JP4303550B2 - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- JP4303550B2 JP4303550B2 JP2003342705A JP2003342705A JP4303550B2 JP 4303550 B2 JP4303550 B2 JP 4303550B2 JP 2003342705 A JP2003342705 A JP 2003342705A JP 2003342705 A JP2003342705 A JP 2003342705A JP 4303550 B2 JP4303550 B2 JP 4303550B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- led element
- sealing member
- emitting device
- buffer layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Description
本発明は、発光装置に関し、特に、封止部材の封止時の熱的影響により、ボンディングワイヤやバンプなどが潰れ電気的短絡が生じることや、封止時と封止加工後の常温状態との温度変化による発光素子と封止部材の熱膨張率差に起因して生じる封止部材の発光素子の近傍におけるクラックの発生を防止できるようにした発光装置に関する。 The present invention relates to a light emitting device, and in particular, due to a thermal influence during sealing of a sealing member, bonding wires and bumps are crushed and an electrical short circuit occurs. The present invention relates to a light emitting device capable of preventing the occurrence of cracks in the vicinity of a light emitting element of a sealing member caused by a difference in thermal expansion coefficient between the light emitting element and the sealing member due to a temperature change.
LED(light-Emitting Diode:発光ダイオード)を光源とする発光装置の代表的な構造として、LED素子及びリード部の所定範囲を透光性を有する封止材料で覆うものがある。この封止材料には、エポキシやシリコン等の樹脂やガラスがあるが、成形性、量産性、及びコストの面から、一般に樹脂が用いられている。 As a typical structure of a light-emitting device using an LED (light-emitting diode) as a light source, there is one that covers a predetermined range of an LED element and a lead portion with a light-transmitting sealing material. As this sealing material, there are resins such as epoxy and silicon, and glass, but resins are generally used in terms of moldability, mass productivity, and cost.
LED素子を封止樹脂で封止することにより、発光装置の設計自由度や生産性に優れる反面、LED素子から放射される光によって、封止樹脂の光学的特性及び化学的特性が劣化し、その結果、発光装置の発光効率を低下させることが問題視されている。 By sealing the LED element with a sealing resin, the design freedom and productivity of the light emitting device are excellent, but the optical and chemical characteristics of the sealing resin are deteriorated by the light emitted from the LED element, As a result, reducing the luminous efficiency of the light emitting device has been regarded as a problem.
封止用の樹脂材(例えば、エポキシ樹脂)は、LED素子から放射される強い光を受けることによって次第に黄変し、樹脂材に着色を生じることが知られている。この様な着色が生じると、LED素子から放射される光が吸収されて発光装置の光出力を低下させ、また、出力光に着色の影響が現れるという問題がある。 It is known that a sealing resin material (for example, an epoxy resin) gradually turns yellow by receiving strong light emitted from an LED element, and the resin material is colored. When such coloring occurs, there is a problem that light emitted from the LED element is absorbed to reduce the light output of the light emitting device, and the influence of coloring appears on the output light.
かかる問題を解決するものとして、耐湿性を有するガラス層でLED素子を封止し、他の部分を樹脂で封止した発光装置がある(例えば、特許文献1参照。)。 As a solution to such a problem, there is a light emitting device in which an LED element is sealed with a glass layer having moisture resistance, and other portions are sealed with a resin (for example, see Patent Document 1).
図6は、特許文献1に示された発光装置を示す断面図である。この発光装置200は、配線導体201及び202と、配線導体202に形成されるカップ部203と、カップ部203内の底部203Aに接着されるLED素子204と、LED素子204の電極部(図示せず)と配線導体201及び202の所定部位とを電気的に接続するワイヤ205と、カップ部203内に設けられるLED素子204を封止するガラス層206と、ガラス層206に含有される蛍光物質206Aと、砲弾形に成形されて全体を封止するとともに光透過性を有する封止樹脂207とを有する。蛍光物質206Aは、波長変換を行うためにガラス層206に混入されており、LED素子204から放射された光が蛍光物質206Aによって波長変換される。
FIG. 6 is a cross-sectional view showing the light emitting device disclosed in Patent Document 1. As shown in FIG. The light emitting device 200 includes wiring conductors 201 and 202, a cup part 203 formed on the wiring conductor 202, an LED element 204 bonded to a bottom part 203A in the cup part 203, and an electrode part (not shown) of the LED element 204. ) And a predetermined portion of the wiring conductors 201 and 202, a glass layer 206 for sealing the LED element 204 provided in the cup portion 203, and a fluorescent material contained in the glass layer 206 206A, and a sealing resin 207 which is molded into a shell shape and seals the whole, and has optical transparency. The
このような構成によると、LED素子204がカップ部203に注入されたガラス層206によって包囲されるので、黄変や着色による光の減衰を低減することができる。また、水分の透過が防止されて蛍光体の劣化を防ぐことができる。 According to such a configuration, since the LED element 204 is surrounded by the glass layer 206 injected into the cup portion 203, attenuation of light due to yellowing or coloring can be reduced. Further, moisture permeation can be prevented and deterioration of the phosphor can be prevented.
近年、高出力のLEDの開発が進められており、すでに数ワットの大出力タイプも製品化されている。LEDは発熱の少ないことが特徴であるが、高出力(高輝度)タイプのLED素子は大電流が流れるため、無視できないレベルの発熱が生じる。このため、封止部材を従来の樹脂材に代え、耐熱性に優れる封止材、例えばガラス材にする必要がある。
しかし、従来の発光装置によると、耐熱性を考慮して封止部材にガラス材を選択した場合、一般に、加熱によって軟化させたガラスをプレス加工して封止するか、溶融したガラスを供給して金型等で成形するといった方法が採られるため、封止加工時に熱によるダメージが生じることがある。封止加工時の熱的負担を軽減するものとして、例えば、低融点ガラスを用いる方法があるが、低融点ガラスは高膨脹になる傾向があり、封止部材に接触する配線導体等との間に熱膨脹の差に起因する物理的なストレスが発生する。例えば、LED素子の熱膨脹率が約5×10-6/℃であるのに対し、低融点ガラスの熱膨脹率が約15×10-6/℃であるため、この熱膨脹率の差によって低融点ガラスとの間に剥離やクラックが生じ易くなる。 However, according to the conventional light emitting device, when a glass material is selected as a sealing member in consideration of heat resistance, generally, glass softened by heating is sealed by pressing, or molten glass is supplied. Therefore, there is a case where heat damage may occur during the sealing process. As a method for reducing the thermal burden during the sealing process, for example, there is a method using a low melting glass, but the low melting glass tends to be highly expanded, and between the wiring conductor contacting the sealing member, etc. Physical stress due to the difference in thermal expansion occurs. For example, while the LED element has a thermal expansion coefficient of about 5 × 10 −6 / ° C., the low-melting glass has a thermal expansion coefficient of about 15 × 10 −6 / ° C. Peeling and cracking easily occur between the two.
また、フリップチップ接合されたLED素子をガラス材を用いて加熱プレス封止する際、バンプが熱によって軟化し易くなり、更に、粘性の大なるガラスを介してバンプに荷重が加わるため、バンプが圧潰して電極間の短絡が生じるといった問題もある。 In addition, when heat-press sealing a flip-chip bonded LED element using a glass material, the bump is easily softened by heat, and further, a load is applied to the bump through the glass having a high viscosity. There is also a problem that a short circuit occurs between the electrodes due to crushing.
従って、本発明の目的は、封止材にガラスを用いた場合でも、その熱応力に起因するクラックや電極間の短絡を防止できるようにした発光装置を提供することにある。 Accordingly, an object of the present invention is to provide a light emitting device capable of preventing cracks and short circuits between electrodes caused by the thermal stress even when glass is used as a sealing material.
本発明は、上記の目的を達成するため、側面に凹凸が生じている発光素子と、前記発光素子が上面に搭載され、前記発光素子に給電を行う配線層と、前記配線層が上面に形成されたセラミック基板と、を有する基板部と、前記発光素子と前記基板部の前記配線層とを接続するワイヤと、前記発光素子の全体及び前記ワイヤの全部分を覆う多孔質のセラミックからなる緩衝層と、前記緩衝層の表面及び前記基板部の上面を覆うように形成され、前記発光素子を封止し前記発光素子と熱膨張率が異なる透光性のガラスからなり、前記発光素子の封止加工後に熱収縮による応力が生じている封止部材と、を備え、前記緩衝層は、前記発光素子と前記封止部材との間に介在して熱収縮によって生じている前記封止部材の応力を吸収し、前記封止部材の封止時と封止加工後の温度変化により前記発光素子と前記封止部材の熱膨張率差に起因して生じる前記封止部材の前記発光素子の近傍におけるクラックの発生を防止することを特徴とする発光装置を提供する。 In order to achieve the above-described object, the present invention provides a light emitting element having unevenness on a side surface, a wiring layer on which the light emitting element is mounted and supplying power to the light emitting element, and the wiring layer formed on the upper surface. A ceramic part, a wire connecting the light emitting element and the wiring layer of the substrate part, and a buffer made of porous ceramic covering the whole of the light emitting element and the whole part of the wire a layer, the buffer layer surface and is formed so as to cover the upper surface of the substrate portion of the Ri emitting element and sealing the light emitting element and the thermal expansion coefficient Do different transparent glass, the light emitting element A sealing member in which stress due to thermal contraction is generated after sealing processing , and the buffer layer is interposed between the light emitting element and the sealing member and is generated by thermal contraction stress absorbs, of the sealing member To prevent the generation of cracks in the vicinity of the light emitting element of the sealing member where the sealing time and sealing process after the temperature change in the by Ri said light emitting elements caused by the difference in the coefficient of thermal expansion between the sealing member A light emitting device is provided.
前記緩衝層は、SiO 2 であっても良い。 The buffer layer may be SiO 2 meet.
前記緩衝層は、蛍光体が混入されていても良い。 The buffer layer may be mixed with a phosphor.
本発明の発光装置によれば、発光素子と封止部材との間に多孔質のセラミックの緩衝層を設けたことにより、封止部材の封止時に封止部材が発光素子にダメージを及ぼすことがなく、熱収縮に起因する封止部材における発光素子の近傍のクラックの発生を防止することができる。 According to the light emitting device of the present invention, by providing a porous ceramic buffer layer between the light emitting element and the sealing member, the sealing member damages the light emitting element when the sealing member is sealed. There is no occurrence of cracks in the vicinity of the light emitting element in the sealing member due to thermal contraction .
図1は、本発明の第1の実施の形態に係る発光装置の構成を示す断面図である。この発光装置10は、給電部材としての基板部11と、この基板部11の上面に搭載されたLED素子12と、基板部11の上面にLED素子12を覆うように封止された緩衝層13と、この緩衝層13及び基板部11の上面を覆うように形成された封止部材14とを備えて構成される。
FIG. 1 is a cross-sectional view showing a configuration of a light emitting device according to a first embodiment of the present invention. The
基板部11は、高膨脹率のセラミック基板11a(絶縁性基板)と、このセラミック基板11aの上面に所定のパターンで形成された配線層11b,11c,11d,11eと、セラミック基板11aの下面に所定のパターンで形成された配線層11f,11gと、配線層11cの表面に被覆されたAuメッキ膜11hと、配線層11dの表面に被覆されたAuメッキ膜11iと、配線層11fの表面に被覆されたAuメッキ膜11jと、配線層11gの表面に被覆されたAuメッキ膜11kと、配線層11bと配線層11fを接続するスルーホール11lと、配線層11dと配線層11gを接続するスルーホール11mとを備えている。 The substrate portion 11 includes a high expansion ceramic substrate 11a (insulating substrate), wiring layers 11b, 11c, 11d, and 11e formed in a predetermined pattern on the upper surface of the ceramic substrate 11a, and a lower surface of the ceramic substrate 11a. The wiring layers 11f and 11g formed in a predetermined pattern, the Au plating film 11h coated on the surface of the wiring layer 11c, the Au plating film 11i coated on the surface of the wiring layer 11d, and the surface of the wiring layer 11f The coated Au plating film 11j, the Au plating film 11k coated on the surface of the wiring layer 11g, the through hole 11l connecting the wiring layer 11b and the wiring layer 11f, and the through connecting the wiring layer 11d and the wiring layer 11g. And a hole 11m.
セラミック基板11aは、例えば、ガラス含有Al2O3材(熱膨張率:13.2×10−6/℃)を用いることができる。配線層11c,11d,11f,11gは、電源を供給するための電極として機能する。また、Auメッキ膜11h,11i,11j,11kは、接続性、導電性、及び耐腐食性を向上させるために設けられている。なお、基板部11は、LED素子12の搭載の前に、配線層11b〜11g、Auメッキ膜11h〜11k、及びスルーホール11l,11mは、予めセラミック基板11aに形成しておく必要がある。 For the ceramic substrate 11a, for example, a glass-containing Al 2 O 3 material (thermal expansion coefficient: 13.2 × 10 −6 / ° C.) can be used. Wiring layers 11 c, 11d, 11 f, 11g functions as an electrode for supplying power. Further, the Au plating films 11h, 11i, 11j, and 11k are provided in order to improve connectivity, conductivity, and corrosion resistance. In addition, before the LED element 12 is mounted on the substrate unit 11, the wiring layers 11b to 11g, the Au plating films 11h to 11k, and the through holes 11l and 11m need to be formed in the ceramic substrate 11a in advance.
LED素子12は、例えば、GaN、AlInGaP等の半導体を用いて構成されており、そのチップサイズは、0.3×0.3mm(標準サイズ)、1×1mm(ラージサイズ)等である。緩衝層13には、熱によってシリコン樹脂の化学結合が切れたSiO 2 が用いられる。封止部材14には、例えば、住田光学ガラス株式会社製の「PSK100」(熱膨張率:11.4×10−6/℃)がある。 The LED element 12 is configured by using a semiconductor such as GaN or AlInGaP, and the chip size is 0.3 × 0.3 mm (standard size), 1 × 1 mm (large size), or the like. For the buffer layer 13, SiO 2 in which the chemical bond of the silicon resin is broken by heat is used. The sealing member 14 includes, for example, “PSK100” (thermal expansion coefficient: 11.4 × 10 −6 / ° C.) manufactured by Sumita Optical Glass Co., Ltd.
封止部材14は、透光性で低融点の特性を有するガラス材を用いている。LED素子12は、下面に電源用の電極12a,12bを有し、この電極12a,12bが基板部11の所定の配線層上に半田付けされる。
The sealing member 14 is made of a glass material having translucency and a low melting point. The LED element 12 has
以下に、発光装置10の組み立てについて説明する。
Hereinafter, assembly of the
まず、基板部11の配線層11c,11d上に電極12a,12bが載るようにしてLED素子12を位置決めして、配線層11cと電極12a、及び配線層11dと電極12bとをそれぞれ半田付けする。
First, the LED element 12 is positioned so that the
次に、液状のシリコン樹脂材をLED素子12の中心部の真上から滴下して、LED素子12の上面及び側面の全体に層状にコーティングすることにより緩衝層13を形成する。 Next, a liquid silicone resin material is dropped from directly above the central portion of the LED element 12, and the buffer layer 13 is formed by coating the entire upper surface and side surfaces of the LED element 12 in layers.
次に、緩衝層13を形成された状態で基板部11およびLED素子12を150℃程度の温度雰囲気に置き、緩衝層13を一次硬化させる。 Next, with the buffer layer 13 formed, the substrate unit 11 and the LED element 12 are placed in a temperature atmosphere of about 150 ° C., and the buffer layer 13 is primarily cured.
次に、緩衝層13の表面及び基板部11の表面にガラス材による封止部材14を封止する。封止部材14の封止には金型を用い、所定の温度雰囲気及び加圧プレスにより図1のように半円型に成形する。以上により、発光装置10が完成する。なお、シリコン樹脂はガラス封止加工の際、熱によって化学結合が切れSiO2化するが、黒化現象は生ぜず、光吸収要因とはならない。
Next, the sealing member 14 made of a glass material is sealed on the surface of the buffer layer 13 and the surface of the substrate unit 11. A mold is used for sealing the sealing member 14, and it is formed into a semicircular shape as shown in FIG. Thus, the
上記構成の発光装置10において、例えば、配線層11fがLED素子12のアノード側であるとすると、配線層11fに直流電源(図示せず)のプラス側が接続され、配線層11gにはマイナス側が接続される。LED素子12に対して、各電極12a,12bに電気的に接続されたバンプを介して順方向の電圧を印加すると、LED素子12内の発光層内においてホール及びエレクトロンのキャリア再結合が発生して発光し、出力光がサファイア基板を介してLED素子12の外部へ放射される。この光の殆どは封止部材14内を透過して封止部材14の外へ出光し、一部は内面反射をして封止部材14の外へ出光する。
In the
上記した第1の実施の形態によると、以下の効果が得られる。
(1)ガラス材による封止部材14で全体を封止したことにより、樹脂封止で問題になった黄変や着色による光の減衰を低減することができる。
(2)LED素子12の周囲に緩衝層13を設けたことにより、封止部材14の封止時に粘度の高いガラス材を介してLED素子12に付与される外力が緩和される。すなわち、緩衝層13の介在によってLED素子12と封止部材14とが直接接触しないので、熱膨張・熱収縮によって生じる応力を緩衝層13によって吸収できる。
(3)緩衝層13を介してLED素子12をガラス封止することによって、封止部材14のLED素子12近傍に生じていたクラックの発生を防止することが可能になる。このような緩衝層13を設ける構成は、封止部材14との接触面積が広くなるラージサイズ(1mm×1mm)のLED素子12において特に有効である。
(4)LED素子12を緩衝層13で包囲することによって、バンプの圧潰による電極間の短絡を防ぐことができる。また、緩衝層13がバンプ形状の崩れを抑制することから、ガラス封止によってLED素子12の光軸が傾くことを防げる。
(5)ウェハをスクライブすることによりLED素子12を形成する場合、スクライブされたLED素子12の側面には微細な凹凸が生じている。この凹凸はガラス封止型の発光装置10にとってLED素子12と封止部材14との界面に応力の不均衡部分を形成し、ひいてはマイクロクラックを発生させる要因となる。
このような問題に対しては、LED素子12のスクライブ面となる側面に緩衝層13が設けられているので、封止部材14の熱収縮時におけるマイクロクラックの発生を防げる。
According to the first embodiment described above, the following effects are obtained.
(1) By sealing the whole with the sealing member 14 made of a glass material, it is possible to reduce attenuation of light due to yellowing or coloring, which is a problem in resin sealing.
(2) By providing the buffer layer 13 around the LED element 12, the external force applied to the LED element 12 through the glass material having a high viscosity when the sealing member 14 is sealed is reduced. That is, since the LED element 12 and the sealing member 14 are not in direct contact with each other due to the buffer layer 13, the buffer layer 13 can absorb the stress caused by thermal expansion and thermal contraction.
(3) By sealing the LED element 12 with the glass via the buffer layer 13, it is possible to prevent the occurrence of cracks that have occurred in the vicinity of the LED element 12 of the sealing member 14 . Such a configuration in which the buffer layer 13 is provided is particularly effective in the large size (1 mm × 1 mm) LED element 12 in which the contact area with the sealing member 14 is widened.
(4) by surrounding the LED element 12 with a buffer layer 13, it is possible to prevent a short circuit between electrodes due to crushing of the bun flop. Moreover, since the buffer layer 13 suppresses the collapse of the bump shape, the optical axis of the LED element 12 can be prevented from being tilted by glass sealing.
(5) When the LED element 12 is formed by scribing the wafer, fine irregularities are generated on the side surface of the scribed LED element 12. This unevenness forms an unbalanced portion of the stress at the interface between the LED element 12 and the sealing member 14 for the glass-sealed
Such relative problems, than the buffer layer 13 in the scribe surface and further aspect of the LED element 12 is provided, prevent the occurrence of microcracks during the heat shrinkage of the sealing member 14.
図2は、第1の実施の形態に係る発光装置の変形例を示す断面図である。この発光装置20では、LED素子12の側面にのみ緩衝層21を設けている構成が相違している。このような構成としてもバンプの圧潰による電極間の短絡を防ぎ、封止部材14の熱収縮に伴う応力を緩和することができる。また、LED素子12の基板側に緩衝層が設けられないことから、LED素子12から放射される光の取り出しを阻害することがない。
FIG. 2 is a cross-sectional view showing a modification of the light emitting device according to the first embodiment. In the light emitting device 20, the configuration in which the
図3は、本発明の第2の実施の形態に係る発光装置を示す断面図である。図3の発光装置30は、フェイスアップ型であり、給電部材としての基板部31と、この基板部31の上面に搭載されたLED素子32と、LED素子32の全体を覆うように封止された緩衝層33と、この緩衝層33及び基板部31の上面を覆うように形成された封止部材34と、LED素子32の電極と基板部31上の配線層とを接続するワイヤ35a,35bとを備えて構成されている。 FIG. 3 is a cross-sectional view showing a light emitting device according to the second embodiment of the present invention. The light-emitting device 30 of FIG. 3 is a face-up type, and is sealed so as to cover the substrate part 31 as a power supply member, the LED element 32 mounted on the upper surface of the substrate part 31, and the LED element 32 as a whole. The buffer layer 33, the sealing member 34 formed so as to cover the upper surface of the buffer layer 33 and the substrate part 31, and the wires 35a and 35b for connecting the electrode of the LED element 32 and the wiring layer on the substrate part 31. And is configured.
基板部31は、図1の基板部11と同じ材料を用いた絶縁性基板としてのセラミック基板31aと、セラミック基板31aの上面に所定のパターンで形成された配線層31b,31cと、セラミック基板31aの下面に所定のパターンで形成された配線層31d,31eと、配線層31bと配線層31dを接続するスルーホール31fと、配線層31cと配線層31eを接続するスルーホール31gとを備えている。なお、配線層31b〜31eは、表面にAuメッキ膜が設けられているが、ここでは図示を省略している。 The substrate unit 31 includes a ceramic substrate 31a as an insulating substrate using the same material as the substrate unit 11 of FIG. 1, wiring layers 31b and 31c formed in a predetermined pattern on the upper surface of the ceramic substrate 31a, and the ceramic substrate 31a. Wiring layers 31d and 31e formed in a predetermined pattern on the lower surface, through holes 31f connecting the wiring layers 31b and 31d, and through holes 31g connecting the wiring layers 31c and 31e. . The wiring layers 31b to 31e are provided with an Au plating film on the surface, but are not shown here.
セラミック基板31aは、例えば、ガラス含有Al2O3 材を用いることができる。配線層31b〜31eは、電源を供給するための電極として機能する。なお、基板部31は、LED素子32の搭載の前に、配線層31b〜31eとスルーホール31f,31gが、予めセラミック基板31aに形成されている必要がある。封止部材34は、透光性で低融点の特性を有するガラス材を用いる。 For example, a glass-containing Al 2 O 3 material can be used for the ceramic substrate 31a. The wiring layers 31b to 31e function as electrodes for supplying power. In addition, the board | substrate part 31 needs to form the wiring layers 31b-31e and the through holes 31f and 31g in the ceramic board | substrate 31a previously before mounting of the LED element 32. FIG. As the sealing member 34, a glass material having translucency and a low melting point is used.
LED素子32は、配線層31c上に接着剤等により固定され、LED素子32の上面の一方の電極(図示せず)と配線層31bとはワイヤ35aで接続され、LED素子32の上面の他方の電極(図示せず)と配線層31cとはワイヤ35bで接続されている。 The LED element 32 is fixed on the wiring layer 31c with an adhesive or the like. One electrode (not shown) on the upper surface of the LED element 32 and the wiring layer 31b are connected by a wire 35a, and the other upper surface of the LED element 32 is connected. The electrode (not shown) and the wiring layer 31c are connected by a wire 35b.
緩衝層33は、LED素子32の露出面及びワイヤ35a,35bを覆うように被覆している。 The buffer layer 33 covers the exposed surface of the LED element 32 and the wires 35a and 35b.
封止部材34は、緩衝層33の表面、及び基板部31の上面に露出する配線層や基板部31の露出部の一部を覆うようにして、半球状に成形されている。 The sealing member 34 is formed in a hemispherical shape so as to cover the surface of the buffer layer 33 and the wiring layer exposed on the upper surface of the substrate portion 31 and a part of the exposed portion of the substrate portion 31.
以下に、発光装置30の組み立てについて説明する。 Hereinafter, the assembly of the light emitting device 30 will be described.
まず、セラミック基板31aに配線層31b〜31e及びスルーホール31f,31gが形成済みの基板部31を準備し、その配線層31c上の所定の位置にLED素子32を搭載する。 First, the substrate part 31 in which the wiring layers 31b to 31e and the through holes 31f and 31g are formed on the ceramic substrate 31a is prepared, and the LED element 32 is mounted at a predetermined position on the wiring layer 31c.
次に、ワイヤ35a,35bによりLED素子32と配線層31b,31cとをボンディングにより接続する。 Next, the LED element 32 and the wiring layers 31b and 31c are connected by bonding using the wires 35a and 35b.
次に、LED素子32の露出面及びワイヤ35a,35bを覆うように液状のシリコン材を所定の厚みになるように滴下する。 Next, a liquid silicon material is dropped to a predetermined thickness so as to cover the exposed surface of the LED element 32 and the wires 35a and 35b.
次に、LED素子32およびワイヤ35a,35bを150℃程度の温度雰囲気に置き、緩衝層33の一次硬化を行った後、緩衝層33の周辺にガラス材の成形に基づく封止部材34を形成する。以上により発光装置30が完成する。 Next, after placing the LED element 32 and the wires 35a and 35b in a temperature atmosphere of about 150 ° C. and performing primary curing of the buffer layer 33, a sealing member 34 based on the molding of a glass material is formed around the buffer layer 33. Form. Thus, the light emitting device 30 is completed.
この発光装置30では、例えば、配線層31dがLED素子32のアノード側であれば、配線層31dに直流電源(図示せず)のプラス側が接続され、配線層31eにはマイナス側が接続される。この通電により、LED素子32が発光する。その光は、図のLED素子32の上面から出射し、その殆どは封止部材34内を通して外部へ出光し、他の一部は封止部材34内で内面反射した後、封止部材34の外へ出光する。 In the light emitting device 30, for example, if the wiring layer 31d is the anode side of the LED element 32, the plus side of a DC power source (not shown) is connected to the wiring layer 31d, and the minus side is connected to the wiring layer 31e. The LED element 32 emits light by this energization. The light is emitted from the upper surface of the LED element 32 in the figure, most of the light is emitted to the outside through the sealing member 34, and the other part is internally reflected in the sealing member 34, and then the sealing member 34. I go out.
上記した第2の実施の形態によると、LED素子32をフェイスアップで搭載する発光装置30のLED素子32周囲に緩衝層33を設けたため、ガラス材の封止時にワイヤ35a,35bが変形したり、圧潰して電極間のショートが生じることを防止できるとともに、第1の実施の形態と同様に封止部材34の高熱膨脹に起因して封止部材34におけるLED素子32の近傍に生じていたクラックの発生を防止することが可能になる。 According to the second embodiment described above, since the buffer layer 33 is provided around the LED element 32 of the light emitting device 30 in which the LED element 32 is mounted face up, the wires 35a and 35b are deformed when the glass material is sealed. In addition to being able to prevent the short circuit between the electrodes due to crushing, the sealing member 34 was generated near the LED element 32 due to the high thermal expansion of the sealing member 34 as in the first embodiment. It becomes possible to prevent the occurrence of cracks.
例えば、緩衝層33が設けられていない場合、ガラス封止加工後温度を高く設定するとLED素子にダメージを与えるため、温度制約があり、ガラス封止加工はガラスが高い粘度の状態で行われるため、ワイヤ35a,35bに外力が加わることは避けられず、ワイヤ35a,35bを所望の姿勢に維持することは難しい。例えば、ワイヤ35aがガラス材の加圧プレスにより押し潰された場合、配線層31bと31cとがショートする問題がある。この場合、発光しないだけでなく、図示しない電源側に影響を及ぼすことにもなる。因みに、樹脂材ではこのような問題は生じない。 For example, when the buffer layer 33 is not provided, if the temperature after glass sealing is set high, the LED element is damaged, so there is a temperature restriction, and the glass sealing is performed in a state where the glass has a high viscosity. It is inevitable that an external force is applied to the wires 35a and 35b, and it is difficult to maintain the wires 35a and 35b in a desired posture. For example, when the wire 35a is crushed by a pressure press made of a glass material, there is a problem that the wiring layers 31b and 31c are short-circuited. In this case, not only light emission but also a power supply side (not shown) is affected. Incidentally, such a problem does not occur in the resin material.
フェイスアップタイプのLED素子では、上面に金属部材であるワイヤがあること自体が緩衝材になる。しかし、潰れて電気的短絡を生じることが問題である。このため、緩衝材的な要素がなくても、潰れ防止等による電気的短絡防止要素があることが重要である。 In the face-up type LED element, the presence of a wire that is a metal member on the upper surface itself becomes a buffer material. However, the problem is that it collapses and causes an electrical short. For this reason, it is important that there is an electrical short-circuit preventing element for preventing crushing or the like even without a cushioning element.
図4は、本発明の第3の実施の形態に係る発光装置を示す断面図である。この発光装置40は、LED素子41を搭載するサブマウント43をリード部44a、44bに搭載している。なお、図4においては、サブマウントは非断面の状態で図示している。 FIG. 4 is a cross-sectional view showing a light emitting device according to the third embodiment of the present invention. In the light emitting device 40, a submount 43 on which the LED element 41 is mounted is mounted on the lead portions 44a and 44b. In FIG. 4, the submount is illustrated in a non-cross-sectional state.
この発光装置40は、実装面にバンプ42が設けられたLED素子41と、LED素子41が搭載されるサブマウント43と、サブマウント43が搭載される給電部材としてのリード部44a,44bと、LED素子41の露出面を覆うように設けられる緩衝層45と、緩衝層45及びその周囲を封止する透光性ガラスによる封止部材46とを有する。 The light emitting device 40 includes an LED element 41 having a bump 42 on the mounting surface, a submount 43 on which the LED element 41 is mounted, lead portions 44a and 44b as power supply members on which the submount 43 is mounted, It has the buffer layer 45 provided so that the exposed surface of the LED element 41 may be covered, and the sealing member 46 by the translucent glass which seals the buffer layer 45 and its circumference | surroundings.
サブマウント43は、例えば、高熱伝導のAlN(窒化アルミニウム)が用いられ、バンプ42に接続される電極43aがLED素子41の実装面側に形成されており、反対側の面(リードフレーム側の面)には一対のリード部44a,44bに接続するための電極43bが形成されている。電極43aと電極43bとを接続するために、サブマウント43内にはスルーホール43cが設けられている。 The submount 43 is made of, for example, high thermal conductivity AlN (aluminum nitride), and electrodes 43a connected to the bumps 42 are formed on the mounting surface side of the LED element 41, and the opposite surface (on the lead frame side). The electrode 43b for connecting to the pair of lead portions 44a and 44b is formed on the surface). A through hole 43c is provided in the submount 43 in order to connect the electrode 43a and the electrode 43b.
リード部44a,44bは、リードフレームの一部として両側の帯状部分より内側に所定の間隙をもって向かい合うように形成され、1個のLED素子に対して一対が割り当てられている。リード部44a,44bの先端部の一部は、段差が生じるように薄厚に作られており、この段差部分にサブマウント43が載置される。 The lead portions 44a and 44b are formed as a part of the lead frame so as to face each other with a predetermined gap inside the belt-like portions on both sides, and a pair is assigned to one LED element. A part of the tip portion of each of the lead portions 44a and 44b is made thin so that a step is generated, and the submount 43 is placed on the step portion.
緩衝層45は、前述の他の実施の形態に示した緩衝層13,21,及び33と同一の材料及び加工に基づいて設けられる。 The buffer layer 45 is provided based on the same material and processing as the buffer layers 13, 21, and 33 shown in the other embodiments described above.
封止部材46は、前述の他の実施の形態と同様に、透光性で低融点の特性を有するガラス材が用いられる。 As in the other embodiments described above, the sealing member 46 is made of a glass material having translucency and a low melting point.
この発光装置40では、リード部44aが正(+)電源供給端子であるとすると、リード部44aに供給された電流は、リード部44a、電極43bの一方、スルーホール43cの一方、電極43aの一方、及びバンプ42の一方を経てLED素子41のアノードに流れ、さらに、LED素子41のカソードを出た電流は、バンプ42の他方、電極43aの他方、スルーホール43cの他方、及び電極43bの他方を経てリード部44bに流れることにより、LED素子41が発光する。 In the light emitting device 40, assuming that the lead portion 44a is a positive (+) power supply terminal, the current supplied to the lead portion 44a is such that one of the lead portion 44a and the electrode 43b, one of the through holes 43c, and the electrode 43a. On the other hand, the current that flows to the anode of the LED element 41 through one of the bumps 42 and the cathode of the LED element 41 further flows to the other of the bumps 42, the other of the electrodes 43a, the other of the through holes 43c, and the electrodes 43b. The LED element 41 emits light by flowing to the lead portion 44b through the other side.
以下に、発光装置40の組み立てについて説明する。 Hereinafter, the assembly of the light emitting device 40 will be described.
まず、電極43a,43b、及びスルーホール43cが予め形成済みのサブマウント43を準備し、サブマウント43上の所定位置にバンプ42を介し、LED素子41を搭載する。このことによりLED素子41を電気的に接続すると共に機械的に固定する。 First, the submount 43 in which the electrodes 43a and 43b and the through holes 43c are formed in advance is prepared, and the LED element 41 is mounted at a predetermined position on the submount 43 via the bumps 42. As a result, the LED element 41 is electrically connected and mechanically fixed.
次に、サブマウント43に搭載されたLED素子41をリード部44a,44bの先端部の窪み内に通電方向を合致させて配置する。 Next, the LED elements 41 mounted on the submount 43 are arranged in the recesses at the tips of the lead portions 44a and 44b so that the energization directions are matched.
次に、LED素子41の周囲を覆うように液状のシリコン材を所定の厚みになるように滴下する。 Next, a liquid silicon material is dropped to a predetermined thickness so as to cover the periphery of the LED element 41.
次に、LED素子41、サブマウント43、およびリード部44a,44bを150℃程度の温度雰囲気に置き、一次硬化を行って緩衝層45をLED素子41の周囲に形成する。 Next, the LED element 41 , the submount 43, and the lead portions 44 a and 44 b are placed in a temperature atmosphere of about 150 ° C., and primary curing is performed to form the buffer layer 45 around the LED element 41 .
次に、封止部材46を形成するためのガラスシートをLED素子41の上方及び下方に配置し、更にLED素子41の上側および下側にそれぞれ金型を配置する。 Next, a glass sheet for forming the sealing member 46 is disposed above and below the LED element 41, and a mold is disposed above and below the LED element 41.
次に、所定の温度雰囲気において金型による加圧プレスを行うことによりガラスシートを所定の形状に成形する。このことにより、発光装置40が完成する。最終的には、リードフレームからリード部44a,44bの他端が分離され、個々の発光装置40に個別化される。 Next, the glass sheet is formed into a predetermined shape by performing pressure pressing with a mold in a predetermined temperature atmosphere. Thereby, the light emitting device 40 is completed. Eventually, the other ends of the lead portions 44a and 44b are separated from the lead frame, and individualized into individual light emitting devices 40.
上記した第3の実施の形態によると、高熱伝導性のサブマウント43に搭載されたLED素子41をガラス材で封止する際に、緩衝層45によりLED素子41とガラス材の熱膨張率の差によって封止部材46におけるLED素子41やサブマウント43の周囲にクラックや剥離が生じることを防ぐことができる。 According to the third embodiment described above, the LED elements 41 mounted on the high thermal conductivity of the sub-mount 43 when sealed with glass material, thermal expansion of the LED element 41 and the glass material Ri by the buffer layer 45 It is possible to prevent cracks and peeling from occurring around the LED element 41 and the submount 43 in the sealing member 46 due to the difference in rate.
なお、発光装置40において、緩衝層45に蛍光体を混合するようにしても良い。この場合、LED素子41の放射光で励起された蛍光体から放射される励起光とLED素子41の放射光との混合に基づく波長変換が行われる。蛍光体として、例えば、LED素子41が発光する青色光によって励起されて黄色光を放射するCe(セリウム):YAG(イットリウム・アルミニウム・ガーネット)を用いることができる。 In the light emitting device 40, a phosphor may be mixed in the buffer layer 45. In this case, wavelength conversion based on a mixture of excitation light emitted from the phosphor excited by the emitted light of the LED element 41 and emitted light of the LED element 41 is performed. As the phosphor, for example, Ce (cerium): YAG (yttrium, aluminum, garnet) that is excited by blue light emitted from the LED element 41 to emit yellow light can be used.
図5は、本発明の第4の実施の形態に係る発光装置を示す断面図である。この発光装置50は、図4の発光装置40に放熱部材を装着した構成を有する。すなわち、AlN等によるサブマウント52の下部に銅等の熱伝導性に優れる金属材料を用いた放熱部材51を取り付けたところに特徴がある。 FIG. 5 is a sectional view showing a light emitting device according to the fourth embodiment of the present invention. The light emitting device 50 has a configuration in which a heat radiating member is attached to the light emitting device 40 of FIG. That is, the heat-dissipating member 51 using a metal material having excellent thermal conductivity such as copper is attached to the lower part of the submount 52 made of AlN or the like.
発光装置50は、放熱器として機能する放熱部材51と、放熱部材51上に搭載されるサブマウント52と、サブマウント52の両端の段差部上に先端部が載置されるリード部53a,53bと、下面に電源供給用の一対のバンプ42を備えると共にサブマウント52上に搭載されるLED素子41と、LED素子41の露出面を覆うように設けられる緩衝層54と、緩衝層54及びその周囲を封止する低融点の透明ガラスによる封止部材55とを有する。
The light emitting device 50 includes a heat dissipating member 51 functioning as a heat dissipator, a submount 52 mounted on the heat dissipating member 51, and lead portions 53a and 53b on which tip portions are placed on stepped portions at both ends of the submount 52. The LED element 41 mounted on the submount 52, the
サブマウント52は、両端の所定範囲が段差を生じる様に薄厚に加工されており、この薄厚部上にリード部53a,53bの先端部が載置され、その先端が配線パターン52a,52bの側面に半田等により接続される。さらに、サブマウント52には、一対のバンプ42に接触する配線パターン52a,52bが、上面から側面にかけて設けられている。 The submount 52 is processed to be thin so that a predetermined range at both ends generates a step, and the tip portions of the lead portions 53a and 53b are placed on the thin portion, and the tips are the side surfaces of the wiring patterns 52a and 52b. Connected by soldering or the like. Furthermore, the submount 52 is provided with wiring patterns 52a and 52b that contact the pair of bumps 42 from the upper surface to the side surface.
緩衝層54は、Si系アルコキシドに蛍光体54aが混合され、焼結した多孔質状態の蛍光体含有のSiO2とすることで、応力緩衝と共に波長変換の機能を持たせている。
The
蛍光体54aは、第3の実施の形態で説明した様に、Ce(セリウム):YAG(イットリウム・アルミニウム・ガーネット)等を用いることができる。 As described in the third embodiment, Ce (cerium): YAG (yttrium, aluminum, garnet) or the like can be used for the phosphor 54a .
第4の実施の形態における発光装置50の組み立ては、第3の実施の形態に準ずるので、ここでは重複する説明を省略するが、図5のサブマウント52より上の部分を先に完成させた後、下面に放熱部材51を接着等により取り付ければ良い。 Since the assembly of the light emitting device 50 in the fourth embodiment is in accordance with the third embodiment, the overlapping description is omitted here, but the portion above the submount 52 in FIG. Thereafter, the heat radiating member 51 may be attached to the lower surface by bonding or the like.
上記した第4の実施の形態によると、以下の効果が得られる。
(1)サブマウント52の下部に放熱を促す放熱部材51を設けたため、LED素子41の点灯に伴う発熱を効率良く外部へ放散でき、ガラス材による封止部材55等の温度上昇に伴う熱膨張・熱収縮の発生を抑制してクラックの発生を防止することができる。
(2)緩衝層54に蛍光体54aを混合させたことにより、波長変換が行えると共に光の取り出し効率の向上が可能になる。
According to the fourth embodiment described above, the following effects are obtained.
(1) Since the heat dissipating member 51 that promotes heat dissipating is provided in the lower part of the submount 52, the heat generated by the lighting of the LED element 41 can be efficiently dissipated to the outside, and the thermal expansion accompanying the temperature rise of the sealing member 55 and the like by the glass material -The occurrence of cracks can be prevented by suppressing the occurrence of thermal shrinkage.
(2) By mixing the phosphor 54a with the
なお、上記した各実施の形態において、基板部11,31やリード部44a,44b,53a,53bの表面に反射面を形成し、光の出射効率を高めるようにしても良い。 In each of the above-described embodiments, a reflecting surface may be formed on the surface of the substrate portions 11 and 31 and the lead portions 44a, 44b, 53a, and 53b to increase the light emission efficiency.
また、封止部材14,34内のLED素子12,32の上部に蛍光体を部分的に混合し、或いは、緩衝層13,33内に波長変換用の蛍光体を混合することもできる。 In addition, the phosphor may be partially mixed on the LED elements 12 and 32 in the sealing members 14 and 34, or the wavelength converting phosphor may be mixed in the buffer layers 13 and 33.
また、緩衝層54にTiO2系セラミック材を用いた場合、その屈折率が2.4という大きい値を有するため、LED素子41からの光の取り出し効率を高めることができる。
Further, when a TiO 2 ceramic material is used for the
更に、上記した各実施の形態においては、1つの封止部材内に配設されるLED素子の個数は1個であるとしたが、LED素子が2個以上のマルチ発光型の発光装置にすることもできる。搭載する複数のLED素子は、異なる発光色のLED素子を複数設ける構成でも、同一発光色のLED素子を複数設ける構成でも良い。更に、LED素子の駆動形態としては、複数のLED素子の全部を並列接続し又はグループ単位で並列接続しても、複数単位に直列接続し又は全数を直列接続しても良い。 Further, in each of the above-described embodiments, the number of LED elements disposed in one sealing member is one, but a multi-light-emitting type light emitting device having two or more LED elements is provided. You can also. The plurality of LED elements to be mounted may have a configuration in which a plurality of LED elements having different emission colors are provided or a configuration in which a plurality of LED elements having the same emission color are provided. Furthermore, as a drive form of the LED element, all of the plurality of LED elements may be connected in parallel or in parallel in units of groups, may be connected in series in a plurality of units, or all may be connected in series.
また、封止部材14を住田光学ガラス株式会社製の「PSK100」と説明したが、これに限らず、発光素子に熱的ダメージを与えずに封止加工できる温度で軟化するガラスであれば他でも構わない。 Further, the sealing member 14 has been described as “PSK100” manufactured by Sumita Optical Glass Co., Ltd. However, the present invention is not limited thereto, and any other glass may be used as long as it is softened at a temperature at which sealing processing can be performed without causing thermal damage to the light emitting element. It doesn't matter.
また、封止部材14,34,46,55の形状として、半球状の構成を示したが、本発明は図示した形状に限定されるものではなく、レンズ部を有しない形状、多角形、円柱形等、任意の形状にすることができる。 Moreover, although the hemispherical structure was shown as the shape of the sealing members 14, 34, 46, and 55, the present invention is not limited to the illustrated shape, and a shape that does not have a lens portion, a polygon, and a cylinder. It can be in any shape such as shape.
更に、封止部材14,34,46,55の成形に際しては、ガラスシートを用いた加圧プレスによる成形方法に限定されるものではなく、例えば、溶融ガラスをLED素子の近傍に供給して金型により加熱成形する等の他の封止方法を用いても良い。 Further, the molding of the sealing members 14, 34, 46, 55 is not limited to a molding method using a pressure press using a glass sheet. For example, molten glass is supplied to the vicinity of the LED element to form a gold Other sealing methods such as heat molding with a mold may be used.
10 発光装置
11 基板部
11a セラミック基板
11b,11c,11d,11e,11f,11g 配線層
11h,11i,11j,11k Auメッキ膜
11l,11m スルーホール
12 LED素子
12a,12b 電極
13 緩衝層
14 封止部材
20 発光装置
21 緩衝層
30 発光装置
31 基板部
31a セラミック基板
31b,31c,31d,31e 配線層
31f,31g スルーホール
32 LED素子
33 緩衝層
34 封止部材
35a,35b ワイヤ(ボンディングワイヤ)
40 発光装置
41 LED素子
42 バンプ
43 サブマウント
43a,43b 電極
43c スルーホール
44a,44b リード部
45 緩衝層
46 封止部材
50 発光装置
51 放熱部材
52 サブマウント
52a,52b 配線パターン
53a,53b リード部
54 緩衝層
55 封止部材
200 発光装置
201,202 配線導体
203 カップ部
203A 底部
204 LED素子
205 ワイヤ
206 ガラス層
206A 蛍光物質
207 封止樹脂
DESCRIPTION OF
31b, 31c, 31d, 31e Wiring layers 31f, 31g Through hole 32 LED element 33 Buffer layer 34 Sealing member 35a, 35b Wire (bonding wire)
40 Light-Emitting Device 41 LED Element 42 Bump 43 Submount 43a, 43b Electrode 43c Through Hole 44a, 44b Lead Part 45 Buffer Layer 46 Sealing Member 50 Light-Emitting Device 51 Heat Dissipation Member 52 Submount 52a, 52b Wiring Pattern 53a,
Claims (3)
前記発光素子が上面に搭載され、前記発光素子に給電を行う配線層と、前記配線層が上面に形成されたセラミック基板と、を有する基板部と、
前記発光素子と前記基板部の前記配線層とを接続するワイヤと、
前記発光素子の全体及び前記ワイヤの全部分を覆う多孔質のセラミックからなる緩衝層と、
前記緩衝層の表面及び前記基板部の上面を覆うように形成され、前記発光素子を封止し前記発光素子と熱膨張率が異なる透光性のガラスからなり、前記発光素子の封止加工後に熱収縮による応力が生じている封止部材と、を備え、
前記緩衝層は、前記発光素子と前記封止部材との間に介在して熱収縮によって生じている前記封止部材の応力を吸収し、前記封止部材の封止時と封止加工後の温度変化により前記発光素子と前記封止部材の熱膨張率差に起因して生じる前記封止部材の前記発光素子の近傍におけるクラックの発生を防止することを特徴とする発光装置。 A light emitting device with unevenness on the side surface;
A substrate part having a wiring layer on which the light emitting element is mounted and supplying power to the light emitting element ; and a ceramic substrate on which the wiring layer is formed;
A wire connecting the light emitting element and the wiring layer of the substrate portion;
A buffer layer made of porous ceramic covering the whole of the light emitting element and the whole part of the wire;
The surface of the buffer layer and is formed so as to cover the upper surface of the substrate portion, Ri Do the light emitting element from the sealing to the light emitting element and the thermal expansion coefficient different from transparent glass, sealing processing of the light emitting element A sealing member in which stress due to heat shrinkage is generated later ,
The buffer layer is interposed between the light emitting element and the sealing member to absorb the stress of the sealing member caused by thermal shrinkage, and when the sealing member is sealed and after the sealing process the light emitting device characterized in that to prevent the occurrence of cracks in the vicinity of the light emitting element of the sealing member resulting from an I Ri said light emitting element to a temperature change in the difference in thermal expansion coefficient between the sealing member.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342705A JP4303550B2 (en) | 2003-09-30 | 2003-09-30 | Light emitting device |
EP13156568.1A EP2596948B1 (en) | 2003-03-10 | 2004-03-10 | Method of making a semiconductor device |
CN2004800064031A CN1759492B (en) | 2003-03-10 | 2004-03-10 | Method for manufacturing solid element device |
US10/548,560 US7824937B2 (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacturing the same |
EP04719060.8A EP1603170B1 (en) | 2003-03-10 | 2004-03-10 | Method for manufacturing a solid-state optical element device |
TW093106393A TWI246780B (en) | 2003-03-10 | 2004-03-10 | Solid-state component device and manufacturing method thereof |
CN2010101176741A CN101789482B (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacture thereof |
KR1020057016878A KR100693969B1 (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacture thereof |
PCT/JP2004/003089 WO2004082036A1 (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacture thereof |
US12/923,788 US8154047B2 (en) | 2003-03-10 | 2010-10-07 | Solid element device and method for manufacturing the same |
US13/419,093 US8685766B2 (en) | 2003-03-10 | 2012-03-13 | Solid element device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342705A JP4303550B2 (en) | 2003-09-30 | 2003-09-30 | Light emitting device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009064718A Division JP5126127B2 (en) | 2009-03-17 | 2009-03-17 | Method for manufacturing light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006054209A JP2006054209A (en) | 2006-02-23 |
JP4303550B2 true JP4303550B2 (en) | 2009-07-29 |
Family
ID=36031511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003342705A Expired - Fee Related JP4303550B2 (en) | 2003-03-10 | 2003-09-30 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4303550B2 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7915085B2 (en) | 2003-09-18 | 2011-03-29 | Cree, Inc. | Molded chip fabrication method |
JP4632427B2 (en) * | 2004-03-31 | 2011-02-16 | シーアイ化成株式会社 | Method for assembling light emitting diode assembly and light emitting diode assembly |
JP4632426B2 (en) * | 2004-03-31 | 2011-02-16 | シーアイ化成株式会社 | Method for assembling light emitting diode assembly and light emitting diode assembly |
US7217583B2 (en) | 2004-09-21 | 2007-05-15 | Cree, Inc. | Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension |
JP5614766B2 (en) | 2005-12-21 | 2014-10-29 | クリー インコーポレイテッドCree Inc. | Lighting device |
US8969908B2 (en) | 2006-04-04 | 2015-03-03 | Cree, Inc. | Uniform emission LED package |
JP5035241B2 (en) | 2006-05-18 | 2012-09-26 | 旭硝子株式会社 | LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE |
JP5555971B2 (en) * | 2006-07-18 | 2014-07-23 | 日亜化学工業株式会社 | Linear light-emitting device and planar light-emitting device using the same |
US7943952B2 (en) | 2006-07-31 | 2011-05-17 | Cree, Inc. | Method of uniform phosphor chip coating and LED package fabricated using method |
WO2008026699A1 (en) * | 2006-08-30 | 2008-03-06 | Kyocera Corporation | Light-emitting device |
US10295147B2 (en) | 2006-11-09 | 2019-05-21 | Cree, Inc. | LED array and method for fabricating same |
US9024349B2 (en) | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9159888B2 (en) | 2007-01-22 | 2015-10-13 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US8232564B2 (en) | 2007-01-22 | 2012-07-31 | Cree, Inc. | Wafer level phosphor coating technique for warm light emitting diodes |
US9401461B2 (en) | 2007-07-11 | 2016-07-26 | Cree, Inc. | LED chip design for white conversion |
US10505083B2 (en) | 2007-07-11 | 2019-12-10 | Cree, Inc. | Coating method utilizing phosphor containment structure and devices fabricated using same |
KR20090015734A (en) | 2007-08-09 | 2009-02-12 | 엘지이노텍 주식회사 | Lighting device |
JP5212777B2 (en) * | 2007-11-28 | 2013-06-19 | スタンレー電気株式会社 | Semiconductor light emitting device and lighting device |
US9041285B2 (en) | 2007-12-14 | 2015-05-26 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
US8167674B2 (en) | 2007-12-14 | 2012-05-01 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
US8878219B2 (en) | 2008-01-11 | 2014-11-04 | Cree, Inc. | Flip-chip phosphor coating method and devices fabricated utilizing method |
US10008637B2 (en) | 2011-12-06 | 2018-06-26 | Cree, Inc. | Light emitter devices and methods with reduced dimensions and improved light output |
US8637883B2 (en) | 2008-03-19 | 2014-01-28 | Cree, Inc. | Low index spacer layer in LED devices |
US8877524B2 (en) | 2008-03-31 | 2014-11-04 | Cree, Inc. | Emission tuning methods and devices fabricated utilizing methods |
JP5528900B2 (en) | 2010-04-30 | 2014-06-25 | ローム株式会社 | Light emitting element module |
JP5449039B2 (en) * | 2010-06-07 | 2014-03-19 | 株式会社東芝 | Semiconductor light emitting device and manufacturing method thereof |
US10546846B2 (en) | 2010-07-23 | 2020-01-28 | Cree, Inc. | Light transmission control for masking appearance of solid state light sources |
JP5755420B2 (en) * | 2010-09-01 | 2015-07-29 | 日亜化学工業株式会社 | Light emitting device |
JP5049382B2 (en) | 2010-12-21 | 2012-10-17 | パナソニック株式会社 | LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME |
US9166126B2 (en) | 2011-01-31 | 2015-10-20 | Cree, Inc. | Conformally coated light emitting devices and methods for providing the same |
US10211380B2 (en) | 2011-07-21 | 2019-02-19 | Cree, Inc. | Light emitting devices and components having improved chemical resistance and related methods |
US10686107B2 (en) | 2011-07-21 | 2020-06-16 | Cree, Inc. | Light emitter devices and components with improved chemical resistance and related methods |
CN103782402B (en) | 2011-07-21 | 2017-12-01 | 克利公司 | For the luminous elements encapsulation of improved chemoresistance, part and method, and associated method |
US8558252B2 (en) | 2011-08-26 | 2013-10-15 | Cree, Inc. | White LEDs with emission wavelength correction |
US9496466B2 (en) | 2011-12-06 | 2016-11-15 | Cree, Inc. | Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction |
JP5978631B2 (en) * | 2012-01-26 | 2016-08-24 | 日亜化学工業株式会社 | Light emitting device |
US9343441B2 (en) | 2012-02-13 | 2016-05-17 | Cree, Inc. | Light emitter devices having improved light output and related methods |
US9240530B2 (en) | 2012-02-13 | 2016-01-19 | Cree, Inc. | Light emitter devices having improved chemical and physical resistance and related methods |
JP5819469B2 (en) * | 2014-04-16 | 2015-11-24 | ローム株式会社 | Light emitting element module |
WO2018184572A1 (en) | 2017-04-07 | 2018-10-11 | 宁波舜宇光电信息有限公司 | Molding technique-based semiconductor packaging method and semiconductor device |
CN108695165A (en) * | 2017-04-07 | 2018-10-23 | 宁波舜宇光电信息有限公司 | Method for packaging semiconductor based on molding process and semiconductor device |
-
2003
- 2003-09-30 JP JP2003342705A patent/JP4303550B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006054209A (en) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4303550B2 (en) | Light emitting device | |
JP4029843B2 (en) | Light emitting device | |
JP4747726B2 (en) | Light emitting device | |
KR101162823B1 (en) | Light emitting device and method of manufacturing the same | |
JP4192742B2 (en) | Light emitting device | |
US7491981B2 (en) | Light-emitting device and glass seal member therefor | |
JP4142080B2 (en) | Light emitting device | |
KR20070102481A (en) | Luminescent light source, method for manufacturing the same, and light-emitting apparatus | |
WO2002089221A1 (en) | Light emitting device comprising led chip | |
JP2005123477A (en) | Optical device | |
JP2008071955A (en) | Light-emitting device | |
JP2007116095A (en) | Light-emitting apparatus | |
JP2007066939A (en) | Semiconductor light emitting device | |
US7999276B2 (en) | Chip-type LED package and light emitting apparatus having the same | |
JP5126127B2 (en) | Method for manufacturing light emitting device | |
JP2013062416A (en) | Semiconductor light-emitting device and manufacturing method of the same | |
JP4147353B2 (en) | Light emitting device | |
JP4016925B2 (en) | Light emitting device | |
KR100764461B1 (en) | Semiconductor Package Having a Buffer Layer | |
JP4775403B2 (en) | Method for manufacturing light emitting device | |
JP2006237571A (en) | Light-emitting diode device | |
EP2713411B1 (en) | Luminescence device | |
JP2019117818A (en) | Mounting substrate, light emitting device, and manufacturing method of light emitting device | |
JP4737218B2 (en) | Method for manufacturing light emitting device | |
JP7494017B2 (en) | Light emitting module and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070619 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070713 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20081126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090424 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4303550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140501 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |