JP2004181349A - 汚泥処理装置及び汚泥処理方法 - Google Patents

汚泥処理装置及び汚泥処理方法 Download PDF

Info

Publication number
JP2004181349A
JP2004181349A JP2002351320A JP2002351320A JP2004181349A JP 2004181349 A JP2004181349 A JP 2004181349A JP 2002351320 A JP2002351320 A JP 2002351320A JP 2002351320 A JP2002351320 A JP 2002351320A JP 2004181349 A JP2004181349 A JP 2004181349A
Authority
JP
Japan
Prior art keywords
sludge
separated
sewage
alkali
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351320A
Other languages
English (en)
Inventor
Tomoaki Omura
友章 大村
Ryohei Ueda
良平 植田
Nobuyuki Ukai
展行 鵜飼
Yoichi Kawaguchi
洋一 川口
Tomomichi Ekusa
知通 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002351320A priority Critical patent/JP2004181349A/ja
Publication of JP2004181349A publication Critical patent/JP2004181349A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】汚水を活性汚泥で分解処理して発生した余剰汚泥を効率よく可溶化させると共に減量化することができる汚泥処理装置及び汚泥処理方法を提供する。
【解決手段】本発明は、汚水に含まれている有機物を微生物により浄化する汚水処理で発生する汚泥を処理する汚泥処理装置1であって、汚水と活性汚泥を混合して混合液としこの混合液を曝気して汚水を分解処理する活性汚泥反応槽2と、この活性汚泥反応槽2によって分解処理された処理液を固液分離させて上澄液と分離汚泥とに分離する沈殿槽4と、この固液分離した分離汚泥4bの一部または全部をプラグフロー雰囲気中で破砕するアニュラー型媒体攪拌式ミル8と、このアニュラー型媒体攪拌式ミル8によって破砕された粉砕汚泥を活性汚泥反応槽2に返送する返送装置と、を有することを特徴としている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥処理装置及び汚泥処理方法に係り、特に、汚水に含まれている有機物を微生物により浄化する汚水処理で発生する汚泥を処理する汚泥処理装置及び汚泥処理方法に関する。
【0002】
【従来の技術】
一般に、汚水に含まれている有機物を微生物により浄化する活性汚泥法による汚水処理では大量の余剰汚泥が発生するが、この余剰汚泥を減量化することが従来から課題となっている。
従来の活性汚泥法による余剰汚泥処理においては、例えば、特許文献1に記載されているような処理装置が知られている。
この従来の余剰汚泥処理装置を図6及び図7により具体的に説明する。図6に示すように、従来の余剰汚泥処理装置50は、微生物を含む活性汚泥と汚水を混合して混合液とし、この混合液を空気により曝気し、汚水を微生物の接触酸化作用により分解処理する活性汚泥反応槽52を備え、さらに、この活性汚泥反応槽52で分解処理された処理液を固液分離させて上澄液と分離汚泥とに分離する沈殿槽54を備えている。この沈殿槽54の上澄液54aは消毒液等で殺菌処理され処理水として外部に排水されるようになっている。
一方、沈殿槽54の分離汚泥54bは、その一部が分離汚泥返送装置55によって返送汚泥としてそのまま活性汚泥反応槽52に返送され、分離汚泥のうちの返送汚泥以外の残部は、余剰汚泥としてサンドミル56に供給される。
【0003】
図7は、従来の余剰汚泥処理装置に使用されるサンドミル56の一例を示す。図7に示すように、サンドミル56は、固定したミル容器58を備え、この容器58内には攪拌翼を備えたロータ60が設けられている。また、この容器58内にはボール、ビーズ等の微小剛体からなる粉砕媒体(以下「メディア」と呼ぶ)(図示せず)と沈殿槽54からの被破砕物である余剰汚泥(図示せず)とが収容される。ロータ60が回転し、メディアがロータ60によって激しく攪拌されると、メディア間の衝撃、せん断、及び摩擦によって余剰汚泥が破砕され、可溶化される。このサンドミル56によって破砕された汚泥は、活性汚泥槽52に返送されて分解処理される。
【0004】
【特許文献1】
特開2000−325983号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来の余剰汚泥処理装置50においては、サンドミル56のロータ60が板状や棒状であるため、このロータ60とメディア間に挟まれたロータ60の攪拌翼近傍の被粉砕物のみにせん断力が作用し、このため、ミル容器58内の被破砕物全体に対してせん断力を均一に与えることができないという問題がある。
また、従来の余剰汚泥処理装置50では、サンドミル56のミル容器58内でメディアと余剰汚泥が完全混合に近い状態となり、ショートパスも生じ、メディアも壊れやすい。このため、破砕後の余剰汚泥の粒度分布が幅広く、サブミクロン領域までの微粉砕処理が困難であり、余剰汚泥の可溶化にも限界があるという問題もある。
さらに、従来の余剰汚泥処理装置50では、サンドミル56のミル容器58内に高粘度の余剰汚泥が流入した場合、汚泥及びメディアがロータ60と一緒に供回りするため破砕が困難であるという問題もある。
そこで、本発明は、上述した従来技術の問題を解決するためになされたものであり、汚水を活性汚泥で分解処理して発生した余剰汚泥を効率よく可溶化させると共に減量化することができる汚泥処理装置及び汚泥処理方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、汚水に含まれている有機物を微生物により浄化する汚水処理で発生する汚泥を処理する汚泥処理装置であって、汚水と活性汚泥を混合して混合液としこの混合液を曝気して汚水を分解処理する活性汚泥反応槽と、この活性汚泥反応槽によって分解処理された処理液を沈殿させて上澄液と分離汚泥とに分離する沈殿槽と、この沈殿槽内の沈殿した分離汚泥の一部または全部をプラグフロー雰囲気中で破砕する破砕手段と、この破砕手段によって破砕された分離汚泥を上記活性汚泥反応槽に返送する返送手段と、を有することを特徴としている。
【0007】
また、本発明において、好ましくは、破砕手段は、ステーターと、このステータ内に設けられ、ステータの中心軸と同一の中心軸のまわりを回転するロータと、これらのステータとロータとにより形成されたプラグ状の粉砕室と、この粉砕室に収容された粉砕媒体と、を有する。
また、本発明において、好ましくは、沈殿槽と破砕手段との間には、沈殿槽内の沈殿した分離汚泥を予備的に分解する予備分解手段が設けられている。
また、本発明において、好ましくは、予備分解手段は、分離汚泥が破砕手段によって破砕される前にこの分離汚泥にアルカリ又は酸化剤を添加する。
また、本発明において、好ましくは、予備分解手段は、分離汚泥が破砕手段によって破砕される時にこの分離汚泥にアルカリ又は酸化剤を添加してもよい。
【0008】
また、本発明において、好ましくは、予備分解手段は、分離汚泥が破砕手段によって破砕される前に分離汚泥に酸又はアルカリを交互に添加する添加手段を備えていてもよい。
また、本発明において、好ましくは、更に、破砕手段と返送手段との間には、破砕手段が破砕した分離汚泥を酸又はアルカリ条件に保持する酸又はアルカリ条件保持手段が設けられている。
また、本発明において、好ましくは、更に、酸又はアルカリ条件保持手段と返送手段との間には、酸又はアルカリ条件保持手段でそれぞれ保持した分離汚泥を混合する混合手段が設けられている。
また、本発明において、好ましくは、添加手段は、pHが約4以下の酸又はpHが約11以上のアルカリを上記分離汚泥に少なくとも1回ずつ交互に約10分〜約120分間添加する。
また、本発明において、好ましくは、酸又はアルカリ条件保持手段は、上記分離汚泥を酸又はアルカリ条件に約30分〜約300分間保持する。
【0009】
さらに、本発明は、汚水に含まれている有機物を微生物により浄化する汚水処理で発生する汚泥を処理する汚泥処理方法であって、活性汚泥反応槽にて汚水と活性汚泥を混合して混合液としこの混合液を曝気して汚水を分解処理する汚水分解処理工程と、この分解処理された処理液を固液分離させて上澄液と分離汚泥とに分離する分離工程と、この沈殿槽内の沈殿した分離汚泥の一部または全部をプラグフロー雰囲気中で破砕する破砕工程と、破砕した分離汚泥を上記活性汚泥反応槽に返送する返送工程と、を有することを特徴としている。
【0010】
【発明の実施の形態】
以下、添付図面を参照して本発明の汚泥処理装置及び汚泥処理方法の実施形態について説明する。
図1は、本発明の第1実施形態による汚泥処理装置を示す全体構成図である。この図1に示すように、本発明の第1実施形態による汚泥処理装置1は、活性汚泥反応槽2を備え、この活性汚泥反応槽2が、主として細菌類等の低級微生物を含む活性汚泥と汚水を混合して混合液とし、この混合液を空気により曝気し、汚水を微生物の接触酸化作用により分解処理するようになっている。
また、汚泥処理装置1は、活性汚泥反応槽2の下流側には沈殿槽4を備え、この沈殿槽4が、活性汚泥反応槽2で分解処理された処理液を固液分離させて上澄液4aと分離汚泥4bとに分離し、上澄液4aを処理水として排水するようになっている。分離汚泥4bの一部は、分離汚泥返送装置5によって返送汚泥としてそのまま活性汚泥反応槽2に返送されるようになっている。
【0011】
さらに、汚泥処理装置1は、沈殿槽4の下流側にアルカリ又は酸化剤添加装置6を備え、このアルカリ又は酸化剤添加装置6が、沈殿槽4の分離汚泥4bのうちの返送汚泥以外の残部(余剰汚泥)にNaOH等のアルカリ又はO、H等の酸化剤のうちの少なくとも何れか一方を添加するようなっている。
また、汚泥処理装置1は、アルカリ又は酸化剤添加装置6の下流側にアニュラー型媒体攪拌式ミル8(以下「アニュラー型ミル」と呼ぶ)(詳細は後述する)を備え、このアニュラー型ミル8がアルカリ又は酸化剤添加装置6によってアルカリ又は酸化剤が添加された分離汚泥7を微粉砕するようになっている。このアニュラー型ミル8によって微粉砕された分離汚泥9は、ポンプ(図示せず)等の装置によって活性汚泥反応槽2に返送され、汚水の分解処理に再利用されるようになっている。
【0012】
図2は、アニュラー型ミルの概略断面図である。つぎに、この図2により、アニュラー型ミル8を詳細に説明する。
図2に示すように、アニュラー型ミル8は、固定配置された環状のステータ10と、このステータ10の中心軸線11と同一の中心軸線のまわりを回転するロータ12と、を備えている。このステータ10とロータ12とにより形成された空間にはプラグ状の粉砕室13が形成され、この粉砕室13内には粉砕媒体であるボール、ビーズ等のメディア14が充填され、流動するようになっている。ここで、メディア14の粒径は、好ましくは、約0.3mm〜約2.0mmである。
また、ステータ10は、汚泥供給部16と、汚泥流入口16aと、メディア・粉砕汚泥セパレータ18と、粉砕汚泥流出口18aと、粉砕汚泥排出部20と、を備えている。アルカリ又は酸化剤添加装置6によってアルカリ又は酸化剤が添加された分離汚泥7は、この汚泥供給部16に送られ、汚泥流入口16aから粉砕室13内に実線矢印22の方向に流入するようになっている。
【0013】
さらに、ロータ12は、軸線11を中心に回転するようになっていて、汚泥流入口16aから粉砕室13に流入した分離汚泥7は、ロータ12の回転によってメディア14と共に実線矢印24の方向に流動するようになっている。そして、この分離汚泥7は、粉砕室13の中を流動しながらメディア14間に生ずる衝撃、せん断、及び摩擦等によって微粉砕されるようになっている。
この微粉砕された粉砕汚泥9は、メディア・粉砕汚泥セパレータ18まで流動した後、メディア・粉砕汚泥セパレータ18によってメディア14と分離されるようになっている。このメディア・粉砕汚泥セパレータ18は、例えば、粒径が約0.3mmの微小なメディア14でも分離できるようになっている。
このメディア・粉砕汚泥セパレータ18によって分離された粉砕汚泥9は、粉砕汚泥流出口18aから流出し、粉砕汚泥排出部20から最終的には活性汚泥反応槽2に返送されるようになっている。
また、ロータ12はメディア循環通路26を備え、メディア・粉砕汚泥セパレータ18によって分離されたメディア14がこのメディア循環通路26を通過し、粉砕室13の汚泥流入口16a付近に送られ、粉砕室13内を破線矢印28の方向に循環するようになっている。
【0014】
つぎに、上述した本発明の第1実施形態の汚泥処理装置1による汚泥処理方法(動作)を説明する。まず、下水等の汚水が、細菌類等の低級微生物を含む活性汚泥を収容した活性汚泥反応槽2内に流入し、活性汚泥と汚水との混合液となる。この混合液は活性汚泥反応槽2内で曝気され、微生物の接触酸化作用により混合液が分解処理され、沈殿槽4で貯水される。
沈殿槽4内に貯水された水は、その余剰汚泥分が沈殿し、上澄液4aと分離汚泥4bとに分離され、この上澄液4aは処理水として外部に排水された後、消毒処理等で浄化される。
一方、沈殿槽4で沈殿した分離汚泥4bは、一部が分離汚泥返送装置5によって返送汚泥としてそのまま活性汚泥反応槽2に返送される。また、分離汚泥4bのうちの返送汚泥以外の残部(余剰汚泥)は、アルカリ又は酸化剤添加装置6に送られ、ここでNaOH等のアルカリ又はO、H等の酸化剤のうちの少なくとも何れか一方が分離汚泥4bに添加される。この分離汚泥4bに添加されたアルカリ又は酸化剤は、余剰汚泥のフロック形成の要因である多糖成分を分解したり、分離汚泥4b中に含まれる微生物菌体の細胞壁を部分的に破壊したりする。
【0015】
つぎに、アルカリ又は酸化剤添加装置6によって処理された分離汚泥7は、アニュラー型ミル8の汚泥供給部16に送られる。汚泥供給部16の分離汚泥7は、汚泥流入口16aからステータ10とロータ12との間の粉砕室13内に実線矢印22の方向に流入する(図2参照)。
分離汚泥7が汚泥流入口16aから粉砕室13内に流入すると、ロータ12が回転し、粉砕室13内に実線矢印24方向のプラグフローが形成され、分離汚泥7はメディア14と共に粉砕室13内を矢印24方向に流動する。このプラグフローによって、メディア14同士がぶつかり合ったり、擦れ合ったりしてメディア14間にせん断力が生じ、このせん断力で分離汚泥7がサブミクロン領域まで微粉砕される。
上述したように、本実施形態の汚泥処理装置1によれば、アルカリ又は酸化剤添加装置6においてアルカリ又は酸化剤が破砕前の分離汚泥7を予備的に分解処理しているので、粉砕室13内における分離汚泥7の分散及び粉砕を促進することができる。
【0016】
つぎに、粉砕室13内で微粉砕された粉砕汚泥9は、メディアと共にメディア・粉砕汚泥セパレータ18まで流動し、このセパレータ18で粉砕汚泥9とメディア14が分離される。
このメディア・粉砕汚泥セパレータ18によって分離された粉砕汚泥9は、粉砕汚泥流出口18aから流出し、粉砕汚泥排出部20から可溶化された汚泥として、ポンプ(図示せず)等によって最終的に活性汚泥反応槽2内に返送される。
一方、メディア・粉砕汚泥セパレータ18によって分離されたメディア14は、メディア循環通路26を通過して、粉砕室13の汚泥流入口16a付近に送られ、粉砕室13内を破線矢印28の方向に循環し、つぎの粉砕工程に利用される。
【0017】
上述したように、本実施形態の汚泥処理装置1のアニュラー型ミル8によれば、メディア・粉砕汚泥セパレータ18によって、例えば、粒径が0.3mmの微小なメディア14を使用しても粉砕汚泥9とメディア14とに分離して、メディア14を粉砕室13内で再循環させることができ、従来のサンドミル56よりも微小なメディアを使用することができる。
また、上述したように、本実施形態の汚泥処理装置1のアニュラー型ミル8によれば、ステータ10とロータ12との空間に設けられた粉砕室13がメディア14と分離汚泥7を密に収容し、ロータ12の回転によって粉砕室13内全体をプラグフロー雰囲気にすることで、メディア14及び分離汚泥7に破砕に要するエネルギーを有効に作用させることができる。このため、ロータ60の攪拌翼近傍の被粉砕物のみにせん断力が作用する従来のサンドミル56に比べ、分離汚泥7を均一なせん断力で効率よく粉砕することができる。
さらに、本実施形態の汚泥処理装置1のアニュラー型ミル8によれば、粉砕室13内全体のプラグフローにより、従来のサンドミル56に比べてショートパスを生ずることが少なく、メディアも壊れにくい。このため、均一なせん断力で分離汚泥7を粉砕するので、粉砕後の汚泥についてもシャープな粒度分布が得られ、分離汚泥7をサブミクロン領域まで微粒化粉砕でき、汚泥の可溶化を促進することができる。
また、本実施形態の汚泥処理装置1のアニュラー型ミル8によれば、粉砕室13内全体のプラグフローにより、メディア14が粉砕室13内を循環するため、余剰汚泥の粘度にかかわず粉砕処理が容易となる。
【0018】
なお、本実施形態では、余剰汚泥をアニュラー型ミル8で粉砕する前処理として、アルカリ又は酸化剤添加装置6が分離汚泥にアルカリ又は酸化剤を添加して、予備的に分解処理する例を説明したが、これらの例に限定されず、分離汚泥にアルカリ又は酸化剤を添加しながら、同時にアニュラー型ミルで破砕を行ってもよい。
【0019】
つぎに、図3乃至図5を参照して本発明の汚泥処理装置及び汚泥処理方法の第2実施形態について説明する。
図3は、本発明の第2実施形態による汚泥処理装置を示す全体構成図である。ここで、図3において、上述したような図1に示す本発明の第1実施形態と同一の部分には同一の符号を付し、それらの説明は省略する。
図3に示すように、本発明の第2実施形態による汚泥処理装置30は、沈殿槽4の下流側に酸又はアルカリ交互添加装置32を備え、この酸又はアルカリ交互添加装置32が分離汚泥4bに硫酸(HSO)等の酸と苛性ソーダ(NaOH)等のアルカリのそれぞれ片方ずつを時間をずらして交互に添加するようになっている点で第1実施形態と異なっている。
【0020】
また、汚泥処理装置30は、第1実施形態と同様なアニュラー型ミル8の下流側に酸条件保持装置34と、アルカリ条件保持装置36と、を備えている。
酸条件保持装置34は、酸又はアルカリ交互添加装置32によって酸が添加され、アニュラー型ミル8で粉砕された粉砕汚泥9を酸条件下で所定時間、好ましくは、約30分〜約300分間保持するようになっている。
アルカリ条件保持装置36は、酸又はアルカリ交互添加装置32によってアルカリが添加され、アニュラー型ミル8で粉砕された粉砕汚泥9をアルカリ条件下で所定時間、好ましくは、約30分〜約300分間保持するようになっている。
さらに、汚泥処理装置30は、混合装置38を備え、この混合装置38が、酸条件保持装置34又はアルカリ条件保持装置36でそれぞれ保持した汚泥35,37を混合し、所定時間、好ましくは、1分以内で汚泥35,37に含まれる酸及びアルカリ成分を中和させるようになっている。この中和された汚泥39は、ポンプ(図示せず)等によって活性汚泥反応槽2に返送されて汚水の分解処理に再利用されるようになっている。
【0021】
つぎに、上述した本発明の第2実施形態の汚泥処理装置1による汚泥処理方法(動作)を説明する。
沈殿槽4で沈殿した分離汚泥4bは、一部が分離汚泥返送装置5によって返送汚泥としてそのまま活性汚泥反応槽2に返送される。また、汚泥4bのうちの返送汚泥以外の残部(余剰汚泥)は、酸又はアルカリ交互添加装置32に送られ、この酸又はアルカリ交互添加装置32によって酸又はアルカリのそれぞれが片方ずつ時間をずらして交互に添加され、分離汚泥4bは酸又はアルカリと混合した汚泥33となる。
ここで、図4に酸又はアルカリ交互添加装置が酸又はアルカリを分離汚泥に交互に添加する時間と添加量との関係の一例を示す。図4に示すように、酸は、好ましくは、pHが約4以下であり、約10分〜約120分間添加され、アルカリは、好ましくは、pHが約11以上であり、約10分〜約120分間添加され、酸又はアルカリの何れか一方の添加が終わると、約1分以内の間隔で、他方の添加が行われ、酸又はアルカリの添加とも少なくとも1回ずつ交互に行われる。
なお、これらの交互添加の条件は限定されず、酸又はアルカリ交互添加装置32に供給される汚泥粘度や汚泥濃度等の汚泥状態に応じて適宜条件を変更してもよい。
【0022】
つぎに、酸又はアルカリ交互添加装置32で酸又はアルカリと混合された分離汚泥33は、酸又はアルカリによって余剰汚泥のフロック形成の要因である多糖成分が分解されたり、余剰汚泥中に含まれる微生物菌体の細胞壁が部分的に破壊されたりしながら、アニュラー型ミル8の粉砕室13に供給される。このとき、粉砕室13の分離汚泥33は、酸又はアルカリが時間を置いて交互に添加されており、第1実施形態においても説明したように、プラグフローの状態にあるため、従来のサンドミル56を使用した場合に比べて、破砕が行われるまでは汚泥中に含まれる酸とアルカリが混合することはきわめて少ない。
アニュラー型ミル8で分離汚泥33の粉砕が行われると、粉砕された汚泥9は、酸又はアルカリ交互添加装置32で酸が添加されている汚泥については酸条件保持装置34に送られ、酸条件下で所定時間、好ましくは、約30分〜約300分間保持される。一方、酸又はアルカリ交互添加装置32でアルカリが添加されている汚泥についてはアルカリ条件保持装置36に送られ、アルカリ条件下で所定時間、好ましくは、約30分〜約300分間それぞれ保持される。これらの酸又はアルカリ条件下で保持された粉砕汚泥9では、ミル破砕によって生じた傷口に酸又はアルカリが侵入し、さらに微粒化分散及び微粒化粉砕が行われ、より可溶化が促進される。
酸又はアルカリ条件下で保持した後の微粉砕汚泥35,37は、混合装置38によって混合され、汚泥35,37に含まれる酸及びアルカリ成分が所定時間、好ましくは、1分以内で中和される。中和された微粉砕汚泥39は、可溶化汚泥としてポンプ(図示せず)等によって活性汚泥反応槽2に返送され、生物処理される。
【0023】
つぎに、図5は、本発明の第2実施形態による汚泥処理装置を使用した場合の余剰汚泥の可溶化率の結果の一例である。図5は、比較のため、従来のサンドミル56を使用した場合と、本実施形態の汚泥処理装置30において破砕前の余剰汚泥に酸又はアルカリを添加しない場合、酸又はアルカリを交互添加した場合をそれぞれ示している。
図5に示すように、本実施形態による汚泥処理装置30によれば、アニュラー型ミル8を使用するのみでも、従来のサンドミル56よりも可溶化率を約1.5倍程度向上させることができ、さらに、酸又はアルカリの化学処理とアニュラー型ミル8の破砕処理を併用することによって、従来のサンドミル56よりも可溶化率を約3倍程度向上させることができる。
【0024】
【発明の効果】
以上説明したように本発明の汚泥処理装置及び汚泥処理方法によれば、汚水を活性汚泥で分解処理して発生した余剰汚泥を効率よく可溶化させると共に減量化することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による汚泥処理装置を示す全体構成図である。
【図2】本発明の一実施形態による汚泥処理装置のアニュラー型ミルを示す概略断面図である。
【図3】本発明の第2実施形態による汚泥処理装置を示す全体構成図である。
【図4】酸又はアルカリ交互添加装置が酸又はアルカリを余剰汚泥に交互に添加する時間と添加量との関係の一例を示すグラフである。
【図5】本発明の第2実施形態による汚泥処理装置を使用した場合の余剰汚泥の可溶化率の結果の一例である。
【図6】従来の汚泥処理装置を示す構成図である。
【図7】従来の汚泥処理装置に使用されるサンドミルの一例を示す概略図である。
【符号の説明】
1,30 汚泥処理装置
2 活性汚泥反応槽
4 沈殿槽
4a 上澄液
4b 分離汚泥
6 アルカリ又は酸化剤添加装置
8 アニュラー型ミル
10 ステータ
12 ロータ
13 粉砕室
14 メディア
16 汚泥供給部
16a 汚泥流入口
18 メディア・粉砕汚泥セパレータ
18a 粉砕汚泥流出口
20 粉砕汚泥排出部
26 メディア循環通路
32 酸又はアルカリ交互添加装置
34 酸条件保持装置
36 アルカリ条件保持装置
38 混合装置

Claims (11)

  1. 汚水に含まれている有機物を微生物により浄化する汚水処理で発生する汚泥を処理する汚泥処理装置であって、
    汚水と活性汚泥を混合して混合液としこの混合液を曝気して汚水を分解処理する活性汚泥反応槽と、
    この活性汚泥反応槽によって分解処理された処理液を固液分離させて上澄液と分離汚泥とに分離する沈殿槽と、
    この固液分離した上記分離汚泥の一部または全部をプラグフロー雰囲気中で破砕する破砕手段と、
    この破砕手段によって破砕された上記分離汚泥を上記活性汚泥反応槽に返送する返送手段と、
    を有することを特徴とする汚泥処理装置。
  2. 上記破砕手段は、ステーターと、このステータ内に設けられ、ステータの中心軸と同一の中心軸のまわりを回転するロータと、これらのステータとロータとにより形成されたプラグ状の粉砕室と、この粉砕室に収容された粉砕媒体と、を有する請求項1記載の汚泥処理装置。
  3. 上記沈殿槽と上記破砕手段との間には、上記分離汚泥を予備的に分解する予備分解手段が設けられている請求項1又は請求項2に記載の汚泥処理装置。
  4. 上記予備分解手段は、分離汚泥が上記破砕手段によって破砕される前にこの分離汚泥にアルカリ又は酸化剤を添加する請求項1乃至請求項3の何れか1項に記載の汚泥処理装置。
  5. 上記予備分解手段は、分離汚泥が上記破砕手段によって破砕される時にこの分離汚泥にアルカリ又は酸化剤を添加する請求項1乃至請求項3の何れか1項に記載の汚泥処理装置。
  6. 上記予備分解手段は、上記分離汚泥が上記破砕手段によって破砕される前に上記分離汚泥に酸又はアルカリを交互に添加する添加手段を備えている請求項1乃至請求項3の何れか1項に記載の汚泥処理装置。
  7. 上記破砕手段と上記返送手段との間には、上記破砕手段が破砕した上記分離汚泥を酸又はアルカリ条件に保持する酸又はアルカリ条件保持手段が設けられている請求項1又は請求項6に記載の汚泥処理装置。
  8. 上記酸又はアルカリ条件保持手段と上記返送手段との間には、上記酸又はアルカリ条件保持手段でそれぞれ保持した分離汚泥を混合する混合手段が設けられている請求項1又は請求項7に記載の汚泥処理装置。
  9. 上記添加手段は、pHが約4以下の酸又はpHが約11以上のアルカリを上記分離汚泥に少なくとも1回ずつ交互に約10分〜約120分間添加する請求項6記載の汚泥処理装置。
  10. 上記酸又はアルカリ条件保持手段は、上記分離汚泥を酸又はアルカリ条件に約30分〜約300分間保持する請求項7記載の汚泥処理装置。
  11. 汚水に含まれている有機物を微生物により浄化する汚水処理で発生する汚泥を処理する汚泥処理方法であって、
    活性汚泥反応槽にて汚水と活性汚泥を混合して混合液としこの混合液を曝気して汚水を分解処理する汚水分解処理工程と、
    この分解処理された処理液を固液分離させて上澄液と分離汚泥とに分離する分離工程と、
    この沈殿槽内の沈殿した上記分離汚泥の一部または全部をプラグフロー雰囲気中で破砕する破砕工程と、
    上記破砕した分離汚泥を上記活性汚泥反応槽に返送する返送工程と、
    を有することを特徴とする汚泥処理方法。
JP2002351320A 2002-12-03 2002-12-03 汚泥処理装置及び汚泥処理方法 Pending JP2004181349A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351320A JP2004181349A (ja) 2002-12-03 2002-12-03 汚泥処理装置及び汚泥処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351320A JP2004181349A (ja) 2002-12-03 2002-12-03 汚泥処理装置及び汚泥処理方法

Publications (1)

Publication Number Publication Date
JP2004181349A true JP2004181349A (ja) 2004-07-02

Family

ID=32753267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351320A Pending JP2004181349A (ja) 2002-12-03 2002-12-03 汚泥処理装置及び汚泥処理方法

Country Status (1)

Country Link
JP (1) JP2004181349A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212581A (ja) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd 有機性廃棄物の処理方法
JP2008207065A (ja) * 2007-02-23 2008-09-11 Petroleum Energy Center 有機性排水の処理方法
JP2008207064A (ja) * 2007-02-23 2008-09-11 Petroleum Energy Center 有機性排水の処理方法
JP2008207066A (ja) * 2007-02-23 2008-09-11 Petroleum Energy Center 有機性排水の処理方法
CN102603131A (zh) * 2011-01-25 2012-07-25 上海市政工程设计研究总院(集团)有限公司 旋流式通沟污泥淘洗分离装置及其污泥淘洗预处理方法
CN103922553A (zh) * 2014-04-29 2014-07-16 章琳茂 一种从污泥中制备原料油的方法
CN104671400A (zh) * 2015-02-10 2015-06-03 张晓荣 一种液体沉淀物提取装置
CN104973742A (zh) * 2015-07-17 2015-10-14 上海康恒环境股份有限公司 一种通沟污泥淘洗分离系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211297A (ja) * 1988-09-16 1990-08-22 Fujita Corp 汚泥の処理方法
JPH02293095A (ja) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd 有機性汚水の処理方法
JPH0628745B2 (ja) * 1987-05-18 1994-04-20 ドライスヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング 撹拌式粉砕機
JPH0824694A (ja) * 1994-07-15 1996-01-30 Mitsubishi Heavy Ind Ltd アニュラ型媒体ミル用分離装置
JPH11147100A (ja) * 1997-11-17 1999-06-02 Ebara Corp 有機性汚水の処理方法
JPH11156398A (ja) * 1997-11-28 1999-06-15 Ebara Corp 有機性汚水の処理方法
JP2000126635A (ja) * 1998-10-22 2000-05-09 Chuo Kakoki Kk 媒体攪拌ミル
JP2000343098A (ja) * 1999-06-07 2000-12-12 Shin Meiwa Ind Co Ltd 汚泥破砕装置及び有機性汚水の処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628745B2 (ja) * 1987-05-18 1994-04-20 ドライスヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング 撹拌式粉砕機
JPH02211297A (ja) * 1988-09-16 1990-08-22 Fujita Corp 汚泥の処理方法
JPH02293095A (ja) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd 有機性汚水の処理方法
JPH0824694A (ja) * 1994-07-15 1996-01-30 Mitsubishi Heavy Ind Ltd アニュラ型媒体ミル用分離装置
JPH11147100A (ja) * 1997-11-17 1999-06-02 Ebara Corp 有機性汚水の処理方法
JPH11156398A (ja) * 1997-11-28 1999-06-15 Ebara Corp 有機性汚水の処理方法
JP2000126635A (ja) * 1998-10-22 2000-05-09 Chuo Kakoki Kk 媒体攪拌ミル
JP2000343098A (ja) * 1999-06-07 2000-12-12 Shin Meiwa Ind Co Ltd 汚泥破砕装置及び有機性汚水の処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212581A (ja) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd 有機性廃棄物の処理方法
JP4667890B2 (ja) * 2005-02-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 有機性廃棄物の処理方法
JP2008207065A (ja) * 2007-02-23 2008-09-11 Petroleum Energy Center 有機性排水の処理方法
JP2008207064A (ja) * 2007-02-23 2008-09-11 Petroleum Energy Center 有機性排水の処理方法
JP2008207066A (ja) * 2007-02-23 2008-09-11 Petroleum Energy Center 有機性排水の処理方法
CN102603131A (zh) * 2011-01-25 2012-07-25 上海市政工程设计研究总院(集团)有限公司 旋流式通沟污泥淘洗分离装置及其污泥淘洗预处理方法
CN103922553A (zh) * 2014-04-29 2014-07-16 章琳茂 一种从污泥中制备原料油的方法
CN104671400A (zh) * 2015-02-10 2015-06-03 张晓荣 一种液体沉淀物提取装置
CN104973742A (zh) * 2015-07-17 2015-10-14 上海康恒环境股份有限公司 一种通沟污泥淘洗分离系统

Similar Documents

Publication Publication Date Title
US7842184B2 (en) Process for water treatment using high shear device
US6482327B1 (en) Liquid treating process and apparatus, as well as liquid treating system
EP1310461A1 (en) Method for treating organic waste water
JP2004181349A (ja) 汚泥処理装置及び汚泥処理方法
KR100883979B1 (ko) 알칼리 분쇄와 초음파 공정을 이용한 하·폐수 슬러지감량화 방법 및 장치
Goncharuk et al. Use of ultrasound in water treatment
JP3853971B2 (ja) 余剰汚泥の好気性消化方法
JP3488371B2 (ja) 汚泥の破砕方法
KR100477156B1 (ko) 생물오니의 처리 방법 및 처리 장치
JP3403131B2 (ja) 有機性廃液の処理方法
JP2002219376A (ja) 汚泥の粉砕方法
JP2005246134A (ja) 有機性廃水の処理方法
JP2006035069A (ja) 汚泥処理装置及びそれを備えた廃水処理装置
JP2005137968A (ja) 汚泥可溶化装置及び有機性排水処理装置
JP3472246B2 (ja) 余剰汚泥の処理方法
JP2008055423A (ja) 汚水の煮込み処理法
JP2005137969A (ja) 有機性排水処理装置
JP2000051883A (ja) 汚水の活性汚泥処理方法
JP4167964B2 (ja) 有機性排水処理装置の制御方法
JP2003024999A (ja) 汚泥の処理方法
JP2004249213A (ja) 余剰汚泥処理装置とそれを用いた活性汚泥処理システム
JP2000325983A (ja) 有機性廃水の処理方法及び処理装置
JP2001340889A (ja) 有機性廃水の処理方法
JP2001340888A (ja) 有機性廃水の処理方法
JP2001276866A (ja) 有機性廃水の処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100329