JP2004181618A - Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability - Google Patents

Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability Download PDF

Info

Publication number
JP2004181618A
JP2004181618A JP2003097529A JP2003097529A JP2004181618A JP 2004181618 A JP2004181618 A JP 2004181618A JP 2003097529 A JP2003097529 A JP 2003097529A JP 2003097529 A JP2003097529 A JP 2003097529A JP 2004181618 A JP2004181618 A JP 2004181618A
Authority
JP
Japan
Prior art keywords
layer
type
crystal structure
average
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097529A
Other languages
Japanese (ja)
Inventor
Takatoshi Oshika
高歳 大鹿
Toshiaki Ueda
稔晃 植田
Takuya Hayatoi
拓也 早樋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003097529A priority Critical patent/JP2004181618A/en
Publication of JP2004181618A publication Critical patent/JP2004181618A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cermet cutting tool superior in high speed cutting, and exhibiting heat resistant plastic deformability. <P>SOLUTION: This surface-coated cermet cutting tool has a hard coating layer constituted of (a) to (d) on a surface of a cermet base body constituted of tungsten carbide group cemented carbide or titanium carbonitride group cermet. (a) A titanium nitride layer and/or a titanium carbonitride layer chemically evaporated and formed as a close contact backing layer, and having the average layer thickness of 0.1 to 2 μm. (b) A heating transformed α type aluminum oxide layer formed by transforming a crystal structure into an α type crystal structure by applying heat treatment to aluminum oxide having a κ type or θ type crystal structure in a state of being chemically evaporated and formed as a hard abrasion resistant layer, and having a structure of dispersing-distributing a heating transformed crack and the average layer thickness of 5 to 30 μm. (c) An evaporated α type aluminum oxide layer having an α type crystal structure in a state of being chemically evaporated and formed as a surface smoothing layer, and having the average layer thickness of 0.1 to 2 μm. (d) A titanium nitride layer chemically evaporated and formed as a use before-after identification layer when necessary, and having the average layer thickness of 0.1 to 2 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、特に各種の鋼や鋳鉄などの切削加工を、高熱発生を伴う高速切削条件で行なった場合に硬質被覆層がすぐれた耐熱塑性変形性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ3〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Alで示す)層、
(c)さらに必要に応じて、黄金色の色調を有することから、工具の使用前後の識別を目的として、化学蒸着形成され、かつ0.1〜2μmの平均層厚を有するTiN層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、上記被覆サーメット工具は、これの硬質被覆層を構成する蒸着α型Al層が同Ti化合物層が具備しないすぐれた高温硬さと耐熱性を有し、一方前記Ti化合物層が前記蒸着α型Al層の具備しないすぐれた強度を有し、これら両層のもつ特性によって、例えば各種の鋼や鋳鉄などの連続切削や断続切削に際してすぐれた切削性能を発揮するようになることも知られている(例えば、特許文献1参照)。
【0003】
また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やAl 層が粒状結晶組織を有し、さらに前記Ti化合物層を構成するTiCN層を、層自身の靭性向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCHCNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平6−31503号公報
【特許文献2】
特開平6−8010号公報
【0005】
【発明が解決しようとする課題】
一方、近年の切削加工の省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削加工装置の高性能化と相俟って、切削加工は高速で行なわれる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、これを高速切削加工に用いると、切削時に発生する高い発熱によって、特に硬質被覆層を構成するTi化合物層に、耐熱性不足が原因で偏摩耗の原因となる熱塑性変形が発生し易くなり、この結果摩耗進行が促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、高速切削加工で、硬質被覆層がすぐれた耐熱塑性変形性を発揮する被覆サーメット工具を開発すべく、研究を行った結果、
(a)サーメット基体の表面に、通常の化学蒸着装置で、通常の条件で、結晶構造がκ型またはθ型のAl層を蒸着形成し、この状態で水素雰囲気中、温度:1000〜1100℃、保持時間:2〜10時間の条件で加熱処理を施すと、前記Al層のκ型またはθ型の結晶構造がα型結晶構造に変態し、かつ加熱変態生成クラックが層中に分散分布した組織を有するようになるが、この結果の加熱変態α型Al層は、α型Al層自体が有する高温硬さおよび耐熱性と同等のすぐれた高温硬さと耐熱性を具備した上で、上記Ti化合物層と同等のすぐれた強度をもつようになることから、硬質被覆層の構成層として強度確保を目的とするTi化合物層の必要性がなくなること。
(b)したがって、サーメット基体の表面に、通常の条件で、密着下地層としてTiN層および/またはTiCN層を蒸着形成した後で、上記の加熱変態α型Al層を硬質耐摩耗層として形成し、さらに表面平滑化の目的で、同じく通常の条件で、蒸着α型Al層を形成してなる被覆サーメット工具は、切削時に高熱発生を伴なう高速切削に用いても、硬質被覆層の構成層としてTi化合物層が実質的に存在せず、硬質被覆層は実質的に上記の加熱変態α型Al層からなるので、硬質被覆層に熱塑性変形の発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、サーメット基体の表面に、
(a)密着下地層として、化学蒸着形成され、かつ0.1〜2μmの平均層厚を有するTiN層および/またはTiCN層、
(b)硬質耐摩耗層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有するAlに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、加熱変態生成クラックが分散分布した組織および5〜30μmの平均層厚を有する加熱変態α型Al層、
(c)表面平滑化層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ0.1〜2μmの平均層厚を有する蒸着α型Al層、
(d)必要に応じて、使用前後識別層として、化学蒸着形成され、かつ0.1〜2μmの平均層厚を有するTiN層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる、高速切削ですぐれた耐熱塑性変形性を発揮する被覆サーメット工具に特徴を有するものである。
【0008】
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層の平均層厚を上記の通りに限定した理由を説明する。
(a)密着下地層
密着下地層には、サーメット基体表面に対する硬質耐摩耗層の密着性を向上させる作用があるが、その平均層厚が0.1μm未満では、所望の十分な密着性向上効果を発揮させることができず、一方前記密着性向上効果は2μmまでの平均層厚で十分であって、2μmを越えた平均層厚になると、熱塑性変形の発生が局部的に見られるようになることから、その平均層厚を0.1〜2μmと定めた。
【0009】
(b)硬質耐摩耗層
硬質耐摩耗層が、高速切削時の高温加熱によっても熱塑性変形することなく、かつ高強度を具備した状態で、実質的に切削工具自体の耐摩耗性向上に寄与するものであるが、その平均層厚が5μm未満では、所望の長期間に亘っての使用寿命を確保することができず、一方その平均層厚が30μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を5〜30μmと定めた。
【0010】
(c)表面平滑化層
上記の硬質耐摩耗層は、上記の通り加熱変態処理によって形成されたものであるので、表面平滑度の低い状態にあり、したがってこれの表面に蒸着α型Al層を形成して、切削加工に適した表面平滑化を図るものであるが、その平均層厚が0.1μm未満では、所望の表面平滑化を図ることができず、一方その平均層厚が2μmを越えると、前記蒸着α型Al層(表面平滑化層)形成時に引張応力が残留するようになり、これが原因でチッピングが発生し易くなることから、その平均層厚を0.1〜2μmと定めた。
【0011】
(d)使用前後識別層
TiN層は、上記の通り黄金色の色調を有することから、切削工具の使用前後の識別を目的として、必要に応じて蒸着形成されるが、その平均層厚が0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は2μmまでの平均層厚で十分であり、経済性を考慮して、その平均層厚を0.1〜2μmと定めた。
【0012】
【発明の実施の形態】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも0.5〜4μmの範囲内の所定の平均粒径を有するWC粉末、(Ti,W)C(質量比で、以下同じ、TiC/WC=30/70)粉末、(Ti,W)CN(TiC/TiN/WC=24/20/56)粉末、(Ta,Nb)C(TaC/NbC=90/10)粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1410℃に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金で構成されたサーメット基体A〜Fをそれぞれ製造した。
【0013】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメットで構成されたサーメット基体a〜fを形成した。
【0014】
ついで、これらのサーメット基体A〜Fおよびサーメット基体a〜fの表面に、アセトン中で超音波洗浄し、乾燥した状態で、通常の化学蒸着装置を用い、表3に示される条件にて、表4に示される目標層厚のTiN層および/またはTiCN層を密着下地層として蒸着形成し、ついで同じく表3に示される条件で結晶構造がκ型またはθ型のAl層を蒸着形成し、これに水素雰囲気中、温度:1050℃に2〜10時間の範囲内の所定時間保持の条件で加熱処理を施して、前記Al層のκ型またはθ型の結晶構造をα型に変態させ、かつ加熱変態生成クラックが層中に分散分布した加熱変態α型Al層を同じく表4に示される目標層厚で硬質耐摩耗層として形成し、さらに同じく表3に示される条件で、かつ表4に示される目標層厚の蒸着α型Al層および必要に応じてTiN層をそれぞれ表面平滑化層および使用前後識別層として形成することにより本発明被覆サーメット工具1〜12をそれぞれ製造した。
【0015】
また、比較の目的で、上記のサーメット基体A〜Fおよびサーメット基体a〜fの表面に、アセトン中で超音波洗浄し、乾燥した状態で、同じく通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8008号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、それぞれ表5に示される組み合わせで、同じく表5に示される目標層厚のTi化合物層を下部層として蒸着形成し、ついで同じく表3に示される条件で同じく表5に示される平均層厚の蒸着α型Al層および必要に応じてTiN層をそれぞれ上部層および使用前後識別層として蒸着形成することにより従来被覆サーメット工具1〜12をそれぞれ製造した。
【0016】
この結果得られた上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型Al層と蒸着α型Al層の相違を観察する目的でX線回折を測定した。
まず、X線回折測定用試料として、X線回折チャート上で(001)面および(002)面にのみ回折ピークが現れる単結晶WCを基体試料として用い、この基体試料の表面に、本発明被覆サーメット工具3、7、および9の目標層厚が15μm、10μm、および5μmの加熱変態α型Al層、並びに従来被覆サーメット工具4、6、および10の同じく目標層厚が15μm、10μm、および5μmの蒸着α型Al層の形成条件と同一の条件で、それぞれ目標層厚が15μm、10μm、および5μmの加熱変態α型Al層および蒸着α型Al層を直接形成して本発明被覆試料A〜Cおよび従来被覆試料a〜cをそれぞれ調製した。
【0017】
ついで、これら被覆試料の前記加熱変態α型Al層および蒸着α型Al層のX線回折測定を、通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧:40kV、電流:350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線を前記被覆試料表面に照射し、前記被覆試料から散乱したX線のうち、被覆試料表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行なった。この測定結果を図1〜6に示した。
本発明被覆試料A〜Cの加熱変態α型Al層のX線回折チャートを示す図1〜3と、従来被覆試料a〜cの蒸着α型Al層のX線回折チャートを示す図4〜6の比較から、前記加熱変態α型Al層では(006)面および(018)面に明確な回折ピークが現れているのに対して、前記蒸着α型Al層ではこれら(006)面および(018)面に回折ピークは存在しないことが明かである。
【0018】
また、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、これの硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0019】
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜6および従来被覆サーメット工具1〜6については、
被削材:JIS・SCM440の丸棒、
切削速度:450m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:3分、
の条件での合金鋼の乾式高速連続切削試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:3分、
の条件での炭素鋼の乾式高速断続切削試験を行なった。
【0020】
さらに、本発明被覆サーメット工具7〜12および従来被覆サーメット工具7〜12については、
被削材:JIS・SCM440の丸棒、
切削速度:500m/min、
切り込み:1mm、
送り:0.2mm/rev、
切削時間:3分、
の条件での合金鋼の乾式高速連続切削試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1mm、
送り:0.2mm/rev、
切削時間:3分、
の条件での炭素鋼の乾式高速断続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0021】
【表1】

Figure 2004181618
【0022】
【表2】
Figure 2004181618
【0023】
【表3】
Figure 2004181618
【0024】
【表4】
Figure 2004181618
【0025】
【表5】
Figure 2004181618
【0026】
【表6】
Figure 2004181618
【0027】
【発明の効果】
表4〜6に示される結果から、本発明被覆サーメット工具1〜12は、いずれもきわめて高い発熱を伴う鋼および鋳鉄の高速連続切削試験および高速断続切削試験でも、硬質被覆層が実質的に高強度を有し、かつα型Al層自体のもつ高温強度および耐熱性に匹敵するすぐれた高温強度と耐熱性を具備する加熱変態α型Al層からなるので、きわめて高い発熱を伴う鋼および鋳鉄の高速連続切削試験および高速断続切削試験でも、すぐれた耐熱塑性変形性を発揮し、この結果切刃部が正常摩耗形態をとるようになることから、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層がTi化合物層と蒸着α型Al層からなる従来被覆サーメット工具1〜12においては、前記の高速切削試験では、特に前記Ti化合物層の耐熱性不足が原因で偏摩耗の原因となる熱塑性変形が発生し、この結果摩耗進行が促進されるようになることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削や断続切削加工は勿論のこと、特に高い発熱を伴う高速切削加工に用いた場合にも、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置の高性能化に十分満足に対応でき、かつ切削加工の一段の省力化および省エネ化、さらに低コスト化を可能とするものである。
【図面の簡単な説明】
【図1】本発明被覆サーメット工具3の硬質被覆層を構成する加熱変態α型Al層(目標層厚:15μm)のX線回折チャートを示す図である。
【図2】本発明被覆サーメット工具7の硬質被覆層を構成する加熱変態α型Al層(目標層厚:10μm)のX線回折チャートを示す図である。
【図3】本発明被覆サーメット工具9の硬質被覆層を構成する加熱変態α型Al層(目標層厚:5μm)のX線回折チャートを示す図である。
【図4】従来被覆サーメット工具4の硬質被覆層を構成する蒸着α型Al層(目標層厚:15μm)のX線回折チャートを示す図である。
【図5】従来被覆サーメット工具6の硬質被覆層を構成する蒸着α型Al層(目標層厚:10μm)のX線回折チャートを示す図である。
【図6】従来被覆サーメット工具10の硬質被覆層を構成する蒸着α型Al層(目標層厚:5μm)のX線回折チャートを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a surface-coated cermet cutting tool (hereinafter, referred to as a hard-coating layer) that exhibits excellent heat-resistant plastic deformability when cutting various steels and cast irons under high-speed cutting conditions involving high heat generation. Coated cermet tool).
[0002]
[Prior art]
Conventionally, generally, a surface of a cermet substrate formed of a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a titanium cermet (hereinafter, referred to as TiCN) -based cermet,
(A) As a lower layer, a Ti carbide (hereinafter, referred to as TiC) layer, a nitride (hereinafter, also referred to as TiN) layer, a carbonitride (hereinafter, referred to as TiCN) layer, all formed by chemical vapor deposition, A Ti compound layer comprising one or more of a carbonate (hereinafter, referred to as TiCO) layer and a carbonitride (hereinafter, referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm ,
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in a state formed by chemical vapor deposition and having an average layer thickness of 3 to 15 μm as an upper layer;
(C) If necessary, a TiN layer formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm for the purpose of identifying before and after use of the tool because it has a golden color tone,
A coated cermet tool formed by vapor-depositing the hard coating layer composed of (a) to (c) above is known, and the coated cermet tool is formed by vapor-deposited α-type Al 2 O forming the hard coating layer. The three layers have excellent high-temperature hardness and heat resistance not provided by the Ti compound layer, while the Ti compound layer has excellent strength not provided by the vapor-deposited α-type Al 2 O 3 layer. It is also known that, depending on the properties possessed, excellent cutting performance is exhibited in continuous cutting or interrupted cutting of, for example, various kinds of steel or cast iron (for example, see Patent Document 1).
[0003]
In general, the Ti compound layer or Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool has a granular crystal structure, and the TiCN layer constituting the Ti compound layer is further improved in toughness of the layer itself. For the purpose, using a mixed gas containing an organic carbonitride, for example, CH 3 CN as a reaction gas, and performing chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a normal chemical vapor deposition apparatus, It is also known to have a growing crystal structure (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-6-31503 [Patent Document 2]
JP-A-6-8010 [0005]
[Problems to be solved by the invention]
On the other hand, in recent years, there is a strong demand for labor saving, energy saving, and further cost reduction of cutting, and along with this, cutting tends to be performed at a high speed in conjunction with high performance of a cutting apparatus. However, in the above-mentioned conventional coated cermet tool, there is no problem when this is used for continuous cutting or interrupted cutting under normal conditions such as steel or cast iron, but when this is used for high-speed cutting, it occurs at the time of cutting. Due to the high heat generated, particularly in the Ti compound layer constituting the hard coating layer, thermoplastic deformation which causes uneven wear due to insufficient heat resistance is likely to occur, and as a result, wear progress is promoted. At present, the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research to develop a coated cermet tool in which a hard coating layer exhibits excellent heat-resistant plastic deformation properties in high-speed cutting from the above-described viewpoints.
(A) On a surface of a cermet substrate, an Al 2 O 3 layer having a κ-type or θ-type crystal structure is formed by vapor deposition on a surface of a cermet substrate under a normal condition under a normal condition. When heat treatment is performed under the conditions of 1100 ° C. and holding time: 2 to 10 hours, the κ-type or θ-type crystal structure of the Al 2 O 3 layer is transformed into an α-type crystal structure, and cracks generated by heat transformation are generated. Although the layer has a structure dispersed and distributed in the layer, the resulting heat-transformed α-type Al 2 O 3 layer has an excellent high-temperature hardness and heat resistance equivalent to the high-temperature hardness and heat resistance of the α-type Al 2 O 3 layer itself. Having the hardness and heat resistance, and having the same excellent strength as the Ti compound layer, the necessity of the Ti compound layer for securing the strength as a constituent layer of the hard coating layer is eliminated. .
(B) Therefore, after a TiN layer and / or a TiCN layer are formed by vapor deposition on the surface of the cermet substrate under ordinary conditions, the above-mentioned heat-transformed α-type Al 2 O 3 layer is formed on the hard wear-resistant layer. A coated cermet tool formed with a vapor deposited α-type Al 2 O 3 layer under the same conditions for the purpose of smoothing the surface and also used for high-speed cutting accompanied by high heat generation during cutting. Since a Ti compound layer is not substantially present as a constituent layer of the hard coating layer, and the hard coating layer is substantially composed of the above-mentioned heat-transformed α-type Al 2 O 3 layer, the hard coating layer does not have thermoplastic deformation. To exhibit excellent wear resistance over a long period of time.
The research results shown in (a) and (b) above were obtained.
[0007]
The present invention has been made based on the results of the above-described research, and has the following features:
(A) a TiN layer and / or a TiCN layer formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm as an adhesion underlayer;
(B) As a hard abrasion resistant layer, Al 2 O 3 having a κ-type or θ-type crystal structure in a state formed by chemical vapor deposition is subjected to a heat treatment to transform the crystal structure into an α-type crystal structure, and is heated. A heat-transformed α-type Al 2 O 3 layer having a structure in which transformation-formed cracks are dispersed and distributed and an average layer thickness of 5 to 30 μm;
(C) a vapor deposited α-type Al 2 O 3 layer having an α-type crystal structure in a state formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm as a surface smoothing layer;
(D) a TiN layer formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm as a pre-use / post-use identification layer, if necessary;
The coated cermet tool having the hard coating layer composed of (a) to (d) and exhibiting excellent heat-resistant plastic deformability by high-speed cutting is characterized.
[0008]
Next, the reason why the average thickness of the constituent layers of the hard coating layer of the coated cermet tool of the present invention is limited as described above will be described.
(A) Adhesive Underlayer The adherent underlayer has an effect of improving the adhesion of the hard abrasion-resistant layer to the surface of the cermet substrate, but if the average layer thickness is less than 0.1 μm, a desired sufficient adhesion improving effect is obtained. On the other hand, the effect of improving the adhesion is sufficient when the average layer thickness is up to 2 μm. When the average layer thickness exceeds 2 μm, the occurrence of thermoplastic deformation is locally observed. Therefore, the average layer thickness was determined to be 0.1 to 2 μm.
[0009]
(B) Hard wear-resistant layer The hard wear-resistant layer substantially contributes to the improvement of the wear resistance of the cutting tool itself in a state where the hard wear-resistant layer has high strength without undergoing thermoplastic deformation even by high-temperature heating during high-speed cutting. However, if the average layer thickness is less than 5 μm, a desired long-term use life cannot be secured, while if the average layer thickness exceeds 30 μm, chipping occurs. Therefore, the average layer thickness is set to 5 to 30 μm.
[0010]
(C) surface smoothing layer above the hard wear-resistant layer, since those formed by as heat transformation treatment described above, there is a low surface smoothness condition, thus deposition α-type Al 2 O to the surface Although three layers are formed to achieve surface smoothness suitable for cutting, if the average layer thickness is less than 0.1 μm, desired surface smoothing cannot be achieved. Exceeds 2 μm, tensile stress remains when the vapor deposited α-type Al 2 O 3 layer (surface smoothing layer) is formed, and chipping easily occurs due to this. 0.1 to 2 μm.
[0011]
(D) Before and after use identification layer Since the TiN layer has a golden color tone as described above, it is formed by vapor deposition as necessary for the purpose of identifying before and after use of the cutting tool. If the thickness is less than 0.1 μm, a sufficient discriminating effect cannot be obtained, while the discriminating effect of the TiN layer is sufficient if the average layer thickness is up to 2 μm. It was determined to be 2 μm.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powders each having a predetermined average particle size in the range of 0.5 to 4 μm, (Ti, W) C (the same hereinafter, TiC / WC = 30/70 by mass ratio) powder, Ti, W) CN (TiC / TiN / WC = 24/20/56) powder, (Ta, Nb) C (TaC / NbC = 90/10) powder, Cr 3 C 2 powder, and Co powder, These raw material powders were blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Medium, vacuum sintering at 1410 ° C. for 1 hour, and after sintering, a WC having a throw-away tip shape specified in ISO · CNMG120408 by subjecting the cutting edge to honing processing of R: 0.07 mm. Base cemented carbide Configured cermet substrate A~F were prepared, respectively.
[0013]
Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle diameter of 0.5 to 2 μm , Co powder, and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and pressed into a green compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge was subjected to a honing process of R: 0.05 mm to obtain an ISO. Cermet bases a to f composed of TiCN-based cermets having a chip shape of standard CNMG120412 were formed.
[0014]
Next, the surfaces of the cermet substrates A to F and the cermet substrates a to f were ultrasonically cleaned in acetone, dried, and dried using a general chemical vapor deposition apparatus under the conditions shown in Table 3. Then, a TiN layer and / or a TiCN layer having a target layer thickness shown in FIG. 4 is deposited and formed as an adhesion underlayer, and an Al 2 O 3 layer having a κ-type or θ-type crystal structure is deposited under the same conditions shown in Table 3. The Al 2 O 3 layer is subjected to a heat treatment in a hydrogen atmosphere at a temperature of 1050 ° C. for a predetermined time within a range of 2 to 10 hours to change the κ-type or θ-type crystal structure of the Al 2 O 3 layer to α. A heat-transformed α-type Al 2 O 3 layer in which the heat-transformed cracks were dispersed and distributed in the layer was formed as a hard wear-resistant layer with the target layer thickness also shown in Table 4, and Under the conditions shown and in Table 4 The present invention coated cermet tools 1 to 12 were prepared respectively by forming target layer thickness deposited α-type the Al 2 O 3 layer of and optionally TiN layer as each surface smoothing layer and used before and after the identification layer.
[0015]
For the purpose of comparison, the surfaces of the cermet substrates A to F and the cermet substrates a to f were ultrasonically cleaned in acetone, dried, and then dried in the same manner as in Table 3 (Table 3). 1-TiCN in No. 3 indicates conditions for forming a TiCN layer having a vertically elongated crystal structure described in Japanese Patent Application Laid-Open No. Hei 6-8008, and other conditions indicate conditions for forming a normal granular crystal structure. Under the conditions shown in Table 5, a Ti compound layer having the target layer thickness shown in Table 5 was formed by vapor deposition as the lower layer in the combination shown in Table 5; 5 a conventional coated cermet tools 1 to 12 by depositing forming average layer thickness of the deposited α-type the Al 2 O 3 layer and a TiN layer as required as each upper layer and used before and after the identification layer shown in Re respectively were produced.
[0016]
For the purpose of observing the difference between the heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool of the present invention and the conventional coated cermet tool obtained as described above, X was used. Line diffraction was measured.
First, as a sample for X-ray diffraction measurement, a single crystal WC having a diffraction peak only on the (001) plane and the (002) plane on the X-ray diffraction chart was used as a substrate sample. The target layer thickness of the cermet tools 3, 7, and 9 is 15 μm, 10 μm, and 5 μm, and the heat-transformed α-type Al 2 O 3 layer, and the target layer thickness of the conventional coated cermet tools 4, 6, and 10 are also 15 μm, 10 μm. , and under the same conditions as the conditions for forming the deposited α-type Al 2 O 3 layer of 5 [mu] m, the target layer thickness each 15 [mu] m, 10 [mu] m, and 5 [mu] m heating transformation α-type Al of 2 O 3 layer and deposition α-type Al 2 O 3 Layers were formed directly to prepare coating samples A to C of the present invention and conventional coating samples a to c.
[0017]
Next, the X-ray diffraction measurement of the above-mentioned heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer of these coated samples was carried out by using a usual X-ray diffractometer, and Cu was placed in an X-ray tube. By irradiating the anode (target) with thermoelectrons generated from the metal W filament under the conditions of voltage: 40 kV and current: 350 mA, characteristic X-rays having a wavelength of 0.154 nm from the Cu anode surface are obtained. X-rays that generate a certain Cu-Kα ray, irradiate the characteristic X-ray to the surface of the coated sample, and diffract at an angle equal to the X-ray incident angle θ with respect to the coated sample surface among the X-rays scattered from the coated sample Was measured with an X-ray detector. The measurement results are shown in FIGS.
FIGS. 1 to 3 show X-ray diffraction charts of the heat-transformed α-type Al 2 O 3 layers of coating samples A to C of the present invention, and X-ray diffraction charts of vapor-deposited α-type Al 2 O 3 layers of conventional coating samples a to c. 4 to 6, the heating-transformed α-type Al 2 O 3 layer shows clear diffraction peaks on the (006) plane and the (018) plane, whereas the vapor-deposited α-type Al 2 the O 3 layer is clear that these (006) plane and (018) diffraction peak at a surface are not present.
[0018]
The thickness of the hard coating layer of the coated cermet tools 1 to 12 of the present invention and the conventional coated cermet tools 1 to 12 was measured by using a scanning electron microscope (similarly, vertical section measurement). However, in each case, the average layer thickness was substantially the same as the target layer thickness (average value of five-point measurements).
[0019]
Next, the above coated cermet tools 1 to 6 of the present invention and the conventional coated cermet tools 1 to 6 in a state where each of the above various coated cermet tools was screwed to the tip of a tool steel tool with a fixing jig, ,
Work material: JIS SCM440 round bar,
Cutting speed: 450m / min,
Cut: 2mm,
Feed: 0.3 mm / rev,
Cutting time: 3 minutes,
High-speed continuous cutting test of alloy steel under the following conditions:
Work material: JIS S45C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 350m / min,
Cut: 1.5 mm,
Feed: 0.25 mm / rev,
Cutting time: 3 minutes,
A dry high-speed interrupted cutting test of carbon steel was performed under the following conditions.
[0020]
Further, for the coated cermet tools 7 to 12 of the present invention and the conventional coated cermet tools 7 to 12,
Work material: JIS SCM440 round bar,
Cutting speed: 500m / min,
Notch: 1 mm,
Feed: 0.2 mm / rev,
Cutting time: 3 minutes,
High-speed continuous cutting test of alloy steel under the following conditions:
Work material: JIS S45C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 350m / min,
Cut: 1mm,
Feed: 0.2 mm / rev,
Cutting time: 3 minutes,
A dry high-speed intermittent cutting test was performed on carbon steel under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. Table 6 shows the measurement results.
[0021]
[Table 1]
Figure 2004181618
[0022]
[Table 2]
Figure 2004181618
[0023]
[Table 3]
Figure 2004181618
[0024]
[Table 4]
Figure 2004181618
[0025]
[Table 5]
Figure 2004181618
[0026]
[Table 6]
Figure 2004181618
[0027]
【The invention's effect】
From the results shown in Tables 4 to 6, the coated cermet tools 1 to 12 of the present invention have substantially high hard coating layers even in a high-speed continuous cutting test and a high-speed interrupted cutting test of steel and cast iron with extremely high heat generation. It is made of a heat-transformed α-type Al 2 O 3 layer having strength and excellent high-temperature strength and heat resistance comparable to the high-temperature strength and heat resistance of the α-type Al 2 O 3 layer itself. In high-speed continuous cutting tests and high-speed interrupted cutting tests of steel and cast iron with high heat resistance, it exhibits excellent heat-resistant plastic deformability, and as a result, the cutting edge takes on a normal wear form. relative to exert, in the conventional coated cermet tools 1 to 12 hard layer is composed of Ti compound layer and the deposition α-type Al 2 O 3 layer in the high-speed cutting test of the, in particular the Ti compound layer Thermal plastic deformation heat resistance insufficient cause uneven wear due to occur, since the results wear progress is to be promoted, it is clear that lead to a relatively short time service life.
As described above, the coated cermet tool of the present invention can be used not only for continuous cutting or interrupted cutting under ordinary conditions such as various types of steel or cast iron, but also when used for high-speed cutting particularly involving high heat generation. , Which exhibits excellent wear resistance over a long period of time, so that it can respond satisfactorily to the high performance of the cutting equipment, and can further reduce the power and energy consumption of the cutting work and reduce the cost It is assumed that.
[Brief description of the drawings]
FIG. 1 is a view showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer (target layer thickness: 15 μm) constituting a hard coating layer of the coated cermet tool 3 of the present invention.
FIG. 2 is a view showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer (target layer thickness: 10 μm) constituting a hard coating layer of the coated cermet tool 7 of the present invention.
FIG. 3 is a view showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer (target layer thickness: 5 μm) constituting a hard coating layer of the coated cermet tool 9 of the present invention.
FIG. 4 is a diagram showing an X-ray diffraction chart of a vapor-deposited α-type Al 2 O 3 layer (target layer thickness: 15 μm) constituting a hard coating layer of the conventional coated cermet tool 4.
FIG. 5 is a diagram showing an X-ray diffraction chart of a vapor-deposited α-type Al 2 O 3 layer (target layer thickness: 10 μm) constituting a hard coating layer of the conventional coated cermet tool 6.
FIG. 6 is a diagram showing an X-ray diffraction chart of a vapor-deposited α-type Al 2 O 3 layer (target layer thickness: 5 μm) constituting a hard coating layer of the conventional coated cermet tool 10.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の表面に、
(a)密着下地層として、化学蒸着形成され、かつ0.1〜2μmの平均層厚を有する窒化チタン層および/または炭窒化チタン層、
(b)硬質耐摩耗層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウムに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、加熱変態生成クラックが分散分布した組織および5〜30μmの平均層厚を有する加熱変態α型酸化アルミニウム層、
(c)表面平滑化層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ0.1〜2μmの平均層厚を有する蒸着α型酸化アルミニウム層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、高速切削ですぐれた耐熱塑性変形性を発揮する表面被覆サーメット製切削工具。
On the surface of a cermet substrate composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) a titanium nitride layer and / or a titanium carbonitride layer formed by chemical vapor deposition and having an average thickness of 0.1 to 2 μm as an adhesion underlayer;
(B) As a hard wear-resistant layer, aluminum oxide having a κ-type or θ-type crystal structure in a state formed by chemical vapor deposition is subjected to heat treatment to transform the crystal structure into an α-type crystal structure, and to generate heat transformation. A heat-transformed α-type aluminum oxide layer having a structure in which cracks are dispersed and distributed and having an average layer thickness of 5 to 30 μm,
(C) a vapor-deposited α-type aluminum oxide layer having an α-type crystal structure in a state formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm as a surface smoothing layer;
A cutting tool made of a surface-coated cermet, which exhibits excellent heat-resistant plastic deformability by high-speed cutting, formed by forming a hard coating layer composed of (a) to (c) above.
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の表面に、
(a)密着下地層として、化学蒸着形成され、かつ0.1〜2μmの平均層厚を有する窒化チタン層および/または炭窒化チタン層、
(b)硬質耐摩耗層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウムに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、加熱変態生成クラックが分散分布した組織および5〜30μmの平均層厚を有する加熱変態α型酸化アルミニウム層、
(c)表面平滑化層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ0.1〜2μmの平均層厚を有する蒸着α型酸化アルミニウム層、
(d)使用前後識別層として、化学蒸着形成され、かつ0.1〜2μmの平均層厚を有する窒化チタン層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる,高速切削ですぐれた耐熱塑性変形性を発揮する表面被覆サーメット製切削工具。
On the surface of a cermet substrate composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) a titanium nitride layer and / or a titanium carbonitride layer formed by chemical vapor deposition and having an average thickness of 0.1 to 2 μm as an adhesion underlayer;
(B) As a hard wear-resistant layer, aluminum oxide having a κ-type or θ-type crystal structure in a state formed by chemical vapor deposition is subjected to heat treatment to transform the crystal structure into an α-type crystal structure, and to generate heat transformation. A heat-transformed α-type aluminum oxide layer having a structure in which cracks are dispersed and distributed and having an average layer thickness of 5 to 30 μm,
(C) a vapor-deposited α-type aluminum oxide layer having an α-type crystal structure in a state formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm as a surface smoothing layer;
(D) a titanium nitride layer formed by chemical vapor deposition and having an average layer thickness of 0.1 to 2 μm as a pre- and post-use identification layer;
A cutting tool made of a surface-coated cermet, which exhibits excellent heat-resistant plastic deformation properties by high-speed cutting, having a hard coating layer composed of (a) to (d) above.
JP2003097529A 2002-10-09 2003-04-01 Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability Pending JP2004181618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097529A JP2004181618A (en) 2002-10-09 2003-04-01 Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002296523 2002-10-09
JP2003097529A JP2004181618A (en) 2002-10-09 2003-04-01 Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability

Publications (1)

Publication Number Publication Date
JP2004181618A true JP2004181618A (en) 2004-07-02

Family

ID=32774314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097529A Pending JP2004181618A (en) 2002-10-09 2003-04-01 Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability

Country Status (1)

Country Link
JP (1) JP2004181618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829990A1 (en) * 2006-03-03 2007-09-05 Sandvik Intellectual Property AB Coated cermet cutting tool and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829990A1 (en) * 2006-03-03 2007-09-05 Sandvik Intellectual Property AB Coated cermet cutting tool and use thereof
KR100847715B1 (en) * 2006-03-03 2008-07-23 산드빅 인터렉츄얼 프로퍼티 에이비 Cutting tool insert and method for use thereof
US7799443B2 (en) 2006-03-03 2010-09-21 Sandvik Intellectual Property Ab Coated cermet cutting tool and use thereof

Similar Documents

Publication Publication Date Title
JP4811781B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2001269801A (en) Surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent heat-resistant plastic deformation characteristic
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP4427729B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material with excellent chipping resistance with hard coating layer
JP3989664B2 (en) Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004188500A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2003071609A (en) Surface coated cemented carbide cutting tool exerting excellent heat-resisting plastic deformation in high- speed cutting
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2004181618A (en) Surface-coated cermet cutting tool superior in high speed cutting and exhibiting heat resistant plastic deformability
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2004188575A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2004188502A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2001315004A (en) Surface-coated cermet cutting tool with hard coating layer having superior heat-resisting plastic deformation characteristic
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP3985413B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2004188577A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2004181554A (en) Surface-coated cermet cutting tool with hard coating layer excellent in thermal shock resistance
JP2004188576A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A521 Written amendment

Effective date: 20070921

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080201

Free format text: JAPANESE INTERMEDIATE CODE: A02