JP2004186849A - 光入力断検出回路 - Google Patents

光入力断検出回路 Download PDF

Info

Publication number
JP2004186849A
JP2004186849A JP2002349422A JP2002349422A JP2004186849A JP 2004186849 A JP2004186849 A JP 2004186849A JP 2002349422 A JP2002349422 A JP 2002349422A JP 2002349422 A JP2002349422 A JP 2002349422A JP 2004186849 A JP2004186849 A JP 2004186849A
Authority
JP
Japan
Prior art keywords
signal
output
circuit
comparator
optical input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002349422A
Other languages
English (en)
Other versions
JP4056373B2 (ja
Inventor
Minoru Okamoto
稔 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2002349422A priority Critical patent/JP4056373B2/ja
Publication of JP2004186849A publication Critical patent/JP2004186849A/ja
Application granted granted Critical
Publication of JP4056373B2 publication Critical patent/JP4056373B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】光入力信号量の多少に関わらず短時間でアラーム信号を出力する。
【解決手段】前置増幅器2は受光素子に接続され電流信号を電圧信号に変換する。リミット増幅器3は前置増幅器の出力信号を増幅し、折返し回路4はリミット増幅器の出力差動信号を合成する。第1平均電圧生成回路5は折返し回路の出力信号から平均値電圧を抽出し、第2平均電圧生成回路6は前置増幅器の出力信号の平均値電圧を抽出する。第1コンパレータ7,第2コンパレータ8は第1平均電圧生成回路,第2平均電圧生成回路からの出力信号が第1設定レベル以下,第2設定レベル以下に低下したことを検出する。電圧保持回路9は第2コンパレータからの逆相信号を保持する。選択回路10は電圧保持回路の出力信号を選択信号として、光入力信号の量が多い場合は第2コンパレータの出力、光入力信号の量が少ない場合は第1コンパレータの出力をアラーム信号として選択する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光信号伝送システムにおける光信号の遮断を迅速に検出できる光入力断検出回路に関する。
【0002】
【従来の技術】
従来のこの種の光入力断検出回路としては図10に示されるような回路が知られている(例えば、特開平9−130330参照)。この光入力断検出回路は光受信機におけるものであって、受光素子21にて受光された光信号は電流信号に変換された後、プリアンプ22により電圧信号に変換される。この電圧信号はメインアンプ23により一定の倍率で増幅された後、リミッタ24で一定の振幅を持つ電圧信号に増幅される。リミッタ24の出力信号は識別再生回路25によって識別されてデータ信号とクロック信号として出力される。
【0003】
一方、メインアンプ23の出力の一部は可変増幅器33に入力されて増幅され、ピーク検波器28にてその振幅値が検出される。検出されたピーク検波電圧はコンパレータ29に入力され、直流電源32によって与えられる閾値電圧と比較される。その結果、閾値電圧に満たない場合には光信号が遮断されているとしてアラーム信号が出力される。
【0004】
ところで、光信号が急に遮断された場合、ピーク検波器28の出力電圧は、遮断される前のメインアンプ23の出力から、コンデンサ27の容量値とコンパレータ29の入力抵抗との積で定まる時定数にしたがって減少するので、コンパレータ29のアラーム信号の出力はコンデンサ27の放電時間に依存して遅れる。したがって、光入力が遮断される以前の光入力が大きい場合、光が遮断されてから,それを告げるアラーム信号が出力されるまでに時間がかかることになる。
【0005】
図11は図10の回路において、大きな光入力信号が急に遮断された場合の各部の出力波形を示している。図11において、時刻tn1が遮断された時刻を示す。いま、可変増幅器33が設けられていないとした場合、ピーク検波器28への入力信号(図11(B))は、遮断前の光入力信号(図11(A))に比例して大きくなり、ピーク検波器28の出力(図11(C))も同様に大きくなる。振幅VAは可変増幅器33がない場合の入力振幅であって、ピーク検波器28によってピーク検波され振幅VAの電圧信号が出力される。
【0006】
図11(C)において,振幅VAの電圧によって蓄えられた電荷が時刻tn1から放電され始める。ピーク検波器28の出力がコンパレータ29の閾値レベルVTHまで減少する時間は、コンパレータ29の入力抵抗とコンデンサ27の容量値の積によって定まり、結局、アラーム信号は時刻tn2になるまで出力されないことになる。
【0007】
そこで、電流検出器31を受光素子21と直流電圧源30の間に接続し、電流検出器31によって受光素子21で変換された電流信号を検出し、その検出電圧により可変増幅器33の増幅率を光入力信号量に反比例するように制御する。図11(B)に示すように、ピーク検波器28の入力信号の振幅がVAより小さいVBになるように制御すると、ピーク検波器28の出力が閾値レベルVTHまで減少する時刻はtn3となる。この結果、アラーム信号は、図11(D)に示すように時刻tn3で出力されるので、入力振幅が制御されない場合と比べて大幅(tn2−tn3)に短縮される。
【0008】
【特許文献1】
特開平9−130330(第1−第4頁、図1)
【0009】
【発明が解決しようとする課題】
しかしながら、上述した従来の光入力断検出回路では、受光素子で変換された電流信号を電流検出器によって検出し、その検出電流により可変増幅器の増幅率を光入力信号量に反比例するように制御するので、光入力信号量が小さい場合には、アラーム信号の検出時間は、制御しない構成と比較して大きくなるという第1の問題点がある。
【0010】
また、受光素子と直流電源の間に電流検出器を接続するように構成されているので、光受信回路としての規模を大きくするという第2の問題点がある。
【0011】
更に、数μAから数mAまでの広範囲な電流を検出するためには、精度の良い電流検出器が必要となるという第3の問題点もある。
【0012】
本発明の第1の目的は、光入力信号量の多少に関わらず検出時間の安定したアラーム信号を出力する光入力断回路を提供することにある。
【0013】
本発明の第2の目的は、小規模の光受信回路を実現できる小型の光入力断検出回路を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決する本発明の光入力断検出回路は、光入力信号から得られる電圧信号を増幅するリミット増幅器の出力と入力に2つの異なる閾値レベルを持った第1コンパレータと第2コンパレータを設け、光入力信号量が多い場合は第2コンパレータの出力信号、光入力信号量が少ない場合は第1コンパレータの出力信号を選択回路で選択しアラーム信号として外部へ出力することを特徴とする。
【0015】
このような構成により、本発明は、信号量の多い光入力信号が遮断した場合はより早く閾値レベルに減少する第2コンパレータの出力信号を選択することにより、一方、信号量の少ない光入力信号が遮断した場合は認識可能な第1コンパレータの出力信号を選択することによって、光入力信号量の多少に関わらず光入力断検出時間を大幅に削減した光入力断検出回路が得られるようになる。後者の場合、第1コンパレータの出力信号自体の振幅が小さいので、閾値レベルへの減少は短時間となる。
【0016】
より詳しくは、本発明の光入力断検出回路は、光入力信号量に応じた電流信号を出力する受光素子(図1の1)と、受光素子に接続され電流信号を電圧信号に変換する前置増幅器(図1の2)と、前置増幅器の出力信号を所望の振幅に増幅するリミット増幅器(図1の3)と、リミット増幅器の出力差動信号を合成する折返し回路(図1の4)と、折返し回路の出力信号から平均値電圧を抽出する第1平均電圧生成回路(図1の5)と、第1平均電圧生成回路からの出力信号が第1設定レベル以下に低下したことを検出する第1コンパレータ(図1の7)と、前置増幅器の出力信号の平均値電圧を抽出する第2平均電圧生成回路(図1の6)と、第2平均電圧生成回路からの出力信号が第2設定レベル以下に低下したことを検出する第2コンパレータ(図1の8)と、第2コンパレータからの逆相信号を保持する電圧保持回路(図1の9)と、第1コンパレータからの出力と第2コンパレータからの出力を入力とし、電圧保持回路の出力信号を選択信号とした選択回路(図1の10)とを備え、選択回路は光入力信号の量が多い場合は第2コンパレータの出力、光入力信号の量が少ない場合は第1コンパレータの出力をアラーム信号として選択することを特徴とする。
【0017】
選択回路10は、半導体差動対によって第1コンパレータの正相信号と第2コンパレータの正相信号を選択するように構成してもよい。
【0018】
また、折返し回路4は、リミット増幅器から出力される正相信号と逆相信号の排他的論理和を出力するように構成してもよい。
【0019】
また、リミット増幅器3は、多段接続された差動増幅器と、最終段の差動増幅器の2つの出力端子から初段の差動増幅器の2つの入力端子へ、たすきがけで帰還する抵抗とコンデンサから成る積分回路と、両積分回路の出力と入力端子の間に設けられた差動増幅器とで構成するようにしてもよい。
【0020】
このように、選択回路は簡易な半導体差動対によって構成され得、また、受光素子を除く他の構成要素も半導体集積回路により構成可能なため、光入力断検出回路、ひいては光受信機の小型化が実現できる。
【0021】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照して詳細に説明する。
【0022】
【構成の説明】
図1は、本発明を適用した光入力断検出回路の一実施例の構成を示す。この光入力断検出回路は、前置増幅器2,差動増幅器が多段接続されたリミット増幅器3,折返し回路4,第1平均電圧生成回路5,第2平均電圧生成回路6,第1コンパレータ7,第2コンパレータ8,電圧保持回路9,選択回路10、第1直流電圧源11および第2直流電圧源12から構成されている。入力端子14には受光素子1、外部コンデンサ接続用端子18には外部コンデンサ13がそれぞれ接続される。なお、参照番号11,12は、便宜上、第1直流電圧源11,第2直流電圧源12によって出力される第1直流電圧,第2直流電圧の参照番号としても使用する。
【0023】
受光素子1は受光した光信号を電流信号に変換する。前置増幅器2は、この電流信号を入力端子14から受けると電圧信号に変換する。第2平均電圧生成回路6は、前置増幅器2で変換された電圧信号の平均値である第2平均電圧を生成する。
【0024】
リミット増幅器3は、第2平均電圧生成回路6で生成された第2平均電圧を基準電圧として、前置増幅器2で変換された電圧信号を一定の振幅を持つ電圧信号に増幅して、正相信号を正相出力端子15、逆相信号を逆相出力端子16にそれぞれ出力する。
【0025】
折返し回路4はリミット増幅器3からの正相信号と逆相信号の排他的論理和を出力する。第1平均電圧生成回路5は、折返し回路4が出力する電圧の平均値である第1平均電圧を生成する。
【0026】
第1コンパレータ7は、第1平均電圧を第1直流電圧11と比較することによって第1平均値電圧のレベルを検出する。光入力信号が遮断されると、第1平均電圧は初期値(振幅)から回路時定数にしたがって減少していく。第1コンパレータ7は、比較の結果、第1平均電圧のレベルが第1直流電圧11未満になるとハイレベルを出力する。
【0027】
一方、第2コンパレータ8は、第2平均電圧を第2直流電圧12と比較することによって第2平均電圧のレベルを検出する。光入力信号が遮断されると、第2平均電圧も初期値から回路時定数にしたがって減少していく。第2コンパレータ8は、比較の結果により、第2平均電圧が第2直流電圧12未満になるとハイレベルを出力する。
【0028】
電圧保持回路9は第2コンパレータ8の逆相信号を保持する。したがって、第2平均電圧の初期値が第2直流電圧12以上となる程に光入力信号の量が多い場合には、電圧保持回路9は、第2平均電圧が第2直流電圧源12の電圧以下になる時刻より早い時間帯ではハイレベル、遅い時間帯ではロウレベルを保持する。電圧保持回路9が保持する電圧は選択回路10に選択信号として供給され、この場合は上記時刻から回路時定数にしたがって減少していく。一方、第2平均電圧の初期値が第2直流電圧12未満となる程に光入力信号の量が少ない場合には、電圧保持回路9は、常時、ロウレベルを保持する。
【0029】
選択回路10は、第1コンパレータ7の差動出力と第2コンパレータ8の差動出力を入力とし、選択信号のレベルが内蔵する選択レベル以上の場合は第2コンパレータ8の差動出力、また、選択信号のレベルが内蔵する選択レベル未満の場合は第1コンパレータ7の差動出力をそれぞれアラーム信号として出力端子17から外部へ出力する。
【0030】
これにより、光入力信号の量が多い場合には、第2コンパレータ8の差動出力のレベル遷移によりアラーム信号が出力される。第2コンパレータ8の差動出力のレベル遷移は、多くの回路を経由する第1コンパレータ7の差動出力のレベル遷移より早いため、より早くアラーム信号を得ることができる。
【0031】
一方、光入力信号の量が少ない場合には、第1コンパレータ7の差動出力のレベル遷移によりアラーム信号が出力される。この場合、第1コンパレータ7の差動出力は上記の場合よりも多くの回路を経由するが、光入力信号自体の量が少なく初期値も小さいため、その減少は速くなるので、早くにアラーム信号を得ることができる。
【0032】
図2は、図1における選択回路10と電圧保持回路9の具体的な回路構成例を第1コンパレータ7および第2コンパレータ8と共に示した図である。
【0033】
選択回路10は、トランジスタ101〜トランジスタ108,抵抗109〜114および定電流源117で構成された3組の半導体差動対を主な構成としている。電圧保持回路9は、抵抗115とコンデンサ116とで構成される積分回路であって、第2コンパレータ8の逆相信号を保持してトランジスタ107のベースに供給している。
【0034】
電圧保持回路9からの選択信号は、トランジスタ107と抵抗111で構成されるレベルシフト回路を介してトランジスタ105のベースに供給される。一方、選択信号に対する設定レベルは、直流電源118に対して抵抗113と114で構成される抵抗分圧器による基準電圧で生成され、トランジスタ108と抵抗112で構成されるレベルシフト回路を介して、トランジスタ105と差動対となるトランジスタ106のベースに供給される。トランジスタ105,106は、共通エミッタに定電流原117が接続された差動増幅器を構成する。
【0035】
第1コンパレータ7の正相信号は入力端子119を介してトランジスタ101のベース、逆相信号は入力端子120を介してトランジスタ102のベースに供給されている。トランジスタ101、102は、それぞれ抵抗109,110を負荷抵抗とする差動増幅器を構成し、その共通エミッタはトランジスタ105のコレクタに接続されている。
【0036】
また、第2コンパレータ7の正相信号は入力端子120を介してトランジスタ103のベース、逆相信号は入力端子121を介してトランジスタ104のベースに供給されている。トランジスタ103,104は、それぞれ抵抗109,110を負荷抵抗とする差動増幅器を構成し、その共通エミッタはトランジスタ106のコレクタに接続されている。
【0037】
いま、選択信号が基準電圧より高くて、したがってトランジスタ105のベース(A点)の電位がトランジスタ106のベース(B点)の電位よりも高い場合、トランジスタ105がオン状態、トランジスタ106がオフ状態となり、トランジスタ101,102に電流が流れる。この場合、第1コンパレータ7からの入力が選択され出力端子123には入力端子119と同相の出力が得られる。
【0038】
逆に、B点の電位がA点の電位よりも高い場合、トランジスタ106がオン状態、トランジスタ105がオフ状態となり、差動増幅器のトランジスタ103,104に電流が流る。この場合、第2コンパレータ8からの入力が選択され出力端子123には入力端子121と同相の出力が得られる。
【0039】
図3は前置増幅器2の構成例を示している。トランジスタ204と抵抗206で反転増幅器を、トランジスタ205と抵抗207で出力バッファ回路をそれぞれ構成している。抵抗201により出力端子203から入力端子202に電流帰還を行い、入力電流の増減を打ち消す方向に機能することにより回路の平衡が保たれている。
【0040】
図4は、図3の前置増幅器2における入力電流に対する出力電圧の平均値、および出力電圧の出力振幅の特性を示している。入力電流y点までが線形増幅動作となり、入力電流z点ではトランジスタ204が飽和する。このため、y点からz点にかけて、出力電圧の平均値は緩やかに減少し、出力電圧の出力振幅は緩やかに増加していく。
【0041】
図5はリミット増幅器3の詳細例を示す。図5において、リミット増幅器3は、3つの差動増幅器301,302および303が多段接続され、最終段の差動増幅器303の出力端子311から初段の差動増幅器301の入力端子310へ抵抗305とコンデンサ307から成る積分回路を介して、たすきがけで帰還している。また、最終段の差動増幅器303の出力端子312から初段の差動増幅器301の入力端子309へ抵抗306とコンデンサ308から成る積分回路を介して、たすきがけで帰還している。両積分回路の出力と入力端子309,310の間には差動増幅器304が設けられている。
【0042】
このような構成によって、リミット増幅器3の出力における直流オフセットをなくすようにオフセット補償を行う。直流オフセットの発生要因は、前置増幅回路2の出力と第2平均電圧生成回路6が生成する基準電圧との直流オフセットと、半導体製造時のバラツキ,温度等の環境変動である。
【0043】
コンデンサ307,308は差動増幅器304の入力と出力の間に接続された形になるため、ミラー容量として入力から見たコンデンサ307,308の等価容量値は、固有の容量値に対して利得倍される。したがって、直流のオフセット補償を行うために時定数を大きくするには、差動増幅器304の利得を大きくすればよいので、コンデンサ307,308の固有の容量値は小さな値でよく、結果として半導体集積回路内での占有面積を小さくできる利点がある。
【0044】
【動作の説明】
以下、本実施例の動作について説明する。
【0045】
図1において、受光素子1にて受光された光信号は受光素子1で電流信号に変換された後、前置増幅器2により電圧信号に変換される。この電圧信号は、リミット増幅器3で一定の振幅を持つ電圧信号に増幅される。このときのリミット増幅器3における基準電圧は、前置増幅手段2の出力を第2平均電圧生成回路6で平均することによって生成される。
【0046】
リミット増幅器3の正相信号および逆相信号は、折返し回路4により合成され、第1平均電圧生成回路5により第1平均電圧が生成される。この第1平均電圧に対して、第1コンパレータ7で第1直流電圧11と比較することによってレベル検出を行う。
【0047】
また、リミット増幅器3の入力である第2平均電圧生成回路6が生成した第2平均電圧に対して、第2コンパレータ8で第2直流電圧12と比較することによってレベル検出を行う。
【0048】
次に、図6および図7に示すタイムチャートを参照して、本光入力断検出回路の動作を説明する。図6は受光素子1への光入力信号量が大きい場合のタイムチャートであり、図7は受光素子1への光入力信号量が小さい場合のタイムチャートである。
【0049】
図6において、受光素子1への光入力信号量が大きく、図6(A)に示すように時刻t1で光入力信号が急に遮断された場合、図6(B)に点線で示すように、リミット増幅器3の基準電位である第2平均電圧は、第2平均電圧生成回路6に蓄えられた電荷が放電され、時刻t2でローレベルとなる。
【0050】
ここで、図8を参照して、この場合の放電時間を求める。図8(A)は一般的なRC直列回路を示し、図8(B)はコンデンサCの放電特性を示している。入力vi(t)をV・u(t)と表すと、出力vo(t)は、電気磁気学の教えるところにより、
vo(t)=V・exp(−t/τ) (1)
τ=C・R (2)
となり、出力電位が100%のts0から略0%のts1になるまでの時間は、
ts1≒5τ (3)
となる。したがって、例えば第2コンパレータ8においてレベル検出を100μs以内に行うようにする場合、時定数の最大値は、
t2−t1=5τ=100μs (4)
となる。
【0051】
ところで、リミット増幅器3の入力は低域のカットオフ周波数特性を決定している。低域のカットオフ周波数fclは、第2平均電圧生成回路6を図8(A)で示す抵抗RとコンデンサCから構成されるとし、図1の外部コンデンサ接続用端子18に接続される外部コンデンサ13をCoとすると、
fcl=1/2π(R・(C+Co)) (5)
となる。
【0052】
ここで、リミット増幅器3の入力である前置増幅器2の出力の中心電圧と第2平均電圧生成回路6の出力電圧の直流オフセット量を約100mV以下に設定するためには、リミット増幅器3の入力におけるトランジスタのベース電流を数μAとすると、第2平均電圧生成回路6の抵抗Rは10kΩ以下となる。光通信システムの低域のカットオフ周波数fclは約100kHz以下が要求されているため、第2平均電圧生成回路6のコンデンサCの値を半導体素子で生成可能な100pFとすると外部コンデンサCoの値は約1500pF以上となる。
【0053】
したがって、時刻t2の最小は式(2)と式(3)から
5・(100p+1500p)・10k=80μs (6)
となり、第2コンパレータ8においてレベル検出を100μs以内に行うことが可能となる。
【0054】
図6(C)はリミット増幅器3から出力される正相信号の波形、図6(D)は逆相信号の波形をそれぞれ示す。
【0055】
時刻t3付近までは、図6(B)に示したように第2平均電圧生成回路6の上記放電特性により第2平均電圧が残存するため、リミット増幅器3の入力端子309と310間には電位差が生じている。このためリミット増幅器3は無信号状態で動作し、オフセット補償回路も同時に動作するので、完全にリミット増幅器3の出力が中心電圧になるには時刻t5までかかる。
【0056】
これは、時刻t3で第2平均電圧は約0にまで低下するため、図6(D)に示すように逆相信号は急低下し、このレベル遷移がリミット増幅器3の出力端子312から入力端子309へ帰還されるので、t3からt4の間は正相信号が出力され、この出力がt4からt5にかけて収拾されてくることによる。
【0057】
このような動作によって、時刻t3と時刻t4に変化が生じる。したがって、折返し回路4の出力波形は図3(E)に示すようになる。折返し回路4の出力波形の生成根拠については、前述の正相信号と逆相信号に対する演算を想起されたい。第1平均電圧生成回路5は、折返し回路4の出力について平均をとり、図6(F)に出力波形を示す第1平均電圧を第1コンパレータ7へ出力する。
【0058】
第1コンパレータ7は、第1平均電圧を閾値レベルとなる第1直流電圧11と比較し、図6(G)に示すように、第1平均電圧が第1直流電圧11以下となる時刻t6で第1コンパレータから正相信号を出力する。ここで、折返し回路4の出力における時刻t3の変化点は、第1平均値生成回路5の時定数により変化し、時定数が小さい場合に急峻となる。この場合、第1直流電圧11によっては第1コンパレータ出力を誤って発生する可能性がある。したがって、第1平均電圧生成回路5の時定数はある程度大きくなければならず、第1コンパレータ7でのレベル検出は時刻t6まで遅れる。
【0059】
これに対して、第2平均電圧は、図6(B)の点線曲線をコピーして示す図6(H)において、時刻t3で第2直流電圧12以下となるので、第2コンパレータ8はこれを検出し、図6(I)で示すように時刻t3において正相信号を出力する。図3(J)は、第2コンパレータ8からの逆相信号を示す。第2コンパレータ8の逆相信号は、光入力時にハイレベルを維持し、時刻t3でロウレベルとなって電圧保持回路9に入力する。
【0060】
電圧保持回路9の出力は、時刻t3で入力がロウレベルに遷移すると、図3(K)に示すように時定数にしたがって減少していく。この時定数は、第1コンパレータ7でのレベル検出時刻t6以上の時刻t7までは、電圧保持回路9の出力、すなわち選択回路10の選択信号が選択レベルに対してハイレベルとするように定める。
【0061】
これにより、図6(l)に示す選択回路10の出力(アラーム信号)は、時刻t1で光入力が遮断された場合、時刻t7までは第2コンパレータ8の出力が選択される。したがって、光入力断のアラーム検出は時刻t7に比べて時刻t3で検出されるため大幅に短縮される(図6(L))。なお、時刻t7以降は第1コンパレータ7の出力が選択される。
【0062】
次に、図7を参照して、受光素子1への光入力信号量が小さく、時刻t1で光入力信号が急に遮断された場合の動作について説明する。
【0063】
この場合は、図7(A),(B)に示すように前置増幅器2の出力振幅が小さいため、第2平均電圧生成回路6の出力が第2コンパレータ8の設定レベルである第2直流電圧12よりも低くなるので(図7(H))、第2コンパレータ8からの正相信号はハイレベル固定、逆相信号はロウレベル固定となる(図7(I),(J))。この場合、選択回路10の選択信号には、選択レベルよりも低いローレベルの電圧が入力されるので(図7(K))、選択回路10は常に第1コンパレータ7の出力を選択する(図7(L))。
【0064】
また、リミット増幅器3および折返し回路4の出力振幅も小さくなるので(図7(C),(D),(E))、光入力信号遮断時からの第1平均電圧生成回路5の出力の減少時間も短くなる。このため、第1コンパレータ7のレベル検出は、光入力信号遮断時刻t1から短い時刻t9で行われ(図7(F))、第1コンパレータの出力も時刻t9で発生する(図7(G))。したがって、第1コンパレータ7の出力が選択されても、アラーム信号は早い時刻に出力されるのである。
【0065】
図9は、図1における前置増幅器2の入力電流に対する、選択回路10の光入力断検出時間と第1コンパレータ7のレベル検出時間の一実測値をグラフ表示する。入力電流が50μA未満では、選択回路10の光入力断検出時間は最大50μsであって第1コンパレータ7のレベル検出が選択される。入力電流が50μA以上では、第1コンパレータ7のレベル検出時間は増加を続けるが、第2コンパレータ8のレベル検出が選択されるため100μs以内になっている。
【0066】
以上のように、図1の光入力断検出回路によれば、受光素子1への光入力信号量が小さい場合は、前置増幅器2およびリミット増幅器3により振幅を大きくし、折返し回路4から第1コンパレータ7までのレベル検出部で光入力断のアラーム信号を検出する。一方、光入力信号量が大きい場合は、前置増幅器2のみの出力振幅に対して、第2コンパレータ8により光入力断のアラーム信号を検出することとなり、広範囲な光入力信号量に対して安定にアラーム信号を検出することが可能となる。
【0067】
ここで、直流電圧源11および直流電圧源12は半導体回路で実現されるが、大きい閾値レベルを生成する直流電圧源11はともかく、小さい閾値レベルを生成する直流電圧源12はノイズ対策を講じる必要があるので、あまりに閾値レベルが小さいとその実現に苦慮する。しかし、図9の前置増幅器2の入力電流に対する選択回路10の光入力断検出時間と、図4の前置増幅器2の入力電流と出力振幅の特性から、出力振幅が約500mV以上で第2コンパレータ8がレベル検出を行うように直流電圧源12の値を設定すればよいことになるので、直流電圧源12は簡易な回路構成で実現できることとなる。
【0068】
【発明の効果】
以上の説明から明らかなように、本発明によれば、光入力信号から得られる電圧信号を増幅するリミット増幅器の入力と出力に2つの異なる閾値レベルを持ったコンパレータを設け、その出力信号を光入力信号量の多少によって選択回路で選択しアラーム信号を出力する構成としたため、光入力信号量の多少に関わらず光入力断検出時間を大幅に削減した光入力断検出回路が得られるという特有の効果がある。
【0069】
また、受光素子を除く構成要素は簡易な半導体集積回路により構成可能なため、光入力断検出回路の小型化を実現できる。
【図面の簡単な説明】
【図1】本発明の光入力断検出回路の一実施例を示すブロック図
【図2】図1に示した光入力断検出回路における選択回路の構成を示す回路図
【図3】図1に示した光入力断検出回路における前置増幅器の構成を示す回路図
【図4】図3に示した前置増幅器の入力電流に対する出力電圧と出力振幅を示した図
【図5】図1に示した光入力断検出回路におけるリミット増幅器の構成を示した回路図
【図6】図1に示した光入力断検出回路における光入力信号量が大きい場合のタイムチャート
【図7】図1に示した光入力断検出回路における光入力信号量が小さい場合のタイムチャート
【図8】RC直列回路における放電特性を説明するための図
【図9】前置増幅器の入力電流に対する選択回路の光入力断検出時間と第1コンパレータにおけるレベル検出時間を示す図
【図10】従来の光入力断検出回路のブロック図
【図11】図10に示した光入力断検出回路におけるタイムチャート
【符号の説明】
1 受光素子
2 前置増幅器
3 リミット増幅器
4 折返し回路
5 第1平均電圧生成回路
6 第2平均電圧生成回路
7 第1コンパレータ
8 第2コンパレータ
9 電圧保持回路
10 選択回路
11 第1直流電圧源
12 第2直流電圧源
13 外部コンデンサ
14 入力端子
15 正相出力端子
16 逆相出力端子
17 出力端子
18 外部コンデンサ接続用端子

Claims (5)

  1. 光入力信号から得られる電圧信号を増幅するリミット増幅器の出力と入力に2つの異なる閾値レベルを持った第1コンパレータと第2コンパレータを設け、光入力信号量が多い場合は前記第1コンパレータの出力信号、光入力信号量が少ない場合は前記第2コンパレータの出力信号を選択回路で選択しアラーム信号として外部へ出力することを特徴とする光入力断検出回路。
  2. 光入力信号量に応じた電流信号を出力する受光素子と、
    前記受光素子に接続され前記電流信号を電圧信号に変換する前置増幅器と、
    前記前置増幅器の出力信号を所望の振幅に増幅するリミット増幅器と、
    前記リミット増幅器の出力差動信号を合成する折返し回路と、
    前記折返し回路の出力信号から平均値電圧を抽出する第1平均電圧生成回路と、
    前記第1平均電圧生成回路からの出力信号が第1設定レベル以下に低下したことを検出する第1コンパレータと、
    前記前置増幅器の出力信号の平均値電圧を抽出する第2平均電圧生成回路と、
    前記第2平均電圧生成回路からの出力信号が第2設定レベル以下に低下したことを検出する第2コンパレータと、
    前記第2コンパレータからの逆相信号を保持する電圧保持回路と、
    前記第1コンパレータからの出力と前記第2コンパレータからの出力を入力とし、前記電圧保持回路の出力信号を選択信号とした選択回路とを備え、
    前記選択回路は前記光入力信号の量が多い場合は前記第2コンパレータの出力、前記光入力信号の量が少ない場合は前記第1コンパレータの出力をアラーム信号として選択することを特徴とする光入力断検出回路。
  3. 前記選択回路は、半導体差動対によって前記第1コンパレータの正相信号と前記第2コンパレータの正相信号を選択するように構成されていることを特徴とする請求項1または請求項2に記載の光入力断検出回路。
  4. 前記折返し回路は、前記リミット増幅器から出力される正相信号と逆相信号の排他的論理和を出力することを特徴とする請求項2または請求項3に記載の光入力断検出回路。
  5. 前記リミット増幅器は、多段接続された差動増幅器と、最終段の差動増幅器の2つの出力端子から初段の差動増幅器の2つの入力端子へ、たすきがけで帰還する抵抗とコンデンサから成る積分回路と、両積分回路の出力と入力端子の間に設けられた差動増幅器とで構成することを特徴とする請求項2ないし請求項4のいずれかに記載の光入力断検出回路。
JP2002349422A 2002-12-02 2002-12-02 光入力断検出回路 Expired - Fee Related JP4056373B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349422A JP4056373B2 (ja) 2002-12-02 2002-12-02 光入力断検出回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349422A JP4056373B2 (ja) 2002-12-02 2002-12-02 光入力断検出回路

Publications (2)

Publication Number Publication Date
JP2004186849A true JP2004186849A (ja) 2004-07-02
JP4056373B2 JP4056373B2 (ja) 2008-03-05

Family

ID=32751962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349422A Expired - Fee Related JP4056373B2 (ja) 2002-12-02 2002-12-02 光入力断検出回路

Country Status (1)

Country Link
JP (1) JP4056373B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129655A (ja) * 2005-11-07 2007-05-24 Sumitomo Electric Ind Ltd 光受信器
CN118088367A (zh) * 2024-04-24 2024-05-28 三峡金沙江川云水电开发有限公司 水电机组主轴工作密封水中断停机保护告警方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129655A (ja) * 2005-11-07 2007-05-24 Sumitomo Electric Ind Ltd 光受信器
CN118088367A (zh) * 2024-04-24 2024-05-28 三峡金沙江川云水电开发有限公司 水电机组主轴工作密封水中断停机保护告警方法和装置

Also Published As

Publication number Publication date
JP4056373B2 (ja) 2008-03-05

Similar Documents

Publication Publication Date Title
JP2656734B2 (ja) 光受信回路
JP3340341B2 (ja) レベル識別回路
WO2001048914A1 (fr) Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur
JP2010093353A (ja) 光受信器
JP2001358544A (ja) 増幅回路
JP2003168933A (ja) 光受信回路
JP2655130B2 (ja) ディジタル受信回路
JP3551642B2 (ja) 増幅回路
JP2004186849A (ja) 光入力断検出回路
JP2007159020A (ja) 電流電圧変換回路
EP0939504B1 (en) Infrared signal receiver with attenuating circuit
US6411161B1 (en) AC coupling circuit
JP3431282B2 (ja) 受光信号増幅回路及び受光信号処理装置
JP2001036470A (ja) バースト伝送対応光受信器
JP4060597B2 (ja) パルス幅検出回路及び受信回路
JP3452833B2 (ja) コンパレータ回路
JPH07231307A (ja) 光パルス受信回路
JP4791435B2 (ja) 直流成分キャンセル回路
EP1164695A1 (en) Circuit for detecting distortion in an amplifier, in particular an audio amplifier
JPH09130330A (ja) 光受信器
JPH10209825A (ja) しきい値制御回路
JPH0479525A (ja) 信号受信回路及びこれを使用した光パルス受信回路
JPH1032436A (ja) 光受信回路及び光伝送システム
JP3426910B2 (ja) 赤外線データ受信器
JPS60263546A (ja) 光受信回路の基準電位発生回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees