JP2004191551A - レーザー装置およびレーザー装置における波長選択方法 - Google Patents

レーザー装置およびレーザー装置における波長選択方法 Download PDF

Info

Publication number
JP2004191551A
JP2004191551A JP2002357900A JP2002357900A JP2004191551A JP 2004191551 A JP2004191551 A JP 2004191551A JP 2002357900 A JP2002357900 A JP 2002357900A JP 2002357900 A JP2002357900 A JP 2002357900A JP 2004191551 A JP2004191551 A JP 2004191551A
Authority
JP
Japan
Prior art keywords
mirror
laser
light
incident
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002357900A
Other languages
English (en)
Other versions
JP2004191551A5 (ja
Inventor
Kazuyuki Akagawa
和幸 赤川
Tomoyuki Wada
智之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Megaopto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Megaopto Co Ltd filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2002357900A priority Critical patent/JP2004191551A/ja
Priority to EP03777411A priority patent/EP1577991A4/en
Priority to PCT/JP2003/015742 priority patent/WO2004054052A1/ja
Priority to US10/538,067 priority patent/US20060239324A1/en
Publication of JP2004191551A publication Critical patent/JP2004191551A/ja
Publication of JP2004191551A5 publication Critical patent/JP2004191551A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/0812Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0815Configuration of resonator having 3 reflectors, e.g. V-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】質量の重い部材を機械的に回転することなしに、レーザー波長を制御して高速に波長を掃引できるようにして、安定した波長選択作用を実現することができるようにする。
【解決手段】所定の透過性を有するミラーとアダプティブオプティクスとを有して構成されるレーザー共振器と、レーザー共振器内に配設されたレーザー媒質と、レーザー媒質からの出射光が入射される分散素子とを有する。また、レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、レーザー媒質からの出射光が入射されるミラーを有するアダプティブオプティクスと、アダプティブオプティクスのミラーによって反射された光が入射されるグレーティングと、グレーティングの回折光がアダプティブオプティクスのミラーによって反射されて入射されるように配置された所定の透過性を有するミラーとを有する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、レーザー装置およびレーザー装置における波長選択方法に関し、さらに詳細には、レーザー発振波長を高速にかつ信頼性高く制御することのできるレーザー装置およびレーザー装置における波長選択方法に関する。
【0002】
【従来の技術】
従来、波長可変レーザーを所望な波長でレーザー発振させるための波長選択方法として、レーザー媒質を収容したレーザー共振器内に、グレーティング(回折格子)や複屈折フィルターやプリズムなどの素子を配設するか、あるいは、これら素子とともにガルバノ付ミラーを配設し、精密回転マウントを手動またはモーターにより回転させて、グレーティング(回折格子)や複屈折フィルターやプリズムなどの素子かまたはガルバノ付ミラーを機械的に回転することにより、レーザー媒質から出射される出射光の中から所望の波長の出射光のみを取り出し、取り出した出射光をレーザー媒質に対して反射させて増幅してレーザー発振を生ぜしめ、レーザー共振器から所望の波長のレーザー光のみを出射させるようにした波長選択方法が知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平7−263779号公報(図1〜図3)
しかしながら、上記したような従来の波長選択方法を用いた場合においては、レーザー共振器内に配設されたグレーティングや複屈折フィルターやプリズムなどの素子自体を機械的に回転するため、精密回転マウントを手動またはモーターにより回転させているので、これら素子の回転速度が制限されてしまっていた。また、ガルバノ付ミラーを機械的に回転させる場合には、制御する角度にもよるが、早くとも数百Hz程度でしか回転できなかった。このように、従来の技術においては、波長可変速度を速くすることが困難であるという問題点があった。
【0004】
また、上記した従来の波長選択方法においては、グレーティングや複屈折フィルターやプリズムなどの素子、または、ガルバノ付ミラーを機械的に回転させるので、これら質量の重い部材の回転によってぶれが生じてしまい、波長選択の精度が良くないという問題点があった。
【0005】
さらに、従来の波長選択方法において精密回転マウントを用いた場合には、ギヤによるバックラッシュなどにより角度を精密に制御できない恐れがあり、波長再現精度が良くないという問題点もあった。
【0006】
【発明が解決しようとする課題】
本発明は、上記したような従来の技術の有する種々の問題点に鑑みてなされたものであり、その目的とするところは、質量の重い部材を機械的に回転することなしに、レーザー波長を制御して高速に波長を掃引できるようにして、安定した波長選択作用を実現することができるようにした、レーザー装置およびレーザー装置における波長選択方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明におけるレーザー装置およびレーザー装置における波長選択方法は、グレーティングや複屈折フィルターやプリズムなどの素子、あるいは、ガルバノ付ミラーのような質量の重い部材を機械的に回転させる従来の手法とはまったく異なる観点からなされたものである。
【0008】
即ち、本発明は、反射させる光の反射角度や波面を制御することができるなどのように、アダプティブオプティックス(adaptive optics)が入射される光に対してアクティブに変化を加えて反射させることができる点に着目して、当該アダプティブオプティックスをレーザー装置に用いるようにしたものである。
【0009】
従って、上記目的を達成するために、本発明のうち請求項1に記載の発明は、所定の透過性を有するミラーとアダプティブオプティクスとを有して構成されるレーザー共振器と、上記レーザー共振器内に配設されたレーザー媒質と、上記レーザー媒質からの出射光が入射される分散素子とを有するようにしたものである。
【0010】
また、本発明のうち請求項2に記載の発明は、レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、上記レーザー媒質からの出射光が入射されるミラーを有するアダプティブオプティクスと、上記アダプティブオプティクスの上記ミラーによって反射された光が入射されるグレーティングと、上記グレーティングの回折光が上記アダプティブオプティクスの上記ミラーによって反射されて入射されるように配置された所定の透過性を有するミラーとを有するようにしたものである。
【0011】
また、本発明のうち請求項3に記載の発明は、レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、上記レーザー媒質からの出射光が入射されるグレーティングと、上記グレーティングの回折光が入射されるミラーを有するアダプティブオプティクスと、上記アダプティブオプティクスの上記ミラーによって反射された光が上記グレーティングによって回折されて入射されるように配置された所定の透過性を有するミラーとを有するようにしたものである。
【0012】
また、本発明のうち請求項4に記載の発明は、レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、上記レーザー媒質からの出射光が入射されるプリズムと、上記プリズムによって分光された光が入射されるミラーを有するアダプティブオプティクスと、上記アダプティブオプティクスの上記ミラーによって反射された光が入射されるように配置された所定の透過率を有するミラーとを有するようにしたものである。
【0013】
また、本発明のうち請求項5に記載の発明は、レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、上記レーザー媒質からの出射光が入射されるミラーを有する第1のアダプティブオプティクスと、上記第1のアダプティブオプティクスのミラーによって反射された光が入射される複屈折フィルターと、上記複屈折フィルターを透過した光が入射されるミラーを有する第2のアダプティブオプティクスと、上記第2のアダプティブオプティクスの上記ミラーによって反射された光が入射されるように配置された所定の透過率を有するミラーとを有するようにしたものである。
【0014】
また、本発明のうち請求項6に記載の発明は、一方の端面の反射が防止され他方の端面が全反射可能となされたレーザーダイオードチップと、上記レーザーダイオードチップの上記一方の端面からの出射光が入射されるグレーティングと、上記グレーティングの回折光が入射されるミラーを有するアダプティブオプティクスとを有するようにしたものである。
【0015】
また、本発明のうち請求項7に記載の発明のように、請求項1、請求項2、請求項3、請求項4、請求項6または請求項6のいずれか1項に記載の発明において、上記アダプティブオプティクスは、トラッキングミラーまたはディフォーマブルミラーのいずれかであるようにしてもよい。
【0016】
また、本発明のうち請求項8に記載の発明は、所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光を、グレーティングから所定の波長の1次回折光がアダプティブオプティクスのミラーに入射するようにして、上記アダプティブオプティクスのミラーによって反射して上記グレーティングに入射させ、上記グレーティングによって回折され上記アダプティブオプティクスのミラーに入射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて出力させるようにしたものである。
【0017】
また、本発明のうち請求項9に記載の発明は、所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光をグレーティングに入射させ、上記グレーティングによって回折された所定の波長の1次回折光をアダプティブオプティクスのミラーに垂直に入射させて、上記アダプティブオプティクスのミラーに垂直に入射されて反射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて、上記グレーティングの0次光として出力させるようにしたものである。
【0018】
また、本発明のうち請求項10に記載の発明は、所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光をプリズムに入射させて分光し、上記プリズムによって分光された所定の波長の光をアダプティブオプティクスのミラーに垂直に入射させて、上記アダプティブオプティクスのミラーに垂直に入射されて反射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて出力させるようにしたものである。
【0019】
また、本発明のうち請求項11に記載の発明は、所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光を第1のアダプティブオプティクスのミラーに反射させて複屈折フィルターに入射させ、上記複屈折フィルターを透過した光を第2のアダプティブオプティクスのミラーに入射させて、上記第2のアダプティブオプティクスのミラーに入射されて反射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて出力させるようにしたものである。
【0020】
また、本発明のうち請求項12に記載の発明は、レーザーダイオードチップからの出射光をグレーティングに入射させ、上記グレーティングによって回折された所定の波長の1次回折光をアダプティブオプティクスのミラーに垂直に入射させて、上記アダプティブオプティクスのミラーに垂直に入射されて反射された波長の光を、上記グレーティングの0次光として出力させるようにしたものである。
【0021】
また、本発明のうち請求項13に記載の発明のように、請求項8、請求項9、請求項10、請求項11または請求項12のいずれか1項に記載の発明において、上記アダプティブオプティクスは、トラッキングミラーまたはディフォーマブルミラーのいずれかであるようにしてもよい。
【0022】
【発明の実施の形態】
以下、添付の図面に基づいて、本発明によるレーザー装置およびレーザー装置における波長選択方法の実施の形態を詳細に説明するものとする。
【0023】
図1には、本発明の第1の実施の形態によるレーザー装置の概略構成説明図が示されている。
【0024】
この第1の実施の形態のレーザー装置は、レーザー共振器を構成するアダプティブオプティクス10と所定の透過性を有する出射側ミラー12と、レーザー共振器内に配設されたレーザー媒質14と、波長選択用の分散素子としてのグレーティング(回折格子)16とを有して構成されている。
【0025】
ここで、レーザー媒質14としては、例えば、Ti:Alレーザー結晶を用いることができる。
【0026】
また、グレーティング16は、反射型の回折格子であって所定形状の溝が所定の本数形成された平面回折格子であり、例えば、溝本数1200本/mmで回折次数1の平面回折格子を用いることができる。
【0027】
なお、このレーザー装置においては、レーザー共振器へ励起レーザー光を入射するための励起光源として、例えば、Nd:YAGレーザーを用いることができる。
【0028】
そして、アダプティブオプティックス(adaptive optics)10とは、反射させる光の反射角度や波面を制御することができ、入射してくる光に対してアクティブに変化を加えて反射させるミラーを備えるものであって、各種タイプのものが提案されている。
【0029】
この実施の形態においては、アダプティブオプティックス10として、所謂、トラッキングミラー(Tracking Mirror)と称される、ミラーの傾きのみを制御して変化可能なタイプのものを使用するものとする。
【0030】
なお、アダプティブオプティックス10にはコントローラー20が接続されており、このコントローラー20により、アダプティブオプティックス10として用いられるトラッキングミラー100のミラー116(後述する)の傾きを制御して変化可能なようになされている。
【0031】
図2には、トラッキングミラー100を示す概略構成斜視図が示されており、このトラッキングミラー100は、下部部材102と上部部材112との2つのパーツにより構成されている。
【0032】
下部部材102は、シリコン(Si)により形成された板状体の基盤104と、基盤104の表面104aに金(Au)を用いてプリントされた複数の電極106−1〜106−5とを有して構成されている。
【0033】
ここで、下部部材102の複数の電極106−1〜106−5とは、正方形を4つの小正方形に分割するようにして形成された電極106−1、電極106−2、電極106−3ならびに電極106−4の4つの電極と、これら電極106−1、電極106−2、電極106−3ならびに電極106−4の外周側に形成された電極106−5とである。
【0034】
一方、上部部材112は、略矩形形状のフレーム114と、反射面116aを備えフレーム114に支持部材118を介して可動自在に支持されミラー116とを有して構成されている。
【0035】
このミラー116は、略矩形形状の板状体であるシリコン基板の表面に、反射面116aとなる金(Au)をコーティングして形成されている。ミラー116は、例えば、3.5mm(縦)×3.5mm(横)×200μm(厚み)であって、およそ0.05mgの重さを有するようにして寸法設定されている。
【0036】
そして、ミラー116の反射面116aの背面側に基盤104の表面104aが位置し、ミラー116と基盤104の表面104aとが所定の間隔H(例えば、数十ミクロン)を有するようにして、上部部材112のフレーム114が下部部材102の基盤104に固定的に配設される(図3(a)に示す状態参照)。
【0037】
この際、ミラー116の2本の対角線によって区切られた4つの略三角形形状の領域のそれぞれと対向するようにして、下部部材102の電極106−1、電極106−2、電極106−3ならびに電極106−4の4つの電極がそれぞれ位置するようになる。つまり、ミラー116の角部116bは電極106−1と電極106−2との間に位置し、ミラー116の角部116cは電極106−2と電極106−3との間に位置し、ミラー116の角部116dは電極106−3と電極106−4との間に位置し、ミラー116の角部116eは電極106−4と電極106−1との間に位置するようになる。
【0038】
こうした下部部材102と上部部材112との2つのパーツよりなるトラッキングミラー100において、コントローラー20の制御によって、例えば、下部部材102の電極106−1ならびに電極106−2に所定の電圧を印加するとともに、電極106−3ならびに電極106−4の電圧を0Vとすると、ミラー116は静電効果によって電極106−1ならびに電極106−2に引き寄せられて、ミラー116の角部116bと基盤104の表面104aとの間隔H1(図3(b)参照)は所定の間隔H(図3(a)参照)より短くなり、ミラー116が傾くことになる。
【0039】
また、下部部材102の電極106−3ならびに電極106−4に所定の電圧を印加するとともに、電極106−1ならびに電極106−2の電圧を0Vとすると、ミラー116は静電効果によって電極106−3ならびに電極106−4に引き寄せられて、ミラー116の角部116dと基盤104の表面104aとの間隔H2(図3(c)参照)は所定の間隔H(図3(a)参照)より短くなり、ミラー116が傾くことになる。
【0040】
また、下部部材102の電極106−1ならびに電極106−4に所定の電圧を印加するとともに、電極106−2ならびに電極106−3の電圧を0Vとした場合や、反対に、下部部材102の電極106−2ならびに電極106−3に所定の電圧を印加するとともに、電極106−1ならびに電極106−4の電圧を0Vとした場合もそれぞれ、静電効果によって所定の電圧が印加された電極108側にミラー116は引き寄せられて傾くことになる。
【0041】
こうしてミラー116と所定の間隔Hを有して位置する4つの電極106−1〜106−4の中で所定の電圧を印加する電極を変化させたり、さらには、印加する電圧の大きさを変化させることによって、トラッキングミラー100のミラー116を任意の方向に任意の角度だけ傾けさせることができ、ミラー116の反射面116aの傾きが変化可能となされている。
【0042】
なお、この実施の形態においては、トラッキングミラー100のミラー116の反射面116aの傾きが変化可能な角度は最大で15°であり、水平状態(図3(a)参照)から±7.5°の範囲でミラー116の角度のコントロールが可能である。また、こうしたミラー116の角度の制御は、コントローラ20によって2kHz〜3kHzという高速でなされるものである。従って、この実施の形態においては、1秒間でおよそ3000回程度はミラー116の角度を最大15°で振ることができる。
【0043】
以上の構成において、まず、励起レーザー光としてNd:YAGレーザーの第二高調波をレーザー媒質14に入射して、レーザー媒質14を励起する。こうしてレーザー媒質14を励起することにより、レーザー媒質14から広範囲の波長帯域の光が出射され、この広範囲の波長帯域の光は、アダプティブオプティクス10として用いたトラッキングミラー100のミラー116によって反射されて、グレーティング16に入射する。
【0044】
そして、トラッキングミラー100のミラー116によって反射されてグレーティング16に入射した広範囲の波長帯域の光は、グレーティング16によって波長毎に異なる回折角で回折されて放射状に分光される。つまり、グレーティング16の1次回折光は波長毎に回折角が異なり、例えば、グレーティング16として溝本数1200本/mmで回折次数1の平面回折格子を用いた場合には、波長700nmの光の+1次の回折光の回折角は25°であり、波長900nmの光の+1次の回折光の回折角は33°である。
【0045】
ここで、グレーティング16はリトロー配置になると、グレーティング16に入射した入射光の方向に、+1次の回折光が戻るようになる。つまり、リトロー配置のグレーティング16に入射する入射光がグレーティング16の法線(図4(a)に示す破線参照)となす角度、即ち、入射角αは、グレーティング16によって回折された光がグレーティング16の法線(図4(a)に示す破線参照)となす角度、即ち、回折角βと一致する。
【0046】
このため、レーザー装置(図1参照)においては、レーザー媒質14から出射された広範囲の波長帯域の出射光が、所定の波長の+1次の回折光の回折角βと一致する入射角αでグレーティング16に入射するように、即ち、グレーティング16がリトロー配置になるように、コントローラー20によりアダプティブオプティクス10として用いたトラッキングミラー100のミラー116の角度を変化させる。
【0047】
例えば、レーザー装置から波長700nmの出射レーザー光を出射させる場合には、レーザー媒質14から出射された広範囲の波長帯域の出射光を、コントローラー20によって角度が調整されたトラッキングミラー100のミラー116によって反射させて、入射角α=25°でグレーティング16に入射させる(図4(a)参照)。すると、リトロー配置のグレーティング16によって、入射角αと一致する回折角β=25°で回折された波長700nmの+1次の回折光が、再びトラッキングミラー100のミラー116に入射してもとの光路に戻る。従って、波長700nmの光が、アダプティブオプティクス10と出射側ミラー12とにより構成されるレーザー共振器内を往復することになる。
【0048】
また、レーザー装置から波長900nmの出射レーザー光を出射させる場合には、レーザー媒質14から出射された広範囲の波長帯域の出射光を、コントローラー20によって角度が調整されたトラッキングミラー100のミラー116によって反射させて、入射角α=33°でグレーティング16に入射させる(図3(b)参照)。すると、リトロー配置のグレーティング16によって、入射角αと一致する回折角β=33°で回折された波長900nmの+1次の回折光が、再びトラッキングミラー100のミラー116に入射してもとの光路に戻る。従って、波長900nmの光が、アダプティブオプティクス10と出射側ミラー12とにより構成されるレーザー共振器内を往復することになる。
【0049】
このように、グレーティング16として溝本数1200本/mmで回折次数1の平面回折格子を用いると、波長700nmから波長900nmの間の波長の光の+1次の回折光の回折角βは25°から33°の間になる。従って、上記した波長700nmから波長900nmの間の波長の出射レーザー光をレーザー装置から出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を調整して、レーザー媒質14から出射された広範囲の波長帯域の出射光を、入射角αが25°から33°の間でグレーティング16に入射させればよい。
【0050】
こうして、波長毎にグレーティング16の回折角βが異なるために、リトロー配置でもとの光路に戻すための入射角αも波長毎に異なり、波長に応じた角度にトラッキングミラー100のミラー116を調整して、入射角αと一致する回折角βの波長の光を増幅させてレーザー発振を生ぜしめ、レーザー共振器から当該波長のレーザー光を出射レーザー光として出射させることができる。
【0051】
つまり、グレーティング16の1次回折光は波長により回折角βが変わることを利用して、その角度にあわせてグレーティング16がリトロー配置になるように、アダプティブオブティックス10の角度を変えると、グレーティング16を機械的に回転させてその角度を変えることなしに、レーザー共振器内を往復する光の波長を変えて出射レーザー光の波長を変えることができる。
【0052】
上記したようにして、第1の実施の形態に示すレーザー装置においては、アダプティブオプティクス10として用いたトラッキングミラー100のミラー116の角度を変化させることによって、レーザー媒質14から出射された広範囲の波長帯域の出射光を、任意の波長の光の1次回折光の回折角と一致する入射角でグレーティング16に入射すると、当該任意の波長の光がレーザー共振器内を往復するようになる。このため、アダプティブオプティクス10のミラーの角度を変えると、レーザー共振器内を往復する光の波長が変わり、出射レーザー光の波長を変えることができる。
【0053】
本発明の第1の実施の形態に示すレーザー装置によれば、波長選択のために角度を変えるトラッキングミラー100のミラー116が、小型で極めて軽量な部材なので、ミラー116の角度を高速に、例えば、2kHz〜3kHzで変化させることができるようになり、波長可変速度を速くすることができる。
【0054】
しかも、トラッキングミラー100のミラー116は、静電効果を利用し、エアギャップを通じて電極108により引っ張られて角度を変化させるため、ミラー116を直接引いたり押したりするような機械的な接触が必要なく、ぶれが少ないので、非常に高速にしかも正確に角度を変化させたり、角度を決めることができる。このため、本発明の第1の実施の形態に示すレーザー装置によれば、波長選択を高精度に行うことができ、しかも波長再現精度もよく、安定した波長選択作用を実現することができる。
【0055】
また、本発明の第1の実施の形態に示すレーザー装置においては、溝本数1200本/mmで回折次数1の平面回折格子をグレーティング16として用いるので、発振するレーザー光のスペクトル幅をおよそ0.01nm以下程度まで狭くすることができるようになり、狭スペクトルにて波長選択作用を実現することもできる。
【0056】
なお、本発明によるレーザー装置の発振するレーザー光のスペクトル幅(およそ0.01nm以下)は、例えば、音響光学効果を使用した波長選択素子を用いて高速な波長選択によって発振するレーザー光のスペトル幅(およそ0.1nm)と比較しても狭いものである。
【0057】
図5には、本発明の第2の実施の形態によるレーザー装置の構成概略図が示されている。なお、図1乃至図4に示した構成部材と同一の構成部材に関しては、理解を容易にするために、同一の符号を付して示すものとする。
【0058】
この第2の実施の形態によるレーザー装置は、レーザー共振器を構成するアダプティブオプティクス10と所定の透過性を有するミラー22と、レーザー共振器内に配設されたレーザー媒質14と、波長選択用の分散素子としてのグレーティング(回折格子)26とを有して構成されている。
【0059】
ここで、アダプティブオプティクス10としては、上記した第1の実施の形態と同様に、トラッキングミラー100(図2参照)を使用するものとする。
【0060】
また、グレーティング26としては、例えば、溝本数1200本/mmで回折次数1の反射型の平面回折格子を用いることができる。なお、グレーティング26は、グレーティング26に入射するレーザー媒質14から出射された広範囲の波長帯域の光(後述する)がグレーティング26の法線(図6に示す破線参照)となす角度、即ち、入射角αが50°となるようにして配設されている。
【0061】
以上の構成において、まず、励起レーザー光としてNd:YAGレーザーの第二高調波をレーザー媒質14に入射して、レーザー媒質14を励起する。こうしてレーザー媒質14を励起することにより、レーザー媒質14から広範囲の波長帯域の光を出射させ、この広範囲の波長帯域の光は、グレーティング26に入射角α=50°で入射する。
【0062】
そして、グレーティング26に入射した広範囲の波長帯域の光は、グレーティング26によって波長毎に異なる回折角で回折されて放射状に分光される。つまり、グレーティング26の1次回折光は波長毎に回折角が異なり、例えば、グレーティング26として溝本数1200本/mmで回折次数1の平面回折格子を用いた場合には、広範囲の波長帯域の光が入射角α=50°でグレーティング26に入射すると、波長700nmの光の+1次の回折光の回折角β1は4°であり、波長900nmの光の+1次の回折光の回折角β2は18°である(図6参照)。
【0063】
このため、レーザー装置(図5参照)においては、所定の波長の1次回折光が、アダプティブオプティクス10として用いたトラッキングミラー100のミラー116に垂直に入射するように、コントローラー20によりトラッキングミラー100のミラー116の角度を変化させる。
【0064】
例えば、レーザー装置から波長700nmの出射レーザー光を出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を調整して、ミラー116をグレーティング26に対して4°傾かせ、回折角β1=4°(図6参照)の回折光、即ち、波長700nmの光をミラー116に垂直入射させる。すると、トラッキングミラー100のミラー116に垂直入射した波長700nmの光が、ミラー116によって反射されて再びグレーティング26に入射して、アダプティブオプティクス10とミラー22とにより構成されるレーザー共振器内に戻って往復することになる。
【0065】
また、レーザー装置から波長900nmの出射レーザー光を出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を調整して、ミラー116をグレーティング26に対して18°傾かせ、回折角β2=18°(図6参照)の回折光、即ち、波長900nmの光をミラー116に垂直入射させる。すると、トラッキングミラー100のミラー116に垂直入射した波長900nmの光が、ミラー116によって反射されて再びグレーティング26に入射して、アダプティブオプティクス10とミラー22とにより構成されるレーザー共振器内に戻って往復することになる。
【0066】
このように、グレーティング26として溝本数1200本/mmで回折次数1の平面回折格子を用いると、波長700nmから波長900nmの間の波長の光の+1次の回折光の回折角βは4°から18°の間になる。従って、上記した波長700nmから波長900nmの間の波長の出射レーザー光をレーザー装置から出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を、グレーティング26に対して4°から18°の間で傾かせて、波長700nmから波長900nmの間の波長の光をミラー116に垂直入射させればよい。
【0067】
こうして波長毎にグレーティング26の回折角が異なるために、出射レーザー光としたい波長に応じた角度にトラッキングミラー100のミラー116を調整すると、ミラー116に垂直に入射した波長の光が増幅されてレーザー発振を生ぜしめ、レーザー共振器から当該波長のレーザー光が、グレーティング26の0次光として出射されて、出射レーザー光を得ることができる。
【0068】
つまり、グレーティング26の1次回折光は波長により回折角が変わることを利用して、所定の波長の1次回折光が垂直に入射するように、アダプティブオブティックス10のミラーの角度を変えると、グレーティング26を機械的に回転させてその角度を変えることなしに、レーザー共振器内を往復する光の波長を変えて出射レーザー光の波長を変えることができる。
【0069】
図7には、本発明の第3の実施の形態によるレーザー装置の構成概略図が示されている。なお、図1乃至図4に示した構成部材と同一の構成部材に関しては、理解を容易にするために、同一の符号を付して示すものとする。
【0070】
この第3の実施の形態によるレーザー装置は、レーザー共振器を構成するアダプティブオプティクス10と所定の透過性を有する出射側ミラー32と、レーザー共振器内に配設されたレーザー媒質14と、波長選択用の分散素子としてのプリズム36とを有して構成されている。
【0071】
ここで、アダプティブオプティクス10としては、上記した第1の実施の形態と同様に、トラッキングミラー100(図2参照)を使用するものとする。
【0072】
また、プリズム36としては、例えば、材質SF11で頂角59.7°のSF10ブリュースタカットプリズムを用いることができる。なお、プリズム36は、レーザー媒質14から出射された広範囲の波長帯域の光(後述する)が入射角α=59.7°で入射するようにして配設されている。
【0073】
以上の構成において、まず、励起レーザー光としてNd:YAGレーザーの第二高調波をレーザー媒質14に入射して、レーザー媒質14を励起する。こうしてレーザー媒質14を励起することにより、レーザー媒質14から広範囲の波長帯域の光を出射させ、この広範囲の波長帯域の光は、プリズム36の入射面36aに入射角α=59.7°で入射する。
【0074】
そして、プリズム36に入射した広範囲の波長帯域の光は、プリズム36によって波長毎に異なる屈折角で屈折されて放射状に分光される。つまり、プリズム36によって分光された光は波長毎に分散角が異なり、例えば、プリズム36として材質SF11で頂角59.7°のSF10ブリュースタカットプリズムを用いた場合には、広範囲の波長帯域の光が入射角α=59.7°でプリズム36に入射すると、波長700nmの光の分散角γ1は57.75°であり、波長900nmの光の分散角γ2は56.60°である(図8参照)。
【0075】
このため、レーザー装置(図7参照)においては、プリズム36によって分光された所定の波長の光が、アダプティブオプティクス10として用いたトラッキングミラー100のミラー116に垂直に入射するように、コントローラー20によりトラッキングミラー100のミラー116の角度を変化させる。
【0076】
例えば、レーザー装置から波長700nmの出射レーザー光を出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を調整して、ミラー116をプリズム36の出射面36bに対して所定の角度だけ傾かせ、分散角γ1=57.75°(図8参照)の分散光、即ち、波長700nmの光をミラー116に垂直入射させる。すると、トラッキングミラー100のミラー116に垂直入射した波長700nmの光が、ミラー116によって反射されて再びプリズム36に入射して、アダプティブオプティクス10と出射側ミラー32とにより構成されるレーザー共振器内に戻って往復することになる。
【0077】
また、レーザー装置から波長900nmの出射レーザー光を出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を調整して、ミラー116をプリズム36の出射面36bに対して所定の角度だけ傾かせ、分散角γ2=56.60°(図8参照)の分散光、即ち、波長900nmの光をミラー116に垂直入射させる。すると、トラッキングミラー100のミラー116に垂直入射した波長900nmの光が、ミラー116によって反射されて再びプリズム36に入射して、アダプティブオプティクス10と出射側ミラー32とにより構成されるレーザー共振器内に戻って往復することになる。
【0078】
このように、プリズム36として材質SF11で頂角59.7°のSF10ブリュースタカットプリズムを用いると、波長700nmから波長900nmの間の波長の光の分散光の分散角γは57.75°から56.60°の間になる。従って、上記した波長700nmから波長900nmの間の波長の出射レーザー光をレーザー装置から出射させる場合には、コントローラー20によってトラッキングミラー100のミラー116の角度を、プリズム36に対して所定の範囲内で傾かせて、波長700nmから波長900nmの間の波長の光をミラー116に垂直入射させればよい。
【0079】
こうしてプリズム36において波長毎に分散角が異なるために、出射レーザー光としたい波長に応じた角度にトラッキングミラー100のミラー116を調整して、ミラー116に垂直に入射した波長の光を増幅させてレーザー発振を生ぜしめ、レーザー共振器から当該波長のレーザー光を、出射レーザー光として出射側ミラー32から出射させることができる。
【0080】
つまり、プリズム36による分光を利用して、所定の波長の光が垂直に入射するように、アダプティブオブティックス10のミラーの角度を変えると、プリズム36を機械的に回転させてその角度を変えることなしに、レーザー共振器内を往復する光の波長を変えて出射レーザー光の波長を変えることができる。
【0081】
図9には、本発明の第4の実施の形態によるレーザー装置の構成概略図が示されている。なお、図1乃至図4に示した構成部材と同一の構成部材に関しては、理解を容易にするために、同一の符号を付して示すものとする。
【0082】
即ち、第4の実施の形態によるレーザー装置は、レーザー共振器を構成するアダプティブオプティクス10−1と所定の透過性を有する出射側ミラー42と、レーザー共振器内に配設されたレーザー媒質14と、波長選択用の分散素子としての複屈折フィルター46と、複屈折フィルター46とレーザー媒質14との間に配設されたアダプティブオプティクス10−2とを有して構成されている。
【0083】
ここで、アダプティブオプティクス10−1ならびにアダプティブオプティクス10−2としては、上記した第1の実施の形態と同様に、トラッキングミラー100(図2参照)を使用するものとする。
【0084】
また、複屈折フィルター46としては、例えば、中心波長800nmの石英製3プレート複屈折フィルターを用いることができる。なお、複屈折フィルター46は、アダプティブオプティクス10−1とアダプティブオプティクス10−2との間に位置するようにして配設されている。
【0085】
以上の構成において、まず、励起レーザー光としてNd:YAGレーザーの第二高調波をレーザー媒質14に入射して、レーザー媒質14を励起する。こうしてレーザー媒質14を励起することにより、レーザー媒質14から広範囲の波長帯域の光を出射させ、この広範囲の波長帯域の光は、アダプティブオプティクス10−2として用いたトラッキングミラー100のミラー116によって反射されて、複屈折フィルター46に入射する。
【0086】
ここで、複屈折フィルター46は、当該複屈折フィルター46に入射する入射光の透過角度に応じて、所定の波長の光を選択的に出射するものである。例えば、複屈折フィルター46として中心波長800nmの石英製3プレート複屈折フィルターを用いた場合には、レーザー媒質14から出射された広範囲の波長帯域の光が、複屈折フィルター46に透過角度30°で入射すると、波長790nmの光が複屈折フィルター46から出射され、複屈折フィルター46に透過角度40°で入射すると、波長840nmの光が複屈折フィルター46から出射される。
【0087】
このため、レーザー装置(図9参照)においては、所定の波長の光が複屈折フィルター46から出射可能な透過角度で、レーザー媒質14から出射された広範囲の波長帯域の光が複屈折フィルター46に入射するように、コントローラー20によって、アダプティブオプティクス10−2として用いたトラッキングミラー100のミラー116の角度を変化させる。
【0088】
すると、レーザー媒質14から出射された広範囲の波長帯域の光は、アダプティブオプティクス10−2として用いたトラッキングミラー100のミラー116によって反射されて、所定の波長の光が複屈折フィルター46から出射可能な透過角度で複屈折フィルター46に入射する。その結果、複屈折フィルター46を透過して所定の波長の光が出射される。
【0089】
こうして、複屈折フィルター46から出射された所定の波長の光は、コントローラー20によって角度が調整されているアダプティブオプティクス10−1として用いたトラッキングミラー100のミラー116によって反射されて再び複屈折フィルター46に入射して、アダプティブオプティクス10−1と出射ミラー42とにより構成されるレーザー共振器内に戻って往復することになる。
【0090】
こうして複屈折フィルター46において波長毎に透過角度が異なるために、出射レーザー光としたい波長の光が複屈折フィルター46から出射するように、アダプティブオプティクス10−2として用いたトラッキングミラー100のミラー116を調整して、複屈折フィルター46から出射した波長の光を増幅させてレーザー発振を生ぜしめ、レーザー共振器から当該波長のレーザー光を、出射レーザー光として出射側ミラー42から出射させることができる。
【0091】
つまり、複屈折フィルター46による波長選択を利用して、共振状態を保ったまま複屈折フィルター46の透過角度を変化させるように、アダプティブオブティックス10−1ならびにアダプティブオブティックス10−2のミラーの角度を変えると、複屈折フィルター46を機械的に回転させてその角度を変えることなしに、レーザー共振器内を往復する光の波長を変えて出射レーザー光の波長を変えることができる。
【0092】
以上において説明した第2の実施の形態に示すレーザー装置(図5参照)、第3の実施の形態に示すレーザー装置(図7参照)ならびに第4の実施の形態に示すレーザー装置(図9参照)においても、上記した第1の実施の形態のレーザー装置(図1参照)と同様の効果を奏するものであり、アダプティブオプティクス10,10−1,10−2のミラーの角度を変えると、レーザー共振器内を往復する光の波長が変わり、出射レーザー光の波長を変えることができ、波長可変速度を速くすることもできる。また、波長選択を高精度に行うことができ、しかも波長再現精度もよく、安定しかつ狭スペクトルの波長選択作用を実現することができる。
【0093】
図10には、本発明の第5の実施の形態によるレーザー装置の構成概略図が示されている。なお、図1乃至図4に示した構成部材と同一の構成部材に関しては、理解を容易にするために、同一の符号を付して示すものとする。
【0094】
図10に示すレーザー装置たる半導体レーザーは、レーザーダイオードチップ50と、レーザーダイオードチップ50からの出射光が入射するレンズ52と、アダプティブオプティクス10と、波長選択用の分散素子としてのグレーティング(回折格子)56とを有して構成されている。
【0095】
ここで、レーザーダイオードチップ50のアダプティブオプティクス10側の一方の端面50aにはARコーティングが施されており、他方の端面50bには全反射コーティングが施されている。そして、ARコーティングにより反射が防止された端面50aからの出射光は、レンズ52に入射するようになされている。
【0096】
レンズ52は、レーザーダイオードチップ50から出射光を平行光に変換して、グレーティング56に入射させるものである。
【0097】
また、グレーティング56としては、例えば、溝本数300本/mmで回折次数1の反射型の平面回折格子を用いることができる。なお、グレーティング56は、グレーティング56に入射するレンズ52からの出射光がグレーティング26の法線となす角度、即ち、入射角αが30°となるようにして配設されている。
【0098】
そして、この実施の形態においては、アダプティブオプティックス10として、所謂、ディフォーマブルミラー(Deformable Mirror)と称される、膜状のミラーの形状を制御して変化可能なタイプのものを使用するものとする。
【0099】
なお、アダプティブオプティックス10にはコントローラー20が接続されており、このコントローラー20により、アダプティブオプティックス10として用いられるディフォーマブルミラー200のミラー216(後述する)の形状が制御されて、ミラー216の反射面216aが変化可能なようになされている。
【0100】
図11には、ディフォーマブルミラー200を示す概略構成斜視図が示されており、図12には、図11のA−A線断面図が示されている。このディフォーマブルミラー200は、下部部材202と上部部材212との2つのパーツより構成されている。
【0101】
下部部材202は、シリコン結晶により形成された板状体の基盤204と、基盤204の表面204aに金(Au)を用いてプリントされた複数の電極206−1〜206−7とを有して構成されている。
【0102】
一方、上部部材212は、略リング状のフレーム214と、反射面216aを備えフレーム214上に形成された膜状のミラー216と、ミラー216の反射面216aの背面側の面に配設された突起状の複数のピラー218−1〜218−7とを有して構成されている。
【0103】
なお、フレーム214ならびにピラー218−1〜218−7は、シリコン結晶により形成されている。また、ミラー216の反射面216aは、窒化シリコン(SiN)に誘電体多層膜コートがなされて形成されている。そして、ミラー216の反射面216aの背面側に位置する面216bとフレーム214の外周には金がコーティングされている。
【0104】
また、上部部材212のピラー218−1〜218−7は、下部部材202の電極206−1〜206−7と対応する位置に、下部部材202の電極206−1〜206−7の総数と一致する数だけ形成されている。
【0105】
ここで、上部部材212が下部部材202の基盤204の表面204aに接着材料220によって固定されて、上部部材212と下部部材202との2つのパーツが張り合わされてディフォーマブルミラー200が構成された際には、上部部材212のピラー218−1〜218−7と下部部材202の電極206−1〜206−7とは所定の間隔(例えば、数十ミクロン)を有して対向するような位置関係で配置される。
【0106】
なお、図11に示すディフォーマブルミラー200においては、上部部材212の7つのピラー218−1〜218−7が下部部材202に7つの電極206−1〜206−7に対向するようになされているが、ピラー218−1〜218−7ならびに電極206−1〜206−7の数はこれに限られることなしに、上部部材212のピラーと下部部材202の電極とは互いに対向可能なようにして任意の数の形成することができ、例えば、100個以上のピラーと電極とを形成するようにしてもよい。
【0107】
こうした下部部材202と上部部材212との2つのパーツよりなるディフォーマブルミラー200において、コントローラー20の制御によって、例えば、下部部材202の電極206−1に所定の電圧を印加するとともに、電極206−2〜206−7の電圧を0Vとすると、ミラー216は静電効果によって電極206−1に引き寄せられて、平滑な平面状であった反射面216aは、電極206−1に対向する領域が落ち窪んだ凹面状に変形することになる。
【0108】
このように、下部部材202の電極206−1〜206−7それぞれの電圧を、コントローラー20によって制御することによって、ディフォーマブルミラー200のミラー216は、ミラー216の形状が変化可能なものである。
【0109】
なお、この実施の形態においては、ディフォーマブルミラー200のミラー216の反射面26aの傾きが変化可能な角度は最大で1°であり、水平状態(図12参照)から±0.5°の範囲でミラー216の角度のコントロールが可能である。また、こうしたミラー216の角度の制御は、コントローラ20によって2kHz〜3kHzという高速でなされるものである。従って、この実施の形態においては、1秒間でおよそ3000回程度はミラー216の角度を最大1°で振ることができる。
【0110】
以上の構成において、レーザーダイオードチップ50の端面50bからの広範囲の波長帯域(例えば、800nm〜850nm)の出射光は、レンズ52に入射し、レンズ52によって平行光に変換されて、グレーティング56に入射角α=30°で入射する。
【0111】
そして、グレーティング56に入射した広範囲の波長帯域の光は、グレーティング56によって波長毎に異なる回折角で回折されて放射状に分光される。つまり、グレーティング56の1次回折光は波長毎に回折角が異なり、例えば、グレーティング56として溝本数300本/mmで回折次数1の平面回折格子を用いた場合には、波長800nmの光の+1次の回折光の回折角は13.89°であり、波長850nmの光の+1次の回折光の回折角は14.77°である。
【0112】
このため、半導体レーザー(図10参照)においては、所定の波長の1次回折光が、アダプティブオプティクス10として用いたディフォーマブルミラー200のミラー216の反射面216aに垂直に入射するように、コントローラー20によりディフォーマブルミラー200のミラー216の角度を変化させる。
【0113】
例えば、半導体レーザーから波長800nmの出射レーザー光を出射させる場合には、コントローラー20によってディフォーマブルミラー200のミラー216の角度を調整して、ミラー216の反射面216aをグレーティング56に対して所定の角度だけ傾かせ、回折角13.89°の回折光、即ち、波長800nmの光をミラー216に垂直入射させる。
【0114】
また、半導体レーザーから波長850nmの出射レーザー光を出射させる場合には、コントローラー20によってディフォーマブルミラー200のミラー216の角度を調整して、ミラー216の反射面216aをグレーティング56に対して所定の角度だけ傾かせ、回折角14.77°の回折光、即ち、波長850nmの光をミラー216に垂直入射させる。
【0115】
このように、グレーティング56として溝本数300本/mmで回折次数1の平面回折格子を用いると、波長800nmから波長850nmの間の波長の光の+1次の回折光の回折角は13.89°から14.77°の間になる。従って、上記した波長800nmから波長850nmの間の波長の出射レーザー光を半導体レーザーから出射させる場合には、コントローラー20によってディフォーマブルミラー200のミラー216の角度を、グレーティング56に対して所定の範囲内で傾かせて、波長800nmから波長850nmの間の波長の光をミラー216に垂直入射させればよい。
【0116】
そして、ディフォーマブルミラー200のミラー216の反射面216aに垂直入射した所定の波長の光は、反射面216aによって反射されて再びグレーティング56に入射して、もとの光路に戻ってレーザーダイオードチップ50に帰還することになる。
【0117】
こうして波長毎にグレーティング56の回折角が異なるために、出射レーザー光としたい波長に応じた角度にコントローラー20によりディフォーマブルミラー200のミラー216を調整すると、ミラー216の反射面216aに垂直に入射した波長の光を増幅させてレーザー発振を生ぜしめ、グレーティング56の0次光として出射させることができる。
【0118】
つまり、グレーティング56の1次回折光は波長により回折角が変わることを利用して、所定の波長の1次回折光が垂直に入射するように、アダプティブオブティックス10のミラーの角度を変えると、グレーティング56を機械的に回転させてその角度を変えることなしに、レーザーダイオードチップ50に帰還する光の波長を変えて出射レーザー光の波長を変えることができる。
【0119】
そして、本発明による半導体レーザー(図10参照)においても、上記した第1の実施の形態のレーザー装置(図1参照)と同様の効果を奏するものであり、アダプティブオプティクス10のミラーの角度を変えると、レーザーダイオードチップ50に帰還する光の波長が変わり、出射レーザー光の波長を変えることができ、波長可変速度を速くすることもできる。また、波長選択を高精度に行うことができ、しかも波長再現精度もよく、安定しかつ狭スペクトルの波長選択作用を実現することができる。
【0120】
なお、従来より、半導体レーザーにおいて温度を変えることによって波長を変化させることが知られているが、こうした場合には、波長変化の速度が非常に遅く、またスペクトル幅も数ナノメートルと広くなってしまう。
【0121】
そこで、外部共振器を構成することが提案されているが、従来の外部共振器を有する半導体レーザーにおいては、レーザーダイオードの外部に配置されたグレーティングで回折された光は、機械的に回転する全反射ミラーによってもとの光路に戻されていた。このため、従来の半導体レーザーによる掃引速度は100ns/secで、スペクトルの線幅は300kHz(約1pm)程度以下であり、本発明による半導体レーザー(図10参照)によって実現される掃引速度10000nm/secには到底及ばないものである。
なお、上記した実施の形態は、以下の(1)乃至(7)に説明するように変形することができる。
【0122】
(1)上記した実施の形態においては、レーザー媒質14としてTi:Alレーザー結晶を用い、励起レーザー光としてNd:YAGレーザーの第二高調波を用いるようにしたが、これに限られるものではないことは勿論であり、例えば、LiSAFレーザー結晶やLiCAFレーザー結晶や色素溶液などを用いる液体レーザーなどの他の種類のレーザー媒質や、連続発振固体レーザーや連続発振半導体レーザーや連続発振Arイオン・レーザーなどの励起レーザー光源を用いるようにしてもよい。
【0123】
(2)上記した実施の形態においては、グレーティング16、グレーティング26、プリズム36、複屈折フィルター46ならびにグレーティング56として各種の設計などを例示したが、これに限られるものではないことは勿論であり、例示した設計以外のグレーティングやプリズムや複屈折フィルターを用いるようにしてもよい。また、グレーティングやプリズムや複屈折フィルターとは異なる他の種類の分散素子や波長選択部材を用いるようにしてもよい。
【0124】
そして、回折格子の種類を選択することによって、本発明によるレーザー装置から発振するレーザー光のスペクトル幅を広くしたりあるいは狭くしたりできる。具体的には、グレーティング16やグレーティング26の溝本数を増加させると、本発明によるレーザー装置から発振するレーザー光のスペクトル幅を狭くすることができる。また、本発明によるレーザー装置から発振するレーザー光のスペクトル幅を狭くするには、レーザー共振器の全長を長くしてもよい。
【0125】
なお、上記したような各種変更が可能な本発明によるレーザー装置においては、発振するレーザー光の波長域とスペクトル幅とはトレードオフの関係を有するものであるが、音響光学効果を使用した波長選択素子を用いて高速な波長選択によって発振するレーザー光のスペトル幅の狭線化可能な限界に比べると、スペクトル幅をはるかに狭くすることができるものである。
【0126】
(3)上記した第1の実施の形態のレーザー装置(図1参照)においては、単一のグレーティング16を配設するようにしたが、これに限られるものではないことは勿論であり、互いに異なる波長域で高い効率を有する複数のグレーティング(回折格子)を配設するようにしてもよい。
【0127】
例えば、図13には、第1の実施の形態のレーザー装置(図1参照)の単一のグレーティング16に代わって、複数のグレーティング16−1、16−2、16−3を配設したレーザー装置の概略構成説明図が示されている。
【0128】
この図12に示すレーザー装置のように、互いに異なる波長域で高い効率を有するグレーティング16−1とグレーティング16−2とグレーティング16−3とを配設しても、アダプティブオプティクス10として用いるトラッキングミラー100(図2参照)のミラー116は、1次元的にだけではなく、2次元的に動かすことができるので、これら3つのグレーティング16−1、16−2、16−3の回折光を受光できる。
【0129】
その結果、図12に示すレーザー装置によれば、3つのグレーティング16−1、16−2、16−3それぞれが異なる波長域をカバーするようになり(図14(b)参照)、単一のグレーティングを配設した場合(図14(a)参照)に波長域が限られてしまうのに対して、連続で広範囲な波長域を、あるいは、複数の波長域をカバーすることが可能となる。
【0130】
(4)上記した第1〜第4の実施の形態のレーザー装置においては、アダプティブオプティクス10,10−1,10−2としてトラッキングミラー100(図2参照)を用いるようにしたが、これに限られるものではないことは勿論であり、静電効果を利用したタイプとは異なるタイプのトラッキングミラー、例えば、ピエゾを使用してミラーの角度の傾きを制御して変化可能なタイプのトラッキングミラーを用いるようにしてもよい。
【0131】
また、トラッキングミラー100(図2参照)においては、反射面116aが金(Au)のコーティングにより形成されるようにしたが、これに限られるものではないことは勿論であり、反射面116aは誘電体多層膜コートにより形成されるようにしてもよい。
【0132】
また、上記した第1〜第4の実施の形態のレーザー装置において、アダプティブオプティクス10,10−1,10−2として、トラッキングミラー100(図2参照)に代わってディフォーマブルミラー200(図11ならびに図12参照)を使用するようにしてもよいし、第5の実施の形態のレーザー装置において、アダプティブオプティクス10として、ディフォーマブルミラー200に代わってトラッキングミラー100を使用するようにしてもよい。
【0133】
(5)上記した実施の形態において、さらに、所定の位置に波面計測器を配設するようにして、共振器から出射したレーザー光の一部を取り出して当該波面計測器に取り込ませるようにしてもよい。このようにすると、アダプティブオプティクス10,10−1,10−2は反射させる光の反射角度だけではなく波面も制御することができるので、波面計測器で計測された波面データに基づいてアダプティブオプティクス10,10−1,10−2を制御することにより、クローズドループ制御でリアルタイムに、出射レーザー光のビーム形状や品質を波長と同時に制御することができる。
【0134】
より詳細には、従来より、共振器内のレーザー媒質や光学部品をレーザー光が透過するごとにその波面が乱れることによって、出射レーザー光の波面が乱れるという問題点があった。また、レーザー媒質は強く励起されると熱レンズ効果によって共振器内でレンズのような役割を果たし、励起強度や発振周波数の変化によって、レーザー発振が止まってしまったり、あるいは、レーザー発振が弱まってしまったり、または、出射するレーザー光の形状が崩れたりするという問題点があった。
【0135】
そこで、本発明においてアダプティブオプティクス10,10−1,10−2とともに波面計測器を配設すると、波面の乱れなどに合わせてそれを修正するようにアダプティブオプティクス10,10−1,10−2のミラーの角度や形状を変化させることによって、出射レーザー光のビーム形状の改善や位相波面のゆらぎを補償して品質を改善でき、上記した従来の問題点も解消できる。例えば、出射レーザー光のビームパターンは、TEM00モードと称される集光特性の優れたビームパターンなど各種ビームパターンに制御することができる。
【0136】
なお、上記した第5の実施の形態でアダプティブオプティクス10として用いたディフォーマブルミラー200(図11ならびに図12参照)の場合には、ミラー216の反射面216aが誘電体多層膜コートにより形成されているので、金属コートよりなる反射面のミラーに比べてダメージしきい値が高くなり、高出力レーザーの波面補正にも対応できる。
【0137】
(6)上記した実施の形態において、さらに、レーザー共振器内などに各種部材を追加的に配設するようにしてもよく、例えば、ビームパターンを整形するためのアパーチャや、スペクトル幅を制御するためのエタロンなどを配設するようにしてもよい。
【0138】
(7)上記した実施の形態ならびに上記(1)乃至(6)に示す変形例は、適宜に組み合わせるようにしてもよい。
【0139】
【発明の効果】
本発明は、以上説明したように構成されているので、質量の重い部材を機械的に回転することなしに、レーザー波長を制御して高速に波長を掃引できるようにして、安定した波長選択作用を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態によるレーザー装置の概略構成説明図である。
【図2】アダプティブオプティックスとして用いるトラッキングミラーを示す概略構成斜視図である。
【図3】図2に示すトラッキングミラーの要部を示す説明図であり、(a)は電極106−1〜106−4の全ての電圧が0Vの場合を示す説明図であり、(b)は電極106−1ならびに電極106−2に所定の電圧を印加し、電極106−3ならびに電極106−4の電圧を0Vとした場合を示す説明図であり、(c)は電極106−3ならびに電極106−4に所定の電圧を印加し、電極106−1ならびに電極106−2の電圧を0Vとした場合を示す説明図である。
【図4】(a)は図1に示すレーザー装置から波長700nmの出射レーザー光を出射させる場合を示す概念図であり、(b)は図1に示すレーザー装置から波長900nmの出射レーザー光を出射させる場合を示す概念図である。
【図5】本発明の第2の実施の形態によるレーザー装置の概略構成説明図である。
【図6】図5に示すレーザー装置から波長700nmや波長900nmの出射レーザー光を出射させる場合を示す概念図である。
【図7】本発明の第3の実施の形態によるレーザー装置の概略構成説明図である。
【図8】図7に示すレーザー装置から波長700nmや波長900nmの出射レーザー光を出射させる場合を示す概念図である。
【図9】本発明の第4の実施の形態によるレーザー装置の概略構成説明図である。
【図10】本発明の第5の実施の形態によるレーザー装置の概略構成説明図である。
【図11】アダプティブオプティックスとして用いるディフォーマブルミラーを示す概略構成分解斜視図である。
【図12】図11のA−A線断面図である。
【図13】本発明の他の実施の形態によるレーザー装置の概略構成説明図である。
【図14】(a)は図1に示すレーザー装置の波長可変領域を示すグラフであり、(b)は図13に示すレーザー装置の波長可変領域を示すグラフである。
【符号の説明】
10,10−1,10−2 アダプティブオプティクス
12,32,42 出射側ミラー
14 レーザー媒質
16,26,56 グレーティング(回折格子)
20 コントローラー
22 ミラー
36 プリズム
36a 入射面
36b 出射面
46 複屈折フィルター
50 レーザーダイオードチップ
52 レンズ
100 トラッキングミラー
102 下部部材
104 基盤
104a 表面
106−1〜106−5 電極
112 上部部材
114 フレーム
116 ミラー
116a 反射面
116b,116c,116d,116e 角部
118 支持部材
200 ディフォーマブルミラー
202 下部部材
204 基盤
204a 表面
206−1〜206−7 電極
212 上部部材
214 フレーム
216 ミラー
216a 反射面
216b 面
218−1〜218−7 ピラー
220 接着材料

Claims (13)

  1. 所定の透過性を有するミラーとアダプティブオプティクスとを有して構成されるレーザー共振器と、
    前記レーザー共振器内に配設されたレーザー媒質と、
    前記レーザー媒質からの出射光が入射される分散素子と
    を有するレーザー装置。
  2. レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、
    前記レーザー媒質からの出射光が入射されるミラーを有するアダプティブオプティクスと、
    前記アダプティブオプティクスの前記ミラーによって反射された光が入射されるグレーティングと、
    前記グレーティングの回折光が前記アダプティブオプティクスの前記ミラーによって反射されて入射されるように配置された所定の透過性を有するミラーと
    を有するレーザー装置。
  3. レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、
    前記レーザー媒質からの出射光が入射されるグレーティングと、
    前記グレーティングの回折光が入射されるミラーを有するアダプティブオプティクスと、
    前記アダプティブオプティクスの前記ミラーによって反射された光が前記グレーティングによって回折されて入射されるように配置された所定の透過性を有するミラーと
    を有するレーザー装置。
  4. レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、
    前記レーザー媒質からの出射光が入射されるプリズムと、
    前記プリズムによって分光された光が入射されるミラーを有するアダプティブオプティクスと、
    前記アダプティブオプティクスの前記ミラーによって反射された光が入射されるように配置された所定の透過率を有するミラーと
    を有するレーザー装置。
  5. レーザー共振器内に配設された所定範囲の波長域においてレーザー発振可能なレーザー媒質と、
    前記レーザー媒質からの出射光が入射されるミラーを有する第1のアダプティブオプティクスと、
    前記第1のアダプティブオプティクスのミラーによって反射された光が入射される複屈折フィルターと、
    前記複屈折フィルターを透過した光が入射されるミラーを有する第2のアダプティブオプティクスと、
    前記第2のアダプティブオプティクスの前記ミラーによって反射された光が入射されるように配置された所定の透過率を有するミラーと
    を有するレーザー装置。
  6. 一方の端面の反射が防止され他方の端面が全反射可能となされたレーザーダイオードチップと、
    前記レーザーダイオードチップの前記一方の端面からの出射光が入射されるグレーティングと、
    前記グレーティングの回折光が入射されるミラーを有するアダプティブオプティクスと
    を有するレーザー装置。
  7. 請求項1、請求項2、請求項3、請求項4、請求項6または請求項6のいずれか1項に記載のレーザー装置において、
    前記アダプティブオプティクスは、トラッキングミラーまたはディフォーマブルミラーのいずれかである
    レーザー装置。
  8. 所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光を、グレーティングから所定の波長の1次回折光がアダプティブオプティクスのミラーに入射するようにして、前記アダプティブオプティクスのミラーによって反射して前記グレーティングに入射させ、
    前記グレーティングによって回折され前記アダプティブオプティクスのミラーに入射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて出力させる
    ことを特徴とするレーザー装置における波長選択方法。
  9. 所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光をグレーティングに入射させ、前記グレーティングによって回折された所定の波長の1次回折光をアダプティブオプティクスのミラーに垂直に入射させて、
    前記アダプティブオプティクスのミラーに垂直に入射されて反射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて、前記グレーティングの0次光として出力させる
    ことを特徴とするレーザー装置における波長選択方法。
  10. 所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光をプリズムに入射させて分光し、前記プリズムによって分光された所定の波長の光をアダプティブオプティクスのミラーに垂直に入射させて、
    前記アダプティブオプティクスのミラーに垂直に入射されて反射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて出力させる
    ことを特徴とするレーザー装置における波長選択方法。
  11. 所定範囲の波長域においてレーザー発振可能なレーザー媒質からの出射光を第1のアダプティブオプティクスのミラーに反射させて複屈折フィルターに入射させ、前記複屈折フィルターを透過した光を第2のアダプティブオプティクスのミラーに入射させて、
    前記第2のアダプティブオプティクスのミラーに入射されて反射された波長の光を、レーザー共振器内を往復させることによりレーザー発振させて出力させる
    ことを特徴とするレーザー装置における波長選択方法。
  12. レーザーダイオードチップからの出射光をグレーティングに入射させ、前記グレーティングによって回折された所定の波長の1次回折光をアダプティブオプティクスのミラーに垂直に入射させて、
    前記アダプティブオプティクスのミラーに垂直に入射されて反射された波長の光を、前記グレーティングの0次光として出力させる
    ことを特徴とするレーザー装置における波長選択方法。
  13. 請求項8、請求項9、請求項10、請求項11または請求項12のいずれか1項に記載のレーザー装置における波長選択方法において、
    前記アダプティブオプティクスは、トラッキングミラーまたはディフォーマブルミラーのいずれかである
    ことを特徴とするレーザー装置における波長選択方法。
JP2002357900A 2002-12-10 2002-12-10 レーザー装置およびレーザー装置における波長選択方法 Pending JP2004191551A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002357900A JP2004191551A (ja) 2002-12-10 2002-12-10 レーザー装置およびレーザー装置における波長選択方法
EP03777411A EP1577991A4 (en) 2002-12-10 2003-12-09 LASER DEVICE AND METHOD FOR SELECTING WAVE LENGTH IN A LASER DEVICE
PCT/JP2003/015742 WO2004054052A1 (ja) 2002-12-10 2003-12-09 レーザー装置およびレーザー装置における波長選択方法
US10/538,067 US20060239324A1 (en) 2002-12-10 2003-12-09 Laser device and wavelength selecting method in laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357900A JP2004191551A (ja) 2002-12-10 2002-12-10 レーザー装置およびレーザー装置における波長選択方法

Publications (2)

Publication Number Publication Date
JP2004191551A true JP2004191551A (ja) 2004-07-08
JP2004191551A5 JP2004191551A5 (ja) 2008-02-28

Family

ID=32500879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357900A Pending JP2004191551A (ja) 2002-12-10 2002-12-10 レーザー装置およびレーザー装置における波長選択方法

Country Status (4)

Country Link
US (1) US20060239324A1 (ja)
EP (1) EP1577991A4 (ja)
JP (1) JP2004191551A (ja)
WO (1) WO2004054052A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080384A (ja) * 2004-09-10 2006-03-23 Sun Tec Kk 波長走査型ファイバレーザ光源
JP2006237359A (ja) * 2005-02-25 2006-09-07 Sun Tec Kk 波長走査型ファイバレーザ光源
JP2007242747A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置
JP2012009893A (ja) * 2011-09-05 2012-01-12 Komatsu Ltd 狭帯域化レーザ装置
JP2014170961A (ja) * 2014-05-07 2014-09-18 Komatsu Ltd 狭帯域化レーザ装置及びそのスペクトル幅調整方法
JP2015164199A (ja) * 2008-12-18 2015-09-10 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 周波数調整可能なレーザーデバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1537637B1 (en) * 2002-08-30 2006-11-15 Agilent Technologies, Inc. Wavelength tunable resonator with a prism
US7345816B2 (en) * 2005-01-11 2008-03-18 Olympus Corporation Optical microscope
US7326899B2 (en) * 2005-07-11 2008-02-05 Olympus Corporation Laser scanning microscope and image acquiring method of laser scanning microscope
US8054531B2 (en) * 2007-06-26 2011-11-08 Hewlett-Packard Development Company, L.P. Micro-electro-mechanical systems and photonic interconnects employing the same
JP2013070029A (ja) * 2011-09-08 2013-04-18 Gigaphoton Inc マスタオシレータシステムおよびレーザ装置
US9876330B1 (en) * 2017-01-30 2018-01-23 Agilent Technologies, Inc. Wavelength tunable external cavity quantum cascade laser utilizing an angle tuned immersion grating as a wavelength selective filter element

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631554B2 (ja) * 1989-05-23 1997-07-16 株式会社小松製作所 レーザの波長制御装置
US5218018A (en) * 1989-12-29 1993-06-08 Kansai Paint Co., Ltd. Hydroxyl and carboxyl groups-containing resin with alicyclic polyepoxide
JP3397337B2 (ja) * 1992-04-02 2003-04-14 株式会社小松製作所 狭帯域レーザ装置
US5218610A (en) * 1992-05-08 1993-06-08 Amoco Corporation Tunable solid state laser
JPH06104520A (ja) * 1992-09-22 1994-04-15 Komatsu Ltd 狭帶域発振レーザ装置
US5537432A (en) * 1993-01-07 1996-07-16 Sdl, Inc. Wavelength-stabilized, high power semiconductor laser
US6192064B1 (en) * 1997-07-01 2001-02-20 Cymer, Inc. Narrow band laser with fine wavelength control
JP3807465B2 (ja) * 1998-01-20 2006-08-09 株式会社小松製作所 狭帯域発振エキシマレーザの波面最適化方法
US6393037B1 (en) * 1999-02-03 2002-05-21 Lambda Physik Ag Wavelength selector for laser with adjustable angular dispersion
US6463085B1 (en) * 1998-09-09 2002-10-08 Coretek, Inc. Compact external cavity tunable lasers using hybrid integration with micromachined and electrooptic tunable elements
US6847661B2 (en) * 1999-09-20 2005-01-25 Iolon, Inc. Tunable laser with microactuator
EP1258059B1 (en) * 2000-02-09 2008-04-23 Cymer, Inc. Bandwidth control technique for a laser
JP2001332793A (ja) * 2000-05-23 2001-11-30 Komatsu Ltd レーザ装置
US6856638B2 (en) * 2000-10-23 2005-02-15 Lambda Physik Ag Resonator arrangement for bandwidth control
US6901088B2 (en) * 2001-07-06 2005-05-31 Intel Corporation External cavity laser apparatus with orthogonal tuning of laser wavelength and cavity optical pathlength

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080384A (ja) * 2004-09-10 2006-03-23 Sun Tec Kk 波長走査型ファイバレーザ光源
JP4527479B2 (ja) * 2004-09-10 2010-08-18 サンテック株式会社 波長走査型ファイバレーザ光源
JP2006237359A (ja) * 2005-02-25 2006-09-07 Sun Tec Kk 波長走査型ファイバレーザ光源
JP4628820B2 (ja) * 2005-02-25 2011-02-09 サンテック株式会社 波長走査型ファイバレーザ光源
JP2007242747A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置
JP2015164199A (ja) * 2008-12-18 2015-09-10 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 周波数調整可能なレーザーデバイス
JP2012009893A (ja) * 2011-09-05 2012-01-12 Komatsu Ltd 狭帯域化レーザ装置
JP2014170961A (ja) * 2014-05-07 2014-09-18 Komatsu Ltd 狭帯域化レーザ装置及びそのスペクトル幅調整方法

Also Published As

Publication number Publication date
US20060239324A1 (en) 2006-10-26
EP1577991A1 (en) 2005-09-21
EP1577991A4 (en) 2006-07-26
WO2004054052A1 (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4636315B2 (ja) 1次元照明装置及び画像生成装置
KR101211490B1 (ko) 대역폭 스펙트럼 제어를 위한 레이저 출력빔의 파면스플리터
US3872407A (en) Rapidly tunable laser
US4070111A (en) Rapid scan spectrophotometer
US8625645B2 (en) Solid-state laser apparatus and laser system
JP3421184B2 (ja) 波長可変レーザーにおける波長選択方法および波長可変レーザーにおける波長選択可能なレーザー発振装置
JP2004191551A (ja) レーザー装置およびレーザー装置における波長選択方法
JP2002507784A (ja) 特に連続レーザ放射の可変周波数変換のため共鳴性を向上させる方法およびデバイス
US6016323A (en) Broadly tunable single longitudinal mode output produced from multi-longitudinal mode seed source
JPH01286477A (ja) 環状共振式レーザ装置
US8107509B2 (en) Monolithic folded F-P cavity and semiconductor laser using the same
WO1996024874A1 (en) Cylindrical microlens external cavity for laser diode frequency control
US5357532A (en) Wavelength variable laser device
JP2001284719A (ja) 外部共振型半導体レーザ
JP2001085774A (ja) 波長可変レーザおよびレーザ発振波長切替方法
JP4618486B2 (ja) 光源装置及び画像生成装置
JPH08195520A (ja) 固体レーザ発振器
JPS62284323A (ja) 光走査装置
JP2023001967A (ja) レーザー装置
JPH11330601A (ja) 光強度変調レーザー装置
JPH11307849A (ja) 光強度変調レーザー装置
JP2020519030A (ja) 多波長ガスレーザを調整するための外部の光フィードバック要素
JP2007027458A (ja) レーザ装置及びその調整方法
JPH0382183A (ja) レーザ共振器
JPH04356983A (ja) Shg素子

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006