JP2004177850A - 粉体評価装置、静電荷現像用トナー及び現像方法 - Google Patents

粉体評価装置、静電荷現像用トナー及び現像方法 Download PDF

Info

Publication number
JP2004177850A
JP2004177850A JP2002346831A JP2002346831A JP2004177850A JP 2004177850 A JP2004177850 A JP 2004177850A JP 2002346831 A JP2002346831 A JP 2002346831A JP 2002346831 A JP2002346831 A JP 2002346831A JP 2004177850 A JP2004177850 A JP 2004177850A
Authority
JP
Japan
Prior art keywords
toner
powder
conical rotor
evaluation device
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002346831A
Other languages
English (en)
Inventor
Motoharu Tanaka
元治 田中
Hiroyuki Idenawa
弘行 出縄
Shigeyuki Araki
繁幸 荒木
Yoshikuni Tatara
賀邦 多々良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002346831A priority Critical patent/JP2004177850A/ja
Publication of JP2004177850A publication Critical patent/JP2004177850A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】流動性の精度の高い、個人差のない評価装置を用いることにより、ドット再現性の良い高画質が得られるトナーを作製し、安定して生産できるようにすること。
【解決手段】粉体相中に円錐ロータを回転させながら侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定する装置において、円錐ロータを予め回転させた後粉体相中に侵入させるようにしたことを特徴とする粉体評価装置。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、1成分現像または2成分現像装置に用いるトナーおよび評価に関する。
【0002】
【従来の技術】
電子写真関連の技術としては、磁場が印加されたロートの狭部を通過して落下するのに要する時間を測定することにより、現像機内の現像剤の流動性を正確に評価する方法(特許文献1)が開示されている。また、傾斜可能な板の上にトナーを載せ、板を徐々に傾けていき、流れ始めるときと流れ終えたときの角度を測定する技術(特許文献2)が開示されている。さらに、篩を何段かに重ねて、その上にトナーを投入して、篩部分に水平方向と垂直方向の振動を与え、一定時間後の各篩部に残ったトナー量に予め設定された係数を乗算して算出する方法(特許文献3)である。これらの方式は、データのバラツキが大きく、測定者による差があり、細かいトナー間の流動性の違いを評価することはできなかった。
【0003】
【特許文献1】
特開平01−203941号公報(第1頁左下欄第5行目〜第8行目請求項1)
【特許文献2】
特開平04−116449号公報(第1頁左下欄第5行目〜第9行目請求項1)
【特許文献3】
特開2000−292967号公報(第1頁左下欄第6行目〜末行目)
【0004】
本発明では、粉体の流動性を圧密した粉体相に予め回転させた円錐ロータを回転させながら侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定することにより、定量的に、精度良く、個人差がなく評価できるようにし、細かい粉体間の流動性の違いを正確に評価できるようにした。本装置では円錐ロータを予め回転させた後粉体相内に挿入するため、回転ブレなどによる測定への影響がなく、粉体間の違いを正確に評価できる。
本発明は、短時間で粉体相をそのまま測定できるので、製造ラインの中にも導入でき、高品質な粉体を安定して生産できる。
更に、本発明者らは、円錐ロータを用いた評価法や評価装置に関して完成させ、出願済みである。
【0005】
複写機やプリンタなどの画質は、高画質化が進んでおり、最近では細かいドットの再現性が非常に重要になってきている。このドットの再現性は、トナーや現像剤の帯電量などの他に流動性に非常に影響され、細かい潜像部に均一なトナー層または現像剤層を安定して供給することが必要になってきている。
また、高画質化が進むにつれて、それに用いられるトナーにおいては、小粒径化、高機能化が進んでいる。そのため、トナーの構造が複雑になってきており、従来より細かい作製時の制御が必要となってきている。特に、トナーの流動性はドット再現性の他に種々の画像品質に影響を与えるため、評価の面では個人差のない、精度の高い評価法が必要とされている。
また、トナーの作製法が粉砕方式から重合法等の他の方式に変化したとき、製造条件に対しての流動特性の変化が大きく、粉砕方式の場合に比較して、細かい作製時のコントロールおよび評価が必要となっている。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、流動性の精度の高い、個人差のない評価装置を用いることにより、ドット再現性の良い高画質が得られるトナーを作製し、安定して生産できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
上記課題は、本発明の(1)「粉体相中に円錐ロータを回転させながら侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定する装置において、円錐ロータを予め回転させた後粉体相中に侵入させるようにしたことを特徴とする粉体評価装置」、(2)「予め円錐ロータ先端と粉体相とが丁度接触するように調整した後、円錐ロータを回転させ、その後円錐ロータを粉体相に侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定することを特徴する前記第(1)項に記載の粉体評価装置」、(3)「予め円錐ロータを1秒以上回転させた後、円錐ロータを粉体相に侵入させるようにしたことを特徴とする前記第(1)項に記載の粉体評価装置」、(4)「円錐ロータの回転数が0.1〜100rpmであることを特徴とする前記第(1)項に記載の粉体評価装置」、(5)「円錐ロータの侵入速度が0.2〜200mm/minであることを特徴する前記第(1)項に記載の粉体評価装置」、(6)「円錐ロータの頂角が20〜150°であることを特徴とする前記第(1)項に記載の粉体評価装置」、(7)「円錐ロータの表面に溝が切ってあることを特徴とする前記第(1)項に記載の粉体評価装置」、(8)「圧密手段により粉体相の空隙率が0.4〜0.75になるようにしたことを特徴とする前記第(1)項に記載の粉体評価装置」、(9)「圧密する前に容器の下に設けた加振器により粉体相状態を安定化し、その後圧密手段により圧密するようにしたことを特徴とする前記第(1)項に記載の粉体評価装置」により達成される。
【0008】
また、上記課題は、本発明の(10)「前記第(1)項に記載の装置を用いて、少なくとも樹脂、顔料からなるトナーを回転しながら円錐ロータ20mm侵入時のトルクの測定値が0.1〜16.6mNmであることを特徴とする静電荷現像用トナー」、(11)「前記第(1)項に記載の装置を用いて、少なくとも樹脂、顔料からなるトナーの回転しながら円錐ロータ20mm侵入時の荷重の測定値が0.01〜3.42Nであることを特徴とする静電荷現像用トナー」、(12)「少なくとも樹脂、顔料からなるトナーの中に電荷制御剤および/または離型剤を含んでいることを特徴とする前記第(10)項または第(11)項に記載の静電荷現像用トナー」、(13)「樹脂のうちの少なくとも1種類が下記一般式(1)で表わされる結晶性ポリエステルであることを特徴とする前記第(10)項または第(11)項に記載の静電荷現像用トナー:
【0009】
【化2】
[−0−CO−CR=CR−CO−O−(CH−] (1)
(n、mは繰り返し単位の数,R、Rは炭化水素基)
」、(14)「体積平均粒径が4〜10μmであることを特徴とする前記第(10)項または第(11)項に記載の静電荷現像用トナー」、(15)「重合法によって作製されたものであることを特徴とする前記第(10)項または第(11)項に記載の静電荷現像用トナー」、(16)「平均円形度が0.9〜0.99であることを特徴とする前記第(10)項または第(11)項に記載の静電荷現像用トナー」により達成される。
【0010】
また、上記課題は本発明の(17)「前記第(10)項または第(11)項に記載の静電荷現像用トナーを用いて、接触または非接触現像を行なうことを特徴とする1成分現像方法」、(18)「ドクターローラを用いてトナー層を制御することを特徴とする前記第(17)項に記載の1成分現像方法」により達成される。
【0011】
また、上記課題は本発明の(19)「前記第(10)項乃至第(16)項の何れかに記載の静電荷現像用トナーと粒径20〜100μmのキャリアを用いて現像することを特徴とする2成分現像方法」により達成される。
【0012】
また、上記課題は本発明の(20)「前記第(17)項乃至第(19)項の何れかに記載の静電荷現像用トナーを用いた1成分現像方法または2成分現像方法であって、ACバイアス電圧成分を印加して現像することを特徴とする現像方法」により達成される。
【0013】、
また、上記課題は、本発明の(21)「前記第(10)項乃至第(16)項の何れかに記載の静電荷現像用トナーを入れたことを特徴とするトナーカートリッジ」により達成される。
【0014】
また、上記課題は、本発明の(22)「前記第(1)項に記載の評価装置を用いて、トナーを製造することを特徴とする静電荷現像用トナー製造方法」、(23)「トナーの流動性を評価するための前記第(1)項乃至第(9)項の何れかに記載の評価装置を有することを特徴とする静電荷像現像トナー評価装置」により達成される。
【0015】
本発明は、粉体の流動性を、円錐ロータを予め回転させた後粉体相中に円錐ロータを回転させながら侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定することにより評価する評価装置およびそれを用いて評価したドット再現性の良い高画質の得られる電子写真用トナー、それを用いた現像方法等に関するものである。
【0016】
本評価装置は、粉体相中に円錐ロータを回転させながら、侵入(下降)させたり、引抜(アップ)いたりさせ、そのときに円錐ロータや粉体相が入っている容器にかかるトルクや荷重を測定し、そのトルクや荷重の値により粉体の流動性を評価するものである。円錐ロータの形状はどんなものでも良いが、円錐の頂角が20〜150°であるものが適している。円錐の頂角が20°より小さいと粉体相との抵抗が小さいため、トルクや荷重が小さく、細かい流動性の違いを評価できない。逆に、頂角が150°より大きい場合には、粉体相を押さえつける方向の力が大きくなり、粉体粒子の変形が生じやすくなり、粉体の流動性の評価には適していない。円錐ロータの長さは、粉体相の中に円錐ロータ表面が連続的に存在するような、充分な長さが必要である。また、円錐ロータ表面には溝が切ってあるほうが良い。円錐ロータの材質面と粉体粒子との摩擦成分を測定するのではなく、粉体粒子と粉体粒子との摩擦成分を測定するほうが良い。そのためには、円錐ロータが回転しながら粉体相の中に侵入していくとき、円錐ロータ表面に切ってある溝の中に粉体粒子が入り込んできて、その入り込んだ粉体粒子と周りの粉体粒子との摩擦状態を測定するようにしたほうが適している。この溝の形状は問わないが、円錐ロータの材質面と粉体粒子との接触が小さくなるように工夫する必要がある。一例を図2に示す。これは、円錐の頂点からまっすぐ底辺方向に溝を切ったもので、その溝の断面が三角形の凹凸からなる、のこぎり歯形歯形状をしている。この場合、円錐ロータ材質面と粉体粒子との接触は、三角溝の山の先端部分のみとなる。ほとんどが溝に入り込んだ粉体粒子とその周辺の粉体粒子との接触となる。円錐ロータの材質は何でも良いが、加工しやすくて、表面が固く、変質しない材質が良い。また、帯電性を帯びない材質が適している。この一例としては、SUS,Al,Cu,Au,Ag,黄銅等がある。
【0017】
粉体のトルクおよび荷重は、円錐ロータの回転数や円錐ロータの侵入速度により変化する。本測定では測定の精度を上げるために、粉体粒子同士の微妙な接触状態が測定できるように、円錐ロータの回転数や侵入速度を下げて測定するようにした。そのため、測定条件は以下のようになった。
・円錐ロータの回転数:0.1〜100rpm
・円錐ロータの侵入速度:0.2〜200mm/min
円錐ロータの回転数が0.1rpmより小さい場合は粉体相の微妙な状態の影響を受けやすいため、トルク測定バラツキの問題が生じ、測定には適していない。100rpmより大きい場合は粉体の飛び散り等が生じて、安定に測定できないので適していない。円錐ロータの侵入速度が0.2mm/minより遅い場合は粉体相の微妙な状態の影響を受けやすく、測定バラツキの問題が生じるため測定には適していない。200mm/minより速い場合は粉体相が圧密状態になりやすく、粉体粒子の変形等の影響が出てくるので、流動性評価には適していない。
【0018】
本装置では、円錐ロータの回転に伴なう周辺の粉体粒子と円錐ロータの溝内の粉体粒子との微妙な接触状態の変化を検出するため、円錐ロータの回転状態が精度良く安定であることが必要がある。そのため、回転が不安定である初期段階では、粉体相内には侵入させず、円錐ロータの回転が安定になった時点で粉体相内に挿入する必要がある。本発明では、粉体容器か円錐ロータを上下させることにより粉体相表面と円錐ロータとが丁度コンタクトした状態にし、その後円錐ロータを回転させ、回転が安定した後円錐ロータが粉体相内に侵入するようにした。勿論、粉体相表面にコンタクトしない状態で円錐ロータを回転させ、回転が安定した後に粉体相内に侵入させても問題ない。円錐ロータが回転を開始した後、粉体相内に円錐ロータを侵入させるまでの時間は長ければ問題ないが、最低1秒以上は必要であった。1秒以内のときは回転が不安定でトルク特性に値の出入り現象が生じた(図5参照)。
【0019】
装置構成は図1のようになり、粉体を入れる容器、その容器を上下させる昇降ステージ、ステージには荷重を測定するロードセル、粉体のトルクを測定するトルクメータ等から構成される。なお、本構成は一例であり、本発明を限定するものではない。円錐ロータをシャフトの先端に取付け、そのシャフト自体を固定(上下方向の移動に関して)する。粉体を入れた試料容器ステージは昇降機により上下できるようにして、ステージの中央部に粉体を入れた容器を置くようにし、容器を上げることにより、容器の中央に円錐ロータが回転しながら侵入してくるようにする。円錐ロータにかかるトルクは上部にあるトルクメータにより検出し、粉体の入った容器にかかる荷重は容器の下にあるロードセルで検出する。円錐ロータの移動量は位置検出器で行なう。この構成は一例であり、シャフト自体を昇降機により上下させたりするなど他の構成でも良い。
【0020】
装置構成の他の例として図2のように測定ゾーンの他に圧密ゾーンを設けても良い。圧密ゾーンは粉体相を測定前に予め圧密状態にするもので、なくても良い。圧密ゾーンは、粉体を入れる容器、その容器を上下させる昇降ステージ、圧密させるピストン、そのピストンに荷重を加えるおもり等から構成される。なお、本構成は一例であり、本発明を限定するものではない。本構成では、粉体を入れた試料容器を上昇させ、圧密用のピストンに接触させ、さらに上昇させてピストンにおもりの荷重が全てかかるようなおもりが支持板より浮いた状態になるようにし、一定時間放置する。その後、粉体を入れた容器が載せてある昇降ステージを下げて、ピストンを粉体表面から離す。
【0021】
ピストンは、どんな材質でも良いが、粉体を押付ける表面の表面性がスムーズである必要がある。そのため、加工しやすくて、表面が固く、変質しない材質が良い。また、帯電による粉体付着がないようにする必要があり、導電性の材質が適している。この材質の一例としては、SUS,Al,Cu,Au,Ag,黄銅等がある。
【0022】
円錐ロータの形は、前述したように頂角が20〜150°のものが良い(図3参照)。円錐ロータの長さは、円錐ロータ部分が充分粉体相の内部まで入るように長くする必要がある。溝の形状は、どのような形状でも良いが、円錐ロータを交換したためにトルクや荷重の値が再現しなくなるということがないように注意しないといけない。そのためには、円錐ロータの溝形状は単純で、同じ形状のロータが何度でも造れる形のほうが良い(図4参照)。容器の材質については問わないが、粉体との帯電による影響が出ないように導電性の材質が適している。また、粉体を入れ替えながら測定するため、汚れを少なくするために表面が鏡面に近いものが良い。容器のサイズは重要であり、円錐ロータが回転しながら侵入するときに容器の壁の影響がでないように円錐ロータの直径に対して大き目の(直径)サイズを選択する必要がある。
【0023】
トルクメータは高感度タイプのものが良く、非接触方式のものが適している。ロードセルは荷重レンジが広く、分解能の高いものが適している。位置検出器はリニアスケール、光を用いた変位センサ等があるが、精度的に0.1mm以下の仕様が適している。昇降機は、サーボモータやステッピングモータを用いて、精度良く駆動できるものが良い。
【0024】
測定は、容器に粉体を一定量投入し、本装置にセットする。その後、圧密ゾーンにて昇降ステージを上昇させ、一定の荷重のかかっているピストンで粉体表面を押付け、圧密した粉体相状態を作り出す。一定時間圧密した後は、容器を下げ、元の位置に戻す。その後、圧密した粉体の入った容器を測定ゾーンの昇降ステージに設置する。この動作は、昇降ステージを回転させることにより、圧密ゾーンから測定ゾーンに移動させても良い。圧密しない場合は、粉体の入った容器を測定ゾーンの昇降ステージに直接設置する。その後、予め円錐ロータを回転させた後、円錐ロータを回転させながら試料容器中の圧密した粉体相の中に侵入させる。装置はパソコン制御で駆動し、円錐ロータの駆動信号を送った後、ある一定時間経過後昇降ステージの駆動信号を駆動モータのほうへ送るようにする。トルクや荷重測定に入るときには、決められた回転数、侵入速度で行なう。円錐ロータの回転方向は任意である。円錐ロータの侵入距離は、浅いとトルクや荷重の値が小さく、データの再現性等に問題が生じるため、データの再現性のある領域まで深く円錐ロータを侵入させたほうが良い。我々の実験結果では5mm以上侵入させればほぼ安定した測定が可能になった。測定モードは、どのような条件でも可能であるが、例として以下のような測定モードがある。
【0025】
▲1▼容器に粉体を充填する。
▲2▼粉体相を加圧して、圧密状態作り出す(圧密しない場合は、▲2▼は除く)。
▲3▼円錐ロータを粉体表面に接触させる。
▲4▼▲3▼の状態で円錐ロータを回転させ、回転を安定化させる。
▲5▼円錐ロータを回転させながら侵入させ、そのときのトルク、荷重を測定する。
▲6▼円錐ロータがトナー表面層から予め設定した深さまで侵入したところで、侵入動作を止める。
▲7▼円錐ロータを引抜く動作を開始する。
▲8▼円錐ロータの先端が粉体相表面から抜け、完全にフリーになった時点(最初のホームポジション)で円錐ロータの引抜き動作を停止し、回転も止める。
以上の▲1▼〜▲8▼の操作を繰返して、測定を行なう。連続的に行なっても良い。
【0026】
また、別の測定法としては、粉体相を圧密前に加振器(図2参照)により振動を与えて安定化させ、その安定化した粉体相にピストンを押し当て、圧密状態を作り出す。予め円錐ロータを回転させた後、その圧密した粉体相に回転させながら円錐ロータを侵入させ、そのときのトルクや荷重を測定し、予め設定した深さまで到達したら侵入動作を止め、その後円錐ロータを最初の位置(ホームポジション)までアップさせる。この測定は1回でも良いが、この動作を繰返して行ない、平均的なトルクや荷重を求めることも有効である。
【0027】
また、別な方法としては圧密状態の粉体相に、円錐ロータを侵入させて、予め設定したトルク値になるまでの深さを調べる方法等がある。
本測定法では、粉体相の空間率が重要になるが、我々の実験結果では空間率は0.4以上のとき安定して測定が可能であった。0.4未満では圧密状態の微妙な条件の違いがトルク、荷重に影響を及ぼし、安定した測定が困難であった。粉体相の空間率の範囲としては、種々な測定法の場合を含めて、0.4〜0.75であった。0.75より大きい場合には粉体が飛散し、測定には適していない。
しかし、測定系、測定条件等に関してはこの限りではない。
【0028】
本評価装置に用いるトナーは、高画質画像を実現するためにトナーの体積平均粒径が4〜10μmであることが必要である。本トナーの体積平均粒径は4〜10μmであり、さらに好ましくは5〜7μmである。体積平均粒径4μm未満では長期間の使用でのトナー飛散による機内の汚れ、低湿環境下での画像濃度低下、感光体クリーニング不良等という問題が生じやすく、人体への影響も懸念される。また、体積平均粒径が10μmを超える場合では100μm以下の微小スポットの解像度が充分でなく非画像部への飛び散りも多く画像品位が劣る傾向となる。
【0029】
本トナーを用いる現像剤は、高画質画像を実現するために、キャリアの平均粒径が20〜100μmであることが必要である。キャリアの平均粒径が20〜100μmの範囲にあると、現像機内部のトナー濃度が2〜10重量%の範囲内において、トナーの帯電量をより均一にすることができる。20μmより小さくなるとキャリア粒子の感光体上への付着等が生じやすく、さらにトナーとの撹拌効率が悪くなりトナーの均一な帯電量が得られにくくなる。逆に、キャリアの平均粒径が100μmを超える場合では、細かい画像再現性が悪くなり、高画質は得られない。
【0030】
トナーおよび現像剤の詳細を以下に示す。
樹脂としては、ポリスチレン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、スチレンアクリル樹脂、スチレンメタクリレート樹脂、ポリウレタン樹脂、ビニル樹脂、ポリオレフィン樹脂、スチレンブタジエン樹脂、フェノール樹脂、ポリエチレン樹脂、シリコン樹脂、ブチラール樹脂、テルペン樹脂、ポリオール樹脂等がある。
【0031】
ビニル樹脂としては、ポリスチレン、ポリ−p−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体:スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロロメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体:ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル等がある。
【0032】
ポリエステル樹脂としては以下のA群に示したような2価のアルコールと、B群に示したような二塩基酸塩からなるものであり、さらにC群に示したような3価以上のアルコールあるいはカルボン酸を第三成分として加えてもよい。
【0033】
A群:エチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4ブタンジオール、ネオペンチルグリコール、1,4ブテンジオール、1,4−ビス(ヒドロキシメチル)シクロヘキサン、ビスフェノールA、水素添加ビスフェノールA、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン(2,2)−2,2’−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3,3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2,0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2,0)−2,2’−ビス(4−ヒドロキシフェニル)プロパン等。
【0034】
B群:マレイン酸、フマール酸、メサコニン酸、シトラコン酸、イタコン酸、グルタコン酸、フタール酸、イソフタール酸、テレフタール酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、マロン酸、リノレイン酸、またはこれらの酸無水物または低級アルコールのエステル等。
【0035】
C群:グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3価以上のアルコール、トリメリト酸、ピロメリト酸等の3価以上のカルボン酸等。
【0036】
ポリオール樹脂としては、エポキシ樹脂と2価フェノールのアルキレンオキサイド付加物、もしくはそのグリシジルエーテルとエポキシ基と反応する活性水素を分子中に1個有する化合物と、エポキシ樹脂と反応する活性水素を分子中に2個以上有する化合物を反応してなるものなどがある。
【0037】
本発明で用いる顔料としては以下のものが用いられる。
黒色顔料としては、カーボンブラック、オイルファーネスブラック、チャンネルブラック、ランプブラック、アセチレンブラック、アニリンブラック等のアジン系色素、金属塩アゾ色素、金属酸化物、複合金属酸化物が挙げられる。
黄色顔料としては、カドミウムイエロー、ミネラルファストイエロー、ニッケルチタンイエロー、ネーブルスイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキが挙げられる。
また、橙色顔料としては、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダンスレンブリリアントオレンジRK、ベンジジンオレンジG、インダンスレンブリリアントオレンジGKが挙げられる。
赤色顔料としては、ベンガラ、カドミウムレッド、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッドカルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3Bが挙げられる。
紫色顔料としては、ファストバイオレットB、メチルバイオレットレーキが挙げられる。
青色顔料としては、コバルトブルー、アルカリブルー、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダンスレンブルーBCが挙げられる。
緑色顔料としては、クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ等がある。
これらは1種または2種以上を使用することができる。
【0038】
特にカラートナーにおいては、良好な顔料の均一分散が必須となり、顔料を直接大量の樹脂中に投入するのではなく、一度高濃度に顔料を分散させたマスターバッチを作製し、それを希釈する形で投入する方式が用いられている。この場合、一般的には、分散性を助けるために溶剤が使用されていたが、環境等の問題があり、本発明では水を使用して分散させた。水を使用する場合、マスターバッチ中の残水分が問題にならないように、温度コントロールが重要になる。
【0039】
本発明のトナーには電荷制御剤をトナー粒子内部に配合(内添)している。しかし、トナー粒子と混合(外添)して用いても良い。電荷制御剤によって、現像システムに応じた最適の電荷量コントロールが可能となり、特に本発明では、粒度分布と電荷量とのバランスを更に安定したものとすることが可能である。
トナーを正電荷性に制御するものとして、ニグロシンおよび四級アンモニウム塩、トリフェニルメタン系染料、イミダゾール金属錯体や塩類を、単独あるいは2種類以上組み合わせて用いることができる。また、トナーを負電荷性に制御するものとしてサリチル酸金属錯体や塩類、有機ホウ素塩類、カリックスアレン系化合物等が用いられる。
【0040】
また、本発明におけるトナーには定着時のオフセット防止のために離型剤を内添することが可能である。離型剤としては、キャンデリラワックス、カルナウバワックス、ライスワックスなどの天然ワックス、モンタンワックスおよびその誘導体、パラフィンワックスおよびその誘導体、ポリオレフィンワックスおよびその誘導体、サゾールワックス、低分子量ポリエチレン、低分子量ポリプロピレン、アルキルリン酸エステル等がある。これら離型剤の融点は65〜90℃であることが好ましい。この範囲より低い場合には、トナーの保存時のブロッキングが発生しやすくなり、この範囲より高い場合には定着ローラー温度が低い領域でオフセットが発生しやすくなる場合がある。
【0041】
離型剤等の分散性を向上させるなどの目的のために、添加剤を加えても良い。添加剤としては、スチレンアクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、スチレンメタクリレート樹脂、ポリウレタン樹脂、ビニル樹脂、ポリオレフィン樹脂、スチレンブタジエン樹脂、フェノール樹脂、ブチラール樹脂、テルペン樹脂、ポリオール樹脂等があり、それぞれの樹脂を2種以上混合した物でも良い。
【0042】
本発明に係るトナーを作製する方法としては、粉砕法、重合法(懸濁重合、乳化重合、分散重合、乳化凝集、乳化会合等)等があるが、これらの作製法に限るものではない。
【0043】
粉砕法の一例としては、まず、前述した樹脂、着色剤としての顔料または染料、電荷制御剤、離型剤、その他の添加剤等をヘンシェルミキサーの如き混合機により充分に混合した後、バッチ式の2本ロール、バンバリーミキサーや連続式の2軸押出し機、連続式の1軸混練機等の熱混練機を用いて構成材料をよく混練し、圧延冷却後、切断を行なう。切断後のトナー混練物は破砕を行ない、ハンマーミル等を用いて粗粉砕し、更にジェット気流を用いた微粉砕機や機械式粉砕機により微粉砕し、旋回気流を用いた分級機やコアンダ効果を用いた分級機により所定の粒度に分級する。その後、混合機により無機粒子などからなる添加剤を粒子表面に付着もしくは固着させる。この混合工程後のトナー粒子の流動性を本評価装置を用いて評価する。この場合、抜き取り検査で、試料を試料容器に入れ、その試料容器を直接図1に示す評価装置の試料ステージに載せ、トナー粉体相を圧密したあと測定を行なう。円錐ロータの回転数は0.1〜100rpmとし、円錐ロータの侵入速度は0.2〜200mm/minとした。測定は、予め円錐ロータを回転させた後、円錐ロータを回転させながら侵入させ、5mm以上の予め設定した侵入距離を経た後は侵入を止め、その後円錐ロータを引抜き、元の初期位置に戻す。この円錐ロータのトナー粉体相への侵入時のトルク、荷重を測定し、トナーの流動性を評価する。
【0044】
本評価装置でトナー流動性を評価した場合には、測定値(トルク、荷重)トナー流動性が以下のような関係になる。
トルクが小さい場合、流動性は良い。
トルクが大きい場合、流動性は悪い。
荷重が小さい場合、流動性は良い。
荷重が大きい場合、流動性は悪い。
【0045】
円錐ロータを用いた本評価装置の特徴は、以下のようになり、抜取り試料をそのまま迅速に、簡単に測定できるため、個人差のない、精度の高い測定ができることにある。
▲1▼非破壊検査である。
▲2▼試料をそのまま測定できる。
▲3▼短時間で測定できる。
▲4▼誰にでも簡単に測定できる。
そのため、製造ラインでの計測も可能であり、製造工程の中での各工程間に設置して、工程途中での品質評価ができる。例えば、混合工程を経た後、次工程へ粉体試料を搬送する途中に、試料抜取り・測定ゾーンを設けておき、あるタイミングでシャッターを開閉して、一定量の試料を測定部へ搬送する。その測定部の先端部はSUS等でできた容器になっており、そのまま本評価装置にて測定する。または、その容器を近くの別の場所にある本評価装置へ持っていき、試料ステージへのせて本評価装置にて測定する。測定し終わったトナーは、元の試料の中に戻す。評価の結果、その数値が予め定めた設定範囲を外れていた場合、試料を充填工程へは回さず、トナーの再処理工程へ回す。これらの仕組みは、混合工程前の工程である粉砕・分級工程後の検査、混合工程の後にある風篩工程後の検査、充填前の検査等に適用できる(図8参照)。
また、これらの機能を持ったトナー評価装置を単独に開発段階の評価装置として使うことも可能である。
【0046】
トナーの場合、前述の通り本評価装置でのトルク、荷重の測定値は流動性を示しており、定量的な評価が可能となる。今までの従来の評価法では、トナー間の違いは評価できるが、トナーの種類が違うと同じ土俵では評価できないという問題があった。しかし、本評価装置で測定した値は、粉体特性としてのトルク値、荷重値であり、トナーの種類が変わっても粒径が変わっても同じ土俵で評価できる値であり、非常に汎用的な評価値になる。また、圧密状態の異なる場合の流動性の違いを評価できるため、多面的な評価が可能となる。
【0047】
トナー粉体相中での円錐ロータの移動時のトルク、荷重特性は、粉体の流動性と密接な関係があり、粉体の流動性が良い場合には1個1個の粉体粒子間の付着力が小さいために動きやすく、その粉体相内で円錐ロータを動かしてもトルクは小さく、荷重変化も小さい。しかし、逆に粉体の流動性が悪い場合には、1個1個の粉体粒子間の付着力が大きいために動きにくく、その粉体相内で円錐ロータを移動した場合には円錐ロータにかかるトルクは大きくなり、下方向へ働く力(荷重)も大きくなる。
そのため、本発明の評価法では、以下のような関係で流動性を評価できる。
流動性が良い場合→粉体相内を移動したときのトルク、荷重が小さい。
流動性が悪い場合→粉体相内を移動したときのトルク、荷重が大きい。
【0048】
トナーの流動性は、トナー作製工程の中の混合工程によりほとんど決まる。つまり、無機粒子などからなる添加剤をトナー粒子表面に付着もしくは固着させる状態によって、トナー粒子の流動性は大きく変化する。
トナーの混合状態は、混合工程での混合条件(仕込み量、回転数、混合時間等)によって変化する。そのため、流動性には混合条件が重要な役割を果たし、混合工程後の流動性の評価が重要となる。
【0049】
プリンタや複写機において、高画質化を実現するためには、非常に微小なドット再現性を高める必要がある。それを実現するためには、非常に微小な潜像に対して忠実なトナー現像が必要となる。この忠実な現像を可能にするためには、現像域に均一なトナーブラシを供給する必要がある。そのためには、トナー帯電量が適度な条件であることが必要であるが、常に安定して現像域に均一なトナーブラシが供給できるようなトナーの動き易さ、搬送のし易さが非常に重要となる。つまり、微小なドット再現性を上げるためには、トナーの流動性を上げることが必要になる。
そこで、トナーの流動性を円錐ロータを用いた本装置により評価し、ドット再現性との関係を調べた結果、非常に強い相関関係が存在し、トルクや荷重が小さいときドット再現性は良くなった。
その結果から、ドット再現性が良いトナーは、以下のようなトルク、荷重特性を示すことが分かった。
▲1▼円錐ロータ侵入時(20mm侵入時)のトルクの値が0.1〜16.6mNmである。
▲2▼円錐ロータ侵入時(20mm侵入時)の荷重の値が0.01〜3.42Nである。
【0050】
なお、評価モードに関しては、他の方法を用いても問題ない。また、評価項目もトルクや荷重以外で、ある荷重になるまでの侵入距離、あるトルクになるまでの侵入距離等であっても良いし、トルクや荷重の積分値を評価しても良い。また、他の評価項目であっても良い。
混合工程後、250メッシュ以上の篩を通過させ、粗大粒子、凝集粒子を除去し、本発明のトナーを得る。
【0051】
本発明に係るトナーを作製する方法としては、粉砕法以外の方法が考えられ、重合法の一例としては、モノマーに着色剤及び電荷制御剤等を添加したモノマー組成物を水系の媒体中で懸濁し重合させることでトナー粒子を得る。造粒法は特に限定されない。
例えば本発明のトナーは、有機溶媒中に少なくとも、イソシアネート基を含有するポリエステル系プレポリマーが溶解し、顔料系着色剤が分散し、離型剤が溶解ないし分散している油性分散液を水系媒体中に無機微粒子及び/又はポリマー微粒子の存在下で分散させるとともに、この分散液中で該プレポリマーをポリアミン及び/又は活性水素含有基を有するモノアミンと反応させてウレア基を有するウレア変性ポリエステル系樹脂を形成させ、このウレア変性ポリエステル系樹脂を含む分散液からそれに含まれる液状媒体を除去することにより得られる。
【0052】
ウレア変性ポリエステル系樹脂において、そのTgは40〜65℃、好ましくは45〜60℃である。その数平均分子量Mnは2500〜50000、好ましくは2500〜30000である。その重量平均分子量Mwは1万〜50万、好ましくは3万〜10万である。
このトナーは、該プレポリマーと該アミンとの反応によって高分子量化されたウレア結合を有するウレア変性ポリエステル系樹脂をバインダー樹脂として含む。そして、そのバインダー樹脂中には着色剤が高分散している。
【0053】
得られた乾燥後のトナーの粉体を風力分級し、上記最適な混合条件により混合機により無機微粒子などからなる添加剤を粒子表面に付着もしくは固着させる。また、電荷制御剤を乾燥後のトナー粉体表面に打込んで、固着注入させても良い。さらにその後、無機微粒子などからかる添加剤を粒子表面に付着もしくは固着させても良い。電荷制御剤を表面に打込むことにより、トナーの帯電量の制御がしやすくなる。
【0054】
混合したり、固着注入したりする具体的手段としては、高速で回転する羽根によって粉体混合物に衝撃力を加える方法、高速気流中に粉体混合物を投入し、加速させ、粒子同士または複合化した粒子を適当な衝突板に衝突させる方法などがある。装置としては、オングミル(ホソカワミクロン社製)、I式ミル(日本ニューマチック社製)を改造して、粉砕エアー圧カを下げた装置、ハイブリダイゼイションシステム(奈良機械製作所社製)、クリプトロンシステム(川崎重工業社製)、自動乳鉢などが挙げられる。
この混合工程後、所定の流動性が得られているかどうかを評価するために、本評価装置を用いて評価する。
これらの方式の場合にも、造粒後の検査、電荷制御剤の処理後の検査、添加剤の混合工程後の検査、混合工程の後にある風篩工程後の検査、充填前の検査等に適用できる。
【0055】
また、流動性はトナー形状によって影響されるが、トナーの平均円形度が0.9〜0.99である非常に球形に近いトナーの場合には流動性に優れ、ドット再現性に優れた高画質化を実現できる。
【0056】
さらに、二成分現像剤として使用する場合は、後述する磁性キャリアと所定の混合比率で混合することによって二成分現像剤とする。
【0057】
本トナーは、接触または非接触現像方式に使用する1成分現像剤として用いる。接触または非接触現像方式は色々な公知のものが使用される。例えば、アルミスリーブを用いた接触現像法、導電性ゴムベルトを用いた接触現像法、アルミ素管の表面にカーボンブラック等を含む導電性樹脂層を形成した現像スリーブを用いる非接触現像法等がある。
また、本トナーは、現像時にACバイアス電圧成分を用いて現像する場合に、流動性に優れているため、電界に従って忠実に振動し、細かい潜像に対しての忠実な現像ができ、ドット再現性の良い現像が可能となる。
【0058】
また、1成分現像方式において、トナー供給部の出口にトナー層を均一にするためのローラー状のブレードを設けた現像方式に、本トナーを用いることを特徴とする。このような方式の場合には、感光体へのフィルミングだけではなく、ドクターローラへのフィルミングが発生する。このため、トナー層が均一に形成できないばかりかトナー帯電が不均一になり、トナー電荷量も小さくなる。このため現像不良が生じる。
しかし、本発明のトナーを用いると、ドクターローラへのフィルミングは発生せず、安定した現像が行なわれ、耐久特性に優れた方式となる(図9参照)。
【0059】
また、磁性トナーとする場合には、トナー粒子の中に磁性体の微粒子を内添すれば良い。磁性体としては、フェライト、マグネタイト、鉄、ニッケル、コバルト、それらの合金などの強磁性体等が考えられる。磁性体の平均粒径は0.1〜1μmが好ましい。磁性体の含有量はトナー100重量部に対して、10から70重量部であることが好ましい。
【0060】
二成分現像剤に使用されるキャリアとしては公知のものが使用可能であり、例えば鉄粉、フェライト粉、ニッケル粉、マグネタイト粉の如き磁性粒子あるいはこれら磁性粒子の表面をフッ素系樹脂、ビニル系樹脂、シリコーン系樹脂等で処理したもの、あるいは磁性粒子が樹脂中に分散されている磁性粒子分散樹脂粒子等が挙げられる。これら磁性キャリアの平均粒径は20〜100μmが良い。好ましくは20〜70μmが良い。
【0061】
また、前述したように本発明の二成分現像剤は流動性向上剤として無機微粉体をトナーに添加して用いることが可能である。
本発明の無機微粉体としては、Si、Ti、Al、Mg、Ca、Sr、Ba、In、Ga、Ni、Mn、W、Fe、Co、Zn、Cr、Mo、Cu、Ag、V、Zr等の酸化物や複合酸化物が挙げられる。これらのうち二酸化珪素(シリカ)、二酸化チタン(チタニア)、アルミナの微粒子が好適に用いられる。さらに、疎水化処理剤等により表面改質処理することが有効である。疎水化処理剤の代表例としては以下のものが挙げられる。
ジメチルジクロルシラン、トリメチルクロルシラン、メチルトリクロルシラン、アリルジメチルジクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、p−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、クロルメチルトリクロルシラン、ヘキサフェニルジシラザン、ヘキサトリルジシラザン等。
無機微粉体はトナーに対して0.1〜2重量%使用されるのが好ましい。0.1重量%未満では、トナー凝集を改善する効果が乏しくなり、2重量%を超える場合は、細線間のトナー飛び散り、機内の汚染、感光体の傷や摩耗等の問題が生じやすい傾向がある。
【0062】
また、本発明の現像剤には、実質的な悪影響を与えない範囲内で更に他の添加剤、例えばポリテトラフロロエチレン系フッ素樹脂粉末、ステアリン酸亜鉛粉末、ポリフッ化ビニリデン粉末の如き滑剤粉末;あるいは酸化セリウム粉末、炭化珪素粉末、チタン酸ストロンチウム粉末などの研磨剤;あるいは例えばカーボンブラック粉末、酸化亜鉛粉末、酸化スズ粉末等の導電性付与剤を現像性向上剤として少量用いることもできる。
【0063】
また、本評価装置は、混練り工程や粉砕工程を用いないで作製する重合法やスプレードライ法などで作製したトナー、カプセルトナーにも使用できる。
【0064】
【実施例】
以下、実施例を説明するが、これは本発明をなんら限定するものではない。なお、今回は、トナー組成、トナー作製法および混合条件を変化したトナーを作製し、トナー流動性を本評価装置を用いて評価し、ドット再現性を画像のザラツキ感として5段階評価(ランク1:悪い→ランク5:良い)した。また、2万枚のランニング耐久試験を行ない、現像部でのブロッキング等のトナー搬送性の不具合点を評価した。不具合点の無かった場合を○、不具合点のあった場合を×として評価した。トナーの流動性は、円錐ロータが侵入時のトナー粉体相表面から20mm侵入したときのトルクと荷重の値を測定した。トナーは予め圧密状態にし、空間率を測定し、トルク、荷重を評価した。円錐ロータの評価条件は以下のようにした。
・円錐ロータの頂角:50°
・円錐ロータの侵入速度(mm・min)/円錐ロータの回転数(rpm):15/1
・円錐ロータの回転数:3rpm
・円錐ロータの侵入速度:45mm/min
なお、以下の配合における部数は全て重量部である。
【0065】
(実施例1)
Figure 2004177850
上記原材料をミキサーで充分に混合した後、2軸押出し機によりバレル温度100℃混練機回転数100rpmで溶融混練した。混練物を圧延冷却後カッターミルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕後、旋回式風力分級装置を用いて、平均粒径が6.5μmの粒度分布に分級した。さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0066】
(実施例2)
実施例1と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0067】
(実施例3)
実施例1と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0068】
(実施例4)
実施例1と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0069】
(比較例1)
実施例1と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
添加剤 シリカ微粉末 0.3部
混合回転数 700rpm
混合時間 120sec
混合機 スーパーミキサー
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0070】
(比較例2)
実施例1と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
添加剤 シリカ微粉末 0.5部
混合回転数 700rpm
混合時間 120sec
混合機 スーパーミキサー
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0071】
(実施例5)
〔トナーバインダーの合成〕
冷却管、攪拌機および窒素導入管の付いた反応槽中に、ビスフェノールAエチレンオキサイド2モル付加物724部、イソフタル酸276部およびジブチルチンオキサイド2部を入れ、常圧,230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応した後、160℃まで冷却して、これに32部の無水フタル酸を加えて2時間反応した。次いで、80℃まで冷却し、酢酸エチル中にてイソフォロンジイソシアネート188部と2時間反応を行い、イソシアネート含有プレポリマーIを得た。次いでプレポリマーI267部とイソホロンジアミン14部を50℃で2時間反応させ、重量平均分子量64000のウレア変性ポリエステルIを得た。上記と同様にビスフェノールAエチレンオキサイド2モル付加物724部、テレフタル酸276部を常圧下、230℃で8時間重縮合し、次いで10〜15mmHgの減圧で5時間反応して、ピーク分子量5000の変性されていないポリエステルAを得た。ウレア変性ポリエステルI200部と変性されていないポリエステルA800部を酢酸エチル/MEK(1/1)混合溶剤2000部に溶解、混合し、トナーバインダーIの酢酸エチル/MEK溶液を得た。一部減圧乾燥し、トナーバインダーIを単離した。分析の結果Tgは62℃であった。
【0072】
(トナーの作製)
トナーバインダーIの酢酸エチル/MEK溶液 240部
ペンタエリスリトールテトラベヘネート(溶融粘度25cps) 20部
銅フタロシアニンブルー顔料(C.I.ヒ゜ク゛メントフ゛ルー15:3) 5部
上記原材料をビーカー内で、60℃にてTK式ホモミキサーで12000rpmで攪拌し、均一に溶解、分散させてトナー材料溶液を作製した。
イオン交換水 706部
ハイドロキシアパタイト10%懸濁液
(日本化学工業(株)製スーパタイト10) 294部
ドデシルベンゼンスルホン酸ナトリウム 0.2部
ビーカー内に上記原材料を入れ均一に溶解した。その後60℃に昇温し、TK式ホモミキサーで12000rpmに攪拌しながら、上記トナー材料溶液を投入し10分間攪拌した。ついでこの混合液を攪拌棒および温度計付のフラスコに移し、30℃まで昇温して減圧下で溶剤を除去し、濾別、洗浄、乾燥した後、風力分級し、トナー粒子を得た。体積平均粒径は6.4μmであった。このトナー粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを得た。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0073】
(実施例6)
実施例5と同様の原材料、作製方法でトナー作製を行ない、平均粒径が6.3μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0074】
(実施例7)
実施例5と同様の原材料、作製方法でトナー作製を行ない、平均粒径が6.4μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0075】
(比較例3)
実施例5と同様の原材料、作製方法でトナー作製を行ない、平均粒径が6.4μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
添加剤 シリカ微粉末 0.5部
混合回転数 700rpm
混合時間 120sec
混合機 スーパーミキサー
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0076】
(実施例8)
樹脂 ポリエステル樹脂 100部
着色剤 カーボンブラック 10部
帯電制御剤 サルチル酸亜鉛塩 5部
離型剤 ライスワックス 5部
上記原材料をミキサーで充分に混合した後、2軸押出し機によりバレル温度100℃、回転数100rpmで溶融混練した。混練物を圧延冷却後カッターミルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕後、旋回式風力分級装置を用いて、平均粒径が6.5μmの粒度分布に分級した。さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0077】
(実施例9)
実施例8と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
【0078】
(実施例10)
実施例8と同様の原材料、作製方法で混練、粉砕、分級を行ない、平均粒径が6.5μmの粒度分布に分級した。
さらに、母体着色粒子100部に対して、以下の混合条件にて添加剤を混合し、トナーを作製した。
Figure 2004177850
本トナーを作製した後、本評価法により流動性を測定した結果、表1のようになった。
得られたトナーを潜像担持体がOPCドラム感光体でクリーニング方式がブレードクリーニングである複写機にセットし、画像評価実験およびランニング実験を行なった。その結果を表1に示す。
以上の実施例1〜10、比較例1〜3の測定結果を表1に示す。
【0079】
【表1】
Figure 2004177850
【0080】
表1及び図6、7の結果から、トナー粉体相の本評価法による流動性評価値とドット再現性およびランニング時のトナー搬送性との間には強い相関関係が存在し、以下の条件を満足するときにドット再現性およびトナー搬送性が良くなることが分かる。
▲1▼円錐ロータ侵入時(20mm侵入時)のトルクの値が0.1〜16.6mNmである。
▲2▼円錐ロータ侵入時(20mm侵入時)の荷重の値が0.01〜3.42Nである。
円錐ロータ侵入時(20mm侵入時)のトルクの値が16.6mNmより大きくなるとランニング時に現像部でトナーブロッキングが生じた。また、円錐ロータ侵入時(20mm侵入時)の荷重の値が3.42Nより大きくなるとランニング時に現像部でトナーブロッキングが生じ、トナー搬送性が悪くなった。
【0081】
【発明の効果】
以上、詳細かつ具体的な発明から明らかなように、本発明により、粉体の流動性を本評価装置を用いて円錐ロータを予め回転させた後、粉体相中に円錐ロータを回転させながら侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定することにより、粉体の流動性が精度良く、個人差のない測定ができるようになり、高画質の得られるトナーの条件を精度良く規定し、高画質の得られるトナーを安定して生産できるという極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明における装置構成の概要を示した図である。
【図2】本発明における他の装置構成の概要を示した図である。
【図3】本発明における円錐ロータの形の一例を示した図である。
【図4】本発明における他の円錐ロータの形の例(円錐ロータの断面形状の変化、円錐頂角の変化)を示した図である。
【図5】本発明における円錐ロータ回転後侵入までの時間とトルク特性を示した図である。
【図6】実施例1〜10、比較例1〜3の円錐ロータ侵入時のトルクとドット再現性との関係を示した図である。
【図7】実施例1〜10、比較例1〜3の円錐ロータ侵入時の荷重とドット再現性との関係を示した図である。
【図8】本評価装置を用いたトナー製造装置の例を示した図である。
【図9】本評価装置を用いて作製したトナーを使った現像装置の例を示した図である。

Claims (23)

  1. 粉体相中に円錐ロータを回転させながら侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定する装置において、円錐ロータを予め回転させた後粉体相中に侵入させるようにしたことを特徴とする粉体評価装置。
  2. 予め円錐ロータ先端と粉体相とが丁度接触するように調整した後、円錐ロータを回転させ、その後円錐ロータを粉体相に侵入させ、円錐ロータが粉体相中を移動するときに発生するトルクまたは荷重を測定することを特徴する請求項1に記載の粉体評価装置。
  3. 予め円錐ロータを1秒以上回転させた後、円錐ロータを粉体相に侵入させるようにしたことを特徴とする請求項1に記載の粉体評価装置。
  4. 円錐ロータの回転数が0.1〜100rpmであることを特徴とする請求項1に記載の粉体評価装置。
  5. 円錐ロータの侵入速度が0.2〜200mm/minであることを特徴する請求項1に記載の粉体評価装置。
  6. 円錐ロータの頂角が20〜150°であることを特徴とする請求項1に記載の粉体評価装置。
  7. 円錐ロータの表面に溝が切ってあることを特徴とする請求項1に記載の粉体評価装置。
  8. 圧密手段により粉体相の空隙率が0.4〜0.75になるようにしたことを特徴とする請求項1に記載の粉体評価装置。
  9. 圧密する前に容器の下に設けた加振器により粉体相状態を安定化し、その後圧密手段により圧密するようにしたことを特徴とする請求項1に記載の粉体評価装置。
  10. 請求項1の装置を用いて、少なくとも樹脂、顔料からなるトナーを回転しながら円錐ロータ20mm侵入時のトルクの測定値が0.1〜16.6mNmであることを特徴とする静電荷現像用トナー。
  11. 請求項1の装置を用いて、少なくとも樹脂、顔料からなるトナーの回転しながら円錐ロータ20mm侵入時の荷重の測定値が0.01〜3.42Nであることを特徴とする静電荷現像用トナー。
  12. 少なくとも樹脂、顔料からなるトナーの中に電荷制御剤および/または離型剤を含んでいることを特徴とする請求項10または11に記載の静電荷現像用トナー。
  13. 樹脂のうちの少なくとも1種類が下記一般式(1)で表わされる結晶性ポリエステルであることを特徴とする請求項10または11に記載の静電荷現像用トナー。
    Figure 2004177850
    (n、mは繰り返し単位の数,R、Rは炭化水素基)
  14. 体積平均粒径が4〜10μmであることを特徴とする請求項10または11に記載の静電荷現像用トナー。
  15. 重合法によって作製されたものであることを特徴とする請求項10または11に記載の静電荷現像用トナー。
  16. 平均円形度が0.9〜0.99であることを特徴とする請求項10または11に記載の静電荷現像用トナー。
  17. 請求項10または11に記載の静電荷現像用トナーを用いて、接触または非接触現像を行なうことを特徴とする1成分現像方法。
  18. ドクターローラを用いてトナー層を制御することを特徴とする請求項17に記載の1成分現像方法。
  19. 請求項10乃至16の何れかに記載の静電荷現像用トナーと粒径20〜100μmのキャリアを用いて現像することを特徴とする2成分現像方法。
  20. 請求項17乃至19の何れかに記載の静電荷現像用トナーを用いた1成分現像方法または2成分現像方法であって、ACバイアス電圧成分を印加して現像することを特徴とする現像方法。
  21. 請求項10乃至16の何れかに記載の静電荷現像用トナーを入れたことを特徴とするトナーカートリッジ。
  22. 請求項1に記載の評価装置を用いて、トナーを製造することを特徴とする静電荷現像用トナー製造方法。
  23. トナーの流動性を評価するための請求項1乃至9の何れかに記載の評価装置を有することを特徴とする静電荷像現像トナー評価装置。
JP2002346831A 2002-11-29 2002-11-29 粉体評価装置、静電荷現像用トナー及び現像方法 Pending JP2004177850A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346831A JP2004177850A (ja) 2002-11-29 2002-11-29 粉体評価装置、静電荷現像用トナー及び現像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346831A JP2004177850A (ja) 2002-11-29 2002-11-29 粉体評価装置、静電荷現像用トナー及び現像方法

Publications (1)

Publication Number Publication Date
JP2004177850A true JP2004177850A (ja) 2004-06-24

Family

ID=32707601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346831A Pending JP2004177850A (ja) 2002-11-29 2002-11-29 粉体評価装置、静電荷現像用トナー及び現像方法

Country Status (1)

Country Link
JP (1) JP2004177850A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973004A1 (en) 2007-03-19 2008-09-24 Ricoh Company, Ltd. Toner and process cartridge using the toner
JP2016191768A (ja) * 2015-03-31 2016-11-10 キヤノン株式会社 画像形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973004A1 (en) 2007-03-19 2008-09-24 Ricoh Company, Ltd. Toner and process cartridge using the toner
JP2016191768A (ja) * 2015-03-31 2016-11-10 キヤノン株式会社 画像形成方法

Similar Documents

Publication Publication Date Title
JP4707547B2 (ja) 静電荷現像用トナー評価方法および静電荷現像用トナーの製造方法
JP2004157354A (ja) 静電荷像現像用トナー、その流動性評価方法及び評価装置
JP2004085850A (ja) 静電荷像現像用トナー
JP2004240100A (ja) 電子写真用トナー、トナー評価方法及び現像方法
JP2006078257A (ja) 静電荷現像用トナー評価方法及び静電荷現像用トナー
JP4024694B2 (ja) 粉体評価装置及び静電荷現像用トナー
JP4357258B2 (ja) 粉体評価装置
JP2004279600A (ja) 静電荷像現像用トナー及びそれの評価方法並びに現像方法
JP4699921B2 (ja) 静電荷現像用トナーの評価方法および静電荷現像用トナーの製造方法
JP4753754B2 (ja) 静電荷現像用トナーの製造方法
JP4090024B2 (ja) トナーの流動性評価方法、トナー、トナーの製造方法、1成分現像方法、2成分現像方法、トナーカートリッジ及びトナーの流動性評価装置
JP2005292072A (ja) 粉体の流動性評価装置、静電荷像現像用トナー及びその製造方法、現像方法、トナーカートリッジ並びにプロセスカートリッジ
JP2004271826A (ja) 静電荷像現像用トナー、トナー評価方法及び現像方法
JP2004177371A (ja) 静電荷現像用トナー評価方法、トナー及び現像方法
JP2004177850A (ja) 粉体評価装置、静電荷現像用トナー及び現像方法
JP4089889B2 (ja) 粉体流動性評価装置
JP2006259140A (ja) 静電荷現像用トナーの流動性評価方法、評価装置、それを利用して得られた静電荷現像用トナー、その製造方法、それを収容したカートリッジ容器およびそれを用いた現像方法
JP4699922B2 (ja) 静電荷現像用トナーの評価方法、評価装置および静電荷現像用トナーの製造方法
JP2004037651A (ja) 電子写真用トナー及び評価方法
JP4084705B2 (ja) 静電荷像現像用トナー、その評価方法、現像方法、製造方法、カートリッジ及びそれらの装置
JP4090025B2 (ja) 粉体の流動性評価装置、静電荷像現像用トナー、画像形成方法及びトナーカートリッジ
JP2010091725A (ja) 静電荷現像用トナー評価方法および評価装置
JP2004279861A (ja) 粉体評価装置、該粉体評価装置を用いて製造したトナー、および該トナーの製造方法
JP2005091959A (ja) 静電荷現像装置、静電荷現像用トナーおよび画像形成装置
JP2004037971A (ja) 電子写真用トナー、その評価方法、その製造方法、その現像方法、およびその評価装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081002