズ系等の光学装置を含む全体を「発光ダイオード」または「LED」と呼ぶこととする。
【0003】
【従来の技術】
【特許文献1】特開平11−112025号公報
【特許文献2】特開平11−177129号公報
図5に、従来のSMD発光ダイオードの一例を示す。図5に示されるように、このLED31はガラスエポキシ基板32に金属(金または銀)メッキで回路パターン37を設けて、その回路パターン37の表面側に発光素子33をマウントし、発光素子33の表面の電極から2本のワイヤ34で互いに絶縁された回路パターン37にそれぞれボンディングして導通をとっている。そして、全体を透明エポキシ樹脂36で封止して、発光素子33を保護するとともにレンズの役割を果たさせている。
【0004】
しかし、ガラスエポキシ基板32は放熱性が悪いため、発光素子33が発光の際に発する熱の逃げ場がなく、発光素子33の温度が高くなって発光効率が低下し、また寿命が短くなる。そこで、かかるプリント基板32を用いる代わりに、金属製の1対のリード板の一方に発光素子をマウントして、他方のリード板と発光素子をワイヤでボンディングし、全体を透明エポキシ樹脂で封止するタイプのLEDが開発されている。このタイプのLEDにおいては、発光素子をマウントした金属製のリード板から熱が逃げるため、放熱性の問題は解消される。
【0005】
しかし、全体を封止している透明エポキシ樹脂の熱膨張率は金属の5倍近くも大きいため、表面実装の際に高温(約200℃〜300℃)のリフロー炉を通すと、熱膨張率の差による基板との界面における剥離やワイヤの断線という不具合が生じる可能性がある。
【0006】
また、上記特許文献1に記載の技術においては、基板として熱伝導性が良く熱膨張率が低く耐熱性に優れたセラミックス基板を用いて、基板の両端に端子電極を設け、基板の中央に発光素子をマウントして、表面の2つの電極と2つの端子電極とをそれぞれワイヤで接続して、全体を透明エポキシ樹脂でモールドしてパッケージとしている。このLEDにおいても、セラミックス基板は熱伝導性が良いので放熱性の問題はないが、全体を透明エポキシ樹脂でモールドしているため、基板との界面における剥離やワイヤの断線という不具合が生じ易い点では変わりがない。
【0007】
そこで、上記特許文献2に記載の技術においては、封止材料として透明エポキシ樹脂の代わりに低融点(≒400℃)ガラスを用いて、途中に樹脂を挟むことなく直接基板の上にマウントされた発光素子を封止している。これによって、高温のリフロー炉を通過させても、低融点ガラス、セラミックス基板ともに熱膨張率が低いため基板との界面における剥離やワイヤの断線が起こる可能性が低くなる。
【0008】
【発明が解決しようとする課題】
しかしながら、低融点ガラスは溶融状態においても硬化前の透明エポキシ樹脂等の透明熱硬化性樹脂に比べて遥かに粘度が高いため、封止時にワイヤが断線したり基板や発光素子から剥離したりする可能性が高い。
【0009】
そこで、本発明は、封止時にもワイヤが断線したりせず、また、リフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがない発光ダイオードの提供を課題とするものである。
【0010】
【課題を解決するための手段】
請求項1の発明にかかる発光ダイオードは、熱膨張率が低く耐熱性の高い基板と、前記基板に導電体で形成された回路パターンと、前記基板表面にマウントされた発光素子と、前記発光素子と前記回路パターンの導通をとる金属製部材(ワイヤ)と、前記発光素子及び前記金属製部材の収まる空間と樹脂注入孔のみを残して前記発光素子の周囲を覆うガラスレンズと、前記基板表面と前記ガラスレンズとを封着する封着材料と、前記樹脂注入孔から注入され、前記発光素子と前記金属製部材の収まる空間に充填される光透過性樹脂とを具備するものである。
【0011】
このように、このLEDは、光透過性樹脂で封止する部分を発光素子と金属製部材の収まる必要最小限の空間とし、この空間と樹脂注入孔を残してガラスレンズで発光素子の周囲を覆っている。また、基板としては低熱膨張率で耐熱性の高い基板を用いているのでガラスレンズとの熱膨張率差も小さく、リフロー炉等の高温処理を行っても基板とガラスレンズが封着材料で強固に封着されて剥離することはない。
【0012】
ここで、熱膨張率が低く耐熱性の高い基板としては、窒化アルミニウム(AlN)、アルミナ(Al23)等のセラミックス基板等がある。
【0013】
また、ワイヤの周囲のみは粘度の低い光透過性樹脂を樹脂注入孔から注入することによって封止しているので、封止時にワイヤが断線したりする恐れはない。そして、光透過性樹脂で封止する部分を必要最小限の空間としたことによって、リフロー炉等の高温処理を行っても熱膨張率の差によってワイヤにかかる力を最小限に抑えることができるので、ワイヤの断線も防ぐことができる。
【0014】
このようにして、封止時にもワイヤが断線したりせず、またリフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがない発光ダイオードとなる。
【0015】
請求項2の発明にかかる発光ダイオードは、請求項1の構成において、前記封着材料は前記基板と前記ガラスレンズとの中間の熱膨張率を有するものである。
【0016】
これによって、元々熱膨張率差の小さい基板とガラスレンズの間に入って封着する封着材料によって、基板と封着材料、封着材料とガラスレンズそれぞれの熱膨張率差がさらに小さくなるので、高温処理時における各界面での剥離が一層起こりにくくなる。
【0017】
このようにして、リフロー炉等の高温処理時にもガラスレンズと封着材料と基板との界面における剥離がより一層起こりにくくなる発光ダイオードとなる。
【0018】
請求項3の発明にかかる発光ダイオードは、請求項1または請求項2の構成において、前記封着材料は封着用ガラスであるものである。
【0019】
封着用ガラスは「フリット」とも呼ばれ、封着用ガラスを構成する成分とその配合比を変えることによって、様々な熱膨張率とすることができる。したがって、基板とガラスレンズとの中間の熱膨張率とすることもでき、基板と封着用ガラス、封着用ガラスとガラスレンズそれぞれの熱膨張率差がさらに小さくなるので、高温処理時における各界面での剥離が一層起こりにくくなる。さらに、フリットは基板とガラスレンズとの間で化学反応を起こして封着するので、通常の接着と異なるより強力な結合力が得られる。
【0020】
このようにして、リフロー炉等の高温処理時にもガラスレンズと封着材料と基板との界面における剥離がさらに一段と起こりにくくなる発光ダイオードとなる。
【0021】
請求項4の発明にかかる発光ダイオードは、請求項1乃至請求項3のいずれか1つの構成において、前記光透過性樹脂は透明シリコーン樹脂であるものである。
【0022】
透明シリコーン樹脂は、熱硬化後も極めて弾性に富む光透過性樹脂であり、したがって基板との間に熱膨張率の差があっても、高温時でもワイヤに張力を与えることなく自らの弾性で吸収してしまうため、ワイヤの断線を防ぐことができる。
【0023】
このようにして、リフロー炉等の高温処理時にもワイヤの断線がより一層起こりにくくなる発光ダイオードとなる。
【0024】
請求項5の発明にかかる発光ダイオードは、請求項1乃至請求項4のいずれか1つの構成において、前記樹脂注入孔を前記ガラスレンズに設ける代わりに、前記基板に設けたものである。
【0025】
これによって、ガラスレンズには発光素子とワイヤの収められる最小限の空間を設けるだけで良いことになり、ガラスレンズの加工が容易になる。また、樹脂注入孔をワイヤの直下を避けて発光素子の近傍に2つ以上設けることによって、1つの樹脂注入孔から光透過性樹脂を注入すると他の樹脂注入孔から空間内の空気が追い出されるため、気泡を残すことなく完全に充填することができる。
【0026】
このようにして、封止時にもワイヤが断線したりせず、またリフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがなく、さらに製造が容易な発光ダイオードとなる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0028】
実施の形態1
まず、本発明の発光ダイオードの実施の形態1について、図1乃至図3を参照して説明する。図1(a)は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す平面図、(b)は(a)のA−A断面図である。図2は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す縦断面図であり、図1(a)のB−B断面図である。図3は本発明の実施の形態1にかかる発光ダイオードの量産方法を示す縦断面図である。
【0029】
図1に示されるように、銀メッキで回路パターン7が形成されたスルーホール(図示省略)のセラミックス基板2は四隅が4分の1円ずつ切り欠かれており、その上に略正方形のガラスレンズ5の周囲の板状部分が載せられている。即ち、図1(b)の対角線方向の縦断面図に示されるように、略正方形の四隅においてガラスレンズ5の板状部分がセラミックス基板2から突出している。セラミックス基板2の上には、発光素子3がマウントされており、この発光素子3の表面に設けられた2つの電極は、2本の金ワイヤ4でそれぞれセラミックス基板2の回路パターン7の所定位置にボンディングされている。
【0030】
そして、その上から発光素子3及びワイヤ4の収まる必要最小限の空間と樹脂注入孔9aが形成されたガラスレンズ5が被せられ、ガラスレンズ5の板状部分の四隅には、封着材料としての封着用ガラス8が4分の1円ずつ塗布されて、ガラスレンズ5の板状部分とセラミックス基板2とが高温(400℃前後)で強固に封着される。なお、マウントされている発光素子3もこの400℃前後の高温に耐えることができ、発光特性の低下等は全く起こらない。このセラミックス基板2は、窒化アルミニウム(AlN)セラミックスからなり、熱膨張率が低く(4.5×10-6/℃)、耐熱性が高い。
【0031】
したがって、同じく熱膨張率が低いガラスレンズ5との熱膨張率の差は小さいが、封着用ガラス8としてAlN基板2とガラスレンズ5の中間の熱膨張率を有するものを使用しているので、AlN基板2と封着用ガラス8、及び封着用ガラス8とガラスレンズ5の熱膨張率の差はさらに小さくなり、リフロー炉(約200℃〜300℃)を通す等の高温処理を施してもAlN基板2と封着用ガラス8及び封着用ガラス8とガラスレンズ5の界面が剥離することはなく、AlN基板2とガラスレンズ5は強固に封着されている。
【0032】
なお、封着用ガラス8をガラスレンズ5の板状部分の四隅に塗布したのは、封着用ガラス8は一般に黒色であるので、発光特性に悪影響を与えないようになるべく発光素子3から遠ざけるためである。白色系の封着用ガラスの場合には、もっと中心部に近いところに塗布しても良い。
【0033】
次に、光透過性樹脂の注入について、図2を参照して説明する。図2に示されるように、AlN基板2と封着されたガラスレンズ5の下面には、発光素子3及びワイヤ4の収まる必要最小限の空間と樹脂注入孔9aが形成されている。この樹脂注入孔9aから光透過性樹脂としての透明シリコーン樹脂6が注入され、空間内に充填されて発光素子3及びワイヤ4が封止される。熱硬化前の透明シリコーン樹脂6は粘度が低いので、透明シリコーン樹脂6の注入によってワイヤ4が断線することはない。その後、透明シリコーン樹脂6を熱硬化させることによって、本実施の形態1のLED1が完成する。
【0034】
このように、光透過性樹脂6で封止する体積を必要最小限にしたことによって、高温処理時に熱膨張率差に起因してワイヤ4にかかる張力も最小となり、ワイヤ4の断線を防ぐことができる。さらに、光透過性樹脂として透明シリコーン樹脂6を用いたことによって、透明シリコーン樹脂6は熱硬化後も弾性を有するので、高温処理時に熱膨張率差に起因して生じる張力が透明シリコーン樹脂6自体に吸収されて、より確実にワイヤ4の断線を防ぐことができる。
【0035】
このようにして、本実施の形態1のLED1においては、封止時にもワイヤ4が断線したりせず、またリフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがないLEDとなる。
【0036】
次に、本実施の形態1のLED1の量産方法について、図3を参照して説明する。まず、縦横の寸法がLED1の何倍もあるセラミックス(AlN)基板2を用意し、必要な箇所にスルーホール(図示省略)を開けて回路パターン7を銀メッキ等で形成する。そして、最終的にカットして切り離す位置に、AlN基板2の裏面に予め縦横に切り込み2aを入れておく。それから、AlN基板2表面の所定の位置に発光素子3を次々とマウントして行き、マウントされた発光素子3の2つの表面電極にはそれぞれ金ワイヤ4がボンディングされ、金ワイヤ4の他端は回路パターン7の所定の位置にそれぞれボンディングされる。
【0037】
こうして全ての発光素子3とワイヤ4の装着が完了したら、その上からガラスレンズ5が被せられて封着される。即ち、図3に示されるように、ガラスレンズ5の下面に発光素子3及びワイヤ4の収まる必要最小限の空間9と樹脂注入孔9aが形成されたものが縦横に繋がって、AlN基板2とほぼ同じ大きさになったものが用意される。そして、AlN基板2の上面またはガラスレンズ5の下面の所定の位置に封着用ガラスが塗布されて、AlN基板2の上から多数のガラスレンズ5が繋がったものが被せられ、封着温度(400℃前後)において封着される。
【0038】
冷却後、予め入れておいたAlN基板2の下面の切り込み2aを利用してへき開して行くか、あるいはダイシングマシン等で切断するかして、1個ずつのLED1(未だ封止樹脂が注入されていないもの)に切り離す。そして、図2で説明したように、樹脂注入孔9aから透明シリコーン樹脂を注入して空間9を充填し発光素子3とワイヤ4を封止して、透明シリコーン樹脂を熱硬化させる。このようにして、本実施の形態1のLED1を量産することができる。
【0039】
実施の形態2
次に、本発明にかかる発光ダイオードの実施の形態2について、図4を参照して説明する。図4(a)は本発明の実施の形態2にかかる発光ダイオードの全体構成を示す平面図、(b)は(a)のC−C断面図である。
【0040】
図4に示されるように、本実施の形態2にかかるLED11は、実施の形態1と同様に、銀メッキで回路パターン17が形成されたスルーホール(図示省略)のセラミックス基板12の四隅が4分の1円ずつ切り欠かれており、その上に略正方形のガラスレンズ15の周囲の板状部分が載せられている。このセラミックス基板12も窒化アルミニウム(AlN)からなり、AlN基板12の上には、発光素子13がマウントされており、この発光素子13の表面に設けられた2つの電極は、2本の金ワイヤ14でそれぞれAlN基板12の回路パターン17の所定位置にボンディングされている。
【0041】
そして、その上から発光素子13及びワイヤ14の収まる必要最小限の空間が形成されたガラスレンズ15が被せられ、ガラスレンズ15の板状部分の四隅には、封着材料としての封着用ガラス18が4分の1円ずつ塗布されて、ガラスレンズ15の板状部分とAlN基板12とが高温(400℃前後)で強固に封着される。なお、マウントされている発光素子13もこの400℃前後の高温に耐えることができ、発光特性の低下等は全く起こらない。また、AlN基板12は熱膨張率が低く、耐熱性が高い。
【0042】
したがって、同じく熱膨張率が低いガラスレンズ15との熱膨張率の差は小さいが、本実施の形態2においても封着用ガラス18としてAlN基板12とガラスレンズ15の中間の熱膨張率を有するものを使用しているので、AlN基板12と封着用ガラス18、及び封着用ガラス18とガラスレンズ15の熱膨張率の差はさらに小さくなり、リフロー炉(約200℃〜300℃)を通す等の高温処理を施してもAlN基板12と封着用ガラス18及び封着用ガラス18とガラスレンズ15の界面が剥離することはなく、AlN基板12とガラスレンズ15は強固に封着されている。
【0043】
次に、光透過性樹脂の注入について説明する。図4に示されるように、本実施の形態2においては、AlN基板12の、ガラスレンズ15の下面に設けられた発光素子13及びワイヤ14の収まる必要最小限の空間と通ずる位置に、2つの樹脂注入孔19が穿設されている。これらの樹脂注入孔19から光透過性樹脂としての透明シリコーン樹脂16が注入され、空間内に充填されて発光素子13及びワイヤ14が封止される。熱硬化前の透明シリコーン樹脂16は極めて粘度が低いので、透明シリコーン樹脂16の注入によってワイヤ14が断線することはない。
【0044】
ここで、一方の樹脂注入孔19からのみ透明シリコーン樹脂16を注入すれば、他方の樹脂注入孔19から空気が追い出されるので、気泡を残すことなく容易に充填ができる。その後、透明シリコーン樹脂16を熱硬化させることによって、本実施の形態2のLED11が完成する。
【0045】
このように、光透過性樹脂16で封止する体積を必要最小限にしたことによって、高温処理時に熱膨張率差に起因してワイヤ14にかかる張力も最小となり、ワイヤ14の断線を防ぐことができる。さらに、光透過性樹脂として透明シリコーン樹脂16を用いたことによって、透明シリコーン樹脂16は熱硬化後も弾性を有するので、高温処理時に熱膨張率差に起因して生じる張力が透明シリコーン樹脂16自体に吸収されて、より確実にワイヤ14の断線を防ぐことができる。また、AlN基板12に2つの樹脂注入孔19を穿設したことによって透明シリコーン樹脂16の注入が容易になるとともに、ガラスレンズ15の加工も容易になる。
【0046】
このようにして、本実施の形態2のLED11においては、封止時にもワイヤ14が断線したりせず、またリフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがなく、製造もより容易なLEDとなる。
【0047】
上記各実施の形態においては、発光素子3,13として青色発光素子を用いた場合を想定したため、青色の反射率の高い銀メッキで回路パターン7,17を形成しているが、何色の発光素子を用いても構わない。そして、赤色発光素子を用いた場合には、赤色の反射率の高い金メッキで回路パターンを形成するのが望ましい。
【0048】
また、上記各実施の形態においては、基板材料としてAlNを用いた場合について説明したが、熱膨張率が低く耐熱性が高い材料であればどのような材料を用いても構わない。但し、熱伝導性の高い材料が望ましく、例えば、Al23等である。
【0049】
さらに、上記各実施の形態においては、発光素子及びワイヤを封止する光透過性樹脂として透明シリコーン樹脂を用いているが、透明エポキシ樹脂を始めとするその他の樹脂材料を用いても良い。
【0050】
また、発光素子は、上面に電極が形成され、ワイヤにて電気的接続がされるものに限らず、下面に電極が形成され、バンプ等により電気的接続がされるものであっても構わない。
【0051】
発光ダイオードのその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、上記各実施の形態に限定されるものではない。
【0052】
【発明の効果】
以上説明したように、請求項1の発明にかかる発光ダイオードは、熱膨張率が低く耐熱性の高い基板と、前記基板に導電体で形成された回路パターンと、前記基板表面にマウントされた発光素子と、前記発光素子と前記回路パターンの導通をとる金属製部材(ワイヤ)と、前記発光素子及び前記ワイヤの収まる空間と樹脂注入孔のみを残して前記発光素子の周囲を覆うガラスレンズと、前記基板表面と前記ガラスレンズとを封着する封着材料と、前記樹脂注入孔から注入され、前記発光素子と前記ワイヤの収まる空間に充填される光透過性樹脂とを具備するものである。
【0053】
このように、このLEDは、光透過性樹脂で封止する部分を発光素子とワイヤの収まる必要最小限の空間とし、この空間と樹脂注入孔を残してガラスレンズで発光素子の周囲を覆っている。また、基板としては低熱膨張率で耐熱性の高い基板を用いているのでガラスレンズとの熱膨張率差も小さく、リフロー炉等の高温処理を行っても基板とガラスレンズが封着材料で強固に封着されて剥離することはない。
【0054】
また、ワイヤの周囲のみは粘度の低い光透過性樹脂を樹脂注入孔から注入することによって封止しているので、封止時にワイヤが断線したりする恐れはない。そして、光透過性樹脂で封止する部分を必要最小限の空間としたことによって、リフロー炉等の高温処理を行っても熱膨張率の差によってワイヤにかかる力を最小限に抑えることができるので、ワイヤの断線も防ぐことができる。
【0055】
このようにして、封止時にもワイヤが断線したりせず、またリフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがない発光ダイオードとなる。
【0056】
請求項2の発明にかかる発光ダイオードは、請求項1の構成において、前記封着材料は前記基板と前記ガラスレンズとの中間の熱膨張率を有するものである。
【0057】
これによって、元々熱膨張率差の小さい基板とガラスレンズの間に入って封着する封着材料によって、基板と封着材料、封着材料とガラスレンズそれぞれの熱膨張率差がさらに小さくなるので、高温処理時における各界面での剥離が一層起こりにくくなる。
【0058】
このようにして、リフロー炉等の高温処理時にもガラスレンズと封着材料と基板との界面における剥離がより一層起こりにくくなる発光ダイオードとなる。
【0059】
請求項3の発明にかかる発光ダイオードは、請求項1または請求項2の構成において、前記封着材料は封着用ガラスであるものである。
【0060】
封着用ガラスは「フリット」とも呼ばれ、封着用ガラスを構成する成分とその配合比を変えることによって、様々な熱膨張率とすることができる。したがって、基板とガラスレンズとの中間の熱膨張率とすることもでき、基板と封着用ガラス、封着用ガラスとガラスレンズそれぞれの熱膨張率差がさらに小さくなるので、高温処理時における各界面での剥離が一層起こりにくくなる。さらに、フリットは基板とガラスレンズとの間で化学反応を起こして封着するので、通常の接着と異なるより強力な結合力が得られる。
【0061】
このようにして、リフロー炉等の高温処理時にもガラスレンズと封着材料と基板との界面における剥離がさらに一段と起こりにくくなる発光ダイオードとなる。
【0062】
請求項4の発明にかかる発光ダイオードは、請求項1乃至請求項3のいずれか1つの構成において、前記光透過性樹脂は透明シリコーン樹脂であるものである。
【0063】
透明シリコーン樹脂は、熱硬化後も極めて弾性に富む光透過性樹脂であり、したがって基板との間に熱膨張率の差があっても、高温時でもワイヤに張力を与えることなく自らの弾性で吸収してしまうため、ワイヤの断線を防ぐことができる。
【0064】
このようにして、リフロー炉等の高温処理時にもワイヤの断線がより一層起こりにくくなる発光ダイオードとなる。
【0065】
請求項5の発明にかかる発光ダイオードは、請求項1乃至請求項4のいずれか1つの構成において、前記樹脂注入孔を前記ガラスレンズに設ける代わりに、前記基板に設けたものである。
【0066】
これによって、ガラスレンズには発光素子とワイヤの収められる最小限の空間を設けるだけで良いことになり、ガラスレンズの加工が容易になる。また、樹脂注入孔をワイヤの直下を避けて発光素子の近傍に2つ以上設けることによって、1つの樹脂注入孔から光透過性樹脂を注入すると他の樹脂注入孔から空間内の空気が追い出されるため、気泡を残すことなく完全に充填することができる。
【0067】
このようにして、封止時にもワイヤが断線したりせず、またリフロー炉等の高温処理時にも封着材料と基板との界面における剥離やワイヤの断線が起こることがなく、さらに製造が容易な発光ダイオードとなる。
【図面の簡単な説明】
【図1】図1(a)は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す平面図、(b)は(a)のA−A断面図である。
【図2】図2は本発明の実施の形態1にかかる発光ダイオードの全体構成を示す縦断面図であり、図1(a)のB−B断面図である。
【図3】図3は本発明の実施の形態1にかかる発光ダイオードの量産方法を示す縦断面図である。
【図4】図4(a)は本発明の実施の形態2にかかる発光ダイオードの全体構成を示す平面図、(b)は(a)のC−C断面図である。
【図5】図5は従来のSMD発光ダイオードの一例を示す縦断面図である。
【符号の説明】
1,11 発光ダイオード
2,12 基板
3,13 発光素子
4,14 ワイヤ
5,15 ガラスレンズ
6,16 光透過性樹脂
7,17 回路パターン
8,18 封着材料
9 空間
9a,19 樹脂注入孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an SMD (Surface Mount Type) that can reduce the difference in the coefficient of thermal expansion and prevent wire disconnection and interface peeling by using a heat-resistant substrate and a glass lens with a low coefficient of thermal expansion for the light emitting element. ) It relates to a light emitting diode.
[0002]
In this specification, the LED chip itself is referred to as a “light emitting element”, and the entirety including an optical device such as a package resin or a lens system on which the LED chip is mounted is referred to as a “light emitting diode” or “LED”. I do.
[0003]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. H11-112025 [Patent Document 2] Japanese Patent Application Laid-Open No. H11-177129 FIG. 5 shows an example of a conventional SMD light emitting diode. As shown in FIG. 5, the LED 31 has a circuit pattern 37 provided on a glass epoxy substrate 32 by metal (gold or silver) plating, and a light emitting element 33 is mounted on the surface side of the circuit pattern 37. Conduction is achieved by bonding from the electrode on the surface to the circuit pattern 37 insulated from each other by two wires 34. The entire structure is sealed with a transparent epoxy resin 36 to protect the light emitting element 33 and to function as a lens.
[0004]
However, since the glass epoxy substrate 32 has poor heat dissipation, there is no escape for heat generated when the light emitting element 33 emits light. As a result, the temperature of the light emitting element 33 increases, the luminous efficiency decreases, and the life is shortened. Therefore, instead of using the printed circuit board 32, a light emitting element is mounted on one of a pair of metal lead plates, the other lead plate and the light emitting element are bonded by wires, and the whole is sealed with a transparent epoxy resin. The following types of LEDs have been developed. In this type of LED, heat escapes from the metal lead plate on which the light emitting element is mounted, so that the problem of heat dissipation is solved.
[0005]
However, since the coefficient of thermal expansion of the transparent epoxy resin that seals the whole is nearly five times as large as that of metal, when passing through a reflow furnace at a high temperature (about 200 ° C. to 300 ° C.) during surface mounting, the coefficient of thermal expansion is There is a possibility that a defect such as peeling at the interface with the substrate or disconnection of the wire due to the difference between them may occur.
[0006]
Further, in the technique described in Patent Document 1, a ceramic substrate having good thermal conductivity and a low coefficient of thermal expansion and excellent heat resistance is used as a substrate, terminal electrodes are provided at both ends of the substrate, and light is emitted at the center of the substrate. The element is mounted, two electrodes on the surface and two terminal electrodes are connected by wires, respectively, and the whole is molded with a transparent epoxy resin to form a package. In this LED as well, the ceramic substrate has good heat conductivity, so there is no problem of heat dissipation, but since the whole is molded with a transparent epoxy resin, defects such as peeling at the interface with the substrate and disconnection of the wire are likely to occur. Then there is no change.
[0007]
Therefore, in the technique described in Patent Document 2, low-melting-point (≒ 400 ° C.) glass is used instead of a transparent epoxy resin as a sealing material, and is directly mounted on a substrate without sandwiching the resin in the middle. The light emitting element is sealed. Thus, even when the substrate is passed through a high-temperature reflow furnace, the possibility of peeling or wire breakage at the interface with the substrate is low because both the low-melting glass and the ceramic substrate have low coefficients of thermal expansion.
[0008]
[Problems to be solved by the invention]
However, the low-melting glass has a much higher viscosity than a transparent thermosetting resin such as a transparent epoxy resin before being cured even in a molten state, so that the wire is disconnected at the time of sealing and peels off from the substrate or the light emitting element. Probability is high.
[0009]
Therefore, the present invention provides a light emitting diode in which the wire does not break even during sealing, and peeling or wire breaking does not occur at the interface between the sealing material and the substrate even during high temperature treatment such as a reflow furnace. Providing is an issue.
[0010]
[Means for Solving the Problems]
The light emitting diode according to claim 1, wherein the substrate has a low coefficient of thermal expansion and high heat resistance, a circuit pattern formed of a conductor on the substrate, a light emitting element mounted on a surface of the substrate, and the light emitting element. A metal member (wire) for conducting the circuit pattern, a glass lens covering the light emitting element and leaving only a space for accommodating the light emitting element and the metal member and a resin injection hole; A sealing material for sealing the glass lens; and a light-transmissive resin injected from the resin injection hole and filled in a space in which the light-emitting element and the metal member are accommodated.
[0011]
As described above, in this LED, a portion to be sealed with the light-transmitting resin is a minimum necessary space for accommodating the light-emitting element and the metal member, and the space and the resin injection hole are left around the light-emitting element with a glass lens. Covering. In addition, since a substrate having a low coefficient of thermal expansion and high heat resistance is used as the substrate, the difference in the coefficient of thermal expansion between the glass lens and the glass lens is small. And is not peeled off.
[0012]
Here, as a substrate having a low coefficient of thermal expansion and a high heat resistance, there is a ceramic substrate of aluminum nitride (AlN), alumina (Al 2 O 3 ) or the like.
[0013]
Further, since only the periphery of the wire is sealed by injecting a low-viscosity light-transmitting resin from the resin injection hole, there is no possibility that the wire is broken at the time of sealing. And, by making the portion to be sealed with the light-transmitting resin the minimum necessary space, the force applied to the wire due to the difference in the coefficient of thermal expansion can be minimized even when a high-temperature treatment such as a reflow furnace is performed. Therefore, disconnection of the wire can be prevented.
[0014]
In this way, a light emitting diode is obtained in which the wire does not break even during sealing, and peeling or wire breaking does not occur at the interface between the sealing material and the substrate even during high-temperature treatment such as in a reflow furnace.
[0015]
According to a second aspect of the present invention, in the light emitting diode according to the first aspect, the sealing material has a thermal expansion coefficient intermediate between that of the substrate and the glass lens.
[0016]
As a result, the difference in the coefficient of thermal expansion between the substrate and the sealing material, and the difference in the coefficient of thermal expansion between the sealing material and the glass lens is further reduced by the sealing material that enters between the substrate and the glass lens, which originally has a small difference in the coefficient of thermal expansion. In addition, peeling at each interface during high-temperature processing is more unlikely to occur.
[0017]
In this way, a light-emitting diode in which peeling at the interface between the glass lens, the sealing material, and the substrate is less likely to occur even during high-temperature treatment in a reflow furnace or the like.
[0018]
According to a third aspect of the present invention, in the light emitting diode according to the first or second aspect, the sealing material is sealing glass.
[0019]
The glass for sealing is also called “frit”, and can have various coefficients of thermal expansion by changing the components constituting the glass for sealing and the mixing ratio thereof. Therefore, the coefficient of thermal expansion between the substrate and the glass lens can be set to an intermediate value, and the difference in the coefficient of thermal expansion between the substrate and the sealing glass, and between the sealing glass and the glass lens, is further reduced. Peeling is less likely to occur. Further, the frit causes a chemical reaction between the substrate and the glass lens to seal, so that a stronger bonding force different from normal bonding can be obtained.
[0020]
In this way, a light-emitting diode in which peeling at the interface between the glass lens, the sealing material, and the substrate is more unlikely to occur even during high-temperature treatment in a reflow furnace or the like.
[0021]
According to a fourth aspect of the present invention, in the light emitting diode according to any one of the first to third aspects, the light transmitting resin is a transparent silicone resin.
[0022]
Transparent silicone resin is a light-transmitting resin that is extremely elastic even after thermosetting. Since the wire is absorbed, disconnection of the wire can be prevented.
[0023]
In this way, a light emitting diode in which the wire is less likely to break even during high-temperature treatment in a reflow furnace or the like is obtained.
[0024]
A light emitting diode according to a fifth aspect of the present invention is the light emitting diode according to any one of the first to fourth aspects, wherein the resin injection hole is provided on the substrate instead of being provided on the glass lens.
[0025]
As a result, the glass lens only needs to be provided with a minimum space for accommodating the light emitting element and the wire, and the processing of the glass lens becomes easy. Further, by providing two or more resin injection holes near the light emitting element avoiding directly below the wire, when light-transmissive resin is injected from one resin injection hole, air in the space is expelled from another resin injection hole. Therefore, it can be completely filled without leaving air bubbles.
[0026]
In this way, the wire is not broken even during sealing, and peeling or wire breaking at the interface between the sealing material and the substrate does not occur even during high-temperature treatment such as a reflow furnace, which further facilitates manufacturing. Light emitting diode.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0028]
Embodiment 1
First, a light emitting diode according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a plan view showing an entire configuration of a light emitting diode according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA of FIG. FIG. 2 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the first embodiment of the present invention, and is a sectional view taken along line BB of FIG. FIG. 3 is a longitudinal sectional view showing a method for mass-producing the light emitting diode according to the first embodiment of the present invention.
[0029]
As shown in FIG. 1, a ceramic substrate 2 of a through hole (not shown) in which a circuit pattern 7 is formed by silver plating has four corners cut out by quarter circles, and a substantially square glass is formed thereon. A plate-shaped portion around the lens 5 is placed. That is, as shown in the vertical cross-sectional view in the diagonal direction of FIG. 1B, the plate-like portions of the glass lens 5 protrude from the ceramic substrate 2 at the four corners of a substantially square. A light emitting element 3 is mounted on the ceramic substrate 2, and two electrodes provided on the surface of the light emitting element 3 are respectively connected to predetermined positions of a circuit pattern 7 of the ceramic substrate 2 by two gold wires 4. Bonding.
[0030]
Then, a glass lens 5 having a minimum necessary space for accommodating the light emitting element 3 and the wire 4 and the resin injection hole 9a is covered thereon, and four corners of the plate portion of the glass lens 5 are used as sealing materials. The sealing glass 8 is applied by a quarter circle, and the plate portion of the glass lens 5 and the ceramic substrate 2 are firmly sealed at a high temperature (around 400 ° C.). The mounted light emitting element 3 can withstand the high temperature of about 400 ° C., and the light emitting characteristics do not deteriorate at all. The ceramic substrate 2 is made of aluminum nitride (AlN) ceramic, has a low coefficient of thermal expansion (4.5 × 10 −6 / ° C.), and has high heat resistance.
[0031]
Therefore, although the difference in the coefficient of thermal expansion between the glass lens 5 and the glass lens 5 having the same low coefficient of thermal expansion is small, since the sealing glass 8 has an intermediate coefficient of thermal expansion between the AlN substrate 2 and the glass lens 5, The difference in the coefficient of thermal expansion between the AlN substrate 2 and the sealing glass 8 and between the sealing glass 8 and the glass lens 5 is further reduced, and the AlN substrate 2 is subjected to a high-temperature treatment such as passing through a reflow furnace (about 200 ° C. to 300 ° C.). The interface between the substrate 2 and the sealing glass 8 and the interface between the sealing glass 8 and the glass lens 5 are not separated, and the AlN substrate 2 and the glass lens 5 are tightly sealed.
[0032]
The reason why the sealing glass 8 is applied to the four corners of the plate-shaped portion of the glass lens 5 is that the sealing glass 8 is generally black, so that the glass 8 is kept away from the light emitting element 3 so as not to adversely affect the light emission characteristics. is there. In the case of white sealing glass, it may be applied to a portion closer to the center.
[0033]
Next, the injection of the light transmitting resin will be described with reference to FIG. As shown in FIG. 2, on the lower surface of the glass lens 5 sealed with the AlN substrate 2, a minimum necessary space for accommodating the light emitting element 3 and the wire 4 and a resin injection hole 9a are formed. A transparent silicone resin 6 as a light-transmitting resin is injected from the resin injection hole 9a, and the space is filled to seal the light emitting element 3 and the wire 4. Since the viscosity of the transparent silicone resin 6 before heat curing is low, the wire 4 does not break due to the injection of the transparent silicone resin 6. Thereafter, the LED 1 of the first embodiment is completed by thermally curing the transparent silicone resin 6.
[0034]
As described above, by minimizing the volume to be sealed with the light transmitting resin 6, the tension applied to the wire 4 due to the difference in the coefficient of thermal expansion during the high-temperature processing is also minimized, and the wire 4 is prevented from breaking. Can be. Further, the use of the transparent silicone resin 6 as the light-transmitting resin allows the transparent silicone resin 6 to have elasticity even after thermosetting. The wire 4 can be more reliably prevented from being broken.
[0035]
In this way, in the LED 1 of the first embodiment, the wire 4 does not break even during sealing, and peeling at the interface between the sealing material and the substrate or the wire breakage during high-temperature processing such as a reflow furnace. The LED is free from disconnection.
[0036]
Next, a method of mass-producing the LED 1 according to the first embodiment will be described with reference to FIG. First, a ceramic (AlN) substrate 2 having many times the length and width of the LED 1 is prepared, a through hole (not shown) is opened in a necessary portion, and a circuit pattern 7 is formed by silver plating or the like. Then, cuts 2a are made in advance on the back surface of the AlN substrate 2 at the positions where they are finally cut and separated. Then, the light emitting elements 3 are successively mounted at predetermined positions on the surface of the AlN substrate 2, and gold wires 4 are bonded to two surface electrodes of the mounted light emitting elements 3, respectively. Each of the circuit patterns 7 is bonded at a predetermined position.
[0037]
When the mounting of all the light emitting elements 3 and the wires 4 is completed in this way, the glass lens 5 is covered from above and sealed. That is, as shown in FIG. 3, the minimum required space 9 for accommodating the light emitting element 3 and the wire 4 on the lower surface of the glass lens 5 and the resin injection hole 9a are connected vertically and horizontally, and the AlN substrate 2 Ones of almost the same size are prepared. Then, glass for sealing is applied to a predetermined position on the upper surface of the AlN substrate 2 or the lower surface of the glass lens 5, and a glass glass 5 is connected from above the AlN substrate 2, and the sealing temperature (400) (Around ℃).
[0038]
After cooling, the LED 1 (each of which is still filled with a sealing resin) is cleaved using a cut 2a on the lower surface of the AlN substrate 2 which has been previously inserted, or cut by a dicing machine or the like. Not). Then, as described with reference to FIG. 2, the transparent silicone resin is injected from the resin injection hole 9a to fill the space 9, the light emitting element 3 and the wire 4 are sealed, and the transparent silicone resin is thermally cured. Thus, the LEDs 1 of the first embodiment can be mass-produced.
[0039]
Embodiment 2
Next, a light emitting diode according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4A is a plan view illustrating the entire configuration of the light emitting diode according to the second embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along line CC of FIG.
[0040]
As shown in FIG. 4, the LED 11 according to the second embodiment has four corners of a through-hole (not shown) in which a circuit pattern 17 is formed by silver plating on the ceramic substrate 12 similarly to the first embodiment. The plate-shaped portion around the substantially square glass lens 15 is mounted thereon. The ceramic substrate 12 is also made of aluminum nitride (AlN), and a light emitting element 13 is mounted on the AlN substrate 12, and two electrodes provided on the surface of the light emitting element 13 are two gold wires. At 14, each is bonded to a predetermined position of the circuit pattern 17 of the AlN substrate 12.
[0041]
Then, a glass lens 15 in which a necessary minimum space for accommodating the light emitting element 13 and the wire 14 is formed is placed thereon, and sealing glass 18 as a sealing material is provided at four corners of the plate portion of the glass lens 15. Is applied by quarter circles, and the plate-like portion of the glass lens 15 and the AlN substrate 12 are firmly sealed at a high temperature (around 400 ° C.). The mounted light emitting element 13 can withstand such a high temperature of about 400 ° C., and the light emitting characteristics do not deteriorate at all. The AlN substrate 12 has a low coefficient of thermal expansion and a high heat resistance.
[0042]
Therefore, although the difference in the coefficient of thermal expansion between the glass lens 15 and the glass lens 15 having a low coefficient of thermal expansion is small, the sealing glass 18 also has a coefficient of thermal expansion between the AlN substrate 12 and the glass lens 15 in the second embodiment. Is used, the difference in the thermal expansion coefficient between the AlN substrate 12 and the sealing glass 18 and between the sealing glass 18 and the glass lens 15 is further reduced, such as through a reflow furnace (about 200 ° C. to 300 ° C.). The interface between the AlN substrate 12 and the glass for sealing 18 and the interface between the glass for sealing 18 and the glass lens 15 do not peel off even after the high-temperature treatment, and the AlN substrate 12 and the glass lens 15 are tightly sealed.
[0043]
Next, injection of the light transmitting resin will be described. As shown in FIG. 4, in the second embodiment, two positions of the AlN substrate 12 are communicated with the minimum necessary space for accommodating the light emitting element 13 and the wire 14 provided on the lower surface of the glass lens 15. A resin injection hole 19 is formed. A transparent silicone resin 16 as a light-transmitting resin is injected from these resin injection holes 19, and the space is filled to seal the light emitting element 13 and the wire 14. Since the viscosity of the transparent silicone resin 16 before heat curing is extremely low, the wire 14 does not break due to the injection of the transparent silicone resin 16.
[0044]
Here, if the transparent silicone resin 16 is injected only from one of the resin injection holes 19, the air is expelled from the other resin injection hole 19, so that the filling can be easily performed without leaving air bubbles. Thereafter, the LED 11 of the second embodiment is completed by thermally curing the transparent silicone resin 16.
[0045]
As described above, by minimizing the volume to be sealed with the light-transmitting resin 16, the tension applied to the wire 14 due to the difference in the coefficient of thermal expansion during high-temperature processing is also minimized, and the wire 14 is prevented from being disconnected. Can be. Further, the use of the transparent silicone resin 16 as the light-transmitting resin allows the transparent silicone resin 16 to have elasticity even after thermosetting. The wire 14 can be more reliably prevented from breaking. Further, since the two resin injection holes 19 are formed in the AlN substrate 12, the injection of the transparent silicone resin 16 is facilitated, and the processing of the glass lens 15 is also facilitated.
[0046]
In this manner, in the LED 11 of the second embodiment, the wire 14 does not break even during sealing, and peeling at the interface between the sealing material and the substrate during high-temperature processing such as in a reflow furnace or the wire There is no disconnection and the LED is easier to manufacture.
[0047]
In each of the above-described embodiments, the circuit patterns 7 and 17 are formed by silver plating having a high blue reflectance, since a blue light-emitting element is used as the light-emitting elements 3 and 13. An element may be used. When a red light emitting element is used, it is desirable to form a circuit pattern by gold plating having high red reflectance.
[0048]
Further, in each of the above embodiments, the case where AlN is used as the substrate material has been described. However, any material having a low coefficient of thermal expansion and high heat resistance may be used. However, a material having high thermal conductivity is desirable, for example, Al 2 O 3 or the like.
[0049]
Further, in each of the above embodiments, the transparent silicone resin is used as the light transmitting resin for sealing the light emitting element and the wire, but other resin materials such as a transparent epoxy resin may be used.
[0050]
In addition, the light emitting element is not limited to one in which an electrode is formed on an upper surface and is electrically connected by a wire, and may be one in which an electrode is formed on a lower surface and is electrically connected by a bump or the like. .
[0051]
The configuration, shape, quantity, material, size, connection relationship, and the like of other portions of the light emitting diode are not limited to the above embodiments.
[0052]
【The invention's effect】
As described above, the light emitting diode according to the first aspect of the present invention includes a substrate having a low coefficient of thermal expansion and high heat resistance, a circuit pattern formed of a conductor on the substrate, and a light emitting device mounted on the surface of the substrate. An element, a metal member (wire) that establishes conduction between the light emitting element and the circuit pattern, a glass lens that covers the periphery of the light emitting element except for a space for accommodating the light emitting element and the wire and a resin injection hole, A sealing material for sealing the substrate surface and the glass lens; and a light transmissive resin injected from the resin injection hole and filled in a space in which the light emitting element and the wire fit.
[0053]
As described above, in this LED, the part to be sealed with the light-transmitting resin is a necessary minimum space for the light emitting element and the wire, and the space around the light emitting element is covered with the glass lens leaving the space and the resin injection hole. I have. In addition, since a substrate having a low coefficient of thermal expansion and high heat resistance is used as the substrate, the difference in the coefficient of thermal expansion between the glass lens and the glass lens is small. And is not peeled off.
[0054]
Further, since only the periphery of the wire is sealed by injecting a low-viscosity light-transmitting resin from the resin injection hole, there is no possibility that the wire is broken at the time of sealing. And, by making the portion to be sealed with the light-transmitting resin the minimum necessary space, the force applied to the wire due to the difference in the coefficient of thermal expansion can be minimized even when a high-temperature treatment such as a reflow furnace is performed. Therefore, disconnection of the wire can be prevented.
[0055]
In this way, a light emitting diode is obtained in which the wire does not break even during sealing, and peeling or wire breaking does not occur at the interface between the sealing material and the substrate even during high-temperature treatment such as in a reflow furnace.
[0056]
According to a second aspect of the present invention, in the light emitting diode according to the first aspect, the sealing material has a thermal expansion coefficient intermediate between that of the substrate and the glass lens.
[0057]
As a result, the difference in the coefficient of thermal expansion between the substrate and the sealing material, and the difference in the coefficient of thermal expansion between the sealing material and the glass lens is further reduced by the sealing material that enters between the substrate and the glass lens, which originally has a small difference in the coefficient of thermal expansion. In addition, peeling at each interface during high-temperature processing is more unlikely to occur.
[0058]
In this way, a light-emitting diode in which peeling at the interface between the glass lens, the sealing material, and the substrate is less likely to occur even during high-temperature treatment in a reflow furnace or the like.
[0059]
According to a third aspect of the present invention, in the light emitting diode according to the first or second aspect, the sealing material is sealing glass.
[0060]
The glass for sealing is also called “frit”, and can have various coefficients of thermal expansion by changing the components constituting the glass for sealing and the mixing ratio thereof. Therefore, the coefficient of thermal expansion between the substrate and the glass lens can be set to an intermediate value, and the difference in the coefficient of thermal expansion between the substrate and the sealing glass, and between the sealing glass and the glass lens, is further reduced. Peeling is less likely to occur. Further, the frit causes a chemical reaction between the substrate and the glass lens to seal, so that a stronger bonding force different from normal bonding can be obtained.
[0061]
In this way, a light-emitting diode in which peeling at the interface between the glass lens, the sealing material, and the substrate is more unlikely to occur even during high-temperature treatment in a reflow furnace or the like.
[0062]
According to a fourth aspect of the present invention, in the light emitting diode according to any one of the first to third aspects, the light transmitting resin is a transparent silicone resin.
[0063]
Transparent silicone resin is a light-transmitting resin that is extremely elastic even after thermosetting. Since the wire is absorbed, disconnection of the wire can be prevented.
[0064]
In this way, a light-emitting diode in which the wire is less likely to break even during a high-temperature treatment in a reflow furnace or the like is obtained.
[0065]
A light emitting diode according to a fifth aspect of the present invention is the light emitting diode according to any one of the first to fourth aspects, wherein the resin injection hole is provided on the substrate instead of being provided on the glass lens.
[0066]
Thus, the glass lens only needs to be provided with a minimum space in which the light emitting element and the wire can be accommodated, and the processing of the glass lens becomes easy. Also, by providing two or more resin injection holes near the light emitting element avoiding directly below the wire, when light transmitting resin is injected from one resin injection hole, air in the space is expelled from another resin injection hole. Therefore, it can be completely filled without leaving air bubbles.
[0067]
In this way, the wire does not break even during sealing, and no peeling or breaking of the wire occurs at the interface between the sealing material and the substrate during high-temperature treatment such as in a reflow furnace, which further facilitates manufacturing. Light emitting diode.
[Brief description of the drawings]
FIG. 1A is a plan view showing an entire configuration of a light emitting diode according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA of FIG.
FIG. 2 is a longitudinal sectional view showing the entire configuration of the light emitting diode according to the first embodiment of the present invention, and is a sectional view taken along line BB of FIG. 1 (a).
FIG. 3 is a longitudinal sectional view illustrating a method for mass-producing the light emitting diode according to the first embodiment of the present invention.
FIG. 4A is a plan view showing an entire configuration of a light emitting diode according to a second embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along line CC of FIG.
FIG. 5 is a longitudinal sectional view showing an example of a conventional SMD light emitting diode.
[Explanation of symbols]
1,11 light emitting diode 2,12 substrate 3,13 light emitting element 4,14 wire 5,15 glass lens 6,16 light transmitting resin 7,17 circuit pattern 8,18 sealing material 9 space 9a, 19 resin injection hole

Claims (5)

熱膨張率が低く耐熱性の高い基板と、
前記基板に導電体で形成された回路パターンと、
前記基板表面にマウントされた発光素子と、
前記発光素子と前記回路パターンの導通をとる金属製部材と、
前記発光素子及び前記金属製部材の収まる空間と樹脂注入孔のみを残して前記発光素子の周囲を覆うガラスレンズと、
前記基板表面と前記ガラスレンズとを封着する封着材料と、
前記樹脂注入孔から注入され、前記発光素子と前記金属製部材の収まる空間に充填される光透過性樹脂と
を具備することを特徴とする発光ダイオード。
A substrate with low coefficient of thermal expansion and high heat resistance;
A circuit pattern formed of a conductor on the substrate,
A light-emitting element mounted on the substrate surface,
A metal member for conducting the light emitting element and the circuit pattern,
A glass lens covering the light emitting element and leaving only a space and a resin injection hole for the light emitting element and the metal member,
A sealing material for sealing the substrate surface and the glass lens,
A light-emitting diode, comprising: a light-transmitting resin injected from the resin injection hole to fill a space in which the light-emitting element and the metal member are accommodated.
前記封着材料は、前記基板と前記ガラスレンズとの中間の熱膨張率を有するものであることを特徴とする請求項1に記載の発光ダイオード。The light emitting diode according to claim 1, wherein the sealing material has a coefficient of thermal expansion between the substrate and the glass lens. 前記封着材料は、封着用ガラスであることを特徴とする請求項1または請求項2に記載の発光ダイオード。The light emitting diode according to claim 1, wherein the sealing material is sealing glass. 前記光透過性樹脂は、透明シリコーン樹脂であることを特徴とする請求項1乃至請求項3のいずれか1つに記載の発光ダイオード。The light emitting diode according to claim 1, wherein the light transmitting resin is a transparent silicone resin. 前記樹脂注入孔を前記ガラスレンズに設ける代わりに、前記基板に設けたことを特徴とする請求項1乃至請求項4のいずれか1つに記載の発光ダイオード。The light emitting diode according to any one of claims 1 to 4, wherein the resin injection hole is provided in the substrate instead of being provided in the glass lens.
JP2002377965A 2002-12-24 2002-12-26 Light emitting diode Pending JP2004207660A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002377965A JP2004207660A (en) 2002-12-26 2002-12-26 Light emitting diode
US10/731,104 US6998777B2 (en) 2002-12-24 2003-12-10 Light emitting diode and light emitting diode array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377965A JP2004207660A (en) 2002-12-26 2002-12-26 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2004207660A true JP2004207660A (en) 2004-07-22

Family

ID=32814976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377965A Pending JP2004207660A (en) 2002-12-24 2002-12-26 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2004207660A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140281A (en) * 2004-11-11 2006-06-01 Stanley Electric Co Ltd Power led and its manufacturing method
JP2006269986A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Light-emitting device
JP2007059492A (en) * 2005-08-22 2007-03-08 Citizen Electronics Co Ltd Structure of fresnel lens-equipped chip led
JP2007059678A (en) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp Light-emitting diode device
WO2007057984A1 (en) * 2005-11-21 2007-05-24 Matsushita Electric Works, Ltd. Light-emitting device
WO2007057983A1 (en) * 2005-11-21 2007-05-24 Matsushita Electric Works, Ltd. Light-emitting device
WO2008148342A1 (en) * 2007-06-05 2008-12-11 Jianping Zhu An illuminator with white light planar light source
WO2008149921A1 (en) * 2007-06-07 2008-12-11 Showa Denko K.K. Display device, cap, light emission device, and method of producing them
JP2009054660A (en) * 2007-08-24 2009-03-12 Yazaki Corp Manufacturing method for housing integrated type optical semiconductor component
US7671534B2 (en) 2005-09-28 2010-03-02 Hitachi Lighting, Ltd. Liquid crystal display, illuminant module and its manufacturing method
JP2012506140A (en) * 2008-10-17 2012-03-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
KR101258398B1 (en) 2007-03-30 2013-04-25 서울반도체 주식회사 Led package with interfacial debonding reduced
JP2013149927A (en) * 2012-01-23 2013-08-01 Sharp Corp Light-emitting device and manufacturing method of the same
US8759123B2 (en) 2009-03-26 2014-06-24 Toyoda Gosei Co., Ltd. Method of manufacturing LED lamp
US8963188B2 (en) 2005-10-27 2015-02-24 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
EP1657757B1 (en) 2004-11-12 2017-05-10 Philips Lumileds Lighting Company LLC Method of manufacturing a semiconductor light emitting device with bonded optical element
JP2017516314A (en) * 2014-05-21 2017-06-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Attaching the lens to the LED module with high alignment accuracy

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140281A (en) * 2004-11-11 2006-06-01 Stanley Electric Co Ltd Power led and its manufacturing method
EP1657757B1 (en) 2004-11-12 2017-05-10 Philips Lumileds Lighting Company LLC Method of manufacturing a semiconductor light emitting device with bonded optical element
JP2006269986A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Light-emitting device
JP2007059492A (en) * 2005-08-22 2007-03-08 Citizen Electronics Co Ltd Structure of fresnel lens-equipped chip led
JP2007059678A (en) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp Light-emitting diode device
US7671534B2 (en) 2005-09-28 2010-03-02 Hitachi Lighting, Ltd. Liquid crystal display, illuminant module and its manufacturing method
US9012947B2 (en) 2005-10-27 2015-04-21 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
US8963188B2 (en) 2005-10-27 2015-02-24 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
US9054283B2 (en) 2005-10-27 2015-06-09 Lg Innotek Co., Ltd. Light emitting diode package and method of manufacturing the same
WO2007057984A1 (en) * 2005-11-21 2007-05-24 Matsushita Electric Works, Ltd. Light-emitting device
WO2007057983A1 (en) * 2005-11-21 2007-05-24 Matsushita Electric Works, Ltd. Light-emitting device
US7767475B2 (en) 2005-11-21 2010-08-03 Panasonic Electric Works Co., Ltd. Light emitting device
KR101010229B1 (en) * 2005-11-21 2011-01-21 파나소닉 전공 주식회사 Light-emitting device
EP2264797A3 (en) * 2005-11-21 2011-08-03 Panasonic Electric Works Co., Ltd Light-emitting device
US8278678B2 (en) 2005-11-21 2012-10-02 Panasonic Corporation Light emitting device
KR101258398B1 (en) 2007-03-30 2013-04-25 서울반도체 주식회사 Led package with interfacial debonding reduced
WO2008148342A1 (en) * 2007-06-05 2008-12-11 Jianping Zhu An illuminator with white light planar light source
JP2008305940A (en) * 2007-06-07 2008-12-18 Showa Denko Kk Display, cap, light-emitting device, and manufacturing methods of same display, cap, and light-emitting device
WO2008149921A1 (en) * 2007-06-07 2008-12-11 Showa Denko K.K. Display device, cap, light emission device, and method of producing them
JP2009054660A (en) * 2007-08-24 2009-03-12 Yazaki Corp Manufacturing method for housing integrated type optical semiconductor component
JP2012506140A (en) * 2008-10-17 2012-03-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
JP2016015527A (en) * 2008-10-17 2016-01-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light emitting device
US8759123B2 (en) 2009-03-26 2014-06-24 Toyoda Gosei Co., Ltd. Method of manufacturing LED lamp
JP2013149927A (en) * 2012-01-23 2013-08-01 Sharp Corp Light-emitting device and manufacturing method of the same
JP2017516314A (en) * 2014-05-21 2017-06-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Attaching the lens to the LED module with high alignment accuracy

Similar Documents

Publication Publication Date Title
US6998777B2 (en) Light emitting diode and light emitting diode array
US10431567B2 (en) White ceramic LED package
JP5695488B2 (en) Luminous body package
KR101360732B1 (en) Led package
JP5596901B2 (en) Power light emitting die package having a reflective lens and method of manufacturing the same
JP4547569B2 (en) Surface mount type LED
US7491981B2 (en) Light-emitting device and glass seal member therefor
JP4279388B2 (en) Optical semiconductor device and method for forming the same
US9240395B2 (en) Waterproof surface mount device package and method
JP2004207660A (en) Light emitting diode
JP4678388B2 (en) Light emitting device
JP2009117536A (en) Resin-sealed light emitter, and manufacturing method thereof
JP2006054209A (en) Light emitting device
JP2007142279A (en) Light-emitting apparatus and manufacturing method thereof
TW201442294A (en) LED module with hermetic seal of wavelength conversion material
KR20050092300A (en) High power led package
JP2004207367A (en) Light emitting diode and light emitting diode arrangement plate
JP2007116095A (en) Light-emitting apparatus
JP4001178B2 (en) Light emitting device
JP6107229B2 (en) Light emitting device
JP4147353B2 (en) Light emitting device
JP2010171217A (en) Light-emitting element package, light-emitting device, and display
JP5126127B2 (en) Method for manufacturing light emitting device
JP4016925B2 (en) Light emitting device
JP2009130300A (en) Method of manufacturing light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819