JP2004191910A - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- JP2004191910A JP2004191910A JP2003081343A JP2003081343A JP2004191910A JP 2004191910 A JP2004191910 A JP 2004191910A JP 2003081343 A JP2003081343 A JP 2003081343A JP 2003081343 A JP2003081343 A JP 2003081343A JP 2004191910 A JP2004191910 A JP 2004191910A
- Authority
- JP
- Japan
- Prior art keywords
- display device
- signal
- line
- selection
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
【課題】アクチュエータ部を変位制御するスイッチング素子としてTFTを用いた場合であっても、該スイッチング素子の耐圧の問題を解消して、アクチュエータ部の面積(画素の開口率)を十分に確保する。
【解決手段】行単位に画素を選択する第1の行選択線76と、選択状態にある各画素に対してそれぞれ画素信号Sdを供給する画素信号線78と、画素信号Sdに応じて対応するアクチュエータ部22を駆動制御する駆動回路74が多数の画素に応じて配列された駆動部70と、選択された各画素に対応するアクチュエータ部22を選択する選択部72とを具備し、駆動回路74は、画素信号線78からの信号に基づいた駆動電位をアクチュエータ部22の上部電極に印加する駆動電位発生回路を有し、選択部72は、選択された各画素に対応するアクチュエータ部22の下部電極にそれぞれ選択電位Vsを印加する選択回路96を有する。
【選択図】図8
【解決手段】行単位に画素を選択する第1の行選択線76と、選択状態にある各画素に対してそれぞれ画素信号Sdを供給する画素信号線78と、画素信号Sdに応じて対応するアクチュエータ部22を駆動制御する駆動回路74が多数の画素に応じて配列された駆動部70と、選択された各画素に対応するアクチュエータ部22を選択する選択部72とを具備し、駆動回路74は、画素信号線78からの信号に基づいた駆動電位をアクチュエータ部22の上部電極に印加する駆動電位発生回路を有し、選択部72は、選択された各画素に対応するアクチュエータ部22の下部電極にそれぞれ選択電位Vsを印加する選択回路96を有する。
【選択図】図8
Description
【0001】
【発明の属する技術分野】
本発明は、画素に応じて配列され、変位動作に応じて対応する画素をON/OFF制御する容量性素子を有する表示部と、入力信号に応じて、対応する容量性素子を駆動制御する駆動回路が前記多数の画素に応じて配列された駆動部とを具備した表示装置に関する。
【0002】
【従来の技術】
本出願人は、例えば特許文献1において、セラミック素子を用いた表示装置を提案している。この表示装置は、図22に示すように、画素毎に配列されたアクチュエータ部200を有し、各アクチュエータ部200は、圧電/電歪層202と該圧電/電歪層202の上面及び下面にそれぞれ形成された上部電極204と下部電極206とを具備したアクチュエータ部本体208と、該アクチュエータ部本体208の下部に配設された振動部210と固定部212からなる基体214とを有して構成されている。アクチュエータ部本体208の下部電極206は、振動部210と接触して、振動部210により前記アクチュエータ部本体208が支持されている。
【0003】
前記基体214は、振動部210及び固定部212が一体となってセラミックスにて構成され、更に、基体214には、前記振動部210が薄肉になるように凹部216が形成されている。
【0004】
また、アクチュエータ部本体208の上部電極204には、光導波板218との接触面積を所定の大きさにするための変位伝達部220が接続されており、図22の例では、前記変位伝達部220は、アクチュエータ部200が静止している通常状態において、光導波板218に近接して配置され、励起状態において前記光導波板218の光の波長以下の距離で接触するように配置されている。
【0005】
そして、前記光導波板218の例えば端部から光222を導入する。この場合、光導波板218の屈折率の大きさを調節することにより、全ての光222が光導波板218の前面及び背面において透過することなく内部で全反射する。この状態で、前記上部電極204及び下部電極206を通じてアクチュエータ部200に画像信号の属性に応じた電圧信号を選択的に印加して、該アクチュエータ部200に通常状態による静止と励起状態による変位を行わせることにより、前記変位伝達部220の光導波板218への接触・離隔が制御され、これにより、前記光導波板218の所定部位の散乱光(漏れ光)224が制御されて、光導波板218に画像信号に応じた映像の表示がなされる。
【0006】
この表示装置によれば、(1)消費電力を低減できる、(2)画面輝度を大きくすることができる、(3)カラー画面に適用した場合に、画素数を白黒画面の場合に比して増加させる必要がない、等の利点を有する。
【0007】
上述のような表示装置の周辺回路においては、例えば図23に示すように、多数の画素が配列された表示部230と、1つの行を構成する多数の画素(画素群)に対して共通とされた垂直選択線232が必要な行数分導出された垂直シフト回路234と、1つの列を構成する多数の画素(画素群)に対して共通とされた信号線236が必要な列数分導出された水平シフト回路238とを有して構成されている。
【0008】
そのため、水平シフト回路238から選択行の画素群に対して出力される表示情報(出力電圧)が非選択行に関する画素群にも印加されることになり、不必要な画素(アクチュエータ部)を駆動せざるを得ない。従って、不必要な消費電力が発生し、低消費電力化において不利になるおそれもある。
【0009】
また、垂直走査期間内に行選択を全ての行について実施するためには、(垂直走査期間/必要な選択行数)だけの時間しか画素発光ができないため、高輝度化に不利になるおそれもある。
【0010】
また、図24に示すように、行単位に水平シフト回路238を設けることが考えられるが、回路構成が非常に複雑になるという問題がある。
【0011】
そこで、本出願人は、上述の問題を解決するために、新規な表示装置を提案した(特許文献2参照)。
【0012】
この表示装置300は、図25に示すように、駆動部上に形成された下部電極302b、形状保持層304及び上部電極302aによって構成されたアクチュエータ部306の近傍にスイッチング用の薄膜トランジスタ(TFT:Thin Film Transistor)308が形成されている。
【0013】
そして、アクチュエータ部306の上部電極302aとTFT308のソース/ドレイン領域310とをコンタクト312を通じて電気的に接続し、選択線314とTFT308のゲート電極とをコンタクト316を通じて電気的に接続し、信号線318とTFT308のソース/ドレイン領域320とをコンタクト322を通じて電気的に接続する。
【0014】
これにより、形状保持層304によるアクチュエータ部306を用いた表示装置300の消費電力の低減化、高輝度化並びに配線形成の簡略化を図ることができる。
【0015】
【特許文献1】
特開平7−287176号公報(段落[0005]及び[0009])
【特許文献2】
国際公開第98/54609号パンフレット(図4)
【0016】
【発明が解決しようとする課題】
ところで、アクチュエータ部306は、一対の電極を有するコンデンサ構造を有し、しかもその静電容量は大きい。ちなみに、15インチ、1024×768ドット(XGA)の液晶ディスプレイのセルサイズは、0.295mm角であって、その静電容量は0.9pF(但し、誘電率εr=6.8、セルギャップ=6μm)であるが、上述の表示装置300においては、40インチ、XGAの場合、セルサイズが0.8mm角で、その静電容量は0.8nFである。
【0017】
このように、形状保持層304によるアクチュエータ部306を用いた表示装置300は、液晶ディスプレイ等と比較して静電容量が大きいことから、高電圧・大電流駆動が必要となる。このことから、スイッチング素子としてTFT308を用いようとすると、TFT308の耐圧の面で問題が生じる。そこで、1画素当たりのアクチュエータ部306の面積を小さくして静電容量を小さくするなどの処置が必要になるが、画素の開口率が小さくなるという問題があり、輝度が低下するおそれがある。
【0018】
また、別途スイッチング素子をIC(Integrated Circuit)で設けた場合、画素数に相当するスイッチング素子を設けた駆動回路と、アクチュエータ部306が形成された基板(アクチュエータ基板)との間で多数本の配線が必要になり、前記アクチュエータ基板での配線パターンの形成が困難になるという新たな問題が生じるおそれがある。
【0019】
本発明はこのような課題を考慮してなされたものであり、スイッチング素子としてTFTを用いた場合であっても、該スイッチング素子の耐圧の問題を解消することができ、容量性素子の面積(例えばアクチュエータの面積や画素の開口率)を十分に確保することができる表示装置を提供することを目的とする。
【0020】
また、本発明の他の目的は、各種配線の引き回しの最適化を図ることができ、しかも、容量性素子の面積を圧迫することなく、駆動回路を形成することができ、画素の開口率を十分に確保することができる表示装置を提供することにある。
【0021】
【課題を解決するための手段】
本発明に係る表示装置は、画素に応じて配列され、変位動作に応じて対応する画素をON/OFF制御する容量性素子を有する表示部と、各画素に対してそれぞれ選択/非選択を指示する多数の選択線と、選択状態にある各画素に対してそれぞれ画素信号を供給する多数の信号線と、1つの選択線からの指示と1つの信号線からの信号に応じて、対応する容量性素子を駆動制御する駆動回路が前記多数の画素に応じて配列された駆動部と、選択された各画素に対応する容量性素子を選択する選択部とを具備し、前記容量性素子は、一対の電極を有するコンデンサ構造を有し、前記駆動回路は、前記信号線からの信号に基づいた駆動電位を前記容量性素子の一方の電極に印加する駆動電位発生回路を有し、前記選択部は、前記選択された各画素に対応する容量性素子の他方の電極にそれぞれ選択電位を印加する選択回路を有することを特徴とする。
【0022】
これにより、まず、選択線を通じてある画素が選択されると、該選択状態にある画素に対応する容量性素子の一方の電極に、前記信号線からの信号に基づいた駆動電位が駆動電位発生回路を通じて印加され、前記容量性素子の他方の電極に選択電位が選択回路を通じて印加される。従って、容量性素子に一対の電極に印加される電圧は、これら駆動電位と選択電位の電位差で決まることになる。
【0023】
前記容量性素子は、液晶ディスプレイ等と比較して静電容量が大きいことから、高電圧・大電流駆動が必要となる。そのため、例えば、容量性素子の他方の電極に一定電位を印加して、駆動電位発生回路からの駆動電位と前記一定電位との電位差で駆動させることを考えた場合、駆動電位の振幅として容量性素子を駆動できる程度に大きく設定しなければならない。例えば容量性素子を−10V〜50Vの範囲で駆動する場合は、駆動電位の振幅として例えば60Vという高い振幅に設定する必要がある。
【0024】
これに対して、本発明では、容量性素子の一対の電極に印加される駆動電圧を駆動電位と選択電位の電位差にて設定することができるため、駆動電位並びに選択電位の振幅として、容量性素子を駆動できる振幅の例えば1/2という低い振幅に設定することが可能となる。
【0025】
そのため、容量性素子の面積を小さくするという処置は不要となり、駆動回路にTFTを含む回路を用いた場合であっても、該TFTの耐圧の問題を解消することができ、容量性素子の面積(画素の開口率)を十分に確保することができる。
【0026】
そして、前記構成において、前記駆動回路は、前記信号線からの信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させるようにしてもよい。
【0027】
この場合、例えば出力が電位的に高レベルの状態と低レベルの状態、並びに高インピーダンス状態とがある。特に、高インピーダンス状態においては電流が流れないため、消費電力の低減化に有利となる。
【0028】
また、前記駆動回路は、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第1の制御線からの第1の信号の入力を禁止し、選択時に前記信号の入力を許可する第1の論理ゲートと、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第2の制御線からの第2の信号の入力を禁止し、選択時に前記第2の信号の入力を許可する第2の論理ゲートとを有し、前記信号線からの第1の信号及び第2の信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させるようにしてもよい。
【0029】
この場合、例えば第1の信号及び第2の信号のレベル(論理値)に応じて、駆動電位発生回路の出力を高レベル状態、低レベル状態あるいは高インピーダンス状態とすることができる。
【0030】
また、前記駆動電位発生回路は、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有し、前記第1の薄膜トランジスタのゲートに前記第1の信号が印加され、前記第2の薄膜トランジスタのゲートに前記第2の信号が印加されるようにしてもよい。
【0031】
この場合、前記第1の薄膜トランジスタは第1の導電型チャネルを有し、前記第2の薄膜トランジスタは第2の導電型チャネルを有するようにしてもよい。
【0032】
これにより、例えば第1の信号が論理的に「1」、第2の信号が論理的に「1」であれば、第1の薄膜トランジスタが例えばOFF、第2の薄膜トランジスタがONとなって、駆動電位発生回路の出力は低レベル状態となる。
【0033】
第1の信号が論理的に「0」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタが例えばON、第2の薄膜トランジスタがOFFとなって、駆動電位発生回路の出力は高レベル状態となる。
【0034】
第1の信号が論理的に「1」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタ及び第2の薄膜トランジスタが共にOFFとなって、駆動電位発生回路の出力は高インピーダンス状態となる。
【0035】
また、前記第1及び第2の薄膜トランジスタは同一の導電型チャネルを有するようにしてもよい。
【0036】
これにより、例えば第1の信号が論理的に「0」、第2の信号が論理的に「1」であれば、第1の薄膜トランジスタが例えばOFF、第2の薄膜トランジスタがONとなって、駆動電位発生回路の出力は低レベル状態となる。
【0037】
第1の信号が論理的に「1」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタが例えばON、第2の薄膜トランジスタがOFFとなって、駆動電位発生回路の出力は高レベル状態となる。
【0038】
第1の信号が論理的に「0」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタ及び第2の薄膜トランジスタが共にOFFとなって、駆動電位発生回路の出力は高インピーダンス状態となる。
【0039】
このような場合に、第1及び第2の薄膜トランジスタを共に、ソース端子と分離され、かつ、半導体基板に対するバイアス端子を有する4端子構造とすれば、各薄膜トランジスタのゲート電圧を、基板電位という固定電位に基づいて制御することができ、設計が容易になると共に、設計の自由度も向上する。
【0040】
特に、前記第1及び第2の薄膜トランジスタが同一の導電型チャネルを有するようにすれば、第1及び第2の薄膜トランジスタの基板電位を共に同電位とすることができ、しかも、低レベル電源の電位と同じにすることができるため、電源ラインの本数の削減化を図ることができる。
【0041】
しかも、例えばCdSe材料等のように、nチャネルしか形成できない材料にも対応することができ、また、nチャネルのエンハンスメント形FETしか形成できない場合にも十分に対応させることができる。
【0042】
そして、前記高レベル電源と前記低レベル電源との電位差は、前記容量性素子の一対の電極間に印加される最大電圧よりも低いことが好ましい。これにより、高レベル電源と低レベル電源との間に接続される直列回路(第1及び第2の薄膜トランジスタ)の耐圧の問題を解消することができ、容量性素子の面積(画素の開口率)を十分に確保することができる。
【0043】
一方、前記選択回路は、高レベル電源と低レベル電源との間に接続された第3の薄膜トランジスタと第4の薄膜トランジスタとからなる直列回路を有し、前記直列回路の共通ドレインが前記容量性素子の他方の電極に接続されていてもよい。
【0044】
この場合も、前記高レベル電源と前記低レベル電源との電位差は、前記容量性素子の一対の電極間に印加される最大電圧よりも低いことが好ましい。これにより、高レベル電源と低レベル電源との間に接続される直列回路(第3及び第4の薄膜トランジスタ)の耐圧の問題を解消することができる。
【0045】
また、前記第3の薄膜トランジスタは第1の導電型チャネルを有し、前記第4の薄膜トランジスタは第2の導電型チャネルを有するようにしてもよいし、前記第3及び第4の薄膜トランジスタは共に同一の導電型チャネルを有するようにしてもよい。
【0046】
また、前記構成において、1つの行に対応する複数の画素に対してそれぞれ共通に1つの前記選択回路を割り当てるようにしてもよい。表示部における行数が例えば128行であれば、128個の選択回路が設置されることになる。
【0047】
そして、上述の発明において、少なくとも前記容量性素子を第1の基板上に形成し、少なくとも前記駆動部を第2の基板上に形成し、前記第1及び第2の基板を貼り合わせるようにしてもよい。
【0048】
これにより、画素の開口率に直接関わる容量性素子を、駆動回路の形成面積を考慮せずに配列形成することができ、駆動回路についても、容量性素子の形成面積を考慮せずに配列形成することができる。
【0049】
従って、画素の開口率を大幅に向上させることができると共に、駆動回路のレイアウトも自由に設計することができ、回路素子の選択性の向上、設計の自由度の向上を実現させることができる。これは、表示装置の製造コストの低廉化を図ることができるほか、表示装置の利用形態(設置される環境や使用目的等)に応じて様々な構成の表示装置を作製できることにつながる。
【0050】
前記第2の基板に、それぞれ前記駆動回路に対応して複数の配線回路形成領域を配列し、該配線回路形成領域には、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域寄りの部分に、行方向に延びる選択線を形成し、当該配線回路形成領域の左方向又は右方向に割り当てられた他の配線回路形成領域寄りの部分に、列方向に延びる信号線を形成し、前記選択線と前記信号線で区画された回路形成領域には、それぞれ対応する前記容量性素子の前記一方の電極に通じる電極パッドと、前記駆動回路を形成するようにしてもよい。
【0051】
まず、例えば表示部の行数が128で、列数が128であれば、128×128=16384個の配線回路形成領域が配列されることになる。そして、各配線回路形成領域において、行方向に延びる選択線は、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域寄りに形成され、列方向に延びる信号線は、当該配線回路形成領域の左方向又は右方向に割り当てられた他の配線回路形成領域寄りに形成される。このように、各配線は、配線回路形成領域の端の部分に割り当てられることから、それぞれ配線回路形成領域において、選択線と信号線で区画された回路形成領域は、面積的に広い領域が割り当てられる。
【0052】
従って、駆動回路として複数の薄膜トランジスタを含めた回路とした場合、各薄膜トランジスタの大きさやレイアウトについての自由度を向上させることができる。
【0053】
また、前記駆動回路における前記駆動電位発生回路が、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有する場合に、前記配線回路形成領域は、更に、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域と共通とされた部分に、行方向に延びる高レベル電源ラインを形成し、当該配線回路形成領域の上方向又は下方向に割り当てられ、かつ、前記他の配線回路形成領域とは異なる他の配線回路形成領域と共通とされた部分に、行方向に延びる低レベル電源ラインを形成するようにしてもよい。
【0054】
この場合、当該配線回路形成領域と、該配線回路形成領域の例えば上方向に割り当てられた他の配線回路形成領域との境界部分に例えば高レベル電源ラインが形成され、当該配線回路形成領域と、該配線回路形成領域の例えば下方向に割り当てられた他の配線回路形成領域との境界部分に例えば低レベル電源ラインが形成されることになるため、高レベル電源ライン及び低レベル電源ラインをそれぞれ1行置きに形成することが可能となり、電源ラインの本数の削減を有効に図ることができる。
【0055】
この場合も、各電源ラインが配線回路形成領域の端の部分に形成されることから、電源ラインを配置したことによる回路形成領域の面積の縮小化はわずかなものとなる。
【0056】
また、1つの行に対応する複数の画素に対してそれぞれ共通に1つの前記選択回路が割り当てられている場合に、前記第2の基板は、周辺部にそれぞれ選択回路に通じる電極パッドが形成され、該第2の基板の端部に配線されていてもよい。
【0057】
この場合、選択回路に通じる電極パッドの存在に関係なく、各配線回路形成領域を形成することができ、各配線回路形成領域の面積が前記電極パッドによって縮小化されるということはない。
【0058】
また、前記駆動回路が、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第1の制御線からの第1の信号の入力を禁止し、選択時に前記第1の信号の入力を許可する第1の論理ゲートと、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第2の制御線からの第2の信号の入力を禁止し、選択時に前記第2の信号の入力を許可する第2の論理ゲートとを有し、前記信号線からの第1の信号及び第2の信号に基づいて前記駆動電位発生回路の出力電位を3つの状態に遷移させる場合に、前記第1の制御線は、前記第2の基板の列方向の一方の端部を通じて配線され、前記第2の制御線は、前記第2の基板の前記一方の端部とは反対側の端部を通じて配線され、前記選択線は、前記第2の基板の行方向の端部を通じて配線されていてもよい。
【0059】
これにより、各列に対応してそれぞれ第1及び第2の制御線を直線的に配線でき、各行に対応してそれぞれ選択線を直線的に配線することができる。そのため、各配線において寄生インダクタンスや寄生抵抗の増大を抑えることができ、信号伝達効率の低下を抑えることができる。しかも、各配線回路形成領域において、列方向に延びる第1及び第2の制御線と行方向に延びる選択線を形成させることができる。
【0060】
この場合、前記第1の制御線、第2の制御線及び選択線は、前記第2の基板のそれぞれ対応する端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていてもよい。そして、これらの配線が、例えば上位回路に接続される配線ケーブル又はコネクタの接着部に導通されていてもよい。この場合、多数の表示部を配列させて大型の表示装置を構成した場合に、表示部間の接合部の隙間を限りなく小さくすることができるため、各表示部の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0061】
また、本発明においては、前記駆動回路における前記駆動電位発生回路が、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有する場合に、前記高レベル電源のラインは、前記第2の基板のいずれか1つの端部から配線され、かつ、列方向に延びる1以上の第1の導入ラインと、該第1の導入ラインから奇数行又は偶数行に沿って分岐した複数の第1の分岐ラインとを有し、前記低レベル電源のラインは、前記第2の基板のいずれか1つの端部から配線され、かつ、列方向に延びる1以上の第2の導入ラインと、該第2の導入ラインから前記第1の分岐ラインとは異なる行に沿って分岐した複数の第2の分岐ラインとを有するようにしてもよい。
【0062】
例えば高レベル電源ラインと低レベル電源ラインをそれぞれ各配線回路形成領域に向けて配線する場合、高レベル電源ラインと低レベル電源ラインとをそれぞれ各行毎に配線(1行につき2本の電源ラインを配線)することが考えられる。
【0063】
しかし、この発明では、高レベル電源ラインの分岐ライン(第1の分岐ライン)を奇数行又は偶数行に沿って配線し、低レベル電源ラインの分岐ライン(第2の分岐ライン)を前記第1の分岐ラインとは異なる行に沿って配線するようにしたので、1行につき1本の電源ラインが配線されることになり、電源ラインの本数を大幅に削減することができる。これは、各配線回路形成領域における回路形成領域の面積の縮小化を抑えることができることにつながる。
【0064】
また、外部からの高レベル電源ライン並びに低レベル電源ラインへの導入配線をそれぞれ1以上の第1の導入ライン並びに第2の導入ラインを通じて行うことができることから、列単位に配線される第1及び第2の制御線の配線を邪魔することなく、電源ラインを導入するための配線を行うことができる。
【0065】
そして、本発明においては、少なくとも前記第1の導入ライン及び第2の導入ラインは、前記第2の基板のそれぞれ対応する端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていてもよい。また、前記電極パッドからの配線は、前記第2の基板の端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていてもよい。
【0066】
なお、前記基板の裏面に引き出された配線は、例えば上位回路に接続される配線ケーブル又はコネクタの接着部に導通されていてもよい。
【0067】
これにより、多数の表示部を配列させて大型の表示装置を構成した場合に、表示部間の接合部の隙間を限りなく小さくすることができるため、各表示部の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0068】
また、上述した容量性素子として、アクチュエータや液晶セルあるいはPDPセルを用いることができる。
【0069】
【発明の実施の形態】
以下、本発明に係る表示装置の実施の形態例を図1〜図21を参照しながら説明する。
【0070】
本実施の形態に係る表示装置10は、図1に示すように、表示装置10としての表示面積を有する導光板12の背面に、複数個の表示素子14が配列されて構成されている。
【0071】
表示素子14は、図2に示すように、光源16からの光18が導入される光導波板20と、該光導波板20の背面に対向して設けられ、かつ多数の容量性素子22が画素に対応してマトリクス状あるいは千鳥状に配列された表示部24とを有する。この実施の形態では、容量性素子22をアクチュエータ部に適用した例である。従って、以下の説明では、容量性素子22をアクチュエータ部22と記す。
【0072】
画素の配列は、図3Aに示すように、例えば1つのアクチュエータ部22で1つの画素28を構成するようにしてもよいし、図3Bに示すように、2つのアクチュエータ部22にて1つのドットを構成し、更に、3つのドット(赤色ドット26R、緑色ドット26G及び青色ドット26B)で1つの画素28を構成するようにしてもよい。なお、図3Aの画素配列は、いわゆるモノクロ対応の画素配列に準じた配列である。また、図2の表示素子14においては、図3Aの画素配列であって、画素28の並びを水平方向に128個、垂直方向に128個としている。
【0073】
そして、この表示装置10は、図1に示すように、例えばVGA(Video Graphics Array)の規格に準拠すべく、水平方向に640画素(1920ドット)が並び、垂直方向に480画素(480ドット)が並ぶように、導光板12の背面に、表示素子14を水平方向に5個、垂直方向に4個配列させるようにしている。
【0074】
導光板12は、ガラス板やアクリル板等の可視光領域での光透過率が大であって、かつ、均一なものが使用され、各表示素子14間は、ワイヤボンディングや半田付け、端面コネクタ、裏面コネクタ等で接続することにより相互間の信号供給が行えるようになっている。
【0075】
なお、前記導光板12と各表示素子14の光導波板20は、屈折率が類似したものが好ましく、導光板12と光導波板20とを貼り合わせる場合には、透明な接着剤や液体を用いてもよい。この接着剤や液体は、導光板12や光導波板20と同様に、可視光領域において均一で、かつ、高い光透過率を有することが好ましく、また、屈折率も導光板12や光導波板20と近いものに設定することが、画面の明るさを確保する上で望ましい。
【0076】
ところで、各表示素子14においては、図2に示すように、各アクチュエータ部22上に、それぞれ画素構成体30が積層されている。
【0077】
表示部24は、例えばセラミックスにて構成されたアクチュエータ基板32を有し、該アクチュエータ基板32の各画素28に応じた位置にアクチュエータ部22が配設されている。前記アクチュエータ基板32は、一主面が光導波板20の背面に対向するように配置されており、該一主面は連続した面(面一)とされている。アクチュエータ基板32の内部には、各画素28に対応した位置にそれぞれ後述する振動部を形成するための空所34が設けられている。各空所34は、アクチュエータ基板32の他端面に設けられた径の小さい貫通孔36を通じて外部と連通されている。
【0078】
前記アクチュエータ基板32のうち、空所34の形成されている部分が薄肉とされ、それ以外の部分が厚肉とされている。薄肉の部分は、外部応力に対して振動を受けやすい構造となって振動部38として機能し、空所34以外の部分は厚肉とされて前記振動部38を支持する固定部40として機能するようになっている。
【0079】
つまり、アクチュエータ基板32は、最下層である基板層32Aと中間層であるスペーサ層32Bと最上層である薄板層32Cとの積層体であって、スペーサ層32Bのうち、アクチュエータ部22に対応する箇所に空所34が形成された一体構造体として把握することができる。基板層32Aは、補強用基板として機能するほか、配線用の基板としても機能するようになっている。なお、前記アクチュエータ基板32は、一体焼成であっても、後付けであってもよい。
【0080】
前記基板層32A、スペーサ層32B及び薄板層32Cの構成材料としては、例えば、安定化酸化ジルコニウム、部分安定化酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、スピネル及びムライト等の高耐熱性、高強度及び高靭性を兼ね備えるものが好適に採用される。なお、基板層32A、スペーサ層32B及び薄板層32Cは、全て同一材料としてもよく、それぞれ別の材料としてもよい。
【0081】
そして、前記薄板層32Cの厚みとしては、アクチュエータ部22を大きく変位させるために、50μm以下とされ、好ましくは3〜20μm程度とされる。
【0082】
スペーサ層32Bは、アクチュエータ基板32に空所34を構成するものとして存在していればよく、その厚みは特に制限されるものではない。しかし一方で、空所34の利用目的に応じてその厚みを決定してもよく、その中でもアクチュエータ部22が機能する上で必要以上の厚みを有さず、例えば図4に示すように、薄い状態で構成されていることが好ましい。即ち、スペーサ層32Bの厚みは、利用するアクチュエータ部22の変位の大きさ程度であることが好ましい。
【0083】
このような構成により、薄肉の部分(振動部38の部分)の撓みが、その撓み方向に近接する基板層32Aにより制限され、意図しない外力の印加に対して、前記薄肉部分の破壊を防止するという効果が得られる。なお、基板層32Aによる撓みの制限効果を利用して、アクチュエータ部22の変位を特定値に安定させることも可能である。
【0084】
また、スペーサ層32Bを薄くすることで、アクチュエータ基板32自体の厚みが低減し、曲げ剛性を小さくすることができるため、例えばアクチュエータ基板32を別体に接着・固定するにあたって、相手方(例えば光導波板20)に対し、自分自身(この場合、アクチュエータ基板32)の反り等が効果的に矯正され、接着・固定の信頼性の向上を図ることができる。
【0085】
加えて、アクチュエータ基板32が全体として薄く構成されるため、アクチュエータ基板32を製造する際に、原材料の使用量を低減することができ、製造コストの観点からも有利な構造である。従って、スペーサ層32Bの具体的な厚みとしては、3〜50μmとすることが好ましく、中でも3〜20μmとすることが好ましい。
【0086】
一方、基板層32Aの厚みとしては、上述したスペーサ層32Bを薄く構成することから、アクチュエータ基板32全体の補強目的として、50μm以上、好ましくは80〜300μm程度とされる。
【0087】
ここで、アクチュエータ部22と画素構成体30の具体例を図5に基づいて説明する。なお、図5は、外力に対して変形しない材料で構成されている桟42と、光導波板20との間に光遮蔽層44を設けた場合を示す。
【0088】
まず、アクチュエータ部22は、図5に示すように、前記振動部38と固定部40のほか、該振動部38上に直接形成された圧電/電歪層46と、該圧電/電歪層46の上面と下面に形成された一対の電極48(下部電極48a及び上部電極48b)とを有する。
【0089】
一対の電極48は、図5に示すように、圧電/電歪層46に対して上下に形成した構造や片側だけに形成した構造でもよいし、圧電/電歪層46の上部のみに一対の電極48を形成するようにしてもよい。
【0090】
一対の電極48を圧電/電歪層46の上部のみに形成する場合、一対の電極48の平面形状としては、多数のくし歯が相補的に対峙した形状のほか、特開平10−78549号公報にも示されているように、渦巻き状や多枝形状などを採用してもよい。
【0091】
ところで、図5に示すように、一対の電極48として、圧電/電歪層46の下面に下部電極48aを形成し、圧電/電歪層46の上面に上部電極48bを形成した場合においては、図2及び図5に示すように、アクチュエータ部22を空所34側に凸となるように一方向に屈曲変位させることも可能であり、その他、図6に示すように、アクチュエータ部22を光導波板20側に凸となるように、他方向に屈曲変位させることも可能である。なお、図6に示す例は、光遮蔽層44(図2参照)を形成しない場合を示す。
【0092】
画素配列が、図3Bのように、赤色ドット26R、緑色ドット26G及び青色ドット26Bで1つの画素28を構成する配列の場合は、画素構成体30は、例えば図5に示すように、アクチュエータ部22上に形成された白色散乱体50と色フィルタ52と透明層54との積層体である、いわゆる変位伝達部で構成することができる。なお、画素配列が、図3Aのように、1つのアクチュエータ部22で1つの画素28を構成するような場合は、画素構成体30は、図5の構成例から色フィルタ52を省略した積層体にて構成することができる。
【0093】
更に、前記積層体の他に、(1)前記白色散乱体50の代わりに光反射層と絶縁層を積層して介在させた場合、(2)アクチュエータ部22上に形成された画素構成体30である変位伝達部を有色散乱体と透明層の積層体で構成した場合、(3)前記変位伝達部を透明層、有色散乱体、光反射層及び絶縁層の積層体で構成した場合、等の組み合わせが考えられる。
【0094】
また、この表示素子14においては、図2、図5及び図6に示すように、光導波板20とアクチュエータ基板32との間において、画素構成体30以外の部分に形成された桟42を有して構成され、図6の例では、桟42の上面に直接光導波板20が固着された場合を示している。桟42の材質は、熱、圧力に対して変形しないものが好ましい。
【0095】
ここで、表示素子14の動作を図2及び図5を参照しながら簡単に説明する。まず、光導波板20の例えば端部から光18が導入される。この場合、画素構成体30が光導波板20に接触していない状態で、光導波板20の屈折率の大きさを調節することにより、全ての光18を光導波板20の前面及び背面において透過することなく内部で全反射させるようにする。光導波板20の屈折率nとしては、1.3〜1.8が望ましく、1.4〜1.7がより望ましい。
【0096】
この例においては、アクチュエータ部22の自然状態において、画素構成体30の端面が光導波板20の背面に対して光18の波長以下の距離で接触しているため、光18は、画素構成体30の表面で反射し、散乱光62となる。この散乱光62は、一部は再度光導波板20の中で反射するが、散乱光62の大部分は光導波板20で反射されることなく、光導波板20の前面(表面)を透過することになる。これによって、全てのアクチュエータ部22がON状態となり、そのON状態が発光というかたちで具現され、しかも、その発光色は画素構成体30に含まれる色フィルタ52や白色散乱体50の色に対応したものとなる。この場合、全てのアクチュエータ部22に対応する画素がON状態となっているため、表示素子14の画面からは白色が表示されることになる。
【0097】
また、更には、アクチュエータ部22の上部電極48bと下部電極48aとの間に低レベル電圧(−10V)が駆動電圧として印加されることにより、画素構成体30の端面が光導波板20の背面に対して押し付ける状態で接触し、より確実なON状態を作り出すことが可能となり、安定した表示が可能となる。
【0098】
この状態から、ある画素に対応するアクチュエータ部22の上部電極48bと下部電極48aとの間に高レベルの駆動電圧(50V)が印加されると、当該アクチュエータ部22が図2に示すように、空所34側に凸となるように屈曲変位、即ち、下方に屈曲変位して、画素構成体30の端面が光導波板20から離隔し、当該アクチュエータ部22に対応する画素がOFF状態となり、そのOFF状態が消光というかたちで具現される。
【0099】
つまり、この表示素子14は、画素構成体30の光導波板20への接触の有無により、光導波板20の前面における光の発光(散乱光62)の有無を制御することができる。
【0100】
そして、図7に示すように、画像信号における1フレーム(1/60sec)を3つの時間帯(第1フィールド〜第3フィールド)に分け、各フィールドで3色の光源を切り換えるようにする。例えば第1フィールドで赤色光源(R光源)からの光を導入し、第2フィールドで緑色光源(G光源)からの光を導入し、第3フィールドで青色光源(B光源)からの光を導入することで、モノクロ対応の画素配列でもカラー表示が実現でき、この場合、1つのアクチュエータ部22で1つの画素28を構成することができるため、高解像度を実現させることができる。
【0101】
そして、各表示素子14は、図8に示すように、駆動部70と選択部72とを有する。
【0102】
駆動部70は、表示部24の各画素(アクチュエータ部22)に対応して配列され、対応するアクチュエータ部22の上部電極48b(図5参照)に駆動電位Vdを印加して、該アクチュエータ部22を駆動制御する駆動回路74と、多数の画素(アクチュエータ部22)の行数に応じた本数の第1の行選択線76と、多数の画素の列数に応じた本数の画素信号線78と、各画素信号線78に対応して配列され、かつ、1本の画素信号線78に対して2本の制御線を有する制御信号線80とを有する。
【0103】
また、この駆動部70は、垂直シフト回路82と、水平シフト回路84と、信号制御回路86と、信号線制御回路88とを有する。
【0104】
垂直シフト回路82は、第1の行選択線76に選択的に選択信号Ssを供給して、1行単位にアクチュエータ部22を順次選択する。また、この垂直シフト回路82は、行選択のタイミングに同期した同期信号Shを出力する。水平シフト回路84は、画素信号線78にパラレルに画素信号Sdを出力する。信号制御回路86は、入力される映像信号Sv及び同期信号Syに基づいて垂直シフト回路82及び水平シフト回路84を制御する。信号線制御回路88は、画素の列数と同じ個数の調整回路90を有する。
【0105】
調整回路90は、対応する画素信号線78を通じて供給された画素信号Sdの属性に基づいて、図14に示すように、第1制御信号Sc1及び第2制御信号Sc2を生成し、それぞれ第1制御線80a及び第2制御線80bに出力する。なお、画素信号Sd、第1制御信号Sc1及び第2制御信号Sc2並びにアクチュエータ部22に印加される電圧波形等の例については後述する。
【0106】
ここで、選択信号Ss、同期信号Sh、画素信号Sd並びに第1制御信号Sc1及び第2制御信号Sc2の各波形の一例について図9を参照しながら説明する。
【0107】
まず、垂直シフト回路82にて全行を選択する期間を1サブフィールドとしたとき、同期信号Shは、図9に示すように、例えば1フィールドの開始(時点t1)と同時に立ち上がり、該1フィールド期間における最初の1サブフィールドの終了(時点t3)と同時に立ち下がる信号波形を有する。
【0108】
第1制御信号Sc1及び第2制御信号Sc2のレベルは、同期信号Sh及び画素信号Sdの各レベルに応じて変化する。但し、同期信号Shが高レベルの期間は、いわゆるリセット期間Trであって、全ての画素をOFF(消光)させる。従って、同期信号Shが低レベルの期間は、いわゆる階調表現期間Tcであって、例えば1行1列目の画素についてみたとき、該画素に対する画素信号Sdが示す階調レベルに応じた分のサブフィールド期間だけ当該画素がONとされる。
【0109】
そして、例えば、同期信号Shが高レベルの期間(リセット期間Tr)においては、画素信号Sdの属性はOFF(低レベル)であることから、第1制御信号Sc1及び第2制御信号Sc2は共に高レベルとなる。
【0110】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がOFF(低レベル)の場合は、第1制御信号Sc1は高レベル、第2制御信号Sc2は低レベルとなる(時点t3参照)。
【0111】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がON(高レベル)の場合は、第1制御信号Sc1は低レベル、第2制御信号Sc2は低レベルとなる(時点t5参照)。
【0112】
なお、垂直シフト回路82、水平シフト回路84、信号制御回路86及び信号線制御回路88には、電源部92(図8参照)から電源電圧が供給される。駆動回路74の具体例については後述する。
【0113】
一方、図8に示すように、選択部72は、表示部24の行数に応じた本数の第2の行選択線94と、各第2の行選択線94に対応して接続された選択回路96とを有し、垂直シフト回路82にて選択した行に対応する各アクチュエータ部22の下部電極48aに対して、その行に対応する選択回路96から第2の行選択線94を通じて選択電位Vsを印加する。この選択回路96の詳細は後述する。
【0114】
ここで、駆動部70及び選択部72の実装について説明する。まず、駆動部70を表示素子14に実装する場合、アクチュエータ部22が形成されたアクチュエータ基板32のアクチュエータ部22の形成面に実装することが考えられる。しかし、この場合、画素の開口率に直接関わるアクチュエータ部22の面積を十分に確保できなくなるおそれがある。一方、アクチュエータ基板32のうち、アクチュエータ部22が形成されていない面に実装する場合、実装スペースの確保が困難であるだけでなく、工程が複雑になり、アクチュエータ基板32の歩留まりの低下を招くおそれがある。
【0115】
そこで、本実施の形態では、図10に示すように、多数の画素に応じて配列されたアクチュエータ部22をアクチュエータ基板32に形成し、駆動部70を別の回路基板100に形成し、光導波板20とアクチュエータ基板32とを貼り合わせ、更に、アクチュエータ基板32の裏面に回路基板100を貼り合わせる。
【0116】
具体的には、図11に示すように、一主面に多数のアクチュエータ部22(図10参照)が配列形成されたアクチュエータ基板32のほかに、一主面に駆動回路74等が形成される領域(配線回路形成領域)102が配列形成された回路基板100を用意する。アクチュエータ基板32の一主面から他主面につながるスルーホール66(図5参照)を各アクチュエータ部22に対応して多数設け、該スルーホール66におけるアクチュエータ基板32の他主面側に電極パッド104を形成する。即ち、これら電極パッド104は、一主面に設けられたアクチュエータ部22に対応した位置に設けられることになる。
【0117】
一方、回路基板100は、アクチュエータ基板32の裏面に貼り合わせたときに、各電極パッド104に対応した位置にそれぞれ駆動回路74(図8参照)の電極パッド106が形成されている。これら電極パッド104と電極パッド106との電気的接続によって、回路基板100における各駆動回路74とアクチュエータ基板32における各アクチュエータ部22とが電気的に接続されることになる。
【0118】
選択部72は、回路基板100の周辺部(図11の例では、左端部)に行数に対応した数の電極パッド108が形成され、アクチュエータ基板32には、その他主面のうち、前記電極パッド108に対応する位置にそれぞれ電極パッド110が形成され、更にこれら電極パッド110から一主面に貫通するスルーホール(図示せず)が設けられている。
【0119】
これらアクチュエータ基板32と回路基板100との貼り合わせは、アクチュエータ基板32の裏面(多数の電極パッド104及び110が形成された面)と回路基板100の一主面とを互いに合わせ、アクチュエータ基板32における電極パッド104と回路基板100における電極パッド106とを例えば半田や導電性樹脂などで貼り合わせると共に、アクチュエータ基板32における電極パッド110と回路基板100における電極パッド108とを例えば半田や導電性樹脂などで貼り合わせる。この貼り合わせによって、アクチュエータ部22の一方の電極(例えば上部電極48b)と駆動回路74の出力とが電気的に接続されることになり、アクチュエータ部22の他方の電極(例えば下部電極48a)と選択回路96の出力とが電気的に接続されることになる。
【0120】
このような構成により、画素の開口率に直接関わるアクチュエータ部22を、駆動回路74の形成面積を考慮せずに配列形成することができ、駆動回路74についても、アクチュエータ部22の形成面積を考慮せずに配列形成することができる。
【0121】
従って、画素の開口率を大幅に向上させることができると共に、駆動回路74のレイアウトも自由に設計することができ、回路素子の選択性の向上、設計の自由度の向上を実現させることができる。これは、表示装置10の製造コストの低廉化を図ることができるほか、表示装置10の利用形態(設置される環境や使用目的等)に応じて様々な構成の表示装置10を作製できることにつながる。
【0122】
更に、この実施の形態では、後述するように、回路基板100の一主面に、駆動回路74のほかに、第1の行選択線76や第1制御線80a及び第2制御線80b等を形成するようにしている。
【0123】
アクチュエータ部22が形成されたアクチュエータ基板32に第1の行選択線76や第1制御線80a及び第2制御線80b等を形成する場合は、アクチュエータ部22間の隙間を蛇行させながら配線する必要があり、配線設計の自由度が低くなることと、寄生インダクタンスや寄生抵抗が増大することも懸念される。
【0124】
しかし、本実施の形態では、第1の行選択線76や第1制御線80a及び第2制御線80b等を駆動回路74と共に回路基板100に形成することにより、アクチュエータ部22の配置に関係なく、自由に配線形成することができることから、配線設計の自由度が向上すると共に、寄生インダクタンスや寄生抵抗の低減も期待できる。
【0125】
回路基板100の構成材料としては、セラミックス、ガラス、プラスチック(板状もしくはフィルム状)等を用いることができる。例えばガラスについては、高耐熱性であることと、表面の欠陥が少ない、あるいは小さいことが好ましい。市販のものでは、コーニング社製のEagle2000、Code1737、日本板硝子社製のNA35、旭硝子社製のAN635を使用することができる。
【0126】
また、プラスチックを用いる場合は、軽量、堅牢、柔軟で、製造コスト的に有利なロール・ツー・ロール方式が適用できるという利点がある。しかし、耐熱性に問題があるため、低温でTFTを製造することが好ましい。
【0127】
一方、第1の行選択線76への選択信号Ssの供給や、画素信号線78への画素信号Sdの供給、第1制御線80a及び第2制御線80bへの第1制御信号Sc1及び第2制御信号Sc2の供給として、図10に示すように、低圧ロジックIC112を用いることができる。この場合、回路基板100の一主面に形成された駆動部70から多数の配線を回路基板100の外部へと引き出す必要があるが、この方法として、図12に示すように、アクチュエータ部22と回路基板100との貼り合わせ部分から例えばACF(Anisotropic Conductive Film)114を介して直接FPC(Flexible Printed Circuit)やTAB(Tape Automated Bonding)などのケーブル116を通じて低圧ロジックIC112(図10参照)に接続する方法が考えられる。
【0128】
しかし、この方法の場合、ケーブル116を引き回すスペースが必要になることから、図1に示すように、多数の表示素子14を配列させて大型の表示装置10を構成した場合に、表示素子14間の接合部の隙間が大きくなるという問題が生じる。
【0129】
そこで、本実施の形態では、回路基板100としてガラスを用いる場合、図13に示すように、回路基板100の一主面から端面及び裏面にかけて配線パターン118を印刷し(端面印刷)、回路基板100の裏面において、ACF114及びケーブル116を通じて低圧ロジックIC112(図10参照)に接続する。
【0130】
回路基板100としてプラスチックあるいはセラミックスを用いる場合は、図示しないが、回路基板100に、それぞれ駆動回路74に対応してスルーホールを形成し、各スルーホールから配線を引き出すようにすればよい。
【0131】
これらの方法においては、表示素子14間の接合部の隙間を限りなく小さくすることができ、大型の表示装置10を構成した場合に、各表示素子14の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0132】
なお、駆動部70を回路基板100に形成した場合は、図12及び図13に示すように、回路基板100に1以上の通気孔120を形成することが好ましい。これにより、アクチュエータ部22の耐久性並びに表示素子14及び表示装置10の耐久性が著しく向上する。
【0133】
次に、本実施の形態に係る駆動回路74の第1の具体例と選択回路96について図14を参照しながら説明する。
【0134】
まず、第1の具体例に係る駆動回路74Aは、図14に示すように、制御信号線80(第1制御線80a及び第2制御線80b)からの信号に基づいた駆動電位Vdをアクチュエータ部22の上部電極48bに印加する駆動電位発生回路130と、第1の行選択線76からの選択信号Ssに基づいて、非選択時に制御信号線80の第1制御線80aにおける第1制御信号Sc1の入力を禁止し、選択時に第1制御信号Sc1の入力を許可する第1の論理ゲート132と、第1の行選択線76からの選択信号Ssに基づいて、非選択時に制御信号線80の第2制御線80bにおける第2制御信号Sc2の入力を禁止し、選択時に第2制御信号Sc2の入力を許可する第2の論理ゲート134とを有する。
【0135】
また、この第1の具体例に係る駆動回路74Aは、図14に示すように、第1及び第2の論理ゲート132及び134がそれぞれトランスファゲートM1及びM2で構成されている。また、駆動電位発生回路130は、高レベル電源(例えば+30V)と低レベル電源(例えば0V)との間に接続されたチャネル幅の大きい2つのパワーTFTからなる直列回路136を有する。
【0136】
この直列回路136は、ソースに高レベル電源が接続されたpチャネル型のパワーTFT(pM3)と、ソースに低レベル電源が接続されたnチャネル型のパワーTFT(nM4)とを有し、前記パワーTFT(pM3)のゲートに第1の論理ゲート132を介して第1制御信号Sc1が印加され、パワーTFT(nM4)のゲートに第2の論理ゲート134を介して第2制御信号Sc2が印加されるように配線接続されている。
【0137】
直列回路136の接点、即ち、出力端子138には、電極パッド106及び104並びに抵抗140を介してアクチュエータ部22の上部電極48bが接続されている。
【0138】
また、第1の論理ゲート132、第2の論理ゲート134、パワーTFT(pM3)及びパワーTFT(nM4)は、共にソース端子と分離され、かつ、半導体基板に対するバイアス端子を有する4端子構造とされている。そして、第1の論理ゲート132、第2の論理ゲート134及びパワーTFT(nM4)の基板電位は共に、低レベル電源の電位(例えば0V)と同じとされ、パワーTFT(pM3)の基板電位は論理レベルの高電位(例えば+5V)に設定されている。
【0139】
一方、選択回路は、高レベル電源(例えば+50V)と低レベル電源(例えば+20V)との間に接続されたチャネル幅の大きい2つのパワーTFTからなる直列回路142を有する。
【0140】
直列回路142は、ソースに高レベル電源が接続されたpチャネル型のパワーTFT(pM5)と、ソースに低レベル電源が接続されたnチャネル型のパワーTFT(nM6)とを有し、前記パワーTFT(pM5)のゲートに図示しないコントローラからの第1のスイッチング信号Sw1が印加され、パワーTFT(nM6)のゲートに図示しないコントローラからの第2のスイッチング信号Sw2が印加されるように配線接続されている。
【0141】
直列回路142の接点、即ち、出力端子144には、電極パッド108及び110を介してアクチュエータ部22の下部電極48aが接続されている。
【0142】
そして、図9に示すように、上述した同期信号Shが高レベルの期間(リセット期間Tr)においては、第1及び第2のスイッチング信号Sw1及びSw2が共に低レベルとなって、パワーTFT(pM5)はON、パワーTFT(nM6)はOFFとなり、アクチュエータ部22の下部電極48aに印加される選択電位Vsは+50Vとなる。
【0143】
同期信号Shが低レベルの期間(階調表現期間Tc)においては、第1及び第2のスイッチング信号Sw1及びSw2が共に高レベルとなって、パワーTFT(pM5)はOFF、パワーTFT(nM6)はONとなり、アクチュエータ部22の下部電極48aに印加される選択電位Vsは+20Vとなる。
【0144】
ここで、第1の具体例に係る駆動回路74Aと選択回路96の動作について図9も参照しながら説明する。
【0145】
この実施の形態では、選択されている行の各画素が例えば消光状態とされるリセットの概念が導入される。
【0146】
また、図15に示すように、リセット期間Tr後の階調表現期間Tcにおいて、選択行に係る各画素への画素信号Sdの属性に応じて、非選択(OFF)、選択(OFF)、非選択(OFF)、選択(ON)、非選択(ON)の5つの動作がある規則性をもって行われることになる。
【0147】
具体的には、リセット期間Trにおいて、ある行に第1の行選択線76から選択を示す信号が供給され、選択行の各画素に対する画素信号Sdの属性がOFFであった場合、選択中の行における各アクチュエータ部22には、リセットの状態に応じた駆動電圧Vc(例えば+50V)が印加される。このとき、前記行における各画素は例えば消光状態とされる。
【0148】
その後、上記選択行には第1の行選択線76から非選択を示す信号が供給されると共に、該選択行における各アクチュエータ部22には、非選択で、かつ、OFFの状態に応じた駆動電圧Vc(例えば+50V)が印加される。このとき、前記選択行における各画素は消光状態が維持される。
【0149】
その後、上記選択行に第1の行選択線76から選択を示す信号が供給されたとき、画素によって、画素信号Sdの属性がOFFであったり、ONであったりする。画素信号Sdの属性がOFFである画素のアクチュエータ部22に対しては、選択で、かつ、OFFの状態に応じた駆動電圧Vc(例えば+50V)が印加される。このとき、当該画素は例えば消光状態が維持される。
【0150】
一方、画素信号Sdの属性がONであれば、その画素に対応するアクチュエータ部22に対しては、選択で、かつ、ONの状態に応じた駆動電圧Vc(例えば−10V)が印加される。このとき、当該画素は例えば発光状態となる。
【0151】
その後、上記選択行に第1の行選択線76から非選択を示す信号が供給されると、該選択行におけるアクチュエータ部22には前回の選択時における駆動電圧Vcの印加が維持され、選択時にONであった画素はその発光状態が維持され、選択時にOFFであった画素はその消光状態が維持される。
【0152】
その後、再び、上記選択行に第1の行選択線76から選択を示す信号が供給されたとき、画素によって、画素信号Sdの属性がOFFあるいはONとなるが、前回の選択時におけるON又はOFFが繰り返される場合は、該選択行におけるアクチュエータ部22には前回の選択時における駆動電圧の印加が維持される。
【0153】
また、ある画素について、前回の非選択時にOFFであった状態が次の選択時にONとなった場合は、選択で、かつ、ONの状態に応じた駆動電圧が印加される。このとき、当該画素は例えば発光状態となる。
【0154】
反対に、ある画素について、前回の非選択時にONであった状態が次の選択時にOFFにされる場合は、その選択の前段階で、少なくとも当該画素についてリセット及び非選択(OFF)を経て選択(OFF)とさせなければならず、タイミング的にずれることになる。
【0155】
そこで、(1)1フィールド毎(あるいはフレーム毎)に必ずリセットを行い、リセット、つまり、消光状態を始点として階調表現を行う、(2)階調に応じて、非選択(OFF)から選択(ON)に移行するタイミングを制御し、一旦、選択(ON)で発光したらリセットまで発光を維持する、というように、フィールド単位(あるいはフレーム単位)でみると、消光状態の連続の後に続く発光状態の連続が、階調表現方法として毎フィールド(あるいは毎フレーム)行われることになる。
【0156】
次に、図9を参照しながら上述の動作を説明する。まず、1つのフィールドにおける最初の1サブフィールド(リセット期間Tr)が開始されると、1サブフィールドにかけて高レベルの同期信号Shが各調整回路90(図8参照)に出力される。
【0157】
表示部24では、垂直シフト回路82によって1つの行(例えば1行目)が選択されると、この選択された行に関する各画素には、それぞれ対応する画素信号線78からそれぞれ画素信号Sdが供給され、更に、選択された行に関する各アクチュエータ部22の下部電極48aには、対応する選択回路96から第2の行選択線94を通じて選択電位Vsが印加されることになる。
【0158】
そして、リセット期間Trにおいては、選択された行の各画素に供給される画素信号Sdの属性は全てOFFとなっている。
【0159】
従って、図9の時点t1において、第1の行選択線76の選択信号Ssが高レベル、画素信号線78の画素信号Sdが低レベル(属性:OFF)になると、第1制御信号Sc1は高レベル、第2制御信号Sc2は高レベルとなり、例えば1行1列の画素に対応する駆動回路74Aにおいては、パワーTFT(pM3)がOFF、パワーTFT(nM4)がONとなり、アクチュエータ部22の上部電極48bに印加される駆動電位Vdは0Vとなる。
【0160】
このとき、下部電極48aには、50Vの選択電位Vsが印加されていることから、アクチュエータ部22の下部電極48a及び上部電極48b間に印加される駆動電圧は+50Vとなり、これにより、該アクチュエータ部22は、下方に変位し、該アクチュエータ部22に対応する画素は消光状態(OFF)となる。
【0161】
その後、時点t2において、第1の行選択線76の選択信号Ssが低レベルになると、第1及び第2の論理ゲート132及び134は共にOFFとなる。その結果、各論理ゲート132及び134の出力インピーダンスが高くなり、各パワーTFT(pM3)及び(nM4)のゲート・サブストレート間容量には、それぞれ高レベル電圧(5V)が保持された状態となり、パワーTFT(pM3)及び(nM4)はそれぞれOFF及びONを維持することになる。従って、当該アクチュエータ部22に対応する画素は依然OFFのままである。
【0162】
その後、時点t3から階調表現期間Tcが開始されて、第1の行選択線76の選択信号Ssが高レベルであって、画素信号線78の画素信号Sdが例えば低レベル(属性:OFF)のとき、第1制御信号Sc1は高レベル、第2制御信号Sc2は低レベルとなり、例えば1行1列の画素に対応する駆動回路74Aにおいては、パワーTFT(pM3)がOFF、パワーTFT(nM4)がOFFとなり、直列回路136の出力は高インピーダンス状態となり、アクチュエータ部22の上部電極48bに印加される駆動電位Vdは0Vを維持する。
【0163】
このとき、下部電極48aには、階調表現期間Tcの開始時点t3から20Vの選択電位Vsが印加されているが、直列回路136の出力が高インピーダンス状態であることから、アクチュエータ部22の下部電極48a及び上部電極48b間に印加される駆動電圧Vcは+50Vが維持され、これにより、該アクチュエータ部22に対応する画素は消光状態(OFF)を維持する。
【0164】
その後、時点t4において、第1の行選択線76の選択信号Ssが低レベルになると、時点t2と同様に、パワーTFT(pM3)及び(nM4)は共にOFFを維持することになり、当該アクチュエータ部22に対応する画素は依然OFFのままである。
【0165】
その後、時点t5において、第1の行選択線76の選択信号Ssが高レベルであって、画素信号線78の画素信号Sdが例えば高レベル(属性:ON)となった場合、第1制御信号Sc1及び第2制御信号Sc2は共に低レベルとなり、例えば1行1列の画素に対応する駆動回路74Aにおいては、パワーTFT(pM3)がON、パワーTFT(nM4)がOFFとなり、アクチュエータ部22の上部電極48bに印加される駆動電位Vdは+30Vとなる。
【0166】
このとき、下部電極48aには、階調表現期間Tcの開始時点t3から20Vの選択電位Vsが印加されていることから、アクチュエータ部22の下部電極48a及び上部電極48b間に印加される駆動電圧Vdは−10Vとなり、これにより、該アクチュエータ部22は、上方に変位し、該アクチュエータ部22に対応する画素は発光状態(ON)となる。
【0167】
その後、時点t6において、第1の行選択線76の選択信号Ssが低レベルになると、時点t2と同様に、パワーTFT(pM3)はON、パワーTFT(nM4)はOFFを維持することになり、当該アクチュエータ部22に対応する画素は依然ONのままである。
【0168】
次に、回路基板100に形成される配線や回路のレイアウトについて図16〜図18を参照しながら説明する。
【0169】
まず、上述したように回路基板100には、画素に対応して割り当てられた駆動回路74Aに対応してそれぞれ配線回路形成領域102(図11参照)が配列される。例えば表示部24の行数が128で、列数が128であれば、128×128=16384個の配線回路形成領域102が配列されることになる。
【0170】
そして、図16に示すように、中央の配線回路形成領域102Aを基準に説明すると、該配線回路形成領域102Aには、該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102B寄りの部分に、行方向に延びる第1の行選択線76が形成され、該配線回路形成領域102Aの例えば左方向に割り当てられた他の配線回路形成領域102C寄りの部分に、列方向に延びる制御信号線80(第1制御線80a及び第2制御線80b)が形成されている。
【0171】
また、例えば配線回路形成領域102Aのうち、第1の行選択線76(実際には、後述するバイアス電源ライン156)と制御信号線80とで区画された部分に回路形成領域150が配置されており、該回路形成領域150には、それぞれ対応するアクチュエータ部22の上部電極48bに通じる電極パッド106と、駆動回路74Aが形成されている。
【0172】
更に、前記配線回路形成領域102Aには、該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102Bとの境界部分に、行方向に延びる高レベル電源ライン152が形成され、該配線回路形成領域102Aの例えば下方向に割り当てられた他の配線回路形成領域102Dとの境界部分に、行方向に延びる低レベル電源ライン154が形成されている。また、第1の行選択線76と回路形成領域150との間には、行方向に延び、かつ、パワーTFT(pM3)の基板電位を供給するためのバイアス電源ライン156が形成されている。
【0173】
また、図17に示すように、第1の制御線80aは、回路基板100の裏面から該回路基板100の第1の端部100aを通じて表面(アクチュエータ基板32との貼りあわせ面)にかけて印刷され(端面印刷)、更に、該回路基板100の表面においてそれぞれ列方向に延在されて印刷されている。
【0174】
これら第1の制御線80aは、図18に示すように、回路基板100の裏面から第1のACF114a及び第1のケーブル116aを介して図示しない低圧ロジックICに接続される。
【0175】
同様に、第2の制御線80bは、図17に示すように、回路基板100の裏面から該回路基板100の第2の端部100b(第1制御線80aが導入された第1の端部100aとは反対側の端部)を通じて表面にかけて印刷され(端面印刷)、更に、該回路基板100の表面においてそれぞれ列方向に延在されて印刷されている。これら第2制御線80bは、図18に示すように、回路基板100の裏面から第2のACF114b及び第2のケーブル116bを介して図示しない低圧ロジックICに接続される。
【0176】
第1の行選択線76は、図17に示すように、回路基板100の裏面から該回路基板100の第3の端部100cを通じて表面にかけて印刷され(端面印刷)、更に、該回路基板100の表面においてそれぞれ行方向に延在されて印刷されている。これら第1の行選択線76は、図18に示すように、回路基板100の裏面から第3のACF114c及び第3のケーブル116cを介して図示しない低圧ロジックICに接続される。
【0177】
なお、少なくとも列方向に延びる第1制御線80a及び第2制御線80bと行方向に延びる第1の行選択線76との交わった部分には絶縁層158が介在され、互いに電気的に接続されないようになっている。これは、各種電源ラインとの電気的絶縁においても同様である。図16では、絶縁層158の表示を省略して示してある。
【0178】
第2の行選択線94は、図17に示すように、回路基板100の裏面から該回路基板100の前記第4の端部100d(第1の行選択線76が導入された第3の端部100cとは反対側の端部)を通じて表面にかけて印刷され(端面印刷)、更に、それぞれ対応する電極パッド108まで印刷されている。これら第2の行選択線94は、図18に示すように、回路基板100の裏面から第4のACF114d及び第4のケーブル116dを介して図示しない低圧ロジックICに接続される。
【0179】
高レベル電源ライン152は、図17に示すように、回路基板100の裏面から該回路基板100の第1の端部100aを通じて表面にかけて印刷され(端面印刷)、かつ、列方向に延びる1つの第1の導入ライン152aと、該第1の導入ライン152aから例えば奇数行に沿って分岐した複数の第1の分岐ライン152bとを有する。この高レベル電源ライン152は、図18に示すように、回路基板100の裏面から第1のACF114a及び第1のケーブル116aを介して図示しない電源回路に接続される。
【0180】
低レベル電源ライン154は、図17に示すように、回路基板100の裏面から該回路基板100の第2の端部100bを通じて表面にかけて印刷され(端面印刷)、かつ、列方向に延びる1つの第2の導入ライン154aと、該第2の導入ライン154aから例えば偶数行に沿って分岐した複数の第2の分岐ライン154bとを有する。この低レベル電源ライン154は、図18に示すように、回路基板100の裏面から第2のACF114b及び第2のケーブル116bを介して図示しない電源回路に接続される。
【0181】
バイアス電源ライン156は、回路基板100の裏面から該回路基板100の第2の端部100bを通じて表面にかけて印刷され(端面印刷)、かつ、列方向に延びる1つの第3の導入ライン156aと、該第3の導入ライン156aから各行に沿って分岐した複数の第3の分岐ライン156bとを有する。このバイアス電源ライン156は、図18に示すように、回路基板100の裏面から第2のACF114b及び第2のケーブル116bを介して図示しない電源回路に接続される。
【0182】
このように、第1の具体例に係る駆動回路74Aにおけるレイアウトにおいては、例えば図16の配線回路形成領域102Aにおいて、行方向に延びる第1の行選択線76は、当該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102B寄りに形成され、列方向に延びる制御信号線80は、当該配線回路形成領域102Aの例えば左方向に割り当てられた他の配線回路形成領域102C寄りに形成される。このように、各配線は、配線回路形成領域102Aの端の部分に割り当てられることから、第1の行選択線76(図16の例では、バイアス電源ライン156)と制御信号線80で区画された回路形成領域150としては、面積的に広い領域が割り当てられる。
【0183】
従って、駆動回路74Aとして複数の薄膜トランジスタを含めた回路とした場合、各薄膜トランジスタの大きさやレイアウトについての自由度を向上させることができる。
【0184】
また、当該配線回路形成領域102Aと、該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102Bとの境界部分に例えば高レベル電源ライン152が形成され、当該配線回路形成領域102Aと、該配線回路形成領域102Bの例えば下方向に割り当てられた他の配線回路形成領域102Dとの境界部分に例えば低レベル電源ライン154が形成されることになるため、高レベル電源ライン152及び低レベル電源ライン154をそれぞれ1行置きに形成することが可能となり、電源ライン152及び154の本数の削減を有効に図ることができる。
【0185】
この場合も、各電源ライン152及び154が配線回路形成領域102Aの端の部分に形成されることから、電源ライン152及び154を配置したことによる回路形成領域150の面積の縮小化はわずかなものとなる。
【0186】
また、図17に示すように、回路基板100の周辺部(第4の端部100d側)にそれぞれ選択回路96に通じる電極パッド108を形成するようにしたので、該選択回路96に通じる電極パッド108の存在に関係なく、各配線回路形成領域102を形成することができ、各配線回路形成領域102の面積が前記電極パッド108によって縮小化されるということはない。
【0187】
また、第1制御線80aを、回路基板100の第1の端部100aを通じて配線し、第2制御線80bを、回路基板100の第2の端部100bを通じて配線し、第1の行選択線76を、回路基板100の第3の端部100cを通じて配線するようにしたので、各列に対応してそれぞれ第1制御線80a及び第2制御線80bを直線的に配線でき、各行に対応してそれぞれ第1の行選択線76を直線的に配線することができる。
【0188】
そのため、各配線において寄生インダクタンスや寄生抵抗の増大を抑えることができ、信号伝達効率の低下を抑えることができる。しかも、各配線回路形成領域102において、列方向に延びる第1制御線80a及び第2制御線80bと行方向に延びる第1の行選択線76を形成させることができる。
【0189】
また、高レベル電源ライン152の分岐ライン(第1の分岐ライン152b)を例えば奇数行に沿って配線し、低レベル電源ライン154の分岐ライン(第2の分岐ライン154b)を例えば偶数行に沿って配線するようにしたので、1行につき1本の電源ラインが配線されることになり、電源ラインの本数を大幅に削減することができる。これは、各配線回路形成領域102における回路形成領域150の面積の縮小化を抑えることができることにつながる。
【0190】
また、外部からの高レベル電源ライン152並びに低レベル電源ライン154への導入配線をそれぞれ1本の第1の導入ライン152a並びに第2の導入ライン154aを通じて行うことができることから、列単位に配線される第1制御線80a及び第2制御線80bの配線を邪魔することなく、電源ラインを導入するための配線を行うことができる。
【0191】
そして、上述した各配線(第1の制御線80a、第2の制御線80b、第1の行選択線76、高レベル電源ライン152、低レベル電源ライン154、バイアス電源ライン156及び第2の行選択線94)を、回路基板100のそれぞれ対応する端部において端面印刷にて配線するようにしたので、図1に示すように、多数の表示素子14を配列させて大型の表示装置10を構成した場合に、表示素子14間の接合部の隙間を限りなく小さくすることができる。そのため、各表示素子14の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0192】
なお、多数の表示素子14を配列させて大型の表示装置10を構成した場合に、各表示素子14におけるそれぞれ対応する行の第2の行選択線94を共通化して、対応する1つの選択回路96に接続するようにしてもよい。例えば各表示素子14のそれぞれ1行目の第2の行選択線94を共通化して1行目に対応する選択回路96に接続する。これにより、選択部72の構成が簡単になり、表示装置10の回路構成の簡略化を実現させることができる。
【0193】
次に、第2の具体例に係る駆動回路74Bについて図19〜図21を参照しながら説明する。なお、図14、図16及び図17と対応するものについては同符号を付してその重複説明を省略する。
【0194】
この第2の具体例に係る駆動回路74Bは、上述した第1の具体例に係る駆動回路74Aとほぼ同様の構成を有するが、図19に示すように、高レベル電源と低レベル電源との間に接続される直列回路136が、nチャネル型のパワーTFT(nM3)とnチャネル型のパワーTFT(nM4)とを有する点で異なる。
【0195】
この場合、第1の論理ゲート132、第2の論理ゲート134、パワーTFT(nM3)及びパワーTFT(nM4)の基板電位を共に、低レベル電源の電位(例えば0V)に設定することができ、バイアス電源ライン156を不要にすることができる。
【0196】
これにより、図20に示すように、各配線回路形成領域102A〜102D等の配線回路形成領域102(図11参照)に形成すべき領域のうち、バイアス電源ライン156(図16参照)の形成が不要となり、その分、回路形成領域150の面積を増大化させることができ、駆動回路74Bの設計レイアウトの自由度を更に向上させることができる。なお、この図20では絶縁層158の記載を省略して示してある。
【0197】
しかも、図21に示すように、回路基板100の表面に形成すべき配線のうち、各行に形成する必要があったバイアス電源ライン156の第3の分岐ライン156bとその導入ライン(第3の導入ライン156a)を不要にすることができ、その分、配線レイアウトの自由度が更に向上することになる。
【0198】
また、例えばCdSe材料等のように、nチャネルしか形成できない材料にも対応することができ、また、nチャネルのエンハンスメント形FETしか形成できない場合にも十分に対応させることができる。
【0199】
なお、第2の具体例に係る駆動回路74Bに対応させるために、調整回路90(図8参照)から出力される第1制御信号Sc1及び第2制御信号Sc2の属性は、図9に示すように、同期信号Shが高レベルの期間(リセット期間Tr)においては、画素をOFFにする必要から、駆動電位発生回路130の出力を低レベル状態にすればよく、そのためには、第1制御信号Sc1を低レベル、第2制御信号Sc2を高レベルにすればよい。
【0200】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がOFF(低レベル)の場合は、駆動電位発生回路130の出力を高インピーダンス状態にすればよく、そのためには、第1制御信号Sc1及び第2制御信号Sc2を共に低レベルにすればよい。
【0201】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がON(高レベル)の場合は、駆動電位発生回路130の出力を高レベル状態にすればよく、そのためには、第1制御信号Sc1を高レベル、第2制御信号Sc2を低レベルにすればよい。
【0202】
また、図14及び図19に示す選択回路96においては、pチャネル型のパワーTFT(pM5)とnチャネル型のパワーTFT(nM6)とを直列に接続して構成するようにしたが、その他、図19の駆動回路74Bにおける直列回路136と同様に、共にnチャネル型のパワーTFTの直列回路にて構成するようにしてもよい。
【0203】
なお、本発明に係る表示装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
【0204】
【発明の効果】
以上説明したように、本発明に係る表示装置によれば、容量性素子を変位制御するスイッチング素子としてTFTを用いた場合であっても、該スイッチング素子の耐圧の問題を解消することができ、容量性素子の面積(画素の開口率)を十分に確保することができる。
【0205】
また、各種配線の引き回しの最適化を図ることができ、しかも、容量性素子の面積を圧迫することなく、駆動回路を形成することができ、画素の開口率を十分に確保することができる。
【図面の簡単な説明】
【図1】本実施の形態に係る表示装置の概略構成を示す斜視図である。
【図2】表示素子の構成を示す断面図である。
【図3】図3Aはモノクロ表示対応の画素配列に準じ、カラー表示も可能な画素配列の一例を示す説明図であり、図3Bはカラー表示対応の画素配列を示す説明図である。
【図4】スペーサ層を薄くした場合の構成例を示す説明図である。
【図5】アクチュエータ部と画素構成体の構成例を示す断面図である。
【図6】表示素子の他の構成を示す断面図である。
【図7】1フレーム及び1フィールドの内訳を示す説明図である。
【図8】本実施の形態に係る駆動部及び選択部を示すブロック図である。
【図9】同期信号、選択信号、画素信号、第1制御信号、第2制御信号及びアクチュエータ部への駆動電圧の各波形並びにパワーTFT(pM3)、パワーTFT(nM4)、パワーTFT(pM5)、パワーTFT(nM6)及び画素のON/OFF状態を示すタイミングチャートである。
【図10】本実施の形態に係る表示素子の構成を示す平面図である。
【図11】本実施の形態に係る表示素子の構成要素のうち、アクチュエータ基板と回路基板を示す分解斜視図である。
【図12】回路基板の一主面に形成された駆動部から多数の配線を回路基板の外部へ引き出す方法の一例を示す説明図である。
【図13】回路基板の一主面に形成された駆動部から多数の配線を回路基板の外部へ引き出す方法の他の例を示す説明図である。
【図14】第1の具体例に係る駆動回路及び選択回路を示す回路図である。
【図15】本実施の形態に係る表示素子での動作遷移を示す説明図である。
【図16】第1の具体例に係る駆動回路に対応した回路基板上での配線回路形成領域のレイアウトを示す説明図である。
【図17】第1の具体例に係る駆動回路に対応した回路基板上での各種配線のレイアウトを示す説明図である。
【図18】各種配線の回路基板の裏面への導出例を示す説明図である。
【図19】第2の具体例に係る駆動回路及び選択回路を示す回路図である。
【図20】第2の具体例に係る駆動回路に対応した回路基板上での配線回路形成領域のレイアウトを示す説明図である。
【図21】第2の具体例に係る駆動回路に対応した回路基板上での各種配線のレイアウトを示す説明図である。
【図22】提案例に係る表示装置を示す構成図である。
【図23】提案例に係る表示装置の周辺回路を示すブロック図である。
【図24】提案例に係る表示装置の他の周辺回路を示すブロック図である。
【図25】他の提案例に係る表示装置のアクチュエータ部とその周辺を示す平面図である。
【符号の説明】
10…表示装置 14…表示素子
20…光導波板 22…アクチュエータ部
30…画素構成体 32…アクチュエータ基板
46…圧電/電歪層 48a…下部電極
48b…上部電極 70…駆動部
72…選択部 74、74A、74B…駆動回路
76…第1の行選択線 78…画素信号線
80…制御信号線 80a…第1制御線
80b…第2制御線 82…垂直シフト回路
84…水平シフト回路 88…信号線制御回路
94…第2の行選択線 96…選択回路
102、102A〜102D…配線回路形成領域
130…駆動電位発生回路 132…第1の論理ゲート
134…第2の論理ゲート 136…直列回路
152…高レベル電源ライン 152a…第1の導入ライン
152b…第1の分岐ライン 154…低レベル電源ライン
154a…第2の導入ライン 154b…第2の分岐ライン
156…バイアス電源ライン 156a…第3の導入ライン
156b…第3の分岐ライン
【発明の属する技術分野】
本発明は、画素に応じて配列され、変位動作に応じて対応する画素をON/OFF制御する容量性素子を有する表示部と、入力信号に応じて、対応する容量性素子を駆動制御する駆動回路が前記多数の画素に応じて配列された駆動部とを具備した表示装置に関する。
【0002】
【従来の技術】
本出願人は、例えば特許文献1において、セラミック素子を用いた表示装置を提案している。この表示装置は、図22に示すように、画素毎に配列されたアクチュエータ部200を有し、各アクチュエータ部200は、圧電/電歪層202と該圧電/電歪層202の上面及び下面にそれぞれ形成された上部電極204と下部電極206とを具備したアクチュエータ部本体208と、該アクチュエータ部本体208の下部に配設された振動部210と固定部212からなる基体214とを有して構成されている。アクチュエータ部本体208の下部電極206は、振動部210と接触して、振動部210により前記アクチュエータ部本体208が支持されている。
【0003】
前記基体214は、振動部210及び固定部212が一体となってセラミックスにて構成され、更に、基体214には、前記振動部210が薄肉になるように凹部216が形成されている。
【0004】
また、アクチュエータ部本体208の上部電極204には、光導波板218との接触面積を所定の大きさにするための変位伝達部220が接続されており、図22の例では、前記変位伝達部220は、アクチュエータ部200が静止している通常状態において、光導波板218に近接して配置され、励起状態において前記光導波板218の光の波長以下の距離で接触するように配置されている。
【0005】
そして、前記光導波板218の例えば端部から光222を導入する。この場合、光導波板218の屈折率の大きさを調節することにより、全ての光222が光導波板218の前面及び背面において透過することなく内部で全反射する。この状態で、前記上部電極204及び下部電極206を通じてアクチュエータ部200に画像信号の属性に応じた電圧信号を選択的に印加して、該アクチュエータ部200に通常状態による静止と励起状態による変位を行わせることにより、前記変位伝達部220の光導波板218への接触・離隔が制御され、これにより、前記光導波板218の所定部位の散乱光(漏れ光)224が制御されて、光導波板218に画像信号に応じた映像の表示がなされる。
【0006】
この表示装置によれば、(1)消費電力を低減できる、(2)画面輝度を大きくすることができる、(3)カラー画面に適用した場合に、画素数を白黒画面の場合に比して増加させる必要がない、等の利点を有する。
【0007】
上述のような表示装置の周辺回路においては、例えば図23に示すように、多数の画素が配列された表示部230と、1つの行を構成する多数の画素(画素群)に対して共通とされた垂直選択線232が必要な行数分導出された垂直シフト回路234と、1つの列を構成する多数の画素(画素群)に対して共通とされた信号線236が必要な列数分導出された水平シフト回路238とを有して構成されている。
【0008】
そのため、水平シフト回路238から選択行の画素群に対して出力される表示情報(出力電圧)が非選択行に関する画素群にも印加されることになり、不必要な画素(アクチュエータ部)を駆動せざるを得ない。従って、不必要な消費電力が発生し、低消費電力化において不利になるおそれもある。
【0009】
また、垂直走査期間内に行選択を全ての行について実施するためには、(垂直走査期間/必要な選択行数)だけの時間しか画素発光ができないため、高輝度化に不利になるおそれもある。
【0010】
また、図24に示すように、行単位に水平シフト回路238を設けることが考えられるが、回路構成が非常に複雑になるという問題がある。
【0011】
そこで、本出願人は、上述の問題を解決するために、新規な表示装置を提案した(特許文献2参照)。
【0012】
この表示装置300は、図25に示すように、駆動部上に形成された下部電極302b、形状保持層304及び上部電極302aによって構成されたアクチュエータ部306の近傍にスイッチング用の薄膜トランジスタ(TFT:Thin Film Transistor)308が形成されている。
【0013】
そして、アクチュエータ部306の上部電極302aとTFT308のソース/ドレイン領域310とをコンタクト312を通じて電気的に接続し、選択線314とTFT308のゲート電極とをコンタクト316を通じて電気的に接続し、信号線318とTFT308のソース/ドレイン領域320とをコンタクト322を通じて電気的に接続する。
【0014】
これにより、形状保持層304によるアクチュエータ部306を用いた表示装置300の消費電力の低減化、高輝度化並びに配線形成の簡略化を図ることができる。
【0015】
【特許文献1】
特開平7−287176号公報(段落[0005]及び[0009])
【特許文献2】
国際公開第98/54609号パンフレット(図4)
【0016】
【発明が解決しようとする課題】
ところで、アクチュエータ部306は、一対の電極を有するコンデンサ構造を有し、しかもその静電容量は大きい。ちなみに、15インチ、1024×768ドット(XGA)の液晶ディスプレイのセルサイズは、0.295mm角であって、その静電容量は0.9pF(但し、誘電率εr=6.8、セルギャップ=6μm)であるが、上述の表示装置300においては、40インチ、XGAの場合、セルサイズが0.8mm角で、その静電容量は0.8nFである。
【0017】
このように、形状保持層304によるアクチュエータ部306を用いた表示装置300は、液晶ディスプレイ等と比較して静電容量が大きいことから、高電圧・大電流駆動が必要となる。このことから、スイッチング素子としてTFT308を用いようとすると、TFT308の耐圧の面で問題が生じる。そこで、1画素当たりのアクチュエータ部306の面積を小さくして静電容量を小さくするなどの処置が必要になるが、画素の開口率が小さくなるという問題があり、輝度が低下するおそれがある。
【0018】
また、別途スイッチング素子をIC(Integrated Circuit)で設けた場合、画素数に相当するスイッチング素子を設けた駆動回路と、アクチュエータ部306が形成された基板(アクチュエータ基板)との間で多数本の配線が必要になり、前記アクチュエータ基板での配線パターンの形成が困難になるという新たな問題が生じるおそれがある。
【0019】
本発明はこのような課題を考慮してなされたものであり、スイッチング素子としてTFTを用いた場合であっても、該スイッチング素子の耐圧の問題を解消することができ、容量性素子の面積(例えばアクチュエータの面積や画素の開口率)を十分に確保することができる表示装置を提供することを目的とする。
【0020】
また、本発明の他の目的は、各種配線の引き回しの最適化を図ることができ、しかも、容量性素子の面積を圧迫することなく、駆動回路を形成することができ、画素の開口率を十分に確保することができる表示装置を提供することにある。
【0021】
【課題を解決するための手段】
本発明に係る表示装置は、画素に応じて配列され、変位動作に応じて対応する画素をON/OFF制御する容量性素子を有する表示部と、各画素に対してそれぞれ選択/非選択を指示する多数の選択線と、選択状態にある各画素に対してそれぞれ画素信号を供給する多数の信号線と、1つの選択線からの指示と1つの信号線からの信号に応じて、対応する容量性素子を駆動制御する駆動回路が前記多数の画素に応じて配列された駆動部と、選択された各画素に対応する容量性素子を選択する選択部とを具備し、前記容量性素子は、一対の電極を有するコンデンサ構造を有し、前記駆動回路は、前記信号線からの信号に基づいた駆動電位を前記容量性素子の一方の電極に印加する駆動電位発生回路を有し、前記選択部は、前記選択された各画素に対応する容量性素子の他方の電極にそれぞれ選択電位を印加する選択回路を有することを特徴とする。
【0022】
これにより、まず、選択線を通じてある画素が選択されると、該選択状態にある画素に対応する容量性素子の一方の電極に、前記信号線からの信号に基づいた駆動電位が駆動電位発生回路を通じて印加され、前記容量性素子の他方の電極に選択電位が選択回路を通じて印加される。従って、容量性素子に一対の電極に印加される電圧は、これら駆動電位と選択電位の電位差で決まることになる。
【0023】
前記容量性素子は、液晶ディスプレイ等と比較して静電容量が大きいことから、高電圧・大電流駆動が必要となる。そのため、例えば、容量性素子の他方の電極に一定電位を印加して、駆動電位発生回路からの駆動電位と前記一定電位との電位差で駆動させることを考えた場合、駆動電位の振幅として容量性素子を駆動できる程度に大きく設定しなければならない。例えば容量性素子を−10V〜50Vの範囲で駆動する場合は、駆動電位の振幅として例えば60Vという高い振幅に設定する必要がある。
【0024】
これに対して、本発明では、容量性素子の一対の電極に印加される駆動電圧を駆動電位と選択電位の電位差にて設定することができるため、駆動電位並びに選択電位の振幅として、容量性素子を駆動できる振幅の例えば1/2という低い振幅に設定することが可能となる。
【0025】
そのため、容量性素子の面積を小さくするという処置は不要となり、駆動回路にTFTを含む回路を用いた場合であっても、該TFTの耐圧の問題を解消することができ、容量性素子の面積(画素の開口率)を十分に確保することができる。
【0026】
そして、前記構成において、前記駆動回路は、前記信号線からの信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させるようにしてもよい。
【0027】
この場合、例えば出力が電位的に高レベルの状態と低レベルの状態、並びに高インピーダンス状態とがある。特に、高インピーダンス状態においては電流が流れないため、消費電力の低減化に有利となる。
【0028】
また、前記駆動回路は、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第1の制御線からの第1の信号の入力を禁止し、選択時に前記信号の入力を許可する第1の論理ゲートと、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第2の制御線からの第2の信号の入力を禁止し、選択時に前記第2の信号の入力を許可する第2の論理ゲートとを有し、前記信号線からの第1の信号及び第2の信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させるようにしてもよい。
【0029】
この場合、例えば第1の信号及び第2の信号のレベル(論理値)に応じて、駆動電位発生回路の出力を高レベル状態、低レベル状態あるいは高インピーダンス状態とすることができる。
【0030】
また、前記駆動電位発生回路は、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有し、前記第1の薄膜トランジスタのゲートに前記第1の信号が印加され、前記第2の薄膜トランジスタのゲートに前記第2の信号が印加されるようにしてもよい。
【0031】
この場合、前記第1の薄膜トランジスタは第1の導電型チャネルを有し、前記第2の薄膜トランジスタは第2の導電型チャネルを有するようにしてもよい。
【0032】
これにより、例えば第1の信号が論理的に「1」、第2の信号が論理的に「1」であれば、第1の薄膜トランジスタが例えばOFF、第2の薄膜トランジスタがONとなって、駆動電位発生回路の出力は低レベル状態となる。
【0033】
第1の信号が論理的に「0」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタが例えばON、第2の薄膜トランジスタがOFFとなって、駆動電位発生回路の出力は高レベル状態となる。
【0034】
第1の信号が論理的に「1」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタ及び第2の薄膜トランジスタが共にOFFとなって、駆動電位発生回路の出力は高インピーダンス状態となる。
【0035】
また、前記第1及び第2の薄膜トランジスタは同一の導電型チャネルを有するようにしてもよい。
【0036】
これにより、例えば第1の信号が論理的に「0」、第2の信号が論理的に「1」であれば、第1の薄膜トランジスタが例えばOFF、第2の薄膜トランジスタがONとなって、駆動電位発生回路の出力は低レベル状態となる。
【0037】
第1の信号が論理的に「1」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタが例えばON、第2の薄膜トランジスタがOFFとなって、駆動電位発生回路の出力は高レベル状態となる。
【0038】
第1の信号が論理的に「0」、第2の信号が論理的に「0」であれば、第1の薄膜トランジスタ及び第2の薄膜トランジスタが共にOFFとなって、駆動電位発生回路の出力は高インピーダンス状態となる。
【0039】
このような場合に、第1及び第2の薄膜トランジスタを共に、ソース端子と分離され、かつ、半導体基板に対するバイアス端子を有する4端子構造とすれば、各薄膜トランジスタのゲート電圧を、基板電位という固定電位に基づいて制御することができ、設計が容易になると共に、設計の自由度も向上する。
【0040】
特に、前記第1及び第2の薄膜トランジスタが同一の導電型チャネルを有するようにすれば、第1及び第2の薄膜トランジスタの基板電位を共に同電位とすることができ、しかも、低レベル電源の電位と同じにすることができるため、電源ラインの本数の削減化を図ることができる。
【0041】
しかも、例えばCdSe材料等のように、nチャネルしか形成できない材料にも対応することができ、また、nチャネルのエンハンスメント形FETしか形成できない場合にも十分に対応させることができる。
【0042】
そして、前記高レベル電源と前記低レベル電源との電位差は、前記容量性素子の一対の電極間に印加される最大電圧よりも低いことが好ましい。これにより、高レベル電源と低レベル電源との間に接続される直列回路(第1及び第2の薄膜トランジスタ)の耐圧の問題を解消することができ、容量性素子の面積(画素の開口率)を十分に確保することができる。
【0043】
一方、前記選択回路は、高レベル電源と低レベル電源との間に接続された第3の薄膜トランジスタと第4の薄膜トランジスタとからなる直列回路を有し、前記直列回路の共通ドレインが前記容量性素子の他方の電極に接続されていてもよい。
【0044】
この場合も、前記高レベル電源と前記低レベル電源との電位差は、前記容量性素子の一対の電極間に印加される最大電圧よりも低いことが好ましい。これにより、高レベル電源と低レベル電源との間に接続される直列回路(第3及び第4の薄膜トランジスタ)の耐圧の問題を解消することができる。
【0045】
また、前記第3の薄膜トランジスタは第1の導電型チャネルを有し、前記第4の薄膜トランジスタは第2の導電型チャネルを有するようにしてもよいし、前記第3及び第4の薄膜トランジスタは共に同一の導電型チャネルを有するようにしてもよい。
【0046】
また、前記構成において、1つの行に対応する複数の画素に対してそれぞれ共通に1つの前記選択回路を割り当てるようにしてもよい。表示部における行数が例えば128行であれば、128個の選択回路が設置されることになる。
【0047】
そして、上述の発明において、少なくとも前記容量性素子を第1の基板上に形成し、少なくとも前記駆動部を第2の基板上に形成し、前記第1及び第2の基板を貼り合わせるようにしてもよい。
【0048】
これにより、画素の開口率に直接関わる容量性素子を、駆動回路の形成面積を考慮せずに配列形成することができ、駆動回路についても、容量性素子の形成面積を考慮せずに配列形成することができる。
【0049】
従って、画素の開口率を大幅に向上させることができると共に、駆動回路のレイアウトも自由に設計することができ、回路素子の選択性の向上、設計の自由度の向上を実現させることができる。これは、表示装置の製造コストの低廉化を図ることができるほか、表示装置の利用形態(設置される環境や使用目的等)に応じて様々な構成の表示装置を作製できることにつながる。
【0050】
前記第2の基板に、それぞれ前記駆動回路に対応して複数の配線回路形成領域を配列し、該配線回路形成領域には、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域寄りの部分に、行方向に延びる選択線を形成し、当該配線回路形成領域の左方向又は右方向に割り当てられた他の配線回路形成領域寄りの部分に、列方向に延びる信号線を形成し、前記選択線と前記信号線で区画された回路形成領域には、それぞれ対応する前記容量性素子の前記一方の電極に通じる電極パッドと、前記駆動回路を形成するようにしてもよい。
【0051】
まず、例えば表示部の行数が128で、列数が128であれば、128×128=16384個の配線回路形成領域が配列されることになる。そして、各配線回路形成領域において、行方向に延びる選択線は、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域寄りに形成され、列方向に延びる信号線は、当該配線回路形成領域の左方向又は右方向に割り当てられた他の配線回路形成領域寄りに形成される。このように、各配線は、配線回路形成領域の端の部分に割り当てられることから、それぞれ配線回路形成領域において、選択線と信号線で区画された回路形成領域は、面積的に広い領域が割り当てられる。
【0052】
従って、駆動回路として複数の薄膜トランジスタを含めた回路とした場合、各薄膜トランジスタの大きさやレイアウトについての自由度を向上させることができる。
【0053】
また、前記駆動回路における前記駆動電位発生回路が、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有する場合に、前記配線回路形成領域は、更に、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域と共通とされた部分に、行方向に延びる高レベル電源ラインを形成し、当該配線回路形成領域の上方向又は下方向に割り当てられ、かつ、前記他の配線回路形成領域とは異なる他の配線回路形成領域と共通とされた部分に、行方向に延びる低レベル電源ラインを形成するようにしてもよい。
【0054】
この場合、当該配線回路形成領域と、該配線回路形成領域の例えば上方向に割り当てられた他の配線回路形成領域との境界部分に例えば高レベル電源ラインが形成され、当該配線回路形成領域と、該配線回路形成領域の例えば下方向に割り当てられた他の配線回路形成領域との境界部分に例えば低レベル電源ラインが形成されることになるため、高レベル電源ライン及び低レベル電源ラインをそれぞれ1行置きに形成することが可能となり、電源ラインの本数の削減を有効に図ることができる。
【0055】
この場合も、各電源ラインが配線回路形成領域の端の部分に形成されることから、電源ラインを配置したことによる回路形成領域の面積の縮小化はわずかなものとなる。
【0056】
また、1つの行に対応する複数の画素に対してそれぞれ共通に1つの前記選択回路が割り当てられている場合に、前記第2の基板は、周辺部にそれぞれ選択回路に通じる電極パッドが形成され、該第2の基板の端部に配線されていてもよい。
【0057】
この場合、選択回路に通じる電極パッドの存在に関係なく、各配線回路形成領域を形成することができ、各配線回路形成領域の面積が前記電極パッドによって縮小化されるということはない。
【0058】
また、前記駆動回路が、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第1の制御線からの第1の信号の入力を禁止し、選択時に前記第1の信号の入力を許可する第1の論理ゲートと、前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第2の制御線からの第2の信号の入力を禁止し、選択時に前記第2の信号の入力を許可する第2の論理ゲートとを有し、前記信号線からの第1の信号及び第2の信号に基づいて前記駆動電位発生回路の出力電位を3つの状態に遷移させる場合に、前記第1の制御線は、前記第2の基板の列方向の一方の端部を通じて配線され、前記第2の制御線は、前記第2の基板の前記一方の端部とは反対側の端部を通じて配線され、前記選択線は、前記第2の基板の行方向の端部を通じて配線されていてもよい。
【0059】
これにより、各列に対応してそれぞれ第1及び第2の制御線を直線的に配線でき、各行に対応してそれぞれ選択線を直線的に配線することができる。そのため、各配線において寄生インダクタンスや寄生抵抗の増大を抑えることができ、信号伝達効率の低下を抑えることができる。しかも、各配線回路形成領域において、列方向に延びる第1及び第2の制御線と行方向に延びる選択線を形成させることができる。
【0060】
この場合、前記第1の制御線、第2の制御線及び選択線は、前記第2の基板のそれぞれ対応する端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていてもよい。そして、これらの配線が、例えば上位回路に接続される配線ケーブル又はコネクタの接着部に導通されていてもよい。この場合、多数の表示部を配列させて大型の表示装置を構成した場合に、表示部間の接合部の隙間を限りなく小さくすることができるため、各表示部の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0061】
また、本発明においては、前記駆動回路における前記駆動電位発生回路が、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有する場合に、前記高レベル電源のラインは、前記第2の基板のいずれか1つの端部から配線され、かつ、列方向に延びる1以上の第1の導入ラインと、該第1の導入ラインから奇数行又は偶数行に沿って分岐した複数の第1の分岐ラインとを有し、前記低レベル電源のラインは、前記第2の基板のいずれか1つの端部から配線され、かつ、列方向に延びる1以上の第2の導入ラインと、該第2の導入ラインから前記第1の分岐ラインとは異なる行に沿って分岐した複数の第2の分岐ラインとを有するようにしてもよい。
【0062】
例えば高レベル電源ラインと低レベル電源ラインをそれぞれ各配線回路形成領域に向けて配線する場合、高レベル電源ラインと低レベル電源ラインとをそれぞれ各行毎に配線(1行につき2本の電源ラインを配線)することが考えられる。
【0063】
しかし、この発明では、高レベル電源ラインの分岐ライン(第1の分岐ライン)を奇数行又は偶数行に沿って配線し、低レベル電源ラインの分岐ライン(第2の分岐ライン)を前記第1の分岐ラインとは異なる行に沿って配線するようにしたので、1行につき1本の電源ラインが配線されることになり、電源ラインの本数を大幅に削減することができる。これは、各配線回路形成領域における回路形成領域の面積の縮小化を抑えることができることにつながる。
【0064】
また、外部からの高レベル電源ライン並びに低レベル電源ラインへの導入配線をそれぞれ1以上の第1の導入ライン並びに第2の導入ラインを通じて行うことができることから、列単位に配線される第1及び第2の制御線の配線を邪魔することなく、電源ラインを導入するための配線を行うことができる。
【0065】
そして、本発明においては、少なくとも前記第1の導入ライン及び第2の導入ラインは、前記第2の基板のそれぞれ対応する端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていてもよい。また、前記電極パッドからの配線は、前記第2の基板の端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていてもよい。
【0066】
なお、前記基板の裏面に引き出された配線は、例えば上位回路に接続される配線ケーブル又はコネクタの接着部に導通されていてもよい。
【0067】
これにより、多数の表示部を配列させて大型の表示装置を構成した場合に、表示部間の接合部の隙間を限りなく小さくすることができるため、各表示部の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0068】
また、上述した容量性素子として、アクチュエータや液晶セルあるいはPDPセルを用いることができる。
【0069】
【発明の実施の形態】
以下、本発明に係る表示装置の実施の形態例を図1〜図21を参照しながら説明する。
【0070】
本実施の形態に係る表示装置10は、図1に示すように、表示装置10としての表示面積を有する導光板12の背面に、複数個の表示素子14が配列されて構成されている。
【0071】
表示素子14は、図2に示すように、光源16からの光18が導入される光導波板20と、該光導波板20の背面に対向して設けられ、かつ多数の容量性素子22が画素に対応してマトリクス状あるいは千鳥状に配列された表示部24とを有する。この実施の形態では、容量性素子22をアクチュエータ部に適用した例である。従って、以下の説明では、容量性素子22をアクチュエータ部22と記す。
【0072】
画素の配列は、図3Aに示すように、例えば1つのアクチュエータ部22で1つの画素28を構成するようにしてもよいし、図3Bに示すように、2つのアクチュエータ部22にて1つのドットを構成し、更に、3つのドット(赤色ドット26R、緑色ドット26G及び青色ドット26B)で1つの画素28を構成するようにしてもよい。なお、図3Aの画素配列は、いわゆるモノクロ対応の画素配列に準じた配列である。また、図2の表示素子14においては、図3Aの画素配列であって、画素28の並びを水平方向に128個、垂直方向に128個としている。
【0073】
そして、この表示装置10は、図1に示すように、例えばVGA(Video Graphics Array)の規格に準拠すべく、水平方向に640画素(1920ドット)が並び、垂直方向に480画素(480ドット)が並ぶように、導光板12の背面に、表示素子14を水平方向に5個、垂直方向に4個配列させるようにしている。
【0074】
導光板12は、ガラス板やアクリル板等の可視光領域での光透過率が大であって、かつ、均一なものが使用され、各表示素子14間は、ワイヤボンディングや半田付け、端面コネクタ、裏面コネクタ等で接続することにより相互間の信号供給が行えるようになっている。
【0075】
なお、前記導光板12と各表示素子14の光導波板20は、屈折率が類似したものが好ましく、導光板12と光導波板20とを貼り合わせる場合には、透明な接着剤や液体を用いてもよい。この接着剤や液体は、導光板12や光導波板20と同様に、可視光領域において均一で、かつ、高い光透過率を有することが好ましく、また、屈折率も導光板12や光導波板20と近いものに設定することが、画面の明るさを確保する上で望ましい。
【0076】
ところで、各表示素子14においては、図2に示すように、各アクチュエータ部22上に、それぞれ画素構成体30が積層されている。
【0077】
表示部24は、例えばセラミックスにて構成されたアクチュエータ基板32を有し、該アクチュエータ基板32の各画素28に応じた位置にアクチュエータ部22が配設されている。前記アクチュエータ基板32は、一主面が光導波板20の背面に対向するように配置されており、該一主面は連続した面(面一)とされている。アクチュエータ基板32の内部には、各画素28に対応した位置にそれぞれ後述する振動部を形成するための空所34が設けられている。各空所34は、アクチュエータ基板32の他端面に設けられた径の小さい貫通孔36を通じて外部と連通されている。
【0078】
前記アクチュエータ基板32のうち、空所34の形成されている部分が薄肉とされ、それ以外の部分が厚肉とされている。薄肉の部分は、外部応力に対して振動を受けやすい構造となって振動部38として機能し、空所34以外の部分は厚肉とされて前記振動部38を支持する固定部40として機能するようになっている。
【0079】
つまり、アクチュエータ基板32は、最下層である基板層32Aと中間層であるスペーサ層32Bと最上層である薄板層32Cとの積層体であって、スペーサ層32Bのうち、アクチュエータ部22に対応する箇所に空所34が形成された一体構造体として把握することができる。基板層32Aは、補強用基板として機能するほか、配線用の基板としても機能するようになっている。なお、前記アクチュエータ基板32は、一体焼成であっても、後付けであってもよい。
【0080】
前記基板層32A、スペーサ層32B及び薄板層32Cの構成材料としては、例えば、安定化酸化ジルコニウム、部分安定化酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、スピネル及びムライト等の高耐熱性、高強度及び高靭性を兼ね備えるものが好適に採用される。なお、基板層32A、スペーサ層32B及び薄板層32Cは、全て同一材料としてもよく、それぞれ別の材料としてもよい。
【0081】
そして、前記薄板層32Cの厚みとしては、アクチュエータ部22を大きく変位させるために、50μm以下とされ、好ましくは3〜20μm程度とされる。
【0082】
スペーサ層32Bは、アクチュエータ基板32に空所34を構成するものとして存在していればよく、その厚みは特に制限されるものではない。しかし一方で、空所34の利用目的に応じてその厚みを決定してもよく、その中でもアクチュエータ部22が機能する上で必要以上の厚みを有さず、例えば図4に示すように、薄い状態で構成されていることが好ましい。即ち、スペーサ層32Bの厚みは、利用するアクチュエータ部22の変位の大きさ程度であることが好ましい。
【0083】
このような構成により、薄肉の部分(振動部38の部分)の撓みが、その撓み方向に近接する基板層32Aにより制限され、意図しない外力の印加に対して、前記薄肉部分の破壊を防止するという効果が得られる。なお、基板層32Aによる撓みの制限効果を利用して、アクチュエータ部22の変位を特定値に安定させることも可能である。
【0084】
また、スペーサ層32Bを薄くすることで、アクチュエータ基板32自体の厚みが低減し、曲げ剛性を小さくすることができるため、例えばアクチュエータ基板32を別体に接着・固定するにあたって、相手方(例えば光導波板20)に対し、自分自身(この場合、アクチュエータ基板32)の反り等が効果的に矯正され、接着・固定の信頼性の向上を図ることができる。
【0085】
加えて、アクチュエータ基板32が全体として薄く構成されるため、アクチュエータ基板32を製造する際に、原材料の使用量を低減することができ、製造コストの観点からも有利な構造である。従って、スペーサ層32Bの具体的な厚みとしては、3〜50μmとすることが好ましく、中でも3〜20μmとすることが好ましい。
【0086】
一方、基板層32Aの厚みとしては、上述したスペーサ層32Bを薄く構成することから、アクチュエータ基板32全体の補強目的として、50μm以上、好ましくは80〜300μm程度とされる。
【0087】
ここで、アクチュエータ部22と画素構成体30の具体例を図5に基づいて説明する。なお、図5は、外力に対して変形しない材料で構成されている桟42と、光導波板20との間に光遮蔽層44を設けた場合を示す。
【0088】
まず、アクチュエータ部22は、図5に示すように、前記振動部38と固定部40のほか、該振動部38上に直接形成された圧電/電歪層46と、該圧電/電歪層46の上面と下面に形成された一対の電極48(下部電極48a及び上部電極48b)とを有する。
【0089】
一対の電極48は、図5に示すように、圧電/電歪層46に対して上下に形成した構造や片側だけに形成した構造でもよいし、圧電/電歪層46の上部のみに一対の電極48を形成するようにしてもよい。
【0090】
一対の電極48を圧電/電歪層46の上部のみに形成する場合、一対の電極48の平面形状としては、多数のくし歯が相補的に対峙した形状のほか、特開平10−78549号公報にも示されているように、渦巻き状や多枝形状などを採用してもよい。
【0091】
ところで、図5に示すように、一対の電極48として、圧電/電歪層46の下面に下部電極48aを形成し、圧電/電歪層46の上面に上部電極48bを形成した場合においては、図2及び図5に示すように、アクチュエータ部22を空所34側に凸となるように一方向に屈曲変位させることも可能であり、その他、図6に示すように、アクチュエータ部22を光導波板20側に凸となるように、他方向に屈曲変位させることも可能である。なお、図6に示す例は、光遮蔽層44(図2参照)を形成しない場合を示す。
【0092】
画素配列が、図3Bのように、赤色ドット26R、緑色ドット26G及び青色ドット26Bで1つの画素28を構成する配列の場合は、画素構成体30は、例えば図5に示すように、アクチュエータ部22上に形成された白色散乱体50と色フィルタ52と透明層54との積層体である、いわゆる変位伝達部で構成することができる。なお、画素配列が、図3Aのように、1つのアクチュエータ部22で1つの画素28を構成するような場合は、画素構成体30は、図5の構成例から色フィルタ52を省略した積層体にて構成することができる。
【0093】
更に、前記積層体の他に、(1)前記白色散乱体50の代わりに光反射層と絶縁層を積層して介在させた場合、(2)アクチュエータ部22上に形成された画素構成体30である変位伝達部を有色散乱体と透明層の積層体で構成した場合、(3)前記変位伝達部を透明層、有色散乱体、光反射層及び絶縁層の積層体で構成した場合、等の組み合わせが考えられる。
【0094】
また、この表示素子14においては、図2、図5及び図6に示すように、光導波板20とアクチュエータ基板32との間において、画素構成体30以外の部分に形成された桟42を有して構成され、図6の例では、桟42の上面に直接光導波板20が固着された場合を示している。桟42の材質は、熱、圧力に対して変形しないものが好ましい。
【0095】
ここで、表示素子14の動作を図2及び図5を参照しながら簡単に説明する。まず、光導波板20の例えば端部から光18が導入される。この場合、画素構成体30が光導波板20に接触していない状態で、光導波板20の屈折率の大きさを調節することにより、全ての光18を光導波板20の前面及び背面において透過することなく内部で全反射させるようにする。光導波板20の屈折率nとしては、1.3〜1.8が望ましく、1.4〜1.7がより望ましい。
【0096】
この例においては、アクチュエータ部22の自然状態において、画素構成体30の端面が光導波板20の背面に対して光18の波長以下の距離で接触しているため、光18は、画素構成体30の表面で反射し、散乱光62となる。この散乱光62は、一部は再度光導波板20の中で反射するが、散乱光62の大部分は光導波板20で反射されることなく、光導波板20の前面(表面)を透過することになる。これによって、全てのアクチュエータ部22がON状態となり、そのON状態が発光というかたちで具現され、しかも、その発光色は画素構成体30に含まれる色フィルタ52や白色散乱体50の色に対応したものとなる。この場合、全てのアクチュエータ部22に対応する画素がON状態となっているため、表示素子14の画面からは白色が表示されることになる。
【0097】
また、更には、アクチュエータ部22の上部電極48bと下部電極48aとの間に低レベル電圧(−10V)が駆動電圧として印加されることにより、画素構成体30の端面が光導波板20の背面に対して押し付ける状態で接触し、より確実なON状態を作り出すことが可能となり、安定した表示が可能となる。
【0098】
この状態から、ある画素に対応するアクチュエータ部22の上部電極48bと下部電極48aとの間に高レベルの駆動電圧(50V)が印加されると、当該アクチュエータ部22が図2に示すように、空所34側に凸となるように屈曲変位、即ち、下方に屈曲変位して、画素構成体30の端面が光導波板20から離隔し、当該アクチュエータ部22に対応する画素がOFF状態となり、そのOFF状態が消光というかたちで具現される。
【0099】
つまり、この表示素子14は、画素構成体30の光導波板20への接触の有無により、光導波板20の前面における光の発光(散乱光62)の有無を制御することができる。
【0100】
そして、図7に示すように、画像信号における1フレーム(1/60sec)を3つの時間帯(第1フィールド〜第3フィールド)に分け、各フィールドで3色の光源を切り換えるようにする。例えば第1フィールドで赤色光源(R光源)からの光を導入し、第2フィールドで緑色光源(G光源)からの光を導入し、第3フィールドで青色光源(B光源)からの光を導入することで、モノクロ対応の画素配列でもカラー表示が実現でき、この場合、1つのアクチュエータ部22で1つの画素28を構成することができるため、高解像度を実現させることができる。
【0101】
そして、各表示素子14は、図8に示すように、駆動部70と選択部72とを有する。
【0102】
駆動部70は、表示部24の各画素(アクチュエータ部22)に対応して配列され、対応するアクチュエータ部22の上部電極48b(図5参照)に駆動電位Vdを印加して、該アクチュエータ部22を駆動制御する駆動回路74と、多数の画素(アクチュエータ部22)の行数に応じた本数の第1の行選択線76と、多数の画素の列数に応じた本数の画素信号線78と、各画素信号線78に対応して配列され、かつ、1本の画素信号線78に対して2本の制御線を有する制御信号線80とを有する。
【0103】
また、この駆動部70は、垂直シフト回路82と、水平シフト回路84と、信号制御回路86と、信号線制御回路88とを有する。
【0104】
垂直シフト回路82は、第1の行選択線76に選択的に選択信号Ssを供給して、1行単位にアクチュエータ部22を順次選択する。また、この垂直シフト回路82は、行選択のタイミングに同期した同期信号Shを出力する。水平シフト回路84は、画素信号線78にパラレルに画素信号Sdを出力する。信号制御回路86は、入力される映像信号Sv及び同期信号Syに基づいて垂直シフト回路82及び水平シフト回路84を制御する。信号線制御回路88は、画素の列数と同じ個数の調整回路90を有する。
【0105】
調整回路90は、対応する画素信号線78を通じて供給された画素信号Sdの属性に基づいて、図14に示すように、第1制御信号Sc1及び第2制御信号Sc2を生成し、それぞれ第1制御線80a及び第2制御線80bに出力する。なお、画素信号Sd、第1制御信号Sc1及び第2制御信号Sc2並びにアクチュエータ部22に印加される電圧波形等の例については後述する。
【0106】
ここで、選択信号Ss、同期信号Sh、画素信号Sd並びに第1制御信号Sc1及び第2制御信号Sc2の各波形の一例について図9を参照しながら説明する。
【0107】
まず、垂直シフト回路82にて全行を選択する期間を1サブフィールドとしたとき、同期信号Shは、図9に示すように、例えば1フィールドの開始(時点t1)と同時に立ち上がり、該1フィールド期間における最初の1サブフィールドの終了(時点t3)と同時に立ち下がる信号波形を有する。
【0108】
第1制御信号Sc1及び第2制御信号Sc2のレベルは、同期信号Sh及び画素信号Sdの各レベルに応じて変化する。但し、同期信号Shが高レベルの期間は、いわゆるリセット期間Trであって、全ての画素をOFF(消光)させる。従って、同期信号Shが低レベルの期間は、いわゆる階調表現期間Tcであって、例えば1行1列目の画素についてみたとき、該画素に対する画素信号Sdが示す階調レベルに応じた分のサブフィールド期間だけ当該画素がONとされる。
【0109】
そして、例えば、同期信号Shが高レベルの期間(リセット期間Tr)においては、画素信号Sdの属性はOFF(低レベル)であることから、第1制御信号Sc1及び第2制御信号Sc2は共に高レベルとなる。
【0110】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がOFF(低レベル)の場合は、第1制御信号Sc1は高レベル、第2制御信号Sc2は低レベルとなる(時点t3参照)。
【0111】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がON(高レベル)の場合は、第1制御信号Sc1は低レベル、第2制御信号Sc2は低レベルとなる(時点t5参照)。
【0112】
なお、垂直シフト回路82、水平シフト回路84、信号制御回路86及び信号線制御回路88には、電源部92(図8参照)から電源電圧が供給される。駆動回路74の具体例については後述する。
【0113】
一方、図8に示すように、選択部72は、表示部24の行数に応じた本数の第2の行選択線94と、各第2の行選択線94に対応して接続された選択回路96とを有し、垂直シフト回路82にて選択した行に対応する各アクチュエータ部22の下部電極48aに対して、その行に対応する選択回路96から第2の行選択線94を通じて選択電位Vsを印加する。この選択回路96の詳細は後述する。
【0114】
ここで、駆動部70及び選択部72の実装について説明する。まず、駆動部70を表示素子14に実装する場合、アクチュエータ部22が形成されたアクチュエータ基板32のアクチュエータ部22の形成面に実装することが考えられる。しかし、この場合、画素の開口率に直接関わるアクチュエータ部22の面積を十分に確保できなくなるおそれがある。一方、アクチュエータ基板32のうち、アクチュエータ部22が形成されていない面に実装する場合、実装スペースの確保が困難であるだけでなく、工程が複雑になり、アクチュエータ基板32の歩留まりの低下を招くおそれがある。
【0115】
そこで、本実施の形態では、図10に示すように、多数の画素に応じて配列されたアクチュエータ部22をアクチュエータ基板32に形成し、駆動部70を別の回路基板100に形成し、光導波板20とアクチュエータ基板32とを貼り合わせ、更に、アクチュエータ基板32の裏面に回路基板100を貼り合わせる。
【0116】
具体的には、図11に示すように、一主面に多数のアクチュエータ部22(図10参照)が配列形成されたアクチュエータ基板32のほかに、一主面に駆動回路74等が形成される領域(配線回路形成領域)102が配列形成された回路基板100を用意する。アクチュエータ基板32の一主面から他主面につながるスルーホール66(図5参照)を各アクチュエータ部22に対応して多数設け、該スルーホール66におけるアクチュエータ基板32の他主面側に電極パッド104を形成する。即ち、これら電極パッド104は、一主面に設けられたアクチュエータ部22に対応した位置に設けられることになる。
【0117】
一方、回路基板100は、アクチュエータ基板32の裏面に貼り合わせたときに、各電極パッド104に対応した位置にそれぞれ駆動回路74(図8参照)の電極パッド106が形成されている。これら電極パッド104と電極パッド106との電気的接続によって、回路基板100における各駆動回路74とアクチュエータ基板32における各アクチュエータ部22とが電気的に接続されることになる。
【0118】
選択部72は、回路基板100の周辺部(図11の例では、左端部)に行数に対応した数の電極パッド108が形成され、アクチュエータ基板32には、その他主面のうち、前記電極パッド108に対応する位置にそれぞれ電極パッド110が形成され、更にこれら電極パッド110から一主面に貫通するスルーホール(図示せず)が設けられている。
【0119】
これらアクチュエータ基板32と回路基板100との貼り合わせは、アクチュエータ基板32の裏面(多数の電極パッド104及び110が形成された面)と回路基板100の一主面とを互いに合わせ、アクチュエータ基板32における電極パッド104と回路基板100における電極パッド106とを例えば半田や導電性樹脂などで貼り合わせると共に、アクチュエータ基板32における電極パッド110と回路基板100における電極パッド108とを例えば半田や導電性樹脂などで貼り合わせる。この貼り合わせによって、アクチュエータ部22の一方の電極(例えば上部電極48b)と駆動回路74の出力とが電気的に接続されることになり、アクチュエータ部22の他方の電極(例えば下部電極48a)と選択回路96の出力とが電気的に接続されることになる。
【0120】
このような構成により、画素の開口率に直接関わるアクチュエータ部22を、駆動回路74の形成面積を考慮せずに配列形成することができ、駆動回路74についても、アクチュエータ部22の形成面積を考慮せずに配列形成することができる。
【0121】
従って、画素の開口率を大幅に向上させることができると共に、駆動回路74のレイアウトも自由に設計することができ、回路素子の選択性の向上、設計の自由度の向上を実現させることができる。これは、表示装置10の製造コストの低廉化を図ることができるほか、表示装置10の利用形態(設置される環境や使用目的等)に応じて様々な構成の表示装置10を作製できることにつながる。
【0122】
更に、この実施の形態では、後述するように、回路基板100の一主面に、駆動回路74のほかに、第1の行選択線76や第1制御線80a及び第2制御線80b等を形成するようにしている。
【0123】
アクチュエータ部22が形成されたアクチュエータ基板32に第1の行選択線76や第1制御線80a及び第2制御線80b等を形成する場合は、アクチュエータ部22間の隙間を蛇行させながら配線する必要があり、配線設計の自由度が低くなることと、寄生インダクタンスや寄生抵抗が増大することも懸念される。
【0124】
しかし、本実施の形態では、第1の行選択線76や第1制御線80a及び第2制御線80b等を駆動回路74と共に回路基板100に形成することにより、アクチュエータ部22の配置に関係なく、自由に配線形成することができることから、配線設計の自由度が向上すると共に、寄生インダクタンスや寄生抵抗の低減も期待できる。
【0125】
回路基板100の構成材料としては、セラミックス、ガラス、プラスチック(板状もしくはフィルム状)等を用いることができる。例えばガラスについては、高耐熱性であることと、表面の欠陥が少ない、あるいは小さいことが好ましい。市販のものでは、コーニング社製のEagle2000、Code1737、日本板硝子社製のNA35、旭硝子社製のAN635を使用することができる。
【0126】
また、プラスチックを用いる場合は、軽量、堅牢、柔軟で、製造コスト的に有利なロール・ツー・ロール方式が適用できるという利点がある。しかし、耐熱性に問題があるため、低温でTFTを製造することが好ましい。
【0127】
一方、第1の行選択線76への選択信号Ssの供給や、画素信号線78への画素信号Sdの供給、第1制御線80a及び第2制御線80bへの第1制御信号Sc1及び第2制御信号Sc2の供給として、図10に示すように、低圧ロジックIC112を用いることができる。この場合、回路基板100の一主面に形成された駆動部70から多数の配線を回路基板100の外部へと引き出す必要があるが、この方法として、図12に示すように、アクチュエータ部22と回路基板100との貼り合わせ部分から例えばACF(Anisotropic Conductive Film)114を介して直接FPC(Flexible Printed Circuit)やTAB(Tape Automated Bonding)などのケーブル116を通じて低圧ロジックIC112(図10参照)に接続する方法が考えられる。
【0128】
しかし、この方法の場合、ケーブル116を引き回すスペースが必要になることから、図1に示すように、多数の表示素子14を配列させて大型の表示装置10を構成した場合に、表示素子14間の接合部の隙間が大きくなるという問題が生じる。
【0129】
そこで、本実施の形態では、回路基板100としてガラスを用いる場合、図13に示すように、回路基板100の一主面から端面及び裏面にかけて配線パターン118を印刷し(端面印刷)、回路基板100の裏面において、ACF114及びケーブル116を通じて低圧ロジックIC112(図10参照)に接続する。
【0130】
回路基板100としてプラスチックあるいはセラミックスを用いる場合は、図示しないが、回路基板100に、それぞれ駆動回路74に対応してスルーホールを形成し、各スルーホールから配線を引き出すようにすればよい。
【0131】
これらの方法においては、表示素子14間の接合部の隙間を限りなく小さくすることができ、大型の表示装置10を構成した場合に、各表示素子14の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0132】
なお、駆動部70を回路基板100に形成した場合は、図12及び図13に示すように、回路基板100に1以上の通気孔120を形成することが好ましい。これにより、アクチュエータ部22の耐久性並びに表示素子14及び表示装置10の耐久性が著しく向上する。
【0133】
次に、本実施の形態に係る駆動回路74の第1の具体例と選択回路96について図14を参照しながら説明する。
【0134】
まず、第1の具体例に係る駆動回路74Aは、図14に示すように、制御信号線80(第1制御線80a及び第2制御線80b)からの信号に基づいた駆動電位Vdをアクチュエータ部22の上部電極48bに印加する駆動電位発生回路130と、第1の行選択線76からの選択信号Ssに基づいて、非選択時に制御信号線80の第1制御線80aにおける第1制御信号Sc1の入力を禁止し、選択時に第1制御信号Sc1の入力を許可する第1の論理ゲート132と、第1の行選択線76からの選択信号Ssに基づいて、非選択時に制御信号線80の第2制御線80bにおける第2制御信号Sc2の入力を禁止し、選択時に第2制御信号Sc2の入力を許可する第2の論理ゲート134とを有する。
【0135】
また、この第1の具体例に係る駆動回路74Aは、図14に示すように、第1及び第2の論理ゲート132及び134がそれぞれトランスファゲートM1及びM2で構成されている。また、駆動電位発生回路130は、高レベル電源(例えば+30V)と低レベル電源(例えば0V)との間に接続されたチャネル幅の大きい2つのパワーTFTからなる直列回路136を有する。
【0136】
この直列回路136は、ソースに高レベル電源が接続されたpチャネル型のパワーTFT(pM3)と、ソースに低レベル電源が接続されたnチャネル型のパワーTFT(nM4)とを有し、前記パワーTFT(pM3)のゲートに第1の論理ゲート132を介して第1制御信号Sc1が印加され、パワーTFT(nM4)のゲートに第2の論理ゲート134を介して第2制御信号Sc2が印加されるように配線接続されている。
【0137】
直列回路136の接点、即ち、出力端子138には、電極パッド106及び104並びに抵抗140を介してアクチュエータ部22の上部電極48bが接続されている。
【0138】
また、第1の論理ゲート132、第2の論理ゲート134、パワーTFT(pM3)及びパワーTFT(nM4)は、共にソース端子と分離され、かつ、半導体基板に対するバイアス端子を有する4端子構造とされている。そして、第1の論理ゲート132、第2の論理ゲート134及びパワーTFT(nM4)の基板電位は共に、低レベル電源の電位(例えば0V)と同じとされ、パワーTFT(pM3)の基板電位は論理レベルの高電位(例えば+5V)に設定されている。
【0139】
一方、選択回路は、高レベル電源(例えば+50V)と低レベル電源(例えば+20V)との間に接続されたチャネル幅の大きい2つのパワーTFTからなる直列回路142を有する。
【0140】
直列回路142は、ソースに高レベル電源が接続されたpチャネル型のパワーTFT(pM5)と、ソースに低レベル電源が接続されたnチャネル型のパワーTFT(nM6)とを有し、前記パワーTFT(pM5)のゲートに図示しないコントローラからの第1のスイッチング信号Sw1が印加され、パワーTFT(nM6)のゲートに図示しないコントローラからの第2のスイッチング信号Sw2が印加されるように配線接続されている。
【0141】
直列回路142の接点、即ち、出力端子144には、電極パッド108及び110を介してアクチュエータ部22の下部電極48aが接続されている。
【0142】
そして、図9に示すように、上述した同期信号Shが高レベルの期間(リセット期間Tr)においては、第1及び第2のスイッチング信号Sw1及びSw2が共に低レベルとなって、パワーTFT(pM5)はON、パワーTFT(nM6)はOFFとなり、アクチュエータ部22の下部電極48aに印加される選択電位Vsは+50Vとなる。
【0143】
同期信号Shが低レベルの期間(階調表現期間Tc)においては、第1及び第2のスイッチング信号Sw1及びSw2が共に高レベルとなって、パワーTFT(pM5)はOFF、パワーTFT(nM6)はONとなり、アクチュエータ部22の下部電極48aに印加される選択電位Vsは+20Vとなる。
【0144】
ここで、第1の具体例に係る駆動回路74Aと選択回路96の動作について図9も参照しながら説明する。
【0145】
この実施の形態では、選択されている行の各画素が例えば消光状態とされるリセットの概念が導入される。
【0146】
また、図15に示すように、リセット期間Tr後の階調表現期間Tcにおいて、選択行に係る各画素への画素信号Sdの属性に応じて、非選択(OFF)、選択(OFF)、非選択(OFF)、選択(ON)、非選択(ON)の5つの動作がある規則性をもって行われることになる。
【0147】
具体的には、リセット期間Trにおいて、ある行に第1の行選択線76から選択を示す信号が供給され、選択行の各画素に対する画素信号Sdの属性がOFFであった場合、選択中の行における各アクチュエータ部22には、リセットの状態に応じた駆動電圧Vc(例えば+50V)が印加される。このとき、前記行における各画素は例えば消光状態とされる。
【0148】
その後、上記選択行には第1の行選択線76から非選択を示す信号が供給されると共に、該選択行における各アクチュエータ部22には、非選択で、かつ、OFFの状態に応じた駆動電圧Vc(例えば+50V)が印加される。このとき、前記選択行における各画素は消光状態が維持される。
【0149】
その後、上記選択行に第1の行選択線76から選択を示す信号が供給されたとき、画素によって、画素信号Sdの属性がOFFであったり、ONであったりする。画素信号Sdの属性がOFFである画素のアクチュエータ部22に対しては、選択で、かつ、OFFの状態に応じた駆動電圧Vc(例えば+50V)が印加される。このとき、当該画素は例えば消光状態が維持される。
【0150】
一方、画素信号Sdの属性がONであれば、その画素に対応するアクチュエータ部22に対しては、選択で、かつ、ONの状態に応じた駆動電圧Vc(例えば−10V)が印加される。このとき、当該画素は例えば発光状態となる。
【0151】
その後、上記選択行に第1の行選択線76から非選択を示す信号が供給されると、該選択行におけるアクチュエータ部22には前回の選択時における駆動電圧Vcの印加が維持され、選択時にONであった画素はその発光状態が維持され、選択時にOFFであった画素はその消光状態が維持される。
【0152】
その後、再び、上記選択行に第1の行選択線76から選択を示す信号が供給されたとき、画素によって、画素信号Sdの属性がOFFあるいはONとなるが、前回の選択時におけるON又はOFFが繰り返される場合は、該選択行におけるアクチュエータ部22には前回の選択時における駆動電圧の印加が維持される。
【0153】
また、ある画素について、前回の非選択時にOFFであった状態が次の選択時にONとなった場合は、選択で、かつ、ONの状態に応じた駆動電圧が印加される。このとき、当該画素は例えば発光状態となる。
【0154】
反対に、ある画素について、前回の非選択時にONであった状態が次の選択時にOFFにされる場合は、その選択の前段階で、少なくとも当該画素についてリセット及び非選択(OFF)を経て選択(OFF)とさせなければならず、タイミング的にずれることになる。
【0155】
そこで、(1)1フィールド毎(あるいはフレーム毎)に必ずリセットを行い、リセット、つまり、消光状態を始点として階調表現を行う、(2)階調に応じて、非選択(OFF)から選択(ON)に移行するタイミングを制御し、一旦、選択(ON)で発光したらリセットまで発光を維持する、というように、フィールド単位(あるいはフレーム単位)でみると、消光状態の連続の後に続く発光状態の連続が、階調表現方法として毎フィールド(あるいは毎フレーム)行われることになる。
【0156】
次に、図9を参照しながら上述の動作を説明する。まず、1つのフィールドにおける最初の1サブフィールド(リセット期間Tr)が開始されると、1サブフィールドにかけて高レベルの同期信号Shが各調整回路90(図8参照)に出力される。
【0157】
表示部24では、垂直シフト回路82によって1つの行(例えば1行目)が選択されると、この選択された行に関する各画素には、それぞれ対応する画素信号線78からそれぞれ画素信号Sdが供給され、更に、選択された行に関する各アクチュエータ部22の下部電極48aには、対応する選択回路96から第2の行選択線94を通じて選択電位Vsが印加されることになる。
【0158】
そして、リセット期間Trにおいては、選択された行の各画素に供給される画素信号Sdの属性は全てOFFとなっている。
【0159】
従って、図9の時点t1において、第1の行選択線76の選択信号Ssが高レベル、画素信号線78の画素信号Sdが低レベル(属性:OFF)になると、第1制御信号Sc1は高レベル、第2制御信号Sc2は高レベルとなり、例えば1行1列の画素に対応する駆動回路74Aにおいては、パワーTFT(pM3)がOFF、パワーTFT(nM4)がONとなり、アクチュエータ部22の上部電極48bに印加される駆動電位Vdは0Vとなる。
【0160】
このとき、下部電極48aには、50Vの選択電位Vsが印加されていることから、アクチュエータ部22の下部電極48a及び上部電極48b間に印加される駆動電圧は+50Vとなり、これにより、該アクチュエータ部22は、下方に変位し、該アクチュエータ部22に対応する画素は消光状態(OFF)となる。
【0161】
その後、時点t2において、第1の行選択線76の選択信号Ssが低レベルになると、第1及び第2の論理ゲート132及び134は共にOFFとなる。その結果、各論理ゲート132及び134の出力インピーダンスが高くなり、各パワーTFT(pM3)及び(nM4)のゲート・サブストレート間容量には、それぞれ高レベル電圧(5V)が保持された状態となり、パワーTFT(pM3)及び(nM4)はそれぞれOFF及びONを維持することになる。従って、当該アクチュエータ部22に対応する画素は依然OFFのままである。
【0162】
その後、時点t3から階調表現期間Tcが開始されて、第1の行選択線76の選択信号Ssが高レベルであって、画素信号線78の画素信号Sdが例えば低レベル(属性:OFF)のとき、第1制御信号Sc1は高レベル、第2制御信号Sc2は低レベルとなり、例えば1行1列の画素に対応する駆動回路74Aにおいては、パワーTFT(pM3)がOFF、パワーTFT(nM4)がOFFとなり、直列回路136の出力は高インピーダンス状態となり、アクチュエータ部22の上部電極48bに印加される駆動電位Vdは0Vを維持する。
【0163】
このとき、下部電極48aには、階調表現期間Tcの開始時点t3から20Vの選択電位Vsが印加されているが、直列回路136の出力が高インピーダンス状態であることから、アクチュエータ部22の下部電極48a及び上部電極48b間に印加される駆動電圧Vcは+50Vが維持され、これにより、該アクチュエータ部22に対応する画素は消光状態(OFF)を維持する。
【0164】
その後、時点t4において、第1の行選択線76の選択信号Ssが低レベルになると、時点t2と同様に、パワーTFT(pM3)及び(nM4)は共にOFFを維持することになり、当該アクチュエータ部22に対応する画素は依然OFFのままである。
【0165】
その後、時点t5において、第1の行選択線76の選択信号Ssが高レベルであって、画素信号線78の画素信号Sdが例えば高レベル(属性:ON)となった場合、第1制御信号Sc1及び第2制御信号Sc2は共に低レベルとなり、例えば1行1列の画素に対応する駆動回路74Aにおいては、パワーTFT(pM3)がON、パワーTFT(nM4)がOFFとなり、アクチュエータ部22の上部電極48bに印加される駆動電位Vdは+30Vとなる。
【0166】
このとき、下部電極48aには、階調表現期間Tcの開始時点t3から20Vの選択電位Vsが印加されていることから、アクチュエータ部22の下部電極48a及び上部電極48b間に印加される駆動電圧Vdは−10Vとなり、これにより、該アクチュエータ部22は、上方に変位し、該アクチュエータ部22に対応する画素は発光状態(ON)となる。
【0167】
その後、時点t6において、第1の行選択線76の選択信号Ssが低レベルになると、時点t2と同様に、パワーTFT(pM3)はON、パワーTFT(nM4)はOFFを維持することになり、当該アクチュエータ部22に対応する画素は依然ONのままである。
【0168】
次に、回路基板100に形成される配線や回路のレイアウトについて図16〜図18を参照しながら説明する。
【0169】
まず、上述したように回路基板100には、画素に対応して割り当てられた駆動回路74Aに対応してそれぞれ配線回路形成領域102(図11参照)が配列される。例えば表示部24の行数が128で、列数が128であれば、128×128=16384個の配線回路形成領域102が配列されることになる。
【0170】
そして、図16に示すように、中央の配線回路形成領域102Aを基準に説明すると、該配線回路形成領域102Aには、該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102B寄りの部分に、行方向に延びる第1の行選択線76が形成され、該配線回路形成領域102Aの例えば左方向に割り当てられた他の配線回路形成領域102C寄りの部分に、列方向に延びる制御信号線80(第1制御線80a及び第2制御線80b)が形成されている。
【0171】
また、例えば配線回路形成領域102Aのうち、第1の行選択線76(実際には、後述するバイアス電源ライン156)と制御信号線80とで区画された部分に回路形成領域150が配置されており、該回路形成領域150には、それぞれ対応するアクチュエータ部22の上部電極48bに通じる電極パッド106と、駆動回路74Aが形成されている。
【0172】
更に、前記配線回路形成領域102Aには、該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102Bとの境界部分に、行方向に延びる高レベル電源ライン152が形成され、該配線回路形成領域102Aの例えば下方向に割り当てられた他の配線回路形成領域102Dとの境界部分に、行方向に延びる低レベル電源ライン154が形成されている。また、第1の行選択線76と回路形成領域150との間には、行方向に延び、かつ、パワーTFT(pM3)の基板電位を供給するためのバイアス電源ライン156が形成されている。
【0173】
また、図17に示すように、第1の制御線80aは、回路基板100の裏面から該回路基板100の第1の端部100aを通じて表面(アクチュエータ基板32との貼りあわせ面)にかけて印刷され(端面印刷)、更に、該回路基板100の表面においてそれぞれ列方向に延在されて印刷されている。
【0174】
これら第1の制御線80aは、図18に示すように、回路基板100の裏面から第1のACF114a及び第1のケーブル116aを介して図示しない低圧ロジックICに接続される。
【0175】
同様に、第2の制御線80bは、図17に示すように、回路基板100の裏面から該回路基板100の第2の端部100b(第1制御線80aが導入された第1の端部100aとは反対側の端部)を通じて表面にかけて印刷され(端面印刷)、更に、該回路基板100の表面においてそれぞれ列方向に延在されて印刷されている。これら第2制御線80bは、図18に示すように、回路基板100の裏面から第2のACF114b及び第2のケーブル116bを介して図示しない低圧ロジックICに接続される。
【0176】
第1の行選択線76は、図17に示すように、回路基板100の裏面から該回路基板100の第3の端部100cを通じて表面にかけて印刷され(端面印刷)、更に、該回路基板100の表面においてそれぞれ行方向に延在されて印刷されている。これら第1の行選択線76は、図18に示すように、回路基板100の裏面から第3のACF114c及び第3のケーブル116cを介して図示しない低圧ロジックICに接続される。
【0177】
なお、少なくとも列方向に延びる第1制御線80a及び第2制御線80bと行方向に延びる第1の行選択線76との交わった部分には絶縁層158が介在され、互いに電気的に接続されないようになっている。これは、各種電源ラインとの電気的絶縁においても同様である。図16では、絶縁層158の表示を省略して示してある。
【0178】
第2の行選択線94は、図17に示すように、回路基板100の裏面から該回路基板100の前記第4の端部100d(第1の行選択線76が導入された第3の端部100cとは反対側の端部)を通じて表面にかけて印刷され(端面印刷)、更に、それぞれ対応する電極パッド108まで印刷されている。これら第2の行選択線94は、図18に示すように、回路基板100の裏面から第4のACF114d及び第4のケーブル116dを介して図示しない低圧ロジックICに接続される。
【0179】
高レベル電源ライン152は、図17に示すように、回路基板100の裏面から該回路基板100の第1の端部100aを通じて表面にかけて印刷され(端面印刷)、かつ、列方向に延びる1つの第1の導入ライン152aと、該第1の導入ライン152aから例えば奇数行に沿って分岐した複数の第1の分岐ライン152bとを有する。この高レベル電源ライン152は、図18に示すように、回路基板100の裏面から第1のACF114a及び第1のケーブル116aを介して図示しない電源回路に接続される。
【0180】
低レベル電源ライン154は、図17に示すように、回路基板100の裏面から該回路基板100の第2の端部100bを通じて表面にかけて印刷され(端面印刷)、かつ、列方向に延びる1つの第2の導入ライン154aと、該第2の導入ライン154aから例えば偶数行に沿って分岐した複数の第2の分岐ライン154bとを有する。この低レベル電源ライン154は、図18に示すように、回路基板100の裏面から第2のACF114b及び第2のケーブル116bを介して図示しない電源回路に接続される。
【0181】
バイアス電源ライン156は、回路基板100の裏面から該回路基板100の第2の端部100bを通じて表面にかけて印刷され(端面印刷)、かつ、列方向に延びる1つの第3の導入ライン156aと、該第3の導入ライン156aから各行に沿って分岐した複数の第3の分岐ライン156bとを有する。このバイアス電源ライン156は、図18に示すように、回路基板100の裏面から第2のACF114b及び第2のケーブル116bを介して図示しない電源回路に接続される。
【0182】
このように、第1の具体例に係る駆動回路74Aにおけるレイアウトにおいては、例えば図16の配線回路形成領域102Aにおいて、行方向に延びる第1の行選択線76は、当該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102B寄りに形成され、列方向に延びる制御信号線80は、当該配線回路形成領域102Aの例えば左方向に割り当てられた他の配線回路形成領域102C寄りに形成される。このように、各配線は、配線回路形成領域102Aの端の部分に割り当てられることから、第1の行選択線76(図16の例では、バイアス電源ライン156)と制御信号線80で区画された回路形成領域150としては、面積的に広い領域が割り当てられる。
【0183】
従って、駆動回路74Aとして複数の薄膜トランジスタを含めた回路とした場合、各薄膜トランジスタの大きさやレイアウトについての自由度を向上させることができる。
【0184】
また、当該配線回路形成領域102Aと、該配線回路形成領域102Aの例えば上方向に割り当てられた他の配線回路形成領域102Bとの境界部分に例えば高レベル電源ライン152が形成され、当該配線回路形成領域102Aと、該配線回路形成領域102Bの例えば下方向に割り当てられた他の配線回路形成領域102Dとの境界部分に例えば低レベル電源ライン154が形成されることになるため、高レベル電源ライン152及び低レベル電源ライン154をそれぞれ1行置きに形成することが可能となり、電源ライン152及び154の本数の削減を有効に図ることができる。
【0185】
この場合も、各電源ライン152及び154が配線回路形成領域102Aの端の部分に形成されることから、電源ライン152及び154を配置したことによる回路形成領域150の面積の縮小化はわずかなものとなる。
【0186】
また、図17に示すように、回路基板100の周辺部(第4の端部100d側)にそれぞれ選択回路96に通じる電極パッド108を形成するようにしたので、該選択回路96に通じる電極パッド108の存在に関係なく、各配線回路形成領域102を形成することができ、各配線回路形成領域102の面積が前記電極パッド108によって縮小化されるということはない。
【0187】
また、第1制御線80aを、回路基板100の第1の端部100aを通じて配線し、第2制御線80bを、回路基板100の第2の端部100bを通じて配線し、第1の行選択線76を、回路基板100の第3の端部100cを通じて配線するようにしたので、各列に対応してそれぞれ第1制御線80a及び第2制御線80bを直線的に配線でき、各行に対応してそれぞれ第1の行選択線76を直線的に配線することができる。
【0188】
そのため、各配線において寄生インダクタンスや寄生抵抗の増大を抑えることができ、信号伝達効率の低下を抑えることができる。しかも、各配線回路形成領域102において、列方向に延びる第1制御線80a及び第2制御線80bと行方向に延びる第1の行選択線76を形成させることができる。
【0189】
また、高レベル電源ライン152の分岐ライン(第1の分岐ライン152b)を例えば奇数行に沿って配線し、低レベル電源ライン154の分岐ライン(第2の分岐ライン154b)を例えば偶数行に沿って配線するようにしたので、1行につき1本の電源ラインが配線されることになり、電源ラインの本数を大幅に削減することができる。これは、各配線回路形成領域102における回路形成領域150の面積の縮小化を抑えることができることにつながる。
【0190】
また、外部からの高レベル電源ライン152並びに低レベル電源ライン154への導入配線をそれぞれ1本の第1の導入ライン152a並びに第2の導入ライン154aを通じて行うことができることから、列単位に配線される第1制御線80a及び第2制御線80bの配線を邪魔することなく、電源ラインを導入するための配線を行うことができる。
【0191】
そして、上述した各配線(第1の制御線80a、第2の制御線80b、第1の行選択線76、高レベル電源ライン152、低レベル電源ライン154、バイアス電源ライン156及び第2の行選択線94)を、回路基板100のそれぞれ対応する端部において端面印刷にて配線するようにしたので、図1に示すように、多数の表示素子14を配列させて大型の表示装置10を構成した場合に、表示素子14間の接合部の隙間を限りなく小さくすることができる。そのため、各表示素子14の継ぎ目が目立たなくなり、画像表示上の品位を高めることができる。
【0192】
なお、多数の表示素子14を配列させて大型の表示装置10を構成した場合に、各表示素子14におけるそれぞれ対応する行の第2の行選択線94を共通化して、対応する1つの選択回路96に接続するようにしてもよい。例えば各表示素子14のそれぞれ1行目の第2の行選択線94を共通化して1行目に対応する選択回路96に接続する。これにより、選択部72の構成が簡単になり、表示装置10の回路構成の簡略化を実現させることができる。
【0193】
次に、第2の具体例に係る駆動回路74Bについて図19〜図21を参照しながら説明する。なお、図14、図16及び図17と対応するものについては同符号を付してその重複説明を省略する。
【0194】
この第2の具体例に係る駆動回路74Bは、上述した第1の具体例に係る駆動回路74Aとほぼ同様の構成を有するが、図19に示すように、高レベル電源と低レベル電源との間に接続される直列回路136が、nチャネル型のパワーTFT(nM3)とnチャネル型のパワーTFT(nM4)とを有する点で異なる。
【0195】
この場合、第1の論理ゲート132、第2の論理ゲート134、パワーTFT(nM3)及びパワーTFT(nM4)の基板電位を共に、低レベル電源の電位(例えば0V)に設定することができ、バイアス電源ライン156を不要にすることができる。
【0196】
これにより、図20に示すように、各配線回路形成領域102A〜102D等の配線回路形成領域102(図11参照)に形成すべき領域のうち、バイアス電源ライン156(図16参照)の形成が不要となり、その分、回路形成領域150の面積を増大化させることができ、駆動回路74Bの設計レイアウトの自由度を更に向上させることができる。なお、この図20では絶縁層158の記載を省略して示してある。
【0197】
しかも、図21に示すように、回路基板100の表面に形成すべき配線のうち、各行に形成する必要があったバイアス電源ライン156の第3の分岐ライン156bとその導入ライン(第3の導入ライン156a)を不要にすることができ、その分、配線レイアウトの自由度が更に向上することになる。
【0198】
また、例えばCdSe材料等のように、nチャネルしか形成できない材料にも対応することができ、また、nチャネルのエンハンスメント形FETしか形成できない場合にも十分に対応させることができる。
【0199】
なお、第2の具体例に係る駆動回路74Bに対応させるために、調整回路90(図8参照)から出力される第1制御信号Sc1及び第2制御信号Sc2の属性は、図9に示すように、同期信号Shが高レベルの期間(リセット期間Tr)においては、画素をOFFにする必要から、駆動電位発生回路130の出力を低レベル状態にすればよく、そのためには、第1制御信号Sc1を低レベル、第2制御信号Sc2を高レベルにすればよい。
【0200】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がOFF(低レベル)の場合は、駆動電位発生回路130の出力を高インピーダンス状態にすればよく、そのためには、第1制御信号Sc1及び第2制御信号Sc2を共に低レベルにすればよい。
【0201】
同期信号Shが低レベルの期間(階調表現期間Tc)であって、画素信号Sdの属性がON(高レベル)の場合は、駆動電位発生回路130の出力を高レベル状態にすればよく、そのためには、第1制御信号Sc1を高レベル、第2制御信号Sc2を低レベルにすればよい。
【0202】
また、図14及び図19に示す選択回路96においては、pチャネル型のパワーTFT(pM5)とnチャネル型のパワーTFT(nM6)とを直列に接続して構成するようにしたが、その他、図19の駆動回路74Bにおける直列回路136と同様に、共にnチャネル型のパワーTFTの直列回路にて構成するようにしてもよい。
【0203】
なお、本発明に係る表示装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
【0204】
【発明の効果】
以上説明したように、本発明に係る表示装置によれば、容量性素子を変位制御するスイッチング素子としてTFTを用いた場合であっても、該スイッチング素子の耐圧の問題を解消することができ、容量性素子の面積(画素の開口率)を十分に確保することができる。
【0205】
また、各種配線の引き回しの最適化を図ることができ、しかも、容量性素子の面積を圧迫することなく、駆動回路を形成することができ、画素の開口率を十分に確保することができる。
【図面の簡単な説明】
【図1】本実施の形態に係る表示装置の概略構成を示す斜視図である。
【図2】表示素子の構成を示す断面図である。
【図3】図3Aはモノクロ表示対応の画素配列に準じ、カラー表示も可能な画素配列の一例を示す説明図であり、図3Bはカラー表示対応の画素配列を示す説明図である。
【図4】スペーサ層を薄くした場合の構成例を示す説明図である。
【図5】アクチュエータ部と画素構成体の構成例を示す断面図である。
【図6】表示素子の他の構成を示す断面図である。
【図7】1フレーム及び1フィールドの内訳を示す説明図である。
【図8】本実施の形態に係る駆動部及び選択部を示すブロック図である。
【図9】同期信号、選択信号、画素信号、第1制御信号、第2制御信号及びアクチュエータ部への駆動電圧の各波形並びにパワーTFT(pM3)、パワーTFT(nM4)、パワーTFT(pM5)、パワーTFT(nM6)及び画素のON/OFF状態を示すタイミングチャートである。
【図10】本実施の形態に係る表示素子の構成を示す平面図である。
【図11】本実施の形態に係る表示素子の構成要素のうち、アクチュエータ基板と回路基板を示す分解斜視図である。
【図12】回路基板の一主面に形成された駆動部から多数の配線を回路基板の外部へ引き出す方法の一例を示す説明図である。
【図13】回路基板の一主面に形成された駆動部から多数の配線を回路基板の外部へ引き出す方法の他の例を示す説明図である。
【図14】第1の具体例に係る駆動回路及び選択回路を示す回路図である。
【図15】本実施の形態に係る表示素子での動作遷移を示す説明図である。
【図16】第1の具体例に係る駆動回路に対応した回路基板上での配線回路形成領域のレイアウトを示す説明図である。
【図17】第1の具体例に係る駆動回路に対応した回路基板上での各種配線のレイアウトを示す説明図である。
【図18】各種配線の回路基板の裏面への導出例を示す説明図である。
【図19】第2の具体例に係る駆動回路及び選択回路を示す回路図である。
【図20】第2の具体例に係る駆動回路に対応した回路基板上での配線回路形成領域のレイアウトを示す説明図である。
【図21】第2の具体例に係る駆動回路に対応した回路基板上での各種配線のレイアウトを示す説明図である。
【図22】提案例に係る表示装置を示す構成図である。
【図23】提案例に係る表示装置の周辺回路を示すブロック図である。
【図24】提案例に係る表示装置の他の周辺回路を示すブロック図である。
【図25】他の提案例に係る表示装置のアクチュエータ部とその周辺を示す平面図である。
【符号の説明】
10…表示装置 14…表示素子
20…光導波板 22…アクチュエータ部
30…画素構成体 32…アクチュエータ基板
46…圧電/電歪層 48a…下部電極
48b…上部電極 70…駆動部
72…選択部 74、74A、74B…駆動回路
76…第1の行選択線 78…画素信号線
80…制御信号線 80a…第1制御線
80b…第2制御線 82…垂直シフト回路
84…水平シフト回路 88…信号線制御回路
94…第2の行選択線 96…選択回路
102、102A〜102D…配線回路形成領域
130…駆動電位発生回路 132…第1の論理ゲート
134…第2の論理ゲート 136…直列回路
152…高レベル電源ライン 152a…第1の導入ライン
152b…第1の分岐ライン 154…低レベル電源ライン
154a…第2の導入ライン 154b…第2の分岐ライン
156…バイアス電源ライン 156a…第3の導入ライン
156b…第3の分岐ライン
Claims (23)
- 画素に応じて配列され、変位動作に応じて対応する画素をON/OFF制御する容量性素子を有する表示部と、
各画素に対してそれぞれ選択/非選択を指示する多数の選択線と、
選択状態にある各画素に対してそれぞれ画素信号を供給する多数の信号線と、
1つの選択線からの指示と1つの信号線からの信号に応じて、対応する容量性素子を駆動制御する駆動回路が前記多数の画素に応じて配列された駆動部と、
選択された各画素に対応する容量性素子を選択する選択部とを具備し、
前記容量性素子は、一対の電極を有するコンデンサ構造を有し、
前記駆動回路は、前記信号線からの信号に基づいた駆動電位を前記容量性素子の一方の電極に印加する駆動電位発生回路を有し、
前記選択部は、前記選択された各画素に対応する容量性素子の他方の電極にそれぞれ選択電位を印加する選択回路を有することを特徴とする表示装置。 - 請求項1記載の表示装置において、
前記駆動回路は、前記信号線からの信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させることを特徴とする表示装置。 - 請求項2記載の表示装置において、
前記駆動回路は、
前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第1の制御線からの第1の信号の入力を禁止し、選択時に前記第1の信号の入力を許可する第1の論理ゲートと、
前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第2の制御線からの第2の信号の入力を禁止し、選択時に前記第2の信号の入力を許可する第2の論理ゲートとを有し、
前記信号線からの第1の信号及び第2の信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させることを特徴とする表示装置。 - 請求項2又は3記載の表示装置において、
前記3つの状態のうち、1つの状態は駆動電位発生回路の出力が高インピーダンス状態であることを特徴とする表示装置。 - 請求項3又は4記載の表示装置において、
前記駆動電位発生回路は、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有し、
前記第1の薄膜トランジスタのゲートに前記第1の信号が印加され、前記第2の薄膜トランジスタのゲートに前記第2の信号が印加されることを特徴とする表示装置。 - 請求項5記載の表示装置において、
前記高レベル電源と前記低レベル電源との電位差は、前記容量性素子の一対の電極間に印加される最大電圧よりも低いことを特徴とする表示装置。 - 請求項5又は6記載の表示装置において、
前記第1の薄膜トランジスタは第1の導電型チャネルを有し、前記第2の薄膜トランジスタは第2の導電型チャネルを有することを特徴とする表示装置。 - 請求項5又は6記載の表示装置において、
前記第1及び第2の薄膜トランジスタは同一の導電型チャネルを有することを特徴とする表示装置。 - 請求項1〜8のいずれか1項に記載の表示装置において、
前記選択回路は、高レベル電源と低レベル電源との間に接続された第3の薄膜トランジスタと第4の薄膜トランジスタとからなる直列回路を有し、
前記直列回路の共通ドレインが前記容量性素子の他方の電極に接続されていることを特徴とする表示装置。 - 請求項9記載の表示装置において、
前記高レベル電源と前記低レベル電源との電位差は、前記容量性素子の一対の電極間に印加される最大電圧よりも低いことを特徴とする表示装置。 - 請求項9又は10記載の表示装置において、
前記第3の薄膜トランジスタは第1の導電型チャネルを有し、前記第4の薄膜トランジスタは第2の導電型チャネルを有することを特徴とする表示装置。 - 請求項9又は10記載の表示装置において、
前記第3及び第4の薄膜トランジスタは同一の導電型チャネルを有することを特徴とする表示装置。 - 請求項1〜12のいずれか1項に記載の表示装置において、
1つの行に対応する複数の画素に対してそれぞれ共通に1つの前記選択回路が割り当てられていることを特徴とする表示装置。 - 請求項1〜13のいずれか1項に記載の表示装置において、
少なくとも前記容量性素子が第1の基板上に形成され、
少なくとも前記駆動部が第2の基板上に形成され、
前記第1及び第2の基板が貼り合わされていることを特徴とする表示装置。 - 請求項14記載の表示装置において、
前記第2の基板に、それぞれ前記駆動回路に対応して複数の配線回路形成領域が配列され、
前記配線回路形成領域には、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域寄りの部分に、行方向に延びる選択線が形成され、
当該配線回路形成領域の左方向又は右方向に割り当てられた他の配線回路形成領域寄りの部分に、列方向に延びる信号線が形成され、
前記選択線と前記信号線で区画された回路形成領域には、それぞれ対応する前記容量性素子の前記一方の電極に通じる電極パッドと、前記駆動回路が形成されていることを特徴とする表示装置。 - 請求項15記載の表示装置において、
前記駆動回路における前記駆動電位発生回路が、高レベル電源と低レベル電源間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有する場合に、
前記配線回路形成領域には、更に、当該配線回路形成領域の上方向又は下方向に割り当てられた他の配線回路形成領域と共通とされた部分に、行方向に延びる高レベル電源ラインが形成され、
当該配線回路形成領域の上方向又は下方向に割り当てられ、かつ、前記他の配線回路形成領域とは異なる他の配線回路形成領域と共通とされた部分に、行方向に延びる低レベル電源ラインが形成されていることを特徴とする表示装置。 - 請求項14〜16のいずれか1項に記載の表示装置において、
1つの行に対応する複数の画素に対してそれぞれ共通に1つの前記選択回路が割り当てられている場合に、
前記第2の基板は、周辺部にそれぞれ選択回路に通じる電極パッドが形成され、該第2の基板の端部に配線されていることを特徴とする表示装置。 - 請求項14〜17のいずれか1項に記載の表示装置において、
前記駆動回路が、
前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第1の制御線からの第1の信号の入力を禁止し、選択時に前記第1の信号の入力を許可する第1の論理ゲートと、
前記選択線からの選択信号に基づいて、非選択時に前記信号線に含まれる第2の制御線からの第2の信号の入力を禁止し、選択時に前記第2の信号の入力を許可する第2の論理ゲートとを有し、
前記信号線からの第1の信号及び第2の信号に基づいて前記駆動電位発生回路の出力を3つの状態に遷移させる場合に、
前記第1の制御線は、前記第2の基板の列方向の一方の端部を通じて配線され、
前記第2の制御線は、前記第2の基板の前記一方の端部とは反対側の端部を通じて配線され、
前記選択線は、前記第2の基板の行方向の端部を通じて配線されていることを特徴とする表示装置。 - 請求項18記載の表示装置において、
前記第1の制御線、第2の制御線及び選択線は、前記第2の基板のそれぞれ対応する端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていることを特徴とする表示装置。 - 請求項18又は19記載の表示装置において、
前記駆動回路における前記駆動電位発生回路が、高レベル電源と低レベル電源との間に接続された第1の薄膜トランジスタと第2の薄膜トランジスタとからなる直列回路を有する場合に、
前記高レベル電源のラインは、前記第2の基板のいずれか1つの端部から配線され、かつ、列方向に延びる1以上の第1の導入ラインと、該第1の導入ラインから奇数行又は偶数行に沿って分岐した複数の第1の分岐ラインとを有し、
前記低レベル電源のラインは、前記第2の基板のいずれか1つの端部から配線され、かつ、列方向に延びる1以上の第2の導入ラインと、該第2の導入ラインから前記第1の分岐ラインとは異なる行に沿って分岐した複数の第2の分岐ラインとを有することを特徴とする表示装置。 - 請求項20記載の表示装置において、
少なくとも前記第1の導入ライン及び第2の導入ラインは、前記第2の基板のそれぞれ対応する端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていることを特徴とする表示装置。 - 請求項17記載の表示装置において、
前記電極パッドからの配線は、前記第2の基板の端部において端面印刷にて配線され、それぞれ前記第2の基板の裏面に引き出されていることを特徴とする表示装置。 - 請求項1〜22のいずれか1項に記載の表示装置において、
前記容量性素子は、アクチュエータであることを特徴とする表示装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003081343A JP2004191910A (ja) | 2002-06-04 | 2003-03-24 | 表示装置 |
US10/395,821 US7006061B2 (en) | 2002-06-04 | 2003-03-24 | Display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163194 | 2002-06-04 | ||
JP2002164213 | 2002-06-05 | ||
JP2002304600 | 2002-10-18 | ||
JP2003081343A JP2004191910A (ja) | 2002-06-04 | 2003-03-24 | 表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004191910A true JP2004191910A (ja) | 2004-07-08 |
Family
ID=32777133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003081343A Pending JP2004191910A (ja) | 2002-06-04 | 2003-03-24 | 表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004191910A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100397463C (zh) * | 2004-12-09 | 2008-06-25 | 三星Sdi株式会社 | 像素电路和有机发光显示器 |
WO2008152927A1 (ja) * | 2007-06-15 | 2008-12-18 | The University Of Tokyo | ディスプレイ用マイクロデバイス |
-
2003
- 2003-03-24 JP JP2003081343A patent/JP2004191910A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100397463C (zh) * | 2004-12-09 | 2008-06-25 | 三星Sdi株式会社 | 像素电路和有机发光显示器 |
WO2008152927A1 (ja) * | 2007-06-15 | 2008-12-18 | The University Of Tokyo | ディスプレイ用マイクロデバイス |
JP2008310126A (ja) * | 2007-06-15 | 2008-12-25 | Univ Of Tokyo | ディスプレイ用マイクロデバイス |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6903717B2 (en) | Display device having driving circuit | |
US20220208091A1 (en) | Local passive matrix display | |
US20170343877A1 (en) | Horizontal stripe liquid crystal display device | |
JP5254450B2 (ja) | デバイス基板 | |
JP2004191736A (ja) | 表示装置 | |
JP2003075802A (ja) | 液晶表示装置及びその駆動方法 | |
JP2002108311A (ja) | 複数の列電極駆動回路および表示装置 | |
US9142178B2 (en) | Liquid crystal display device | |
US7109962B2 (en) | Display device | |
TWI622833B (zh) | 顯示面板以及顯示裝置 | |
KR20140084602A (ko) | 표시장치 및 그 제조방법 | |
US8456581B2 (en) | Liquid crystal display | |
JP2018124465A (ja) | 電気光学装置、電子機器、および実装構造体 | |
JP3681166B2 (ja) | 液晶表示装置 | |
KR20090080404A (ko) | 다중 실 라인 및 블랙매트릭스를 갖는 액정표시장치 | |
US7006061B2 (en) | Display device | |
KR20090004424A (ko) | 액정 표시 장치 및 그의 구동 방법 | |
JP2004191910A (ja) | 表示装置 | |
CN108398815B (zh) | 电光装置以及电子设备 | |
US20030227449A1 (en) | Display device | |
WO2013099189A1 (ja) | 表示装置 | |
JP2008309884A (ja) | 液晶表示装置 | |
JP2007065614A (ja) | エレクトロルミネセンス表示装置及びその駆動方法並びにエレクトロルミネセンス表示パネル | |
JP2004062119A (ja) | 表示装置 | |
JP5538559B2 (ja) | 表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080311 |