JP2004176689A - 内燃機関の異常診断装置 - Google Patents

内燃機関の異常診断装置 Download PDF

Info

Publication number
JP2004176689A
JP2004176689A JP2002347422A JP2002347422A JP2004176689A JP 2004176689 A JP2004176689 A JP 2004176689A JP 2002347422 A JP2002347422 A JP 2002347422A JP 2002347422 A JP2002347422 A JP 2002347422A JP 2004176689 A JP2004176689 A JP 2004176689A
Authority
JP
Japan
Prior art keywords
cylinder
inter
cylinders
abnormality diagnosis
cylinder variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002347422A
Other languages
English (en)
Other versions
JP4417000B2 (ja
Inventor
Hisayo Doda
久代 堂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002347422A priority Critical patent/JP4417000B2/ja
Publication of JP2004176689A publication Critical patent/JP2004176689A/ja
Application granted granted Critical
Publication of JP4417000B2 publication Critical patent/JP4417000B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】エンジンの気筒間ばらつきによって生じた排出ガスセンサの出力の乱れを排出ガスセンサの異常と誤診断することを防止できるようにする。
【解決手段】吸気管圧力センサ18で検出した吸気管圧力等の挙動に基づいて各気筒毎に気筒間ばらつき値を算出し、各気筒の気筒間ばらつき値に基づいて各気筒毎に燃料噴射量等を補正することで気筒間ばらつきを補正する。エンジン運転中に、気筒間ばらつき値が所定値を越えているとき、又は、気筒間ばらつき補正が完了するまでは、気筒間ばらつきによって生じた排出ガスセンサ24の出力の乱れが正常範囲を越えてしまう可能性があると判断して、排出ガスセンサ24の異常診断を禁止したり、或は、異常判定基準を緩和する。これにより、気筒間ばらつきによって生じた排出ガスセンサの出力の乱れを排出ガスセンサの異常と誤診断することを防止する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態に関する情報を検出するセンサの出力に基づいて所定の異常診断を行う内燃機関の異常診断装置に関するものである。
【0002】
【従来の技術】
近年の電子制御化された内燃機関では、運転状態に関する各種の情報(例えば吸入空気量、吸気管圧力、回転速度、空燃比等)を検出する各種センサを搭載し、これら各種センサの出力に基づいて燃料噴射量(空燃比)や点火時期等を制御すると共に、これら各種センサの出力を利用して各種の異常診断を行うようにしている。例えば、特許文献1(特開平9−166569号公報)に記載されているように、内燃機関の排出ガスの空燃比を検出する空燃比センサの出力に基づいて該空燃比センサの異常の有無を診断するようにしたものがある。
【0003】
【特許文献1】
特開平9−166569号公報(第2頁等)
【0004】
【発明が解決しようとする課題】
ところが、複数の気筒を有する内燃機関では、各気筒の個体差(部品公差、組付公差等)や経年変化等によって各気筒の運転状態にばらつきが生じることがある。このため、内燃機関の運転状態に関する情報(例えば吸入空気量、吸気管圧力、回転速度、空燃比等)を検出するセンサの出力に基づいて各種の異常診断を行う場合に、気筒間の運転状態のばらつきが大きいと、その影響を受けてセンサ出力のサイクル内変動が大きくなってしまい、異常診断の対象が正常であるにも拘らず異常と誤診断してしまう可能性がある。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、気筒間ばらつきによって生じるセンサ出力の乱れを異常診断対象の異常と誤診断することを防止することができ、異常診断精度を向上させることができる内燃機関の制御装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の異常診断装置は、内燃機関の気筒間の運転状態のばらつきを表す気筒間ばらつき値を気筒間ばらつき検出手段により検出し、気筒間ばらつき値が所定値を越えているときに、異常診断手段による異常診断の禁止又は異常判定基準の緩和を誤診断防止手段により実行するようにしたものである。この構成では、気筒間ばらつきによってセンサ出力の乱れが異常判定レベルを越えるような状態になれば、気筒間ばらつき検出手段により検出した気筒間ばらつき値が所定値を越えて異常診断を禁止したり又は異常判定基準を緩和するため、気筒間ばらつきによって生じるセンサ出力の乱れを異常診断対象の異常と誤診断することを防止することができ、異常診断精度を向上させることができる。
【0007】
また、気筒間ばらつき値に基づいて内燃機関の気筒間の運転状態のばらつきを補正する気筒間ばらつき補正手段を備えたシステムの場合、気筒間ばらつき補正が完了するまでは、まだ気筒間ばらつきが大きいために、センサ出力の乱れが通常の異常判定レベルを越えてしまう可能性がある。
【0008】
そこで、請求項2,3のように、気筒間ばらつき補正が完了していないときに、異常診断の禁止又は異常判定基準の緩和を実行するようにしても良い。このようにすれば、気筒間ばらつき補正の完了前で、まだ気筒間ばらつきが大きいときに生じるセンサ出力の乱れを異常診断対象の異常と誤診断することを防止でき、異常診断精度を向上させることができる。
【0009】
また、気筒間ばらつき補正を実行してから実際に気筒間ばらつきが十分に小さくなるまでには暫く時間が掛かることがあるため、請求項4のように、気筒間ばらつき補正の完了後も所定期間が経過するまで、異常診断の禁止又は異常判定基準の緩和を継続するようにしても良い。このようにすれば、気筒間ばらつき補正の完了直後で気筒間ばらつきが十分に小さくなっていない可能性がある期間にも異常診断を禁止又は異常判定基準を緩和して、より確実に誤診断を防止することができる。
【0010】
【発明の実施の形態】
《実施形態(1)》
以下、本発明の実施形態(1)を図1乃至図7に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関である例えば4気筒のエンジン11は、第1気筒#1〜第4気筒#4の4つの気筒を有し、このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
【0011】
また、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。
【0012】
一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比又はリーン/リッチ等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する水温センサ25や、エンジン11のクランク軸が一定クランク角(例えば30℃A)回転する毎にパルス信号を出力するクランク角センサ26が取り付けられている。このクランク角センサ26の出力信号に基づいてクランク角やエンジン回転速度が検出される。
【0013】
前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。
【0014】
その際、ECU27は、図示しない空燃比フィードバック制御プログラムを実行することで、排出ガスセンサ24で検出した排出ガスの空燃比λs を目標空燃比λtgに一致させるように空燃比補正係数FAFを算出し、この空燃比補正係数FAFを用いて燃料噴射量を算出する。
【0015】
更に、ECU27は、後述する図2に示す排出ガスセンサ異常診断プログラムを実行することで、目標空燃比λtgが変化したときに、目標空燃比λtgの変化量Δλtgと空燃比補正係数FAFの変化量ΔFAFとの比(ΔFAF/Δλtg)が所定範囲(KCGL〜KCGH)内であるか否かによって排出ガスセンサ24の異常(故障、劣化等)の有無を診断する。
【0016】
しかし、気筒間の運転状態のばらつきが大きいと、その影響を受けて排出ガスセンサ24出力のサイクル内変動が大きくなって異常診断パラメータ(例えばΔFAF/Δλtg)が異常判定値(例えば所定範囲の下限値KCGL又は上限値KCGH)を越えてしまうおそれがあり、排出ガスセンサ24が正常であるにも拘らず異常有りと誤診断してしまう可能性がある。
【0017】
そこで、ECU27は、後述する図3及び図4に示す気筒間ばらつき検出プログラムを実行することで、エンジン11の気筒間の運転状態のばらつきを表す気筒間ばらつき値DEVを算出し、後述する図6に示す気筒間ばらつき補正プログラムを実行することで、気筒間ばらつき値DEVに基づいてエンジン11の気筒間の運転状態のばらつきを補正する。
【0018】
そして、後述する図7に示す誤診断防止プログラムを実行することで、気筒間ばらつき値DEVが所定範囲を越えているとき、又は、気筒間ばらつき補正が完了していないときに、排出ガスセンサ24の異常診断を禁止して、気筒間ばらつきによって生じる排出ガスセンサ24の出力の乱れを排出ガスセンサ24の異常と誤診断してしまうことを防止する。以下、ECU27が実行する各プログラムの処理内容を説明する。
【0019】
[排出ガスセンサ異常診断プログラム]
図2に示す排出ガスセンサ異常診断プログラムは、例えば、燃料噴射タイミング毎に実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。本プログラムが起動されると、まず、ステップ101で、現在の目標空燃比λtgと前回の目標空燃比λtg(i−1) との差の絶対値が所定の判定値Kλtg以上であるか否かを判定する。もし、|λtg−λtg(i−1) |<Kλtgであれば、目標空燃比λtgが変化していないと判断して、ステップ105に進み、目標空燃比変化フラグXが目標空燃比λtgの変化検出済みを意味する「1」にセットされているか否かを判定する。目標空燃比変化フラグXが「1」にセットされていなければ、以降の処理を行うことなく、本プログラムを終了する。
【0020】
その後、|λtg−λtg(i−1) |≧Kλtgになった時点で、目標空燃比λtgが変化したと判断して、ステップ102に進み、目標空燃比変化フラグXを「1」にセットした後、ステップ103に進み、現在の目標空燃比λtgから1回前の目標空燃比λtg(i−1) を減算して、目標空燃比λtgの変化量Δλtgを算出する。
Δλtg=λtg−λtg(i−1)
【0021】
この後、ステップ104に進み、そのときの空燃比補正係数FAFを変化前の空燃比補正係数FAFBFとしてECU27のメモリ(図示せず)に記憶して、本プログラムを終了する。
【0022】
そして、目標空燃比λtgの変化後に、本プログラムが起動される毎に、ステップ101で「No」と判定されてステップ105に進み、目標空燃比変化フラグXが「1」にセットされていれば、ステップ106に進み、現在の目標空燃比λtgと1回前の目標空燃比λtg(i−1) との差をそれまでのΔλtgに加算して、Δλtgの記憶値を更新する。
Δλtg=Δλtg+{λtg−λtg(i−1) }
【0023】
この後、ステップ107に進み、現在の空燃比補正係数FAFと1回前の空燃比補正係数FAF(i−1) との差の絶対値が所定値KFAF以下になったか否かを判定する。そして、|FAF−FAF(i−1) |≦KFAFとなったとき、つまり、空燃比補正係数FAFが所定の値に収束したときに、ステップ108に進み、現在の空燃比補正係数FAFから前記ステップ104で記憶した変化前の空燃比補正係数FAFBFを減算して、空燃比補正係数FAFの変化量ΔFAFを算出する。
ΔFAF=FAF−FAFBF
【0024】
この後、ステップ109に進み、目標空燃比変化フラグXを「0」にリセットした後、ステップ110に進み、ΔFAFの絶対値とΔλtgの絶対値との比が所定範囲内(KCGL≦|ΔFAF|/|Δλtg|≦KCGH)であるか否かを判定する(例えばKCGL=0.9、KCGH=1.1)。
【0025】
その結果、ΔFAFの絶対値とΔλtgの絶対値との比が所定範囲内であると判定された場合には、ステップ111に進み、排出ガスセンサ24の異常無し(正常)と判定して、本プログラムを終了する。
【0026】
一方、ΔFAFの絶対値とΔλtgの絶対値の比が所定範囲から外れていると判定された場合には、ステップ112に進み、排出ガスセンサ24の異常(故障、劣化等)と判定して、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯し、又は警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード)をECU27のバックアップRAM(図示せず)に記憶して、本プログラムを終了する。
【0027】
[気筒間ばらつき検出プログラム]
図3及び図4に示す気筒間ばらつき検出プログラムは、例えば、イグニッションスイッチ(図示せず)のオン後に所定周期で実行され、特許請求の範囲でいう気筒間ばらつき検出手段としての役割を果たす。
【0028】
ここで、図5に示すように、吸気管圧力センサ18で検出した吸気管圧力の波形は、各気筒の運転状態(吸入空気量、燃焼状態、空燃比等)を反映した脈動波形となる。従って、各気筒の影響が現れるクランク角範囲毎に吸気管圧力センサ18で検出した吸気管圧力の極小値、極大値、平均値、振幅値、面積、軌跡長等の特性値を算出すれば、各気筒の運転状態を反映した脈動波形の特性値を算出することができるので、この特性値を用いれば、各気筒の運転状態のばらつきを反映した気筒間ばらつき値を算出することができる。
【0029】
尚、本プログラムでは、吸気管圧力の極小値を用いて気筒間ばらつき値を算出するため、図5(a)に示すように、後述する第1〜第4のクランク角範囲は、それぞれ第1〜第4気筒の影響で吸気管圧力が極小値となる領域を含むように設定されている。
【0030】
本プログラムが起動されると、まず、ステップ201で、気筒間ばらつき検出の実行条件が成立しているか否かを、例えば、定常状態(過渡状態ではない)か否か等によって判定する。気筒間ばらつき検出の実行条件が不成立と判定されれば、以降の処理を行うことなく、本プログラムを終了する。
【0031】
一方、上記ステップ201で、気筒間ばらつき検出の実行条件が成立していると判定された場合には、ステップ202に進み、クランク角センサ26の出力信号に基づいて検出したクランク角が第1のクランク角範囲(第1気筒#1の影響で吸気管圧力が極小値となる領域を含むクランク角範囲)内であるか否かを判定する。その結果、第1のクランク角範囲内であると判定されれば、ステップ203に進み、第1のクランク角範囲内における吸気管圧力の極小値PMmin を、第1気筒#1の吸気管圧力極小値PMmin(#1) として算出する。
【0032】
一方、上記ステップ202で、クランク角が第1のクランク角範囲内ではないと判定された場合には、ステップ204に進み、クランク角が第2のクランク角範囲(第2気筒#2の影響で吸気管圧力が極小値となる領域を含むクランク角範囲)内であるか否かを判定する。その結果、第2のクランク角範囲内であると判定されれば、ステップ205に進み、第2のクランク角範囲内における吸気管圧力の極小値PMmin を、第2気筒#2の吸気管圧力極小値PMmin(#2) として算出する。
【0033】
また、上記ステップ204で、クランク角が第2のクランク角範囲内ではないと判定された場合には、ステップ206に進み、クランク角が第3のクランク角範囲(第3気筒#3の影響で吸気管圧力が極小値となる領域を含むクランク角範囲)内であるか否かを判定する。その結果、第3のクランク角範囲内であると判定されれば、ステップ207に進み、第3のクランク角範囲内における吸気管圧力の極小値PMmin を、第3気筒#3の吸気管圧力極小値PMmin(#3) として算出する。
【0034】
また、上記ステップ206で、クランク角が第3のクランク角範囲内ではないと判定された場合には、クランク角が第4のクランク角範囲(第4気筒#4の影響で吸気管圧力が極小値となる領域を含むクランク角範囲)内であると判断して、ステップ208に進み、第4のクランク角範囲内における吸気管圧力の極小値PMmin を、第4気筒#4の吸気管圧力極小値PMmin(#4) として算出する。
【0035】
この後、図4のステップ209に進み、全気筒の吸気管圧力極小値PMmin(#1) 〜PMmin(#4) の平均値AVEPMmin を算出する。
AVEPMmin ={PMmin(#1) +……+PMmin(#4) }/4
【0036】
この後、ステップ210に進み、各気筒の吸気管圧力極小値PMmin(#i) と平均値AVEPMmin とを用いて各気筒の気筒間ばらつき値DEV(#i)を次式により算出する。ここで、#i=#1〜#4である。
DEV(#i)=PMmin(#i) −AVEPMmin
【0037】
この後、ステップ211に進み、各気筒の気筒間ばらつき値DEV(#i)が、それぞれ所定範囲内(K1≦DEV(#i)≦K2)であるか否かを判定する。その結果、全ての気筒間ばらつき値DEV(#1)〜DEV(#4)のうち1つでも所定範囲から外れていると判定された場合には、ステップ212に進み、気筒間ばらつきフラグXDEVを気筒間ばらつきが大きいことを意味する「1」にセットして、本プログラムを終了する。
【0038】
一方、全ての気筒間ばらつき値DEV(#1)〜DEV(#4)が所定範囲内であると判定された場合には、ステップ213に進み、気筒間ばらつきフラグXDEVを気筒間ばらつきが小さいことを意味する「0」にリセットして、本プログラムを終了する。
【0039】
[気筒間ばらつき補正プログラム]
図6に示す気筒間ばらつき補正プログラムは、例えば、イグニッションスイッチのオン後に所定周期で実行され、特許請求の範囲でいう気筒間ばらつき補正手段としての役割を果たす。本プログラムが起動されると、まず、ステップ301で、各気筒の気筒間ばらつき値DEV(#i)を読み込んだ後、ステップ302に進み、各気筒の気筒間ばらつき値DEV(#i)を用いて、各気筒の燃料噴射時間補正係数FTAU(#i)を次式により算出する。
FTAU(#i)=DEV(#i)+1
【0040】
この後、ステップ303に進み、補正前の全気筒の平均燃料噴射時間TAUに各気筒の燃料噴射時間補正係数FTAU(#i)を乗算して、各気筒の最終燃料噴射時間TAU(#i)を求める。
TAU(#i)=TAU×FTAU(#i)
以上の処理により、各気筒の気筒間ばらつき値DEV(#i)に応じて各気筒の燃料噴射量を補正することで、気筒間の空燃比ばらつきを小さくする。
【0041】
[誤診断防止プログラム]
図7に示す誤診断防止プログラムは、例えば、イグニッションスイッチのオン後に所定周期で実行され、特許請求の範囲でいう誤診断防止手段としての役割を果たす。本プログラムが起動されると、まず、ステップ401で、▲1▼気筒間ばらつきが小さい(気筒間ばらつきフラグXDEV=0)か否かを判定し、また、▲2▼気筒間ばらつき補正が完了してから所定期間(所定時間、所定クランク角等)が経過したか否かを判定する。
【0042】
その結果、気筒間ばらつきが大きい(気筒間ばらつきフラグXDEV=1)と判定された場合、又は、気筒間ばらつき補正完了から所定期間が経過する前であると判定された場合には、気筒間ばらつきによって排出ガスセンサ24の出力が乱れて異常診断パラメータ(例えばΔFAF/Δλtg)が正常範囲(KCGL〜KCGH)から外れる可能性があると判断して、ステップ402に進み、排出ガスセンサ24の異常診断を禁止する。これにより、気筒間ばらつきによって生じた排出ガスセンサ24の出力の乱れを排出ガスセンサ24の異常と誤診断してしまうことを防止する。
【0043】
一方、上記ステップ401で、気筒間ばらつきが小さいと判定された場合、又は、気筒間ばらつき補正が完了してから所定期間が経過したと判定された場合には、ステップ403に進み、排出ガスセンサ24の異常診断を許可する。
【0044】
以上説明した本実施形態(1)では、気筒間ばらつきが大きいときに、排出ガスセンサ24の異常診断を禁止するようにしたので、気筒間ばらつきによって生じた排出ガスセンサ24の出力の乱れを排出ガスセンサ24の異常と誤診断してしまうことを防止することができ、排出ガスセンサ24の異常診断精度を向上させることができる。
【0045】
また、本実施形態(1)では、気筒間ばらつき補正を実行してから実際に気筒間ばらつきが十分に小さくなるまでには暫く時間が掛かることがあることを考慮して、気筒間ばらつき補正の完了後も所定期間が経過するまで、排出ガスセンサ24の異常診断の禁止を継続するようにしたので、気筒間ばらつき補正の完了直後で気筒間ばらつきが十分に小さくなっていない可能性がある期間にも、異常診断を禁止して、より確実に誤診断を防止することができる。
【0046】
しかしながら、必ずしも、気筒間ばらつき補正完了から所定期間が経過するまで異常診断の禁止を継続する必要はなく、気筒間ばらつき補正によって速やかに気筒間ばらつきが小さくなるような場合には、気筒間ばらつき補正完了直後に、直ちに排出ガスセンサ24の異常診断を許可するようにしても良い。
【0047】
《実施形態(2)》
次に、図8乃至図10を用いて本発明の実施形態(2)を説明する。
前記実施形態(1)では、吸気管圧力の極小値を用いて気筒間ばらつき値を算出したが、本実施形態(2)では、後述する図8及び図9に示す気筒間ばらつき検出プログラムを実行することで、吸気管圧力の極大値を用いて気筒間ばらつき値を算出するようにしている。
【0048】
また、前記実施形態(1)では、誤診断防止のために排出ガスセンサ24の異常診断を禁止するようにしたが、本実施形態(2)では、後述する図10に示す誤診断防止プログラムを実行することで、誤診断防止のために排出ガスセンサ24の異常判定基準を緩和するようにしている。
【0049】
[気筒間ばらつき検出プログラム]
図8及び図9に示す気筒間ばらつき検出プログラムでは、吸気管圧力の極大値を用いて気筒間ばらつき値を算出するため、図5(b)に示すように、後述する第1〜第4のクランク角範囲は、それぞれ第1〜第4気筒の影響で吸気管圧力が極大値となる領域を含むように設定されている。
【0050】
本プログラムでは、ステップ501で気筒間ばらつき検出の実行条件が成立していると判定された場合、クランク角が第1のクランク角範囲(第1気筒#1の影響で吸気管圧力が極大値となる領域を含むクランク角範囲)内のときに、該第1のクランク角範囲内における吸気管圧力の極大値PMmax を、第1気筒#1の吸気管圧力極大値PMmax(#1) として算出する(ステップ502、503)。
【0051】
一方、クランク角が第2のクランク角範囲(第2気筒#2の影響で吸気管圧力が極大値となる領域を含むクランク角範囲)内のときに、該第2のクランク角範囲内における吸気管圧力の極大値PMmax を、第2気筒#2の吸気管圧力極大値PMmax(#2) として算出する(ステップ504、505)。
【0052】
また、クランク角が第3のクランク角範囲(第3気筒#3の影響で吸気管圧力が極大値となる領域を含むクランク角範囲)内のときに、該第3のクランク角範囲内における吸気管圧力の極大値PMmax を、第3気筒#3の吸気管圧力極大値PMmax(#3) として算出する(ステップ506、507)。
【0053】
また、クランク角が第4のクランク角範囲(第4気筒#4の影響で吸気管圧力が極大値となる領域を含むクランク角範囲)内のときに、該第4のクランク角範囲内における吸気管圧力の極大値PMmax を、第4気筒#4の吸気管圧力極大値PMmax(#4) として算出する(ステップ508)。
【0054】
この後、図9のステップ509に進み、全気筒の吸気管圧力極大値PMmax(#1) 〜PMmax(#4) の平均値AVEPMmax を算出する。
AVEPMmax ={PMmax(#1) +……+PMmax(#4) }/4
【0055】
この後、ステップ510に進み、各気筒の吸気管圧力極大値PMmax(#i) と平均値AVEPMmax とを用いて各気筒の気筒間ばらつき値DEV(#i)を次式により算出する。
DEV(#i)=PMmax(#i) −AVEPMmax
【0056】
この後、ステップ511に進み、各気筒の気筒間ばらつき値DEV(#i)が、それぞれ所定範囲(K1〜K2)内であるか否かを判定し、全ての気筒間ばらつき値DEV(#1)〜DEV(#4)のうち1つでも所定範囲を越えていると判定された場合には、ステップ512に進み、気筒間ばらつきフラグXDEVを「1」にセットし、全ての気筒間ばらつき値DEV(#1)〜DEV(#4)が所定範囲内であると判定された場合には、ステップ513に進み、気筒間ばらつきフラグXDEVを「0」にリセットする。
【0057】
[誤診断防止プログラム]
図10に示す誤診断防止プログラムでは、まず、ステップ601で、▲1▼気筒間ばらつきが小さい(気筒間ばらつきフラグXDEV=0)か否かを判定し、また、▲2▼気筒間ばらつき補正が完了したか否かを判定する。
【0058】
その結果、気筒間ばらつきが大きい(気筒間ばらつきフラグXDEV=1)と判定された場合、又は、気筒間ばらつき補正が未完了であると判定された場合には、気筒間ばらつきによって排出ガスセンサ24の出力が乱れて異常診断パラメータ(例えばΔFAF/Δλtg)が正常範囲(下限値KCGL〜上限値KCGH)から外れる可能性があると判断して、ステップ602に進み、正常範囲の下限値KCGL(異常判定値)を誤診断防止用の下限値(KCGL−α)に変更し、上限値KCGH(異常判定値)を誤診断防止用の上限値(KCGH+β)に変更して、正常範囲の幅を広げて異常判定基準を緩和する。これにより、気筒間ばらつきによって生じた排出ガスセンサ24の出力の乱れを排出ガスセンサ24の異常と誤診断することを防止する。
【0059】
一方、上記ステップ601で、気筒間ばらつきが小さいと判定された場合、又は、気筒間ばらつき補正が完了したと判定された場合には、ステップ603に進み、正常範囲の下限値(異常判定値)と上限値(異常判定値)を通常の値KCGL、KCGHに戻す。
【0060】
以上説明した本実施形態(2)では、気筒間ばらつきが大きいときや気筒間ばらつき補正が未完了のときに、正常範囲の幅を広げて異常判定基準を緩和するようにしたので、気筒間ばらつきによって生じた排出ガスセンサ24の出力の乱れを排出ガスセンサ24の異常と誤診断してしまうことを防止することができ、排出ガスセンサ24の異常診断精度を向上させることができる。
【0061】
尚、本実施形態(2)では、異常判定基準を緩和するために異常判定値(正常範囲の下限値と上限値)を変更するようにしたが、異常診断パラメータ(例えばΔFAF/Δλtg)を補正したり、排出ガスセンサ24の出力を補正する等、他の異常判定条件を変更するようにしても良い。
【0062】
また、本実施形態(2)においても、前記実施形態(1)と同じように、気筒間ばらつき補正完了後も所定期間が経過するまで、異常判定基準の緩和を継続するようにしても良い。
【0063】
また、上記各実施形態(1),(2)では、本発明を排出ガスセンサ24の異常診断に適用したが、本発明はこれに限定されず、例えば、排出ガスセンサ24の出力を用いた触媒劣化診断、エアフローメータ14の出力を用いたエアフローメータ14の異常診断、吸気管圧力センサ18の出力を用いた吸気管圧力センサ18の異常診断、エアフローメータ14と吸気管圧力センサ18と排出ガスセンサ24のうちの少なくとも1つの出力を用いた触媒早期暖機システムの異常診断や空燃比制御システムの異常診断等、気筒間ばらつきの影響を受ける種々の異常診断に本発明を適用することができる。
【0064】
また、上記各実施形態(1),(2)では、吸気管圧力の所定期間毎の極大値又は極小値に基づいて気筒間ばらつき値を算出したが、気筒間ばらつき値の算出方法は適宜変更しても良く、例えば、吸気管圧力の所定期間毎の平均値、振幅値、面積、軌跡長等に基づいて気筒間ばらつき値を算出するようにしても良い。また、吸気管圧力に代えて、吸入空気量、筒内圧力、回転速度、イオン電流、空燃比等に基づいて気筒間ばらつき値を算出するようにしても良い。
【0065】
また、上記各実施形態(1),(2)では、各気筒毎に燃料噴射量を補正することで気筒間ばらつきを補正したが、気筒間ばらつきの補正方法は適宜変更しても良く、例えば、各気筒毎に点火時期を補正したり、各気筒毎に吸入空気量を補正して気筒間ばらつきを補正するようにしても良い。
【0066】
その他、本発明の適用範囲は4気筒のエンジンに限定されず、5気筒以上又は3気筒以下の複数気筒エンジンに本発明を適用しても良い。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御システム全体の概略構成図
【図2】実施形態(1)の排出ガスセンサ異常診断プログラムの処理の流れを示すフローチャート
【図3】実施形態(1)の気筒間ばらつき検出プログラムの処理の流れを示すフローチャート(その1)
【図4】実施形態(1)の気筒間ばらつき検出プログラムの処理の流れを示すフローチャート(その2)
【図5】吸気管圧力の挙動を示すタイムチャート
【図6】実施形態(1)の気筒間ばらつき補正プログラムの処理の流れを示すフローチャート
【図7】実施形態(1)の誤診断防止プログラムの処理の流れを示すフローチャート
【図8】実施形態(2)の気筒間ばらつき検出プログラムの処理の流れを示すフローチャート(その1)
【図9】実施形態(2)の気筒間ばらつき検出プログラムの処理の流れを示すフローチャート(その2)
【図10】実施形態(2)の誤診断防止プログラムの処理の流れを示すフローチャート
【符号の説明】
11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、18…吸気管圧力センサ、20…燃料噴射弁、21…点火プラグ、22…排気管、24…排出ガスセンサ、26…クランク角センサ、27…ECU(異常診断手段,気筒間ばらつき検出手段,気筒間ばらつき補正手段,誤診断防止手段)。

Claims (4)

  1. 複数の気筒を有する内燃機関の運転状態に関する情報を検出するセンサの出力に基づいて所定の異常診断を行う異常診断手段を備えた内燃機関の異常診断装置において、
    前記内燃機関の気筒間の運転状態のばらつきを表す気筒間ばらつき値を求める気筒間ばらつき検出手段と、
    前記気筒間ばらつき値が所定値を越えているときに、前記異常診断手段による異常診断の禁止又は異常判定基準の緩和を実行する誤診断防止手段と
    を備えていることを特徴とする内燃機関の異常診断装置。
  2. 前記気筒間ばらつき値に基づいて前記内燃機関の気筒間の運転状態のばらつきを補正する気筒間ばらつき補正手段を備え、
    前記誤診断防止手段は、前記気筒間ばらつき補正手段による気筒間ばらつき補正が完了していないときに、前記異常診断の禁止又は異常判定基準の緩和を実行することを特徴とする請求項1に記載の内燃機関の異常診断装置。
  3. 複数の気筒を有する内燃機関の運転状態に関する情報を検出するセンサの出力に基づいて所定の異常診断を行う異常診断手段を備えた内燃機関の異常診断装置において、
    前記内燃機関の気筒間の運転状態のばらつきを表す気筒間ばらつき値を求める気筒間ばらつき検出手段と、
    前記気筒間ばらつき値に基づいて前記内燃機関の気筒間の運転状態のばらつきを補正する気筒間ばらつき補正手段と、
    前記気筒間ばらつき補正手段による気筒間ばらつき補正が完了していないときに、前記異常診断手段による異常診断の禁止又は異常判定基準の緩和を実行する誤診断防止手段と
    を備えていることを特徴とする内燃機関の異常診断装置。
  4. 前記誤診断防止手段は、前記気筒間ばらつき補正手段による気筒間ばらつき補正の完了後も所定期間が経過するまで、前記異常診断の禁止又は異常判定基準の緩和を継続することを特徴とする請求項2又は3に記載の内燃機関の異常診断装置。
JP2002347422A 2002-11-29 2002-11-29 内燃機関の異常診断装置 Expired - Fee Related JP4417000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347422A JP4417000B2 (ja) 2002-11-29 2002-11-29 内燃機関の異常診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347422A JP4417000B2 (ja) 2002-11-29 2002-11-29 内燃機関の異常診断装置

Publications (2)

Publication Number Publication Date
JP2004176689A true JP2004176689A (ja) 2004-06-24
JP4417000B2 JP4417000B2 (ja) 2010-02-17

Family

ID=32708023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347422A Expired - Fee Related JP4417000B2 (ja) 2002-11-29 2002-11-29 内燃機関の異常診断装置

Country Status (1)

Country Link
JP (1) JP4417000B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037755A (ja) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd 内燃機関の制御装置
JP2008038785A (ja) * 2006-08-08 2008-02-21 Denso Corp 内燃機関の気筒別空燃比制御装置
JP2009209747A (ja) * 2008-03-03 2009-09-17 Toyota Motor Corp 空燃比センサの異常診断装置
US8024105B2 (en) 2008-04-17 2011-09-20 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037755A (ja) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd 内燃機関の制御装置
JP4539211B2 (ja) * 2004-07-23 2010-09-08 日産自動車株式会社 内燃機関の制御装置
JP2008038785A (ja) * 2006-08-08 2008-02-21 Denso Corp 内燃機関の気筒別空燃比制御装置
JP4706590B2 (ja) * 2006-08-08 2011-06-22 株式会社デンソー 内燃機関の気筒別空燃比制御装置
JP2009209747A (ja) * 2008-03-03 2009-09-17 Toyota Motor Corp 空燃比センサの異常診断装置
US8024105B2 (en) 2008-04-17 2011-09-20 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JP4417000B2 (ja) 2010-02-17

Similar Documents

Publication Publication Date Title
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
JP3498817B2 (ja) 内燃機関の排気系故障診断装置
US7040307B2 (en) System for diagnosing degradation of air-fuel sensor
JP3456058B2 (ja) 触媒の劣化検出装置及び排気浄化装置の異常検出装置
JP4831015B2 (ja) 内燃機関の異常診断装置
JP4736058B2 (ja) 内燃機関の空燃比制御装置
JP4748462B2 (ja) 内燃機関の異常診断装置
JP2008121534A (ja) 内燃機関の異常診断装置
JP2008144639A (ja) 内燃機関の制御装置
JPH0742595A (ja) 内燃機関の異常判定装置
JPS6338537B2 (ja)
JP4868173B2 (ja) 内燃機関の異常診断装置
JP4827022B2 (ja) 内燃機関の失火検出装置
JP2011226363A (ja) 内燃機関の異常診断装置
JP4475207B2 (ja) 内燃機関の制御装置
JP4417000B2 (ja) 内燃機関の異常診断装置
JP2010163932A (ja) 内燃機関の触媒劣化診断装置
JP2010156295A (ja) 多気筒内燃機関の診断装置及び制御装置
JP2006138280A (ja) 内燃機関の制御装置
JP2001329894A (ja) 内燃機関の燃料系異常診断装置
JPH09126041A (ja) 内燃機関の図示平均有効圧検出装置
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP2011052671A (ja) アルコール濃度推定装置及び燃料供給系故障診断装置
JP3966177B2 (ja) 内燃機関の空燃比制御装置
JPH07293310A (ja) エンジン誤制御禁止方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080701

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees