JP3985413B2 - Cutting tool made of surface-coated cemented carbide with excellent wear resistance - Google Patents

Cutting tool made of surface-coated cemented carbide with excellent wear resistance Download PDF

Info

Publication number
JP3985413B2
JP3985413B2 JP2000030086A JP2000030086A JP3985413B2 JP 3985413 B2 JP3985413 B2 JP 3985413B2 JP 2000030086 A JP2000030086 A JP 2000030086A JP 2000030086 A JP2000030086 A JP 2000030086A JP 3985413 B2 JP3985413 B2 JP 3985413B2
Authority
JP
Japan
Prior art keywords
layer
coating layer
gas
cutting
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000030086A
Other languages
Japanese (ja)
Other versions
JP2001219306A (en
Inventor
和則 佐藤
安彦 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000030086A priority Critical patent/JP3985413B2/en
Publication of JP2001219306A publication Critical patent/JP2001219306A/en
Application granted granted Critical
Publication of JP3985413B2 publication Critical patent/JP3985413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、すぐれた耐摩耗性を有し、したがって例えば鋼の連続切削や断続切削で長期に亘ってすぐれた切削性能を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬切削工具と云う)に関するものである。
【0002】
【従来の技術】
従来、一般に、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置を用い、ヒーターで装置内を例えば700℃の温度に加熱した状態で、アノード電極と、密着性下地被覆層形成にはTi、強靭性被覆層形成には所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間にアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガス、または窒素ガスとメタンガスを導入し、一方炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなり、かつ前記アノード電極およびカソード電極と所定間隔をもって対向配置された工具基体(以下、これらを総称して超硬工具基体と云う)には、例えば−120Vのバイアス電圧を印加した条件で、前記超硬工具基体の表面に、例えば特開昭62−56565号公報に記載されるように、0.1〜10μmの平均層厚を有するTiの炭化物層、窒化物層、および炭窒化物層(以下、それぞれTiC層、TiN層、およびTiCN層で示す)のうちの1種の単層または2種以上の複層からなる密着性下地被覆層を介して、TiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層および複合炭窒化物[以下、(Ti,Al)CNで示す]層のうちの1種の単層または2種の複層からなる強靭性被覆層を0.5〜15μmの平均層厚で蒸着することにより製造された被覆超硬切削工具が知られている。
【0003】
【発明が解決しようとする課題】
一方、近年の切削加工のFA化および高速化はめざましく、かつ切削加工の省力化および省エネ化に対する要求もつよく、これに伴い、切削工具には使用寿命の延命化が強く望まれているが、上記の従来被覆超硬切削工具の場合、これを構成する(Ti,Al)N層および(Ti,Al)CN層からなる強靭性被覆層はすぐれた強度および靭性を有し、良好な耐チッピング性(工具切刃に微小欠けが発生しにくい性質)を示すものの、耐摩耗性が十分でないために、比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬切削工具の耐摩耗性向上を図るべく研究を行なった結果、
(a)物理蒸着法により硬質被覆層としての酸化アルミニウム層を形成する試みがなされており、この結果形成された酸化アルミニウム層は、耐熱性にすぐれ、かつ高硬度を有することから、耐摩耗性向上を図る上で望ましいものであるが、前記酸化アルミニウム層は上記の従来被覆超硬切削工具を構成する(Ti,Al)N層および(Ti,Al)CN層との密着性に劣るものであることから、前記従来被覆超硬切削工具の表面に前記酸化アルミニウム層を形成してなる被覆超硬切削工具においては、特に工具切刃に高い負荷のかかる断続切削を高切込みや高送りなどの重切削条件で行った場合に前記酸化アルミニウム層に剥離が発生し易く、実用に供することができないこと。
【0005】
(b)上記の従来被覆超硬切削工具を構成する(Ti,Al)N層および(Ti,Al)CN層の表面に、TiとAlの複合炭酸化物[以下、(Ti,Al)COで示す]層およびTiとAlの複合炭窒酸化物[以下、(Ti,Al)CNOで示す]層のうちのいずれか、または両方を介して、上記の酸化アルミニウム層を物理蒸着法により形成するに際して、これを物理蒸着法の1種であるアークイオンプレーティング法に特定すると共に、Alよりイオン半径の著しく大きいTi、Zr、およびHf、すなわちイオン半径が0.57オングストロームのAlに対して、それぞれイオン半径が0.76オングストロームのTi、同0.87オングストロームのZr、および同0.84オングストロームのHfのうちの1種または2種以上を、Al2 の結晶構造におけるAl原子の一部をAlとの合量に占める割合で0.01〜10原子%、望ましくは0.02〜5原子%の割合で置換した形で固溶含有してなるAl2 3 主体層を形成すると、この結果のAl2 3のもつ結晶構造を保持したままのAl2 3 主体層は、同じくアークイオンプレーティング装置にて形成されたAl 2 層、すなわち前記Ti、Zr、およびHfを一部置換含有しないが、Al 2 3 のもつ結晶構造を有するAl2 層が、層厚にも影響されるが0.2〜0.8GPaの圧縮残留応力をもつのに対して、大きなイオン半径差による格子内歪みの著しい増大によって、1.2〜3GPaの圧縮残留応力をもつようになり、このように圧縮残留応力のきわめて高いAl2 主体層は、上記(Ti,Al)CO層および(Ti,Al)CNO層に著しく強固に密着し、かつAl2 3の具備する特性をそのまま保持し、一方前記(Ti,Al)CO層および(Ti,Al)CNO層は前記(Ti,Al)N層および(Ti,Al)CN層からなる強靭性被覆層に対する密着性にすぐれたものであるから、TiC層、TiN層、およびTiCN層からなる密着性下地被覆層の超硬工具基体および前記強靭性被覆層に対するすぐれた密着性と相俟って、超硬工具基体に前記密着性下地被覆層を介して蒸着された前記強靭性被覆層に、さらに前記(Ti,Al)CO層および(Ti,Al)CNO層を介して前記Al2 3 主体層をアークイオンプレーティング装置にて形成してなる被覆超硬切削工具は、例えば鋼の断続切削を、特に工具切刃に高い負荷のかかる高切込みや高送りなどの重切削条件で行っても前記Al2 3 主体層に剥離の発生なく、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0006】
この発明は、上記の研究結果にもとづいてなされたものであって、
(a)アークイオンプレーティング装置にて、超硬工具基体の表面に、TiC層、TiN層、およびTiCN層のうちの1種の単層または2種以上の複層からなり、かつ、0.1〜10μmの平均層厚を有する密着性下地被覆層を蒸着し、
(b)同じくアークイオンプレーティング装置にて、上記密着性下地被覆層の表面に、カソード電極(蒸発源)としてTi−Al合金を用い、反応ガスとして窒素ガス、または窒素ガスとメタンガスを導入して形成された(Ti,Al)N層および(Ti,Al)CN層のうちの1種の単層または2種の複層からなり、かつ、0.5〜15μmの平均層厚を有する強靭性被覆層を蒸着し、
(c)同じくアークイオンプレーティング装置にて、上記強靭性被覆層の表面に、カソード電極(蒸発源)としてTi−Al合金を用い、反応ガスとしてメタンガスと酸素ガス、またはメタンガスと窒素ガスと酸素ガスを導入して形成された(Ti,Al)CO層および(Ti,Al)CNO層のうちの1種の単層または2種の複層からなる密着性中間被覆層からなり、かつ、0.1〜10μmの平均層厚を有する密着性中間被覆層を蒸着し、
(d)さらにアークイオンプレーティング装置にて、上記密着性中間被覆層の表面に、カソード電極(蒸発源)としてTi、Zr、およびHfのうちの1種または2種以上を含有したAl−(Ti,Zr,Hf)合金を用い、反応ガスとして酸素ガスを導入して形成された、Al2 のもつ結晶構造を保持したままで、Alの一部をAlとの合量に占める割合で0.02〜5原子%のTi、Zr、およびHfのうちの1種または2種以上で置換固溶含有してなる、高い圧縮残留応力を有するAl2 主体層からなり、かつ、0.5〜15μmの平均層厚を有する耐摩耗性被覆層を蒸着してなる、耐摩耗性のすぐれた被覆超硬切削工具に特徴を有するものである。
【0007】
なお、この発明の被覆超硬切削工具において、これを構成する密着性下地被覆層、強靭性被覆層、密着性中間被覆層、および耐摩耗性被覆層の平均層厚を上記の通りに限定した理由を説明する。
(a)密着性下地被覆層
その平均層厚が0.1μm未満では、上記の超硬工具基体と強靭性被覆層との間に所定の強固な密着性を確保することができず、一方その平均層厚が10μmを越えると、切削時に発生する高熱によって熱塑性変形を起し、切刃に偏摩耗が発生し、これが原因で摩耗進行が急激に促進されるようになることから、その平均層厚を0.1〜10μmと定めた。
(b)強靭性被覆層
その平均層厚が0.5μm未満では所望のすぐれた強靭性を確保することができず、この結果切刃に欠けやチッピング(微小欠け)が発生し易くなり、一方その層厚が15μmを越えると、上記の密着性下地被覆層の層厚と相俟って、切削時の熱塑性変形が一段と起り易くなり、これが原因の切刃偏摩耗によって使用寿命が短縮化するようになることから、その平均層厚を0.5〜15μmと定めた。
(c)密着性中間被覆層
その平均層厚が0.1μm未満では、上記の強靭性被覆層と耐摩耗性被覆層との間に強固な密着性を確保することができず、一方その平均層厚が10μmを越えると、被覆層全体の脆化を促進し、切刃に欠けやチッピングが発生し易くなることから、その平均層厚を0.1〜10μmと定めた。
(d)耐摩耗性被覆層
その平均層厚が0.5μm未満では所望のすぐれた耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると切刃に欠けやチッピングが発生し易くなることから、その平均層厚を0.5〜15μmと定めた。
【0008】
また、上記耐摩耗性被覆層におけるAlのTi、Zr、およびHfによる置換含有割合を0.02〜5原子%としたのは、その含有割合が0.02原子%未満では前記耐摩耗性被覆層に上記密着性中間被覆層との間に十分な密着性を確保することのできる圧縮残留応力を形成することができない場合が生じ、一方その含有割合が10原子%を越えると圧縮残留応力が大きくなりすぎ、切削条件によっては自己破壊を起こす場合が生じるようになるという理由にもとづくものである。
さらに、上記耐摩耗性被覆層の上に、必要に応じてTiN層を0.1〜2μmの平均層厚で形成してもよく、これはTiN層が黄金色の色調を有し、この色調によって切削工具の使用前と使用後の識別が容易になるという理由からで、この場合その層厚が0.1μm未満では前記色調の付与が不十分であり、一方前記色調の付与は2μmまでの平均層厚で十分である。
【0009】
【発明の実施の形態】
ついで、この発明の被覆超硬切削工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、1.5×108Paの圧力で圧粉体にプレス成形し、この圧粉体を真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・SPGA120408のチップ形状をもったWC基超硬合金製の超硬工具基体A−1〜A−5、およびA−8を形成した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、9.8×107Paの圧力で圧粉体にプレス成形し、この圧粉体を1.3×103Paの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120406のチップ形状をもったTiCN基サーメット製の超硬工具基体B−3、およびB−5,6を形成した。
【0010】
ついで、これら超硬工具基体A−1〜A−5、およびA−8並びにB−3、およびB−5,6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、一方カソード電極(蒸発源)として、密着性下地被覆層形成にはTiを、また強靭性被覆層形成には種々の成分組成をもったTi−Al合金をそれぞれ装着し、装置内を排気して1.3×10-3Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して2.5PaのAr雰囲気とし、この状態で超硬工具基体に−800vのパルスバイアス電圧を印加して超硬工具基体表面をArガスボンバート洗浄し、ついで装置内に反応ガスとしてメタンガスおよび窒素ガスのうちのいずれか、または両方を導入して2.5Paの反応雰囲気とすると共に、前記超硬工具基体に印加するパルスバイアス電圧を−200vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬工具基体A1〜A8およびB1〜B6のそれぞれの表面に、表3に示される目標組成および目標層厚の密着性下地被覆層および強靭性被覆層を形成することにより従来被覆超硬切削工具1〜10をそれぞれ製造した。
【0011】
ついで、これら従来被覆超硬切削工具1〜10のそれぞれの表面に、同じく図1のアークイオンプレーティング装置にて、カソード電極(蒸発源)として、密着性中間被覆層形成には種々の成分組成をもったTi−Al合金、また耐摩耗性被覆層形成にはTi、Zr、およびHfのうちの1種または2種以上を所定量含有したAl−(Ti,Zr,Hf)合金を装着し、装置内を排気して1.3×10-3Paの真空に保持しながら、ヒーターで装置内を620〜720℃の範囲内の所定の温度に加熱した状態で、超硬工具基体に印加するパルスバイアス電圧を−700Vとし、ついで装置内に反応ガスとして、密着性中間被覆層形成にはメタンガスと酸素ガス、あるいはメタンガスと窒素ガスと酸素ガス、また耐摩耗性被覆層形成には酸素ガスを導入しながら、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって表4に示される目標組成および目標層厚の密着性中間被覆層および耐摩耗性被覆層を形成することにより本発明被覆超硬切削工具1〜10をそれぞれ製造した。
【0012】
上記本発明被覆超硬切削工具1〜10の耐摩耗性被覆層を構成するAl2 3 主体層におけるTi、Zr、およびHfの含有量を、エネルギー分散型X線測定装置を用いて定量分析したところ、表5の目標含有量と実質的に同じ含有量を示し、また前記Al2 3 主体層の圧縮残留応力をX線応力測定法を用いて測定したところ、同じく表5に示される結果を示した。さらに各種被覆層の組成および層厚についてもオージェ分光分析法および光学顕微鏡にて測定したところ、表3〜5の目標組成および目標層厚と実質的に同じ組成および平均層厚(任意5ヶ所測定の平均値との比較)を示した。
【0013】
ついで、この結果得られた各種の被覆超硬切削工具のうち、本発明被覆超硬切削工具1〜および従来被覆超硬切削工具1〜について、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:260m/min.、
送り:0.3mm/rev.、
切込み:3.5mm、
切削時間:10分、
の条件での合金鋼の乾式断続高切込み切削試験、および、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
送り:0.48mm/rev.、
切込み:1.5mm、
切削時間:10分、
の条件での炭素鋼の乾式断続高送り切削試験を行ない、また本発明被覆超硬切削工具8〜10および従来被覆超硬切削工具8〜10については、
被削材:JIS・S30Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
送り:0.3mm/rev.、
切込み:3.5mm、
切削時間:10分、
の条件での炭素鋼の乾式断続高切込み切削試験、および、
被削材:JIS・SNCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min.、
送り:0.5mm/rev.、
切込み:1.5mm、
切削時間:10分、
の条件での合金鋼の乾式断続高送り切削試験を行ない、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0014】
【表1】

Figure 0003985413
【0015】
【表2】
Figure 0003985413
【0016】
【表3】
Figure 0003985413
【0017】
【表4】
Figure 0003985413
【0018】
【表5】
Figure 0003985413
【0019】
【表6】
Figure 0003985413
【0020】
【発明の効果】
表3〜6に示される結果から、本発明被覆超硬切削工具1〜10は、いずれも耐摩耗性被覆層を構成するAl2 3 主体層がAlに比してイオン半径の著しく大きいTi、Zr、およびHfのうちの1種以上を置換含有し、これによって著しく高い圧縮残留応力を保持するようになって、密着性中間被覆層を構成する(Ti,Al)CO層および(Ti,Al)CNO層に強固に密着し、一方前記密着性中間被覆層は上記の強靭性被覆層を構成する(Ti,Al)N層および(Ti,Al)CN層に対しも強固に密着するようになるので、上記の密着性下地被覆層の超硬工具基体および前記強靭性被覆層に対する強固な密着性と相俟って、鋼の断続切削を高切込みおよび高送りの重切削条件で行っても前記Al2 3 主体層に剥離の発生なく、すぐれた耐摩耗性を発揮するのに対して、従来被覆超硬切削工具1〜10は、いずれもこれの強靭性被覆層の耐摩耗性不足が原因で、上記のような苛酷な条件下では摩耗進行が速いことが明らかである。
上述のように、この発明の被覆超硬切削工具は、耐摩耗性被覆層を構成するAl2 3 主体層のもつすぐれた耐摩耗性および密着性中間被覆層に対するすぐれた密着性、さらに超硬工具基体と密着性下地被覆層、密着性下地被覆層と強靭性被覆層、および強靭性被覆層と密着性中間被覆層との間に確保されるすぐれた密着性によって、通常の条件での各種鋼の連続切削および断続切削は勿論のこと、きわめて苛酷な切削条件である断続切削を高切り込みおよび高送りの重切削条件で行っても前記Al2 3 主体層に剥離の発生なく、かつ切刃に欠けやチッピングの発生もなく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであり、切削加工の省エネ化および省力化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】 アークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide cutting tool) that has excellent wear resistance and thus exhibits excellent cutting performance over a long period of time, for example, in continuous cutting and intermittent cutting of steel. It is said).
[0002]
[Prior art]
Conventionally, in general, for example, an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown in a schematic explanatory diagram in FIG. 1 is used, and an anode electrode is heated with a heater to a temperature of, for example, 700 ° C. An arc discharge is generated between the cathode electrode (evaporation source) set with Ti for adhesion undercoat layer formation and a Ti-Al alloy with a predetermined composition for toughness cover layer formation, and at the same time reacts in the device. Nitrogen gas, or nitrogen gas and methane gas are introduced as gas, while tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet, and the anode and cathode A tool base (hereinafter collectively referred to as a carbide tool base) disposed opposite to an electrode at a predetermined interval includes, for example, a −120 V via. Ti carbide layer, nitride having an average layer thickness of 0.1 to 10 μm on the surface of the cemented carbide tool substrate under the condition that a voltage is applied, for example, as described in JP-A-62-56565. Ti, through an adhesive base coating layer composed of one single layer or two or more types of carbonitride layers (hereinafter referred to as TiC layer, TiN layer, and TiCN layer, respectively) And a composite nitride of aluminum and aluminum [hereinafter referred to as (Ti, Al) N] layer and a composite carbonitride [hereinafter referred to as (Ti, Al) CN] layer and one or two composite layers. A coated cemented carbide cutting tool produced by depositing a tough coating layer composed of layers with an average layer thickness of 0.5 to 15 μm is known.
[0003]
[Problems to be solved by the invention]
On the other hand, the FA and speeding up of cutting work in recent years are remarkable, and there are many demands for labor saving and energy saving of cutting work, and accordingly, it is strongly desired to extend the service life of cutting tools. In the case of the above conventional coated carbide cutting tool, the toughness coating layer comprising the (Ti, Al) N layer and the (Ti, Al) CN layer constituting the same has excellent strength and toughness and good chipping resistance. Although it exhibits the properties (the property that micro-chips are less likely to occur in the tool cutting edge), the wear life is not sufficient, so that the service life is reached in a relatively short time.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors, from the above viewpoint, as a result of conducting research to improve the wear resistance of the conventional coated carbide cutting tool,
(A) Attempts have been made to form an aluminum oxide layer as a hard coating layer by physical vapor deposition , and the resulting aluminum oxide layer has excellent heat resistance and high hardness. Although desirable for improvement, the aluminum oxide layer is inferior in adhesion to the (Ti, Al) N layer and (Ti, Al) CN layer constituting the conventional coated carbide cutting tool. For this reason, in the coated carbide cutting tool in which the aluminum oxide layer is formed on the surface of the conventional coated carbide cutting tool, intermittent cutting that requires a high load on the tool cutting blade is performed. When performed under heavy cutting conditions, the aluminum oxide layer is easily peeled off and cannot be put to practical use.
[0005]
(B) On the surface of the (Ti, Al) N layer and (Ti, Al) CN layer constituting the conventional coated carbide cutting tool, a composite carbonate of Ti and Al [hereinafter referred to as (Ti, Al) CO The aluminum oxide layer is formed by physical vapor deposition through one or both of a layer and a composite oxycarbonitride of Ti and Al [hereinafter referred to as (Ti, Al) CNO] layer. At this time, this is specified as an arc ion plating method which is one of physical vapor deposition methods , and for Ti, Zr, and Hf having an ion radius significantly larger than that of Al, that is, Al having an ion radius of 0.57 angstrom, One or more of Ti having an ionic radius of 0.76 angstrom, Zr of 0.87 angstrom, and Hf of 0.84 angstrom, respectively. Solid solution containing a part of Al atoms in the crystal structure of Al 2 O 3 0.01 to 10 atomic% as a percentage of the total amount of the Al, preferably in the form of substituted at a rate of 0.02 to 5 atomic% When an Al 2 O 3 based layer formed by, Al 2 O 3 based layer will always have the have the crystal structure of Al 2 O 3 of this result, Al 2 similarly formed by an arc ion plating apparatus Although the O 3 layer, that is, the Al 2 O 3 layer having a crystal structure of Al 2 O 3 , which does not partially contain Ti, Zr, and Hf , is affected by the layer thickness, it is 0.2-0. While it has a compressive residual stress of .8 GPa, it has a compressive residual stress of 1.2 to 3 GPa due to a significant increase in intra-lattice strain due to a large ion radius difference. al 2 O 3 main layers, the ( i, Al) CO layer and (Ti, Al) significantly firmly adhered to the CNO layer, and Al 2 O 3 and includes characteristics as it is held in, whereas the (Ti, Al) CO layer and (Ti, Al) Since the CNO layer has excellent adhesion to the tough coating layer composed of the (Ti, Al) N layer and (Ti, Al) CN layer, an adhesive base composed of the TiC layer, TiN layer, and TiCN layer. Combined with the excellent adhesion of the coating layer to the cemented carbide tool substrate and the toughness coating layer, the toughness coating layer deposited on the cemented carbide tool substrate via the adhesive base coating layer is further A coated cemented carbide cutting tool in which the Al 2 O 3 main layer is formed by an arc ion plating apparatus via a (Ti, Al) CO layer and a (Ti, Al) CNO layer is used for, for example, intermittent cutting of steel. , Especially tool cutting Higher even if heavy cutting conditions such as high cut and high feed-intensive without occurrence of peeling in the Al 2 O 3 based layer, to become to exert excellent wear resistance over a long term.
The research results shown in (a) and (b) above were obtained.
[0006]
This invention was made based on the above research results,
(A) In the arc ion plating apparatus, the surface of the cemented carbide tool substrate is composed of one single layer or two or more multilayers of a TiC layer, a TiN layer, and a TiCN layer; Depositing an adhesive undercoating layer having an average layer thickness of 1-10 μm;
(B) In the same arc ion plating apparatus, Ti—Al alloy is used as the cathode electrode (evaporation source) on the surface of the adhesive base coating layer, and nitrogen gas or nitrogen gas and methane gas are introduced as the reaction gas. Toughness having an average layer thickness of 0.5 to 15 μm consisting of one single layer or two types of multilayers of (Ti, Al) N layer and (Ti, Al) CN layer formed Vapor-depositable coating layer,
(C) Similarly, in the arc ion plating apparatus, a Ti—Al alloy is used as the cathode electrode (evaporation source) on the surface of the toughness coating layer, and methane gas and oxygen gas or methane gas and nitrogen gas and oxygen are used as the reaction gas. It consists of an adhesive intermediate coating layer consisting of one single layer or two multiple layers of (Ti, Al) CO layer and (Ti, Al) CNO layer formed by introducing gas, and 0 Depositing an adhesive intermediate coating layer having an average layer thickness of 1-10 μm;
(D) Further, in an arc ion plating apparatus, the surface of the adhesive intermediate coating layer is made of Al- (containing one or more of Ti, Zr, and Hf as a cathode electrode (evaporation source). (Ti, Zr, Hf) alloy , a ratio of a part of Al to the total amount of Al while maintaining the crystal structure of Al 2 O 3 formed by introducing oxygen gas as a reaction gas And an Al 2 O 3 main layer having a high compressive residual stress , containing 0.02 to 5 atomic% of Ti, Zr, and Hf in one or more of substitutional solid solution, This is characterized by a coated carbide cutting tool with excellent wear resistance, which is formed by vapor-depositing a wear-resistant coating layer having an average layer thickness of 0.5 to 15 μm.
[0007]
In the coated carbide cutting tool of the present invention, the average layer thickness of the adhesive base coating layer, the tough coating layer, the adhesive intermediate coating layer, and the wear-resistant coating layer constituting the same was limited as described above. Explain why.
(A) Adhesive undercoating layer When the average layer thickness is less than 0.1 μm, it is not possible to ensure a predetermined strong adhesion between the cemented carbide tool base and the tough coating layer, If the average layer thickness exceeds 10 μm, thermoplastic deformation occurs due to high heat generated during cutting, and uneven wear occurs on the cutting edge, which causes the wear progress to be accelerated rapidly. The thickness was determined to be 0.1 to 10 μm.
(B) Toughness coating layer If the average layer thickness is less than 0.5 μm, the desired excellent toughness cannot be ensured, and as a result, chipping and chipping (minute chipping) are likely to occur. When the layer thickness exceeds 15 μm, combined with the layer thickness of the above-mentioned adhesive base coating layer, thermoplastic deformation during cutting is more likely to occur, and the service life is shortened due to uneven wear of the cutting edge due to this. Therefore, the average layer thickness was set to 0.5 to 15 μm.
(C) Adhesive intermediate coating layer When the average layer thickness is less than 0.1 μm, it is not possible to ensure strong adhesion between the tough coating layer and the wear-resistant coating layer, while the average When the layer thickness exceeds 10 μm, embrittlement of the entire coating layer is promoted and chipping and chipping are likely to occur in the cutting edge. Therefore, the average layer thickness is set to 0.1 to 10 μm.
(D) Abrasion-resistant coating layer If the average layer thickness is less than 0.5 μm, the desired excellent wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping and chipping may occur on the cutting edge. Since it becomes easy to generate | occur | produce, the average layer thickness was set to 0.5-15 micrometers.
[0008]
The above-mentioned Al in wear-resistant coating layer Ti, Zr, and was set to 0.02 to 5 atomic% substitution content by Hf, the content is the wear-resistant coating is less than 0.02 atomic% In some cases, it is impossible to form a compressive residual stress that can ensure sufficient adhesion between the adhesive intermediate coating layer and the layer, and when the content exceeds 10 atomic%, This is based on the reason that it becomes too large, and depending on cutting conditions, self-destruction may occur .
Further, a TiN layer having an average layer thickness of 0.1 to 2 μm may be formed on the wear-resistant coating layer as necessary. This is because the TiN layer has a golden color tone. In this case, if the layer thickness is less than 0.1 μm, the application of the color tone is insufficient, whereas the application of the color tone is up to 2 μm. An average layer thickness is sufficient.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide cutting tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. , Blended in the composition shown in Table 1, wet mixed in a ball mill for 72 hours, dried, and then press-molded into a green compact at a pressure of 1.5 × 10 8 Pa. Temperature: Sintered at 1400 ° C for 1 hour, and after sintering, made of WC-based cemented carbide with honing of R: 0.05 on the cutting edge and ISO standard / SPGA120408 chip shape Cemented carbide tool bases A-1 to A-5 and A-8 were formed.
Further, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, TaC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. , And Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 9.8 × 10 7 Pa. The green compact was sintered and sintered in a nitrogen atmosphere of 1.3 × 10 3 Pa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion had an R of 0.03. Honing was performed to form carbide tool substrates B-3 and B-5 , 6 made of TiCN-based cermet having ISO standard / CNMG120406 chip shape.
[0010]
Then, these carbide tool substrates A-1 to A-5, A-8, B-3, and B-5 , 6 were ultrasonically cleaned in acetone and dried, as shown in FIG. Ti-Al alloy with various component compositions for forming an adhesive base coating layer and for forming a tough coating layer as a cathode electrode (evaporation source). Each was mounted, and the inside of the apparatus was evacuated and kept at a vacuum of 1.3 × 10 −3 Pa, and the inside of the apparatus was heated to 500 ° C. with a heater, and then Ar gas was introduced into the apparatus to obtain 2.5 Pa. In this state, a pulse bias voltage of −800 V is applied to the cemented carbide tool substrate to clean the surface of the cemented carbide tool substrate with Ar gas bombardment, and then either methane gas or nitrogen gas is used as a reaction gas in the apparatus. Or Introduces both into a reaction atmosphere of 2.5 Pa, lowers the pulse bias voltage applied to the cemented carbide tool base to −200 V, and generates an arc discharge between the cathode electrode and the anode electrode, Thus, the conventional coated carbide is formed by forming the adhesive base coating layer and the tough coating layer having the target composition and target layer thickness shown in Table 3 on the surfaces of the carbide tool bases A1 to A8 and B1 to B6. Cutting tools 1 to 10 were produced.
[0011]
Next, on the surface of each of these conventional coated carbide cutting tools 1 to 10 , various component compositions are used to form an adhesive intermediate coating layer as a cathode electrode (evaporation source) using the arc ion plating apparatus of FIG. A Ti—Al alloy with a wear resistance, and an Al— (Ti, Zr, Hf) alloy containing a predetermined amount of one or more of Ti, Zr, and Hf are mounted to form a wear-resistant coating layer. , While evacuating the apparatus and maintaining a vacuum of 1.3 × 10 −3 Pa, the apparatus is heated to a predetermined temperature in the range of 620 to 720 ° C. with a heater and applied to the carbide tool substrate. The pulse bias voltage to be applied is -700 V, then as a reaction gas in the apparatus, methane gas and oxygen gas, or methane gas and nitrogen gas and oxygen gas for forming an adhesive intermediate coating layer, or oxygen gas for forming an abrasion resistant coating layer. An arc discharge is generated between the cathode electrode and the anode electrode while introducing a gas, thereby forming an adhesive intermediate coating layer and a wear-resistant coating layer having the target composition and target layer thickness shown in Table 4. The inventive coated carbide cutting tools 1 to 10 were produced respectively.
[0012]
Quantitative analysis of Ti, Zr, and Hf contents in the Al 2 O 3 main layer constituting the wear-resistant coating layer of the above coated carbide cutting tools 1 to 10 of the present invention using an energy dispersive X-ray measuring device. When the shown target content of Table 5 substantially shows the same content and the compressive residual stress of the Al 2 O 3 based layer was measured using an X-ray stress measuring method, also shown in Table 5 Results are shown. Further, the composition and layer thickness of various coating layers were also measured by Auger spectroscopy and an optical microscope. The composition and average layer thickness (measured at five arbitrary positions) were substantially the same as the target compositions and target layer thicknesses shown in Tables 3 to 5. Comparison with the average value of
[0013]
Next, among the various coated carbide cutting tools obtained as a result, the present coated carbide cutting tools 1 to 7 and the conventional coated carbide cutting tools 1 to 7 ,
Work material: JIS / SNCM439 round direction bar with four equal intervals in the length direction,
Cutting speed: 260 m / min.
Feed: 0.3mm / rev.,
Cutting depth: 3.5mm,
Cutting time: 10 minutes,
Dry interrupted high depth cutting test of alloy steel under the conditions of, and
Work material: JIS / S50C lengthwise equal 4 round bars with vertical grooves,
Cutting speed: 280 m / min.
Feed: 0.48mm / rev.,
Cutting depth: 1.5mm,
Cutting time: 10 minutes,
The dry intermittent high feed cutting test of carbon steel under the conditions of the present invention, and for the present coated carbide cutting tool 8-10 and the conventional coated carbide cutting tool 8-10 ,
Work material: JIS / S30C lengthwise equidistant 4 round grooved round bars,
Cutting speed: 350 m / min.,
Feed: 0.3mm / rev.,
Cutting depth: 3.5mm,
Cutting time: 10 minutes,
Carbon steel dry interrupted high depth cutting test under the following conditions, and
Work material: JIS / SNCM440 lengthwise equidistant 4 round bars with vertical grooves,
Cutting speed: 320 m / min.,
Feed: 0.5mm / rev.,
Cutting depth: 1.5mm,
Cutting time: 10 minutes,
A dry intermittent high-feed cutting test was performed on the alloy steel under the above conditions, and the flank wear width of the cutting edge was measured in any of the cutting tests. The measurement results are shown in Table 6 .
[0014]
[Table 1]
Figure 0003985413
[0015]
[Table 2]
Figure 0003985413
[0016]
[Table 3]
Figure 0003985413
[0017]
[Table 4]
Figure 0003985413
[0018]
[Table 5]
Figure 0003985413
[0019]
[Table 6]
Figure 0003985413
[0020]
【The invention's effect】
From the results shown in Tables 3 to 6 , in the coated carbide cutting tools 1 to 10 of the present invention, all of the Al 2 O 3 main layer constituting the wear resistant coating layer has a significantly larger ionic radius than Al. , Zr, and Hf are substituted and contained, thereby maintaining a remarkably high compressive residual stress, and forming the adhesive intermediate coating layer (Ti, Al) CO layer and (Ti, Al) It adheres firmly to the CNO layer, while the adhesive intermediate coating layer also adheres firmly to the (Ti, Al) N layer and (Ti, Al) CN layer constituting the toughness coating layer. Therefore, coupled with the strong adhesion of the adhesive base coating layer to the carbide tool substrate and the tough coating layer, intermittent cutting of steel is performed under high cutting and high feed heavy cutting conditions. even without the occurrence of peeling in the Al 2 O 3 based layer Whereas exhibits excellent wear resistance, the conventional coated cemented carbide cutting tools 1-10, both because the wear resistance insufficient toughness coating layer which, in severe conditions, such as the It is clear that the wear progress is fast.
As described above, the coated carbide cutting tool according to the present invention has excellent wear resistance of the Al 2 O 3 main layer constituting the wear resistant coating layer and excellent adhesion to the adhesive intermediate coating layer. Due to the excellent adhesion secured between the hard tool substrate and the adhesive base coating layer, the adhesive base coating layer and the tough coating layer, and the toughness coating layer and the adhesive intermediate coating layer, under normal conditions Not only continuous cutting and intermittent cutting of various steels, but also the severe cutting conditions of intermittent cutting under high cutting and high feed heavy cutting conditions, the Al 2 O 3 main layer does not peel, and It shows excellent wear resistance without chipping or chipping on the cutting edge, and exhibits excellent cutting performance over a long period of time. is there.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an arc ion plating apparatus.

Claims (1)

(a)アークイオンプレーティング装置にて、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、カソード電極(蒸発源)としてTiを用い、反応ガスとしてメタンガスおよび窒素ガスのうちのいずれか、または両方を導入して形成されたTiの炭化物層、窒化物層、および炭窒化物層のうちの1種の単層または2種以上の複層からなり、かつ、0.1〜10μmの平均層厚を有する密着性下地被覆層を蒸着し、
(b)同じくアークイオンプレーティング装置にて、上記密着性下地被覆層の表面に、カソード電極(蒸発源)としてTi−Al合金を用い、反応ガスとして窒素ガス、または窒素ガスとメタンガスを導入して形成されたTiとAlの複合窒化物層および複合炭窒化物層のうちの1種の単層または2種の複層からなり、かつ、0.5〜15μmの平均層厚を有する強靭性被覆層を蒸着し、
(c)同じくアークイオンプレーティング装置にて、上記強靭性被覆層の表面に、カソード電極(蒸発源)としてTi−Al合金を用い、反応ガスとしてメタンガスと酸素ガス、またはメタンガスと窒素ガスと酸素ガスを導入して形成されたTiとAlの複合炭酸化物層および複合炭窒酸化物層のうちの1種の単層または2種の複層からなり、かつ、0.1〜10μmの平均層厚を有する密着性中間被覆層を蒸着し、
(d)さらにアークイオンプレーティング装置にて、上記密着性中間被覆層の表面に、カソード電極(蒸発源)としてTi、Zr、およびHfのうちの1種または2種以上を含有したAl−(Ti,Zr,Hf)合金を用い、反応ガスとして酸素ガスを導入して形成された、Al 2 のもつ結晶構造を保持したままで、Alの一部をAlとの合量に占める割合で0.02〜5原子%のTi、Zr、およびHfのうちの1種または2種以上で置換固溶含有してなる、高い圧縮残留応力を有するAl2 主体層からなり、かつ、0.5〜15μmの平均層厚を有する耐摩耗性被覆層を蒸着してなる、耐摩耗性のすぐれた表面被覆超硬合金製切削工具。
(A) In an arc ion plating apparatus, Ti is used as a cathode electrode (evaporation source) on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and methane gas and nitrogen as reaction gases A single layer or two or more layers of a carbide layer, nitride layer, and carbonitride layer of Ti formed by introducing one or both of gases; and Depositing an adhesive undercoating layer having an average layer thickness of 0.1 to 10 μm;
(B) In the same arc ion plating apparatus, Ti—Al alloy is used as the cathode electrode (evaporation source) on the surface of the adhesive base coating layer, and nitrogen gas or nitrogen gas and methane gas are introduced as the reaction gas. Toughness having an average layer thickness of 0.5 to 15 μm, consisting of one single layer or two types of multilayers of Ti and Al composite nitride layer and composite carbonitride layer formed Deposit a coating layer,
(C) Similarly, in the arc ion plating apparatus, a Ti—Al alloy is used as the cathode electrode (evaporation source) on the surface of the toughness coating layer, and methane gas and oxygen gas or methane gas and nitrogen gas and oxygen are used as the reaction gas. An average layer of 0.1 to 10 μm composed of one single layer or two types of multiple layers of a composite carbonate layer of Ti and Al and a composite carbonitride layer formed by introducing gas Depositing an adhesive intermediate coating layer having a thickness;
(D) Further, in an arc ion plating apparatus, the surface of the adhesive intermediate coating layer is made of Al- (containing one or more of Ti, Zr, and Hf as a cathode electrode (evaporation source). (Ti, Zr, Hf) alloy , which is formed by introducing oxygen gas as a reaction gas, while maintaining the crystal structure of Al 2 O 3 , and a ratio of a part of Al to the total amount of Al And an Al 2 O 3 main layer having a high compressive residual stress , containing 0.02 to 5 atomic% of Ti, Zr, and Hf in one or more of substitutional solid solution, A surface-coated cemented carbide cutting tool having excellent wear resistance, which is formed by vapor-depositing a wear-resistant coating layer having an average layer thickness of 0.5 to 15 µm.
JP2000030086A 2000-02-08 2000-02-08 Cutting tool made of surface-coated cemented carbide with excellent wear resistance Expired - Fee Related JP3985413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030086A JP3985413B2 (en) 2000-02-08 2000-02-08 Cutting tool made of surface-coated cemented carbide with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030086A JP3985413B2 (en) 2000-02-08 2000-02-08 Cutting tool made of surface-coated cemented carbide with excellent wear resistance

Publications (2)

Publication Number Publication Date
JP2001219306A JP2001219306A (en) 2001-08-14
JP3985413B2 true JP3985413B2 (en) 2007-10-03

Family

ID=18555147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030086A Expired - Fee Related JP3985413B2 (en) 2000-02-08 2000-02-08 Cutting tool made of surface-coated cemented carbide with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3985413B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283478A (en) * 2006-03-24 2007-11-01 Sumitomo Electric Ind Ltd Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2001219306A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP3451877B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3985413B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance
JP2926883B2 (en) Surface-coated hard member with excellent wear resistance
JP2001322003A (en) Surface coated tungsten carbide group cemented carbide cutting tool having physically depositing hard coating layer with excellent chipping resistance
JP3985410B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance
JP2001322006A (en) Surface coated cemented carbide cutting tool with excellent wear resistance
JP3985411B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP3985412B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance
JP2001322004A (en) Surface coated cemented carbide cutting tool with excellent wear resistance
JP2926882B2 (en) Surface-coated hard member with excellent wear resistance
JP2001322005A (en) Surface coated cemented carbide cutting tool with excellent wear resistance
JP3451878B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2001179503A (en) Surface coated-thermet cutting tool having blade face of low frictional resistance to chip
JP2001322007A (en) Surface coated cemented carbide cutting tool with excellent wear resistance
JP3451857B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3397058B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4019345B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3397060B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3397063B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JPH111764A (en) Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JPH10140328A (en) Cutting tool made of surface coated cemented carbide excellent in wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3985413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees