JP2004172602A - Capacitor and its manufacturing method, wiring board, decoupling circuit, and high frequency circuit - Google Patents

Capacitor and its manufacturing method, wiring board, decoupling circuit, and high frequency circuit Download PDF

Info

Publication number
JP2004172602A
JP2004172602A JP2003370211A JP2003370211A JP2004172602A JP 2004172602 A JP2004172602 A JP 2004172602A JP 2003370211 A JP2003370211 A JP 2003370211A JP 2003370211 A JP2003370211 A JP 2003370211A JP 2004172602 A JP2004172602 A JP 2004172602A
Authority
JP
Japan
Prior art keywords
conductor
capacitor
conductors
layers
dielectric layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003370211A
Other languages
Japanese (ja)
Other versions
JP4458812B2 (en
Inventor
Hisashi Sato
恒 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003370211A priority Critical patent/JP4458812B2/en
Publication of JP2004172602A publication Critical patent/JP2004172602A/en
Application granted granted Critical
Publication of JP4458812B2 publication Critical patent/JP4458812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor of low ESL and high capacity in a simple inexpensive method. <P>SOLUTION: The capacitor 10 comprises a first capacitor 11 and a second capacitor 12 integrated each other in the direction of layers. The first capacitor 11 comprises multilayer dielectric layers 2, first conductive layers 3a, second conductive layers 4a opposed to the first conductive layers 3a across the dielectric layers 2, first through conductor 5a penetrating the first conductive layers 3 to connect one another, and second through conductor 6a penetrating the second conductive layers 4a to connect one another. The second capacitor 12 comprises multilayer dielectric layers 2, third conductive layers 3b, fourth conductive layers 4b opposed to the third conductive layers 3b across the dielectric layers 2, third through conductor 5b penetrating the third conductive layers to connect one another, fourth through conductor 6b penetrating the fourth conductive layers 4b to connect one another. The total number of first and second through conductors 5a and 6a is larger than that of third and fourth through 5b and 6b. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、コンデンサ、配線基板、デカップリング回路及び高周波回路に関するもので、特に、高周波領域において有利に適用され得るコンデンサ、ならびに、このコンデンサを用いて構成される、配線基板、デカップリング回路及び高周波回路に関するものである。     The present invention relates to a capacitor, a wiring board, a decoupling circuit, and a high-frequency circuit, and particularly to a capacitor that can be advantageously applied in a high-frequency region, and a wiring board, a decoupling circuit, and a high-frequency circuit configured using the capacitor. It concerns the circuit.

代表的なコンデンサとして、積層コンデンサを例にとって説明する。   As a typical capacitor, a laminated capacitor will be described as an example.

積層コンデンサを用いた等価回路では、コンデンサの静電容量をC、等価直列インダクタンス(ESL)をLとしたとき、共振周波数(f)は、f=1/〔2π×(L×C)1/2〕の関係で表され、共振周波数(f)より高い周波数領域では、コンデンサの機能が消失してしまうことが知られている。すなわち、一定値以上の静電容量(C)を維持するためには、できるだけESL(L)を低くする必要がある。つまり、ESLが低ければ、共振周波数(f)は高くなり、より高周波領域で使用できることになる。このことから、積層コンデンサをマイクロ波領域で使うためには、より低ESL化が図られたものが必要となる。 In an equivalent circuit using a multilayer capacitor, when the capacitance of the capacitor is C and the equivalent series inductance (ESL) is L, the resonance frequency (f 0 ) is f 0 = 1 / [2π × (L × C) expressed in relation 1/2], in the frequency region higher than the resonance frequency (f 0), it is known that the function of the capacitor is lost. That is, in order to maintain the capacitance (C) of a certain value or more, it is necessary to reduce ESL (L) as much as possible. That is, when the ESL is low, the resonance frequency (f 0 ) is high, and it can be used in a higher frequency range. For this reason, in order to use the multilayer capacitor in the microwave region, a capacitor having a lower ESL is required.

また、ワークステーションやパーソナルコンピュータ等のマイクロプロセッシングユニット(MPU)のMPUチップに電源を供給するために用いられ、通常デカップリングコンデンサとして配線基板上に接続されている積層コンデンサも、
近年のMPUの高速、高周波化に伴って、低ESL化が求められている。
Also, a multilayer capacitor which is used to supply power to an MPU chip of a micro processing unit (MPU) such as a workstation or a personal computer, and which is usually connected on a wiring board as a decoupling capacitor,
With the recent increase in speed and frequency of MPUs, lower ESL is required.

ここで、従来の積層コンデンサについて、図4(a)(b)をもとに説明する。図4(a)は断面図、図4(b)は第1、第2導体層の重なり状態を示す概略図である。   Here, a conventional multilayer capacitor will be described with reference to FIGS. FIG. 4A is a cross-sectional view, and FIG. 4B is a schematic view showing an overlapping state of the first and second conductor layers.

図に示す従来の積層コンデンサ50は、誘電体層52の一方主面に第1導体層53が、他方主面に第2導体層54が夫々形成され、これらの誘電体層52が複数積層されており、また、これらの誘電体層52の厚み方向には第1及び第2導体層53、54どうしを夫々接続する第1及び第2貫通導体55、56が形成され、積層体51が構成されている。そして、ここでは、第1及び第2貫通導体55、56が、積層体51の一方の最表面に露出し、夫々第1及び第2接続端子57、58に接続され、積層コンデンサ50が構成されている。さらに、第1及び第2導体層53、54内に、第2及び第1貫通導体56、55とは夫々接続しない第1及び第2非導体形成領域63、64が形成されている。   In the conventional multilayer capacitor 50 shown in the figure, a first conductor layer 53 is formed on one main surface of a dielectric layer 52, and a second conductor layer 54 is formed on the other main surface, and a plurality of these dielectric layers 52 are laminated. Further, in the thickness direction of these dielectric layers 52, first and second through conductors 55 and 56 for connecting the first and second conductor layers 53 and 54 to each other are formed, and the laminated body 51 is formed. Have been. Here, the first and second through conductors 55 and 56 are exposed on one outermost surface of the multilayer body 51 and connected to the first and second connection terminals 57 and 58, respectively, to configure the multilayer capacitor 50. ing. Further, first and second non-conductor formation regions 63 and 64 which are not connected to the second and first through conductors 56 and 55, respectively, are formed in the first and second conductor layers 53 and 54.

そして、第1及び第2貫通導体55、56は、第1及び第2導体層53、54の全域にわたって、交互に格子状に分散して配置されてなる(特許文献1乃至4参照)。
特開平7−201651号公報 (3−5頁、図1−5) 特開平11−204372号公報 (4−6頁、図1−4) 特開2001−148324号公報 (4−7頁、図1−6) 特開2001−148325号公報 (5−7頁、図1−9)
The first and second through conductors 55 and 56 are alternately dispersed in a grid pattern over the entire area of the first and second conductor layers 53 and 54 (see Patent Documents 1 to 4).
JP-A-7-201651 (page 3-5, FIG. 1-5) JP-A-11-204372 (page 4-6, FIG. 1-4) JP 2001-148324 A (page 4-7, FIG. 1-6) JP 2001-148325 A (page 5-7, FIG. 1-9)

しかしながら、上記積層コンデンサ50によれば、低ESL化を図るためには、第1及び第2貫通導体55、56の数を増加するとともに、これらの中心間の距離を小さくする方法が考えられるが、このとき、第1及び第2導体層53、54内の非導体形成領域63、64の面積が増大するため、積層コンデンサ50の静電容量が低下するという問題点があった。   However, according to the multilayer capacitor 50, in order to reduce the ESL, it is conceivable to increase the number of the first and second through conductors 55 and 56 and reduce the distance between the centers. At this time, since the areas of the non-conductor formation regions 63 and 64 in the first and second conductor layers 53 and 54 increase, there is a problem that the capacitance of the multilayer capacitor 50 decreases.

本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、簡単且つ安価な製法で、低ESL且つ高容量を実現したコンデンサ及びその製造方法を提供することである。   The present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a capacitor which realizes low ESL and high capacitance by a simple and inexpensive manufacturing method, and a manufacturing method thereof.

本発明の他の目的は、上述したようなコンデンサを用いて構成される、配線基板、デカップリング回路または高周波回路を提供することである。   Another object of the present invention is to provide a wiring board, a decoupling circuit, or a high-frequency circuit configured using the above-described capacitor.

本発明は、複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第1導体層及び第2導体層と、前記誘電体層の厚み方向を貫き、前記第2導体層と第2非導体形成領域によって隔てられ、前記第1導体層どうしを接続する複数の第1貫通導体と、前記第1導体層と第1非導体形成領域によって隔てられ、前記第2導体層どうしを接続する複数の第2貫通導体とが形成されてなる第1コンデンサ部と、
複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第3導体層及び第4導体層と、前記誘電体層の厚み方向を貫き、前記第3導体層どうしを接続する第3貫通導体と、前記第4導体層どうしを接続する第4貫通導体とが形成されてなる第2コンデンサ部とを積層方向に一体化してなるコンデンサであって、
前記第1貫通導体と第2貫通導体の合計数が、前記第3貫通導体と第4貫通導体の合計数よりも多くなっており、且つ前記第1貫通導体の少なくとも1つが前記第3貫通導体に接続し、且つ前記第2貫通導体の少なくとも1つが前記第4貫通導体に接続していることを特徴とするコンデンサである。
The present invention includes a plurality of stacked dielectric layers, a plurality of first conductor layers and a second conductor layer which are alternately arranged between the dielectric layers, and are opposed to each other, and penetrates in a thickness direction of the dielectric layers. A plurality of first through conductors that are separated by the second conductor layer and the second non-conductor formation region, and are connected by the first conductor layers, and are separated by the first conductor layer and the first non-conductor formation region; A first capacitor portion formed with a plurality of second through conductors connecting the second conductor layers,
A plurality of stacked dielectric layers, a plurality of third conductor layers and fourth conductor layers alternately arranged between the dielectric layers, and facing each other, and penetrating through the thickness direction of the dielectric layers; A capacitor formed by integrating a third through conductor for connecting conductor layers and a second capacitor portion formed with a fourth through conductor for connecting the fourth conductor layers in a stacking direction,
The total number of the first through conductors and the second through conductors is greater than the total number of the third through conductors and the fourth through conductors, and at least one of the first through conductors is the third through conductor. And at least one of the second through conductors is connected to the fourth through conductor.

また、前記第1〜第4貫通導体の少なくとも一部は、前記第1〜第4導体層より抵抗値が高い接続電極に接続されてなることを特徴とするコンデンサ。   Also, at least a part of the first to fourth through conductors is connected to a connection electrode having a higher resistance value than the first to fourth conductor layers.

さらに、互いに隣接しあう前記第1貫通導体と前記第2貫通導体との中心間の間隔をP、該中心間を結ぶ直線上において、前記第1貫通導体の中心と第2非導体形成領域の周辺との間隔をm2、前記第2貫通導体の中心と第1非導体形成領域の周辺との間隔をm1としたときに、P≦m1+m2の関係を満足することを特徴とするコンデンサ。   Further, the distance between the centers of the first through conductor and the second through conductor that are adjacent to each other is P, and the center of the first through conductor and the second non-conductor formation region are located on a straight line connecting the centers. A capacitor that satisfies the relationship of P ≦ m1 + m2, where m2 is the distance from the periphery and m1 is the distance between the center of the second through conductor and the periphery of the first non-conductor formation region.

さらに、複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第1導体層及び第2導体層と、前記誘電体層の厚み方向を貫き、前記第2導体層と第2非導体形成領域によって隔てられ、前記第1導体層どうしを接続する複数の第1貫通導体と、前記第1導体層と第1非導体形成領域によって隔てられ、前記第2導体層どうしを接続する複数の第2貫通導体とが形成されてなる第1コンデンサ部と、
複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第3導体層及び第4導体層と、前記誘電体層の厚み方向を貫き、前記第3導体層どうしを接続する第3貫通導体と、前記第4導体層どうしを接続する第4貫通導体とが形成されてなる第2コンデンサ部とを積層方向に一体化してなるコンデンサの製造方法であって、
前記第1コンデンサ部のみを貫通する第1及び第2貫通導体を形成する工程と、必要に応じて、前記第2コンデンサ部のみを貫通する第3及び第4貫通導体を形成する工程と、前記第1及び第2コンデンサ部を積層する工程と、前記第1のコンデンサ部と第2コンデンサ部とを電気的に接続する前記第1貫通導体及び第3貫通導体、前記第2貫通導体及び第4貫通導体を形成する工程とを具備することを特徴とするコンデンサの製造方法である。
Further, a plurality of laminated dielectric layers, a plurality of first conductor layers and second conductor layers, which are alternately arranged between the respective dielectric layers and face each other, penetrate through the thickness direction of the dielectric layers, A plurality of first through conductors separated by a second conductor layer and a second non-conductor formation region and connecting the first conductor layers to each other; separated by the first conductor layer and the first non-conductor formation region; A first capacitor portion formed with a plurality of second through conductors connecting the two conductor layers,
A plurality of stacked dielectric layers, a plurality of third conductor layers and fourth conductor layers alternately arranged between the dielectric layers, and facing each other, and penetrating through the thickness direction of the dielectric layers; A method for manufacturing a capacitor, comprising: integrating a third through conductor for connecting conductor layers together and a second capacitor portion having a fourth through conductor for connecting the fourth conductor layers together in a laminating direction. hand,
A step of forming first and second through conductors penetrating only the first capacitor part, and, if necessary, a step of forming third and fourth penetrating conductors penetrating only the second capacitor part; A step of laminating first and second capacitor portions, and a step of electrically connecting the first and second capacitor portions to the first and third through conductors; Forming a through conductor.

また、上述のコンデンサは配線基板に形成されている。さらに、上述のコンデンサはデカップリング回路に用いられる。また、上述のコンデンサは高周波回路に用いられる。そして、本発明は、上述のコンデンサを備えた配線基板にも適用できる。さらに、本発明に係るコンデンサは、MPUに備えるMPUチップのための電源回路に接続されるデカップリングコンデンサとしても有利に用いられる。また、本発明は、上述のコンデンサを備えた高周波回路にも適用できる。   Further, the above-mentioned capacitor is formed on the wiring board. Further, the above-mentioned capacitor is used for a decoupling circuit. The above-mentioned capacitor is used for a high-frequency circuit. The present invention is also applicable to a wiring board provided with the above-described capacitor. Further, the capacitor according to the present invention is advantageously used as a decoupling capacitor connected to a power supply circuit for an MPU chip provided in the MPU. Further, the present invention can be applied to a high-frequency circuit including the above-described capacitor.

以上の通り、本発明のコンデンサによれば、第1コンデンサ部において、第1及び第2貫通導体の導体数を増加しているため、電流が流れる距離が短くなることから、電流によって誘起される磁束に起因する自己インダクタンス及び相互インダクタンス成分が低くなる。このため、コンデンサ全体の等価直列インダクタンス(ESL)を低くできる。一方、第2コンデンサ部において、第3及び第4貫通導体の数を少なくできるため、第3導体層と第4導体層との対向面積を増加させることができるため、大容量のコンデンサ部とすることができる。これらによって、コンデンサ全体の等価直列インダクタンス(ESL)を低くでき、且つ大容量のコンデンサが実現できる。   As described above, according to the capacitor of the present invention, since the number of the first and second through conductors is increased in the first capacitor portion, the distance through which the current flows is shortened, and the current is induced by the current. Self-inductance and mutual inductance components caused by magnetic flux are reduced. Therefore, the equivalent series inductance (ESL) of the entire capacitor can be reduced. On the other hand, in the second capacitor portion, the number of the third and fourth through conductors can be reduced, so that the facing area between the third conductor layer and the fourth conductor layer can be increased. be able to. As a result, the equivalent series inductance (ESL) of the entire capacitor can be reduced, and a large-capacity capacitor can be realized.

また、これらの特性により、特に高速動作する回路、高周波信号で動作する回路を具備する配線基板、デカップリング回路または高周波回路に特に有効となる。 In addition, these characteristics are particularly effective for a circuit board that includes a circuit that operates at high speed, a circuit that operates with a high-frequency signal, a decoupling circuit, or a high-frequency circuit.

また、第1コンデンサ部と第2コンデンサ部とを互いに接続する第1貫通導体と第3貫通導体、第2貫通導体と第4貫通導体を、第1コンデンサ部と第2コンデンサ部とを積層した後に、一度で形成するため、第1コンデンサ部と第2コンデンサ部との接続信頼性が大きく向上する。   Further, a first through conductor and a third through conductor, a second through conductor and a fourth through conductor, which connect the first and second capacitor units to each other, and the first and second capacitor units are laminated. Later, since they are formed at once, the connection reliability between the first capacitor portion and the second capacitor portion is greatly improved.

以下、本発明のコンデンサ、配線基板、デカップリング回路及び高周波回路を図面に基づいて詳説する。   Hereinafter, a capacitor, a wiring board, a decoupling circuit, and a high-frequency circuit of the present invention will be described in detail with reference to the drawings.

図1は本発明にかかるコンデンサの一例である積層コンデンサを示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。   1A and 1B are diagrams showing a multilayer capacitor as an example of the capacitor according to the present invention, wherein FIG. 1A is a cross-sectional view, FIG. 1B is a schematic diagram showing an overlapping state of first and second conductor layers, and FIG. It is the schematic which shows the overlapping state of the 3rd, 4th conductor layer.

図において、積層コンデンサ10は、積層体1の一方主面に第1及び第2接続端子7a、8aが形成されるとともに、積層体1の他方主面に第3及び第4接続端子7b、8bが形成されている。さらに、積層体1は、第1コンデンサ部11及び第2コンデンサ部12を積層方向に一体化している。   In the figure, a multilayer capacitor 10 has first and second connection terminals 7 a and 8 a formed on one main surface of a multilayer body 1 and third and fourth connection terminals 7 b and 8 b on the other main surface of the multilayer body 1. Is formed. Furthermore, the multilayer body 1 integrates the first capacitor unit 11 and the second capacitor unit 12 in the stacking direction.

また、第1コンデンサ部11は、複数積層された誘電体層2と、誘電体層2間に配置され、誘電体層2を介して対向し合う第1導体層3a及び第2導体層4aと、誘電体層2の厚み方向を貫き、第1導体層3aどうしを接続する第1貫通導体5aと、第2導体層4aどうしを接続する第2貫通導体6aとが夫々形成されている。さらに、第1及び第2貫通導体5a、6aは、積層体1の一方主面に露出し、夫々第1及び第2接続端子7a、8aに接続されている。そして、第1及び第2導体層3a、4a内に、第2及び第1貫通導体6a、5aとは夫々接続しない第1及び第2非導体形成領域13a、14aが形成されている。   The first capacitor unit 11 includes a plurality of stacked dielectric layers 2, a first conductor layer 3 a and a second conductor layer 4 a that are disposed between the dielectric layers 2 and face each other with the dielectric layer 2 interposed therebetween. A first through conductor 5a penetrating through the thickness direction of the dielectric layer 2 and connecting the first conductor layers 3a and a second through conductor 6a connecting the second conductor layers 4a are formed respectively. Further, the first and second through conductors 5a, 6a are exposed on one main surface of the multilayer body 1 and are connected to the first and second connection terminals 7a, 8a, respectively. In the first and second conductor layers 3a and 4a, first and second non-conductor formation regions 13a and 14a that are not connected to the second and first through conductors 6a and 5a, respectively, are formed.

一方、第2コンデンサ部12は、複数積層された誘電体層2と、誘電体層2間に配置され、誘電体層2を介して対向し合う第3導体層3b及び第4導体層4bと、誘電体層2の厚み方向を貫き、第3導体層3bどうしを接続する第3貫通導体5bと、第4導体層4bどうしを接続する第4貫通導体6bとが夫々形成されてなる。また、第3及び第4貫通導体5b、6bは、積層体1の一方主面に露出し、夫々第3及び第4接続端子7b、8bに接続されている。そして、第3及び第4導体層3b、4b内に、第4及び第3貫通導体6b、5bとは夫々接続しない第3及び第4非導体形成領域13b、14bが形成されている。   On the other hand, the second capacitor unit 12 includes a plurality of stacked dielectric layers 2, a third conductor layer 3 b and a fourth conductor layer 4 b that are disposed between the dielectric layers 2 and face each other with the dielectric layer 2 interposed therebetween. A third through conductor 5b penetrating through the thickness direction of the dielectric layer 2 and connecting the third conductor layers 3b and a fourth through conductor 6b connecting the fourth conductor layers 4b are formed. The third and fourth through conductors 5b and 6b are exposed on one main surface of the multilayer body 1 and are connected to the third and fourth connection terminals 7b and 8b, respectively. In the third and fourth conductor layers 3b and 4b, third and fourth non-conductor formation regions 13b and 14b that are not connected to the fourth and third through conductors 6b and 5b, respectively, are formed.

ここで、第1コンデンサ部11の第1貫通導体5aと第2貫通導体6aとの導体合計数は、第2コンデンサ部12の第3貫通導体5bと第4貫通導体6bとの導体合計数よりも多くなっている。   Here, the total number of conductors of the first through conductor 5a and the second through conductor 6a of the first capacitor unit 11 is larger than the total number of conductors of the third through conductor 5b and the fourth through conductor 6b of the second capacitor unit 12. Is also increasing.

また、第1コンデンサ部11の第1貫通導体5aの少なくとも1つは、第2コンデンサ部の第3貫通導体5bに接続し、同様に、第2貫通導体6aの少なくとも1つは、第4貫通導体6bに接続している。具体的には、第1コンデンサ部11の第1貫通導体5aは、厚み方向に積層された第1導体層3aに接続して、同時に、第2導体層4aの第2非導体形成領域14aを貫くため、第2の導体層4aには導通しない。同様に、第1コンデンサ部11の第2貫通導体6aは、厚み方向に積層された第2導体層4aに接続して、同時に、第1導体層3aの第1非導体形成領域13aを貫くため、第1の導体層3aには導通しない。また、第2コンデンサ部12側において、第3貫通導体5b、第4貫通導体6bについても同様である。   Also, at least one of the first through conductors 5a of the first capacitor portion 11 is connected to the third through conductor 5b of the second capacitor portion, and similarly, at least one of the second through conductors 6a is connected to the fourth through conductor 4a. Connected to conductor 6b. Specifically, the first penetrating conductor 5a of the first capacitor portion 11 is connected to the first conductor layer 3a stacked in the thickness direction, and at the same time, connects the second non-conductor formation region 14a of the second conductor layer 4a. Since it penetrates, it does not conduct to the second conductor layer 4a. Similarly, the second through conductor 6a of the first capacitor portion 11 is connected to the second conductor layer 4a stacked in the thickness direction, and simultaneously penetrates the first non-conductor formation region 13a of the first conductor layer 3a. Does not conduct to the first conductor layer 3a. The same applies to the third through conductor 5b and the fourth through conductor 6b on the second capacitor section 12 side.

また、電流の流れる距離を短くするとともに、電流によって誘起される磁束を互いに相殺するために、第1及び第2貫通導体5a、6aとが、交互に格子状に形成されてなることが望ましい。   In addition, in order to shorten the distance through which the current flows, and to cancel out the magnetic flux induced by the current, it is desirable that the first and second through conductors 5a and 6a are alternately formed in a lattice shape.

誘電体層2は、チタン酸バリウムを主成分とする非還元性誘電体材料、及びガラス成分を含む誘電体材料からなり、この誘電体層2が図上、上方向に積層して積層体1が構成される。なお、誘電体層2の形状、厚み、積層数は容量値によって任意に変更することができる。   The dielectric layer 2 is made of a non-reducing dielectric material containing barium titanate as a main component, and a dielectric material containing a glass component. Is configured. The shape, thickness, and number of layers of the dielectric layer 2 can be arbitrarily changed according to the capacitance value.

第1〜第4導体層3a〜4bは、Ni、Cu、あるいはこれらの合金を主成分とする材料から構成され、その厚みは1〜2μmとしている。また、第1〜第4貫通導体5a〜6bの材料は、Ni、Cu、あるいはこれらの合金を主成分とする材料から構成されている。   The first to fourth conductor layers 3a to 4b are made of a material mainly containing Ni, Cu, or an alloy thereof, and have a thickness of 1 to 2 μm. The material of the first to fourth through conductors 5a to 6b is made of a material mainly containing Ni, Cu, or an alloy thereof.

接続端子7a、8a、7b、8bは、半田バンプ、ボール半田などが用いられる。   For the connection terminals 7a, 8a, 7b, 8b, solder bumps, ball solders or the like are used.

次に、本発明の積層コンデンサ10の製造方法について説明する。なお、図面において、各符号は焼成の前後で区別しないことにする。   Next, a method for manufacturing the multilayer capacitor 10 of the present invention will be described. Note that, in the drawings, each symbol is not distinguished before and after firing.

まず、第1コンデンサ部11の誘電体層となるセラミックグリーンシート2に、第1及び第2導体層となる導体膜3a、4aを導電性ペーストの印刷・乾燥により形成する。このとき、第1及び第2非導体形成領域13a、14aも形成される。一方、第2コンデンサ部12の誘電体層となるセラミックグリーンシート2に、第3及び第4導体層となる導体膜3b、4bを導電性ペーストの印刷・乾燥により形成する。このとき、第3及び第4非導体形成領域13b、14bも形成される。なお、誘電体層2として、他のペロブスカイト構造を持つセラミック材料や、有機強誘電体材料を用いても良い。   First, conductive films 3a and 4a serving as first and second conductive layers are formed on a ceramic green sheet 2 serving as a dielectric layer of the first capacitor unit 11 by printing and drying a conductive paste. At this time, the first and second non-conductor formation regions 13a and 14a are also formed. On the other hand, conductive films 3b and 4b serving as third and fourth conductive layers are formed on the ceramic green sheet 2 serving as the dielectric layer of the second capacitor unit 12 by printing and drying a conductive paste. At this time, the third and fourth non-conductor formation regions 13b and 14b are also formed. The dielectric layer 2 may be made of another ceramic material having a perovskite structure or an organic ferroelectric material.

次に、導体膜3a、4aが形成されたセラミックグリーンシート2を交互に所要枚数を積み重ね、第1コンデンサ部11が抽出される大型積層体を形成する。同様に、導体膜3b、4bが形成されたセラミックグリーンシート2を交互に所要枚数を積み重ね、第2コンデンサ部12が抽出される大型積層体を形成する。   Next, a required number of the ceramic green sheets 2 on which the conductor films 3a and 4a are formed are alternately stacked to form a large laminated body from which the first capacitor unit 11 is extracted. Similarly, the required number of ceramic green sheets 2 on which the conductor films 3b and 4b are formed are alternately stacked to form a large laminate from which the second capacitor unit 12 is extracted.

次に、レーザの照射や、マイクロドリル又はパンチングを用いた打ち抜き法などにより、第1コンデンサ部11が抽出される大型積層体の主面に導体膜3a、4a、セラミックグリーンシート2を厚み方向に貫く貫通孔を形成する。さらに、この貫通孔に導電性ペーストを充填することにより、第1及び第2貫通導体となる導体部5a、6aが形成される。ここで第1コンデンサ部11の第1貫通導体5aとなる貫通孔は、第1導体層3a、第2導体層4aの第2非導体形成領域14aを貫き、第2貫通導体6aとなる貫通孔は、第2導体層4a、第1導体層3aの第1非導体形成領域13aを貫くように形成される。   Next, the conductor films 3a, 4a and the ceramic green sheet 2 are placed in the thickness direction on the main surface of the large laminated body from which the first capacitor portion 11 is extracted by laser irradiation, a punching method using micro drilling or punching, or the like. A through hole is formed. Further, by filling a conductive paste into the through holes, conductor portions 5a and 6a serving as first and second through conductors are formed. Here, the through hole serving as the first through conductor 5a of the first capacitor portion 11 passes through the second non-conductor forming region 14a of the first conductor layer 3a and the second conductor layer 4a, and serves as the second through conductor 6a. Are formed to penetrate the first non-conductor formation region 13a of the second conductor layer 4a and the first conductor layer 3a.

同様に、第2コンデンサ部12が抽出される大型積層体の主面に導体膜3b、4b、セラミックグリーンシート2を厚み方向に貫く貫通孔を形成する。さらに、この貫通孔に導電性ペーストを充填することにより、第3及び第4貫通導体となる導体部5b、6bが形成される。ここで第2コンデンサ部12の第3貫通導体5bとなる貫通孔は、第3導体層3b、第4導体層4bの第4非導体形成領域14bを貫き、第4貫通導体6bとなる貫通孔は、第4導体層4b、第3導体層3bの第3非導体形成領域13bを貫くように形成される。   Similarly, through holes are formed in the main surface of the large-sized laminate from which the second capacitor portion 12 is extracted, and penetrate through the conductor films 3b and 4b and the ceramic green sheet 2 in the thickness direction. Further, by filling the through holes with a conductive paste, conductor portions 5b and 6b serving as third and fourth through conductors are formed. Here, the through-hole serving as the third through conductor 5b of the second capacitor portion 12 penetrates through the third non-conductor forming region 14b of the third conductor layer 3b and the fourth conductor layer 4b, and serves as the fourth through conductor 6b. Are formed so as to penetrate the third non-conductor formation region 13b of the fourth conductor layer 4b and the third conductor layer 3b.

次に、第1コンデンサ部11、第2コンデンサ部12が抽出される大型積層体を積み重ね、積層体1が抽出される大型積層体が形成される。このとき、第1コンデンサ部11に形成された第1貫通導体5aの1つは、第2コンデンサ部12に形成された第3貫通導体5bに接続して、且つ第1コンデンサ部11に形成された第2貫通導体6aの1つは、第2コンデンサ部12に形成された第4貫通導体6bに接続するように垂直方向に重なる。   Next, the large laminates from which the first capacitor unit 11 and the second capacitor unit 12 are extracted are stacked to form a large laminate from which the laminate 1 is extracted. At this time, one of the first through conductors 5 a formed in the first capacitor unit 11 is connected to the third through conductor 5 b formed in the second capacitor unit 12 and is formed in the first capacitor unit 11. One of the second through conductors 6a overlaps in the vertical direction so as to be connected to the fourth through conductor 6b formed in the second capacitor portion 12.

なお、誘電体層となるセラミックグリーンシート2に、マイクロドリル又はパンチングを用いた打ち抜き法などにより、あらかじめ貫通孔をあけておき、スクリーン印刷法により、セラミックグリーンシート2上に導体層3a〜4bとなる導体膜を印刷すると同時に、貫通孔に導電性ペーストを充填することにより、第1〜第4貫通導体となる導体部5a〜6bを形成後、積層するようにしても良い。   The ceramic green sheet 2 serving as a dielectric layer is provided with through holes in advance by a punching method using a microdrill or punching, and the conductor layers 3a to 4b are formed on the ceramic green sheet 2 by a screen printing method. The conductor portions 5a to 6b serving as the first to fourth through conductors may be formed and then laminated by filling the through holes with a conductive paste at the same time as printing the conductor film.

次に、大型積層体を押し切り刃加工、ダイシング方式などにより切断し、未焼成状態の積層体1を得る。   Next, the large-sized laminate is cut by a press-cutting blade process, a dicing method, or the like, to obtain a laminate 1 in an unfired state.

次に、この未焼成状態の積層体1は、脱バインダ処理後、焼成を行い、内部に第1〜第4導体層3a〜4b、第1〜第4貫通導体5a〜6bが形成されるとともに、第1貫通導体5aの少なくとも一つは、第3貫通導体5bに電気的に接続し、且つ第2貫通導体6aの少なくとも一つは、第4貫通導体6bに電気的に接続し、一方主面に第1及び第2貫通導体5a、6a、他方主面に第3及び第4貫通導体5b、6bが夫々露出した積層体1が得られる。   Next, the unfired laminate 1 is fired after the binder removal process, and the first to fourth conductor layers 3a to 4b and the first to fourth through conductors 5a to 6b are formed therein. , At least one of the first through conductors 5a is electrically connected to the third through conductor 5b, and at least one of the second through conductors 6a is electrically connected to the fourth through conductor 6b. The laminated body 1 in which the first and second through conductors 5a and 6a are exposed on the surface and the third and fourth through conductors 5b and 6b are exposed on the other main surface is obtained.

このとき、第1〜第4貫通導体5a〜6bは、表面が酸化されているため、表面研磨により、酸化被膜を除去する。   At this time, since the surfaces of the first to fourth through conductors 5a to 6b are oxidized, the oxide film is removed by surface polishing.

次に、第1〜第4貫通導体5a〜6bの露出部に、Niメッキ、Snメッキを形成する。ここで、AuやCuのメッキでも良い。   Next, Ni plating and Sn plating are formed on the exposed portions of the first to fourth through conductors 5a to 6b. Here, Au or Cu plating may be used.

次に、半田ペーストをスクリーン印刷する方法や、フラックスを塗布後にボール半田を搭載する方法により、接続端子7a、8a、7b、8bとなる半田を形成した後、リフロー処理を施すことにより、接続端子7a、8a、7b、8bが形成される。尚、第2コンデンサ部12側においても、第3及び第4貫通導体5b、6bの露出部分に,接続端子7b、8bを形成しても構わない。   Next, the solder to be the connection terminals 7a, 8a, 7b, 8b is formed by a method of screen printing a solder paste or a method of mounting a ball solder after applying a flux, and then a reflow process is performed. 7a, 8a, 7b and 8b are formed. The connection terminals 7b and 8b may be formed on the exposed portions of the third and fourth through conductors 5b and 6b also on the second capacitor portion 12 side.

尚、第1コンデンサ部11、第2コンデンサ部12に形成された各貫通導体5a、5b、6a、6bにおいて、第1コンデンサ部11のみに貫通する第1及び第2貫通導体5a、6aのみ形成し、また必要に応じて、第2コンデンサ部12のみに貫通する第3及び第4貫通導体5b、6bのみ形成しておき、第1コンデンサ部11と第2コンデンサ部12とを積層した後に、両者を接続する第1貫通導体5aと第3貫通導体6aとを、第2貫通導体5bと第4貫通導体6bとを形成してもよい。その具体的な製造方法は、別途図7を用いて詳説する。   In each of the through conductors 5a, 5b, 6a, and 6b formed in the first capacitor portion 11 and the second capacitor portion 12, only the first and second through conductors 5a and 6a that penetrate only the first capacitor portion 11 are formed. In addition, if necessary, only the third and fourth through conductors 5b and 6b penetrating only the second capacitor portion 12 are formed, and after the first capacitor portion 11 and the second capacitor portion 12 are laminated, The first through-conductor 5a and the third through-conductor 6a that connect them may be formed, and the second through-conductor 5b and the fourth through-conductor 6b may be formed. The specific manufacturing method will be described in detail with reference to FIG.

このようにして、図1に示すような積層コンデンサ10が得られる。   Thus, a multilayer capacitor 10 as shown in FIG. 1 is obtained.

なお、本発明は以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を加えることは何ら差し支えない。   It should be noted that the present invention is not limited to the above embodiments, and various changes and improvements can be made without departing from the spirit of the present invention.

図2は、本発明の積層コンデンサの他の実施の形態を示す図であり、(a)は断面図、(b)は第1貫通導体5aと第3貫通導体5bとを接続し、第2貫通導体6aと第4貫通導体6bとを接続する接続電極3c、4cを形成した中間誘電体層の示す平面図である。   2A and 2B are diagrams showing another embodiment of the multilayer capacitor of the present invention, wherein FIG. 2A is a cross-sectional view, FIG. 2B is a diagram in which a first through conductor 5a and a third through conductor 5b are connected, and FIG. FIG. 9 is a plan view showing an intermediate dielectric layer on which connection electrodes 3c and 4c for connecting a through conductor 6a and a fourth through conductor 6b are formed.

図によれば、第1のコンデンサ部11と第2のコンデンサ部12の間に、図2(b)に示す中間誘電体層3c、4cの接続電極3c、4cを介して、第1及び第2貫通導体5a、6aを第3及び第4貫通導体5b、6bに接続する。例えば、第1貫通導体5aは、接続電極3cを経由して第3貫通導体5bに接続し,同様に、第2貫通導体6aは、接続電極4cを経由して第4貫通導体6bに接続している。このように、接続電極3c、4cを第1コンデンサ部11と第2コンデンサ部12の中間に配置することにより、第3及び第4貫通導体5b、6bの配置が自由になり、同時に、両貫通導体の接続信頼性が大きく向上する。尚、この接続電極3c、4cを両主面に形成して、その間をビアホール導体で表裏の接続電極を接続させても構わない。   According to the figure, the first and second capacitors are connected between the first capacitor unit 11 and the second capacitor unit 12 via the connection electrodes 3c and 4c of the intermediate dielectric layers 3c and 4c shown in FIG. The two through conductors 5a, 6a are connected to the third and fourth through conductors 5b, 6b. For example, the first through conductor 5a is connected to the third through conductor 5b via the connection electrode 3c, and similarly, the second through conductor 6a is connected to the fourth through conductor 6b via the connection electrode 4c. ing. By arranging the connection electrodes 3c and 4c between the first capacitor section 11 and the second capacitor section 12 in this manner, the arrangement of the third and fourth through conductors 5b and 6b becomes free, and at the same time, the both through conductors are formed. The connection reliability of the conductor is greatly improved. The connection electrodes 3c and 4c may be formed on both main surfaces, and the connection electrodes on the front and back may be connected between the main electrodes by via-hole conductors.

またこのとき、接続電極3c、4cは夫々1層であるの対し、第1〜第4導体層5a〜6b全体は複数層であることから、接続電極3c、4cは第1〜第4導体層5a〜6b全体より抵抗値が高くなり、抵抗体(ダンプ抵抗)として機能するため、共振現象を低減することができ、使用周波数範囲を拡大することができる。さらに、例えば第1〜第4導体層5a〜6bとしてNi材料を用いた場合、接続電極3c、4cとして、第1〜第4導体層5a〜6bより抵抗値が高いAg、Ag合金、Ni−Cr、炭素皮膜、メタルグレーム、酸化金属材料などを用いることにより、この共振現象を低減する効果がより効果的に得られる。   At this time, the connection electrodes 3c and 4c each have a single layer, whereas the entirety of the first to fourth conductor layers 5a to 6b is a plurality of layers. Since the resistance value becomes higher than that of the whole of 5a to 6b and functions as a resistor (dump resistance), a resonance phenomenon can be reduced and a use frequency range can be expanded. Further, for example, when a Ni material is used for the first to fourth conductor layers 5a to 6b, the connection electrodes 3c and 4c are made of Ag, Ag alloy, or Ni— having a higher resistance value than the first to fourth conductor layers 5a to 6b. By using Cr, carbon film, metal gram, metal oxide material, etc., the effect of reducing this resonance phenomenon can be more effectively obtained.

図5は、図1の積層コンデンサ50(点線)、図1における第1及び第2コンデンサ部11、12(実線)、及び図2の積層コンデンサ10(一点鎖線)の周波数−インピーダンス曲線である。図に示すように、本発明の積層コンデンサ10は、高周波部でインピーダンスが低い第1コンデンサ部11の特性と、低周波部でインピーダンスが低い第2コンデンサ部12の特性が両方生かされて、広い周波数範囲で低インピーダンスが実現できる。また、図2のように、第1〜第4導体層5a〜6bが接続電極3c、4cに接続されることにより、共振現象を低減させることができ、使用周波数範囲を拡大することができることがわかる。   FIG. 5 is a frequency-impedance curve of the multilayer capacitor 50 of FIG. 1 (dotted line), the first and second capacitor portions 11 and 12 of FIG. 1 (solid line), and the multilayer capacitor 10 of FIG. As shown in the figure, the multilayer capacitor 10 of the present invention has a wide characteristic by utilizing both the characteristics of the first capacitor unit 11 having a low impedance in a high frequency part and the characteristics of the second capacitor unit 12 having a low impedance in a low frequency part. Low impedance can be realized in the frequency range. Further, as shown in FIG. 2, by connecting the first to fourth conductor layers 5a to 6b to the connection electrodes 3c and 4c, it is possible to reduce the resonance phenomenon and expand the frequency range of use. Understand.

図6は、本発明の積層コンデンサのさらに他の実施の形態を示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。同図によれば、互いに隣接し合う第1貫通導体5aと第2貫通導体6aとの間に容量の発生する領域が存在しない。具体的には、隣接しあう第1貫通導体5aの中心と第2貫通導体6aの中心との間隔をP、第1及び第2非導体形成領域13a、14aの各半径をm1、m2(一般的には、m1=m2である)としたときに、P≦m1+m2の関係を満足する。ここで、等価直列抵抗(ESR)の増大を防ぐためには、第1及び第2の貫通導体3、4の半径を夫々r1、r2としたときに、r1+r2≦Pの関係を満足することが望ましい。このことによって、この重なり合う部分を通って、一方、例えば第1貫通導体5aから他方、例えば第2貫通導体6aへ流れる電流は、ほとんど無くなる。このことにより、電流によって誘起される磁束に起因する自己インダクタンス成分が極めて低くなり、積層コンデンサ10全体のESLをさらに低くすることができる。また、静電容量の形成に寄与しない非導体形成領域13a、14aが重なり合う領域が存在するため、積層コンデンサ10全体からみると相対的に第1〜第4導体層3a〜4bが重なり合う領域が増加し(静電容量領域が増加し)、積層コンデンサ10のさらなる高容量化を実現できる。   6A and 6B are views showing still another embodiment of the multilayer capacitor of the present invention, wherein FIG. 6A is a cross-sectional view, FIG. 6B is a schematic view showing an overlapping state of the first and second conductor layers, and FIG. () Is a schematic diagram showing an overlapping state of the third and fourth conductor layers. According to the figure, there is no region where capacitance occurs between the first through conductor 5a and the second through conductor 6a adjacent to each other. Specifically, the distance between the center of the adjacent first through conductor 5a and the center of the second through conductor 6a is P, and the radii of the first and second non-conductor forming regions 13a and 14a are m1 and m2 (general). Specifically, when m1 = m2), the relationship of P ≦ m1 + m2 is satisfied. Here, in order to prevent an increase in the equivalent series resistance (ESR), it is desirable to satisfy the relationship of r1 + r2 ≦ P when the radii of the first and second through conductors 3 and 4 are r1 and r2, respectively. . As a result, there is almost no current flowing from one of the first through conductors 5a to the other of the second through conductors 6a through the overlapping portion. As a result, the self-inductance component caused by the magnetic flux induced by the current becomes extremely low, and the ESL of the entire multilayer capacitor 10 can be further reduced. Further, since there is a region where the non-conductor formation regions 13a and 14a do not contribute to the formation of the capacitance, there is a region where the first to fourth conductor layers 3a to 4b relatively overlap when viewed from the entire multilayer capacitor 10. However, the capacitance of the multilayer capacitor 10 can be further increased.

ここで、第1及び第2貫通導体5a、6aの半径r1、r2、第1及び第2非導体形成領域13a、14aの半径m1、m2は夫々等しくても良く、異なっても良い。   Here, the radii r1 and r2 of the first and second through conductors 5a and 6a and the radii m1 and m2 of the first and second non-conductor forming regions 13a and 14a may be equal to or different from each other.

また、第1〜第4貫通導体5a〜6bの断面形状、または第1〜第4非導体形成領域13a〜14bの形状は、略円形の他、楕円形、多角形など、任意の形状にすることができる。   The cross-sectional shape of the first to fourth through conductors 5a to 6b or the shape of the first to fourth non-conductor forming regions 13a to 14b is not limited to a substantially circular shape, but may be any shape such as an elliptical shape or a polygonal shape. be able to.

図7は、本発明の積層コンデンサの製造方法を示す図であり、図7(a)は、第1コンデンサ部11のみを貫通する第1及び第2貫通導体5a、6aを形成する工程を示し、図7(b)は、第2コンデンサ部12を形成する工程を示し、図7(c)は、第1及び第2コンデンサ部11、12を積層する工程を示し、図7(d)は、第1及び第2コンデンサ部11、12の両方を貫通する第1貫通導体5aと第3貫通導体5b、及び第2貫通導体6aと第4貫通導体6bを形成する工程を示している。   7A and 7B are diagrams showing a method for manufacturing a multilayer capacitor according to the present invention, and FIG. 7A shows a step of forming first and second through conductors 5a and 6a penetrating only the first capacitor portion 11. 7B shows a step of forming the second capacitor section 12, FIG. 7C shows a step of laminating the first and second capacitor sections 11 and 12, and FIG. And a step of forming a first through conductor 5a and a third through conductor 5b, and a second through conductor 6a and a fourth through conductor 6b penetrating both the first and second capacitor portions 11 and 12.

このように製造することにより、第1及び第2コンデンサ部11、12の両方を貫通する第1貫通導体5aと第3貫通導体5b、または第2貫通導体6aと第4貫通導体6bの接続が良好になり、等価直列抵抗(ESR)を小さくすることができる。   By manufacturing in this manner, the connection between the first through conductor 5a and the third through conductor 5b, or the connection between the second through conductor 6a and the fourth through conductor 6b, which penetrates both the first and second capacitor portions 11 and 12, is established. And the equivalent series resistance (ESR) can be reduced.

尚、図7(b)の第2コンデンサ部12には、このコンデンサ部のみに存在する第3及び第4の貫通導体がないため、第3及び第4貫通導体5b、6bは、省略しているが、第2コンデンサ部12のみに存在し、且つ第1コンデンサ部11の貫通導体5a、6aに接続しない第3及び第4の貫通導体を、図7(b)の工程で予め形成しておく必要がある。   The third and fourth through conductors 5b and 6b are omitted since the second and third capacitor portions 12 in FIG. 7B do not have the third and fourth through conductors existing only in this capacitor portion. However, third and fourth through conductors that are present only in the second capacitor portion 12 and that are not connected to the through conductors 5a and 6a of the first capacitor portion 11 are formed in advance in the process of FIG. Need to be kept.

図3は、本発明の積層コンデンサ10をデカップリングコンデンサとして用いた、MPU20の構造例を示す断面図である。   FIG. 3 is a cross-sectional view showing a structural example of the MPU 20 using the multilayer capacitor 10 of the present invention as a decoupling capacitor.

図に示すように、MPU20は、配線基板21上にMPUチップ30が実装されている。また、配線基板21上に、本発明の積層コンデンサ10(A)が実装されるとともに、配線基板21のキャビティ内には、本発明の積層コンデンサ10(B)が収容されている。そして、積層コンデンサ10(A)、10(B)は、ともにMPUチップ30に並列に接続され、デカップリングコンデンサとして機能する。   As shown in the figure, the MPU 20 has an MPU chip 30 mounted on a wiring board 21. The multilayer capacitor 10 (A) of the present invention is mounted on the wiring board 21, and the multilayer capacitor 10 (B) of the present invention is accommodated in the cavity of the wiring board 21. The multilayer capacitors 10 (A) and 10 (B) are both connected in parallel to the MPU chip 30 and function as decoupling capacitors.

配線基板21の内部には、電源側導体層23及びグランド側導体層24が形成されている。   A power supply side conductor layer 23 and a ground side conductor layer 24 are formed inside the wiring board 21.

積層コンデンサ10(A)の第1接続端子7aは、電源側貫通導体25を介して、電源側導体層23に電気的に接続されるとともに、積層コンデンサ10(A)の第2接続端子8aは、グランド側貫通導体26を介して、MPUチップ30に電気的に接続されている。ここで、積層コンデンサ10(A)は、第3、第4接続端子7b、8bを形成しなくても良く、このとき第3、第4貫通導体5b、6bの表面の酸化被膜を除去しなければ、不必要な導通を防ぐことができる。   The first connection terminal 7a of the multilayer capacitor 10 (A) is electrically connected to the power supply side conductor layer 23 via the power supply side through conductor 25, and the second connection terminal 8a of the multilayer capacitor 10 (A) is Are electrically connected to the MPU chip 30 through the ground-side through conductor 26. Here, the multilayer capacitor 10 (A) does not need to form the third and fourth connection terminals 7b and 8b. At this time, the oxide film on the surfaces of the third and fourth through conductors 5b and 6b must be removed. Thus, unnecessary conduction can be prevented.

このように、本発明の積層コンデンサ10は、ESLが低いので、MPU20におけるデカップリングコンデンサに用いた場合も、高速動作に十分対応することができる。さらに、積層コンデンサ10を備えた配線基板にも適用できる。   As described above, since the multilayer capacitor 10 of the present invention has a low ESL, even when used as a decoupling capacitor in the MPU 20, it can sufficiently cope with high-speed operation. Further, the present invention can be applied to a wiring board including the multilayer capacitor 10.

図1に示す本発明の積層コンデンサ10と、図4に示す従来の積層コンデンサ50を作成し、静電容量C及び等価直列インダクタンスLを測定した。ここで、積層コンデンサ10、50の両方とも、寸法は3.2mm×3.2mm、第1及び第2貫通導体5a、6aを格子状に合計は36個、第3及び第4貫通導体5b、6bを中央部分に合計は2個形成した。測定の結果、図4に示す従来の積層コンデンサ50はC=7.8μF、L=20pHとなったのに対し、図1に示す本発明の積層コンデンサ10はC=15μF、L=8pHとなった。   The multilayer capacitor 10 of the present invention shown in FIG. 1 and the conventional multilayer capacitor 50 shown in FIG. 4 were prepared, and the capacitance C and the equivalent series inductance L were measured. Here, the dimensions of both the multilayer capacitors 10 and 50 are 3.2 mm × 3.2 mm, a total of 36 first and second through conductors 5 a and 6 a are arranged in a lattice, and third and fourth through conductors 5 b and 5 A total of two 6b were formed in the center portion. As a result of the measurement, the conventional multilayer capacitor 50 shown in FIG. 4 has C = 7.8 μF and L = 20 pH, whereas the multilayer capacitor 10 of the present invention shown in FIG. 1 has C = 15 μF and L = 8 pH. Was.

これらの結果から、本発明の積層コンデンサ10は、第1貫通導体5aと第2貫通導体6aとの導体合計数は、第3貫通導体5bと第4貫通導体6bとの導体合計数よりも多くなっており、第1貫通導体5aの1つが第3の貫通導体5bが接続し、第2貫通導体6aの1つが第4の貫通導体6bが接続しているため、低ESL且つ高容量を実現できることがわかった。   From these results, in the multilayer capacitor 10 of the present invention, the total number of conductors of the first through conductor 5a and the second through conductor 6a is larger than the total number of conductors of the third through conductor 5b and the fourth through conductor 6b. Since one of the first through conductors 5a is connected to the third through conductor 5b and one of the second through conductors 6a is connected to the fourth through conductor 6b, low ESL and high capacity are realized. I knew I could do it.

以上のように、本発明のコンデンサによれば、複数積層された誘電体層と、誘電体層間に配置され、誘電体層を介して対向し合う第1導体層及び第2導体層と、誘電体層の厚み方向を貫き、第2導体層と第2非導体形成領域によって隔てられ、第1導体層どうしを接続する第1貫通導体と、第1導体層と第1非導体形成領域によって隔てられ、第2導体層どうしを接続する第2貫通導体とが夫々形成されてなる第1コンデンサ部と、複数積層された誘電体層と、誘電体層間に配置され、誘電体層を介して対向し合う第3導体層及び第4導体層と、誘電体層の厚み方向を貫き、第1導体層どうしを接続する第3貫通導体と、第4導体層どうしを接続する第4貫通導体とが夫々形成されてなる第2コンデンサ部とを積層方向に一体化してなるコンデンサであって、第1貫通導体と第2貫通導体との導体合計数は、第3貫通導体と第4貫通導体との導体合計数よりも多くなっている。そして、第1及び第2貫通導体の1つは、第3及び第4貫通導体に夫々電気的に接続してなることを特徴とする。   As described above, according to the capacitor of the present invention, a plurality of laminated dielectric layers, the first conductor layer and the second conductor layer disposed between the dielectric layers and facing each other with the dielectric layer interposed therebetween, A first through conductor that penetrates through the body layer in the thickness direction, is separated by the second conductor layer and the second non-conductor formation region, and is connected by the first conductor layer and the first non-conductor formation region; A first capacitor portion formed with a second through conductor for connecting the second conductor layers to each other; a plurality of stacked dielectric layers; and a plurality of dielectric layers arranged between the dielectric layers and opposed via the dielectric layers. A third conductor layer and a fourth conductor layer that are in contact with each other, a third through conductor that penetrates through the thickness direction of the dielectric layer and connects the first conductor layers, and a fourth through conductor that connects the fourth conductor layers are formed. A capacitor formed by integrating the formed second capacitor portions in the laminating direction. A capacitors, conductors total number of the first through conductor and the second through conductor is made larger than the conductor the total number of the third through conductor and the fourth through-conductors. One of the first and second through conductors is electrically connected to the third and fourth through conductors, respectively.

すなわち、第1コンデンサ部において、第1及び第2貫通導体の導体合計数は、前記第3及び第4貫通導体との導体合計数よりも多くなっているため、電流が流れる距離が短くなることから、電流によって誘起される磁束に起因する自己インダクタンス及び相互インダクタンス成分が低くなる。このため、第1コンデンサ部が、コンデンサの等価直列インダクタンスが概略支配される等価直列インダクタンス支配部となり、コンデンサ全体の等価直列インダクタンス(ESL)を低くできる。一方、第2コンデンサ部において、第3及び第4貫通導体の数を少なくできるため、第3導体層と第4導体層との対向面積を増加させることができるため、第2コンデンサ部が、コンデンサの静電容量が概略支配される静電容量支配部となり、コンデンサ全体を大容量化できる。これらの2つのコンデンサ部の組み合わせにより、低ESL且つ高容量を実現したコンデンサが提供できる。また、従来の製造ラインを大きく変更する必要がないため、簡単且つ安価な製法となる。   That is, in the first capacitor portion, the total number of conductors of the first and second through conductors is larger than the total number of conductors with the third and fourth through conductors, so that the distance through which current flows becomes shorter. Therefore, the self-inductance and the mutual inductance component due to the magnetic flux induced by the current are reduced. For this reason, the first capacitor section serves as an equivalent series inductance controlling section in which the equivalent series inductance of the capacitor is substantially controlled, and the equivalent series inductance (ESL) of the entire capacitor can be reduced. On the other hand, in the second capacitor portion, the number of the third and fourth through conductors can be reduced, so that the facing area between the third conductor layer and the fourth conductor layer can be increased. Becomes a capacitance dominant portion where the capacitance is substantially controlled, and the entire capacitor can be increased in capacity. By combining these two capacitor sections, a capacitor having low ESL and high capacity can be provided. Further, since there is no need to largely change the conventional production line, the production method is simple and inexpensive.

また、第1〜第4貫通導体の少なくとも一部(全部を除く)は、第1〜第4導体層より抵抗値が高い接続電極に接続されてなるため、共振現象を低減することができ、使用周波数範囲を拡大することができる。   Further, since at least a part (except for all) of the first to fourth through conductors is connected to a connection electrode having a higher resistance value than the first to fourth conductor layers, a resonance phenomenon can be reduced, The operating frequency range can be expanded.

さらに、第1〜第4貫通導体の少なくとも一部(全部を除く)は、その他の第1〜第4貫通導体より抵抗値が高いため、このことによっても、共振現象を低減することができ、使用周波数範囲を拡大することができる。   Furthermore, since at least a part (except all) of the first to fourth through conductors has a higher resistance value than the other first to fourth through conductors, the resonance phenomenon can be reduced also by this, The operating frequency range can be expanded.

また、互いに隣接しあう第1貫通導体と第2貫通導体との中心間の間隔をP、該中心間を結ぶ直線上において、第1貫通導体の中心と第2非導体形成領域の周辺との間隔をm2、第2貫通導体の中心と第1非導体形成領域の周辺との間隔をm1としたときに、P≦m1+m2の関係を満足するため、第1貫通導体から他方、例えば第2貫通導体へ流れるは、ほとんど無くなる。このことにより、電流によって誘起される磁束に起因する自己インダクタンス成分が極めて低くなり、コンデンサ全体のESLをさらに低くすることができる。さらに、静電容量の形成に寄与しない非導体形成領域が重なりあうため、コンデンサ全体からみると相対的に静電容量領域が増加し、コンデンサのさらなる高容量化を実現できる。   The distance between the centers of the first through conductor and the second through conductor that are adjacent to each other is P, and the distance between the center of the first through conductor and the periphery of the second non-conductor formation region on a straight line connecting the centers. When the interval is m2, and the interval between the center of the second through conductor and the periphery of the first non-conductor formation region is m1, the relationship of P ≦ m1 + m2 is satisfied. Almost no flow to the conductor. As a result, the self-inductance component caused by the magnetic flux induced by the current becomes extremely low, and the ESL of the entire capacitor can be further reduced. Furthermore, since the non-conductor formation regions that do not contribute to the formation of the capacitance overlap each other, the capacitance region relatively increases from the viewpoint of the entire capacitor, and further higher capacitance of the capacitor can be realized.

また、第1及び第2コンデンサ部を積層後、第1及び第2コンデンサ部の両方を貫通する第1貫通導体と第3貫通導体、または第2貫通導体と第4貫通導体を形成するため、それぞれの接続が良好になり、等価直列抵抗(ESR)を小さくすることができる。   Further, in order to form a first through conductor and a third through conductor, or a second through conductor and a fourth through conductor that penetrate both the first and second capacitor portions after laminating the first and second capacitor portions, Each connection is improved, and the equivalent series resistance (ESR) can be reduced.

そして、これらの特性により、特に高速動作する回路、高周波信号で動作する回路を具備する配線基板、デカップリング回路または高周波回路に特に有効となり、第1コンデンサ部と第2のコンデンサ部との接続信頼性の高くなる。   These characteristics are particularly effective for a wiring board having a circuit operating at a high speed, a circuit operating with a high-frequency signal, a decoupling circuit or a high-frequency circuit, and the connection reliability between the first capacitor unit and the second capacitor unit. Become more likely.

本発明の積層コンデンサを示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。It is a figure which shows the laminated capacitor of this invention, (a) is sectional drawing, (b) is the schematic which shows the overlap state of the 1st, 2nd conductor layer, (c) is the overlap of the 3rd, 4th conductor layer. It is a schematic diagram showing a state. 本発明の積層コンデンサの他の実施の形態を示す図であり、(a)は断面図、(b)は接続電極を示す平面図である。It is a figure which shows other embodiment of the laminated capacitor of this invention, (a) is sectional drawing, (b) is a top view which shows a connection electrode. 本発明の積層コンデンサをデカップリングコンデンサとして用いた、MPUの構造例を示す断面図である。FIG. 3 is a cross-sectional view illustrating a structural example of an MPU using the multilayer capacitor of the present invention as a decoupling capacitor. 従来の積層コンデンサを示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図である。It is a figure which shows the conventional multilayer capacitor, (a) is sectional drawing, (b) is the schematic which shows the overlapping state of the 1st, 2nd conductor layer. 図1の積層コンデンサ(点線)、図1における第1及び第2コンデンサ部(実線)、及び図2の積層コンデンサ(一点鎖線)の周波数−インピーダンス曲線である。3 is a frequency-impedance curve of the multilayer capacitor of FIG. 1 (dotted line), the first and second capacitor units of FIG. 1 (solid line), and the multilayer capacitor of FIG. 本発明の積層コンデンサのさらに他の実施の形態を示す図であり、(a)は断面図、(b)は第1、第2導体層の重なり状態を示す概略図、(c)は第3、第4導体層の重なり状態を示す概略図である。It is a figure which shows other embodiment of the laminated capacitor of this invention, (a) is sectional drawing, (b) is the schematic which shows the overlap state of the 1st, 2nd conductor layer, (c) is 3rd. FIG. 9 is a schematic view showing an overlapping state of a fourth conductor layer. 本発明の積層コンデンサの製造方法を示す図であり、(a)第1コンデンサ部のみを貫通する第1及び第2貫通導体を形成する工程、(b)第2コンデンサ部を形成する工程、(c)第1及び第2コンデンサ部を積層する工程と、(d)第1及び第2コンデンサ部の両方を貫通する第1貫通導体と第3貫通導体、及び第2貫通導体と第4貫通導体を形成する工程である。It is a figure which shows the manufacturing method of the multilayer capacitor of this invention, (a) The process of forming the 1st and 2nd penetrating conductor which penetrates only a 1st capacitor part, (b) The process of forming a 2nd capacitor part, c) a step of laminating the first and second capacitor portions, and (d) a first through conductor and a third through conductor, and a second through conductor and a fourth through conductor that penetrate both the first and second capacitor portions. This is the step of forming

符号の説明Explanation of reference numerals

10 積層コンデンサ
11 第1コンデンサ部
12 第2コンデンサ部
2 誘電体層
3a 第1導体層
4a 第2導体層
3b 第3導体層
4b 第4導体層
5a 第1貫通導体
6a 第2貫通導体
5b 第3貫通導体
6b 第4貫通導体
7a 第1接続端子
8a 第2接続端子
7b 第3接続端子
8b 第4接続端子
13a 第1非導体形成領域
14a 第2非導体形成領域
13b 第3非導体形成領域
14b 第4非導体形成領域
3c、4c 接続電極(抵抗体)
Reference Signs List 10 multilayer capacitor 11 first capacitor section 12 second capacitor section 2 dielectric layer 3a first conductor layer 4a second conductor layer 3b third conductor layer 4b fourth conductor layer 5a first through conductor 6a second through conductor 5b third Through conductor 6b Fourth through conductor 7a First connection terminal 8a Second connection terminal 7b Third connection terminal 8b Fourth connection terminal 13a First non-conductor formation region 14a Second non-conductor formation region 13b Third non-conductor formation region 14b 4 Non-conductor forming area 3c, 4c Connection electrode (resistor)

Claims (7)

複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第1導体層及び第2導体層と、前記誘電体層の厚み方向を貫き、前記第2導体層と第2非導体形成領域によって隔てられ、前記第1導体層どうしを接続する複数の第1貫通導体と、前記第1導体層と第1非導体形成領域によって隔てられ、前記第2導体層どうしを接続する複数の第2貫通導体とが形成されてなる第1コンデンサ部と、
複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第3導体層及び第4導体層と、前記誘電体層の厚み方向を貫き、前記第3導体層どうしを接続する第3貫通導体と、前記第4導体層どうしを接続する第4貫通導体とが形成されてなる第2コンデンサ部とを積層方向に一体化してなるコンデンサであって、
前記第1貫通導体と第2貫通導体の合計数が、前記第3貫通導体と第4貫通導体の合計数よりも多くなっており、且つ前記第1貫通導体の少なくとも1つが前記第3貫通導体に接続し、且つ前記第2貫通導体の少なくとも1つが前記第4貫通導体に接続していることを特徴とするコンデンサ。
A plurality of stacked dielectric layers, a plurality of first conductor layers and a plurality of second conductor layers, which are alternately arranged between the dielectric layers, and face each other; A plurality of first through conductors separated by a conductor layer and a second non-conductor formation region and connecting the first conductor layers to each other; and a plurality of first through conductors separated by the first conductor layer and the first non-conductor formation region. A first capacitor portion formed with a plurality of second through conductors connecting the layers,
A plurality of stacked dielectric layers, a plurality of third conductor layers and fourth conductor layers alternately arranged between the dielectric layers, and facing each other, and penetrating through the thickness direction of the dielectric layers; A capacitor formed by integrating a third through conductor for connecting conductor layers and a second capacitor portion formed with a fourth through conductor for connecting the fourth conductor layers in a stacking direction,
The total number of the first through conductors and the second through conductors is greater than the total number of the third through conductors and the fourth through conductors, and at least one of the first through conductors is the third through conductor. , And at least one of the second through conductors is connected to the fourth through conductor.
前記第1〜第4貫通導体の少なくとも一部は、前記第1〜第4導体層より抵抗値が高い接続電極に接続されてなることを特徴とする請求項1のコンデンサ。 The capacitor according to claim 1, wherein at least a part of the first to fourth through conductors is connected to a connection electrode having a higher resistance value than the first to fourth conductor layers. 互いに隣接しあう前記第1貫通導体と前記第2貫通導体との中心間の間隔をP、該中心間を結ぶ直線上において、前記第1貫通導体の中心と第2非導体形成領域の周辺との間隔をm2、前記第2貫通導体の中心と第1非導体形成領域の周辺との間隔をm1としたときに、P≦m1+m2の関係を満足することを特徴とする請求項1、2のいずれかに記載のコンデンサ。 The distance between the centers of the first through conductor and the second through conductor that are adjacent to each other is P, and on a straight line connecting the centers, the center of the first through conductor and the periphery of the second non-conductor formation region 3. The relationship of P ≦ m1 + m2 is satisfied, where m2 is an interval of m2, and m1 is an interval between the center of the second through conductor and the periphery of the first non-conductor formation region. The capacitor according to any one of the above. 複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第1導体層及び第2導体層と、前記誘電体層の厚み方向を貫き、前記第2導体層と第2非導体形成領域によって隔てられ、前記第1導体層どうしを接続する複数の第1貫通導体と、前記第1導体層と第1非導体形成領域によって隔てられ、前記第2導体層どうしを接続する複数の第2貫通導体とが形成されてなる第1コンデンサ部と、
複数積層された誘電体層と、各誘電体層間に交互に配置され、各々が対向し合う複数の第3導体層及び第4導体層と、前記誘電体層の厚み方向を貫き、前記第3導体層どうしを接続する第3貫通導体と、前記第4導体層どうしを接続する第4貫通導体とが形成されてなる第2コンデンサ部とを積層方向に一体化してなるコンデンサの製造方法であって、
前記第1コンデンサ部のみを貫通する第1及び第2貫通導体を形成する工程と、
必要に応じて、前記第2コンデンサ部のみを貫通する第3及び第4貫通導体を形成する工程と、
前記第1及び第2コンデンサ部を積層する工程と、
前記第1のコンデンサ部と第2コンデンサ部とを電気的に接続する前記第1貫通導体及び第3貫通導体、前記第2貫通導体及び第4貫通導体を形成する工程とを具備することを特徴とするコンデンサの製造方法。
A plurality of stacked dielectric layers, a plurality of first conductor layers and a plurality of second conductor layers, which are alternately arranged between the dielectric layers, and face each other; A plurality of first through conductors separated by a conductor layer and a second non-conductor formation region and connecting the first conductor layers to each other; and a plurality of first through conductors separated by the first conductor layer and the first non-conductor formation region. A first capacitor portion formed with a plurality of second through conductors connecting the layers,
A plurality of stacked dielectric layers, a plurality of third conductor layers and fourth conductor layers alternately arranged between the dielectric layers, and facing each other, and penetrating through the thickness direction of the dielectric layers; A method for manufacturing a capacitor, comprising: integrating a third through conductor for connecting conductor layers together and a second capacitor portion having a fourth through conductor for connecting the fourth conductor layers together in a laminating direction. hand,
Forming first and second through conductors penetrating only the first capacitor portion;
If necessary, forming third and fourth through conductors that penetrate only the second capacitor portion;
Laminating the first and second capacitor portions;
Forming the first through conductor, the third through conductor, the second through conductor, and the fourth through conductor that electrically connect the first and second capacitor units. Method of manufacturing a capacitor.
請求項1乃至3のいずれかに記載のコンデンサを備えたことを特徴とする配線基板。 A wiring board comprising the capacitor according to claim 1. 請求項1乃至3のいずれかに記載のコンデンサを備えたことを特徴とするデカップリング回路。 A decoupling circuit comprising the capacitor according to claim 1. 請求項1乃至3のうちいずれかに記載のコンデンサを備えたことを特徴とする高周波回路。 A high-frequency circuit comprising the capacitor according to claim 1.
JP2003370211A 2002-10-30 2003-10-30 Capacitor, capacitor manufacturing method, wiring board, decoupling circuit, and high-frequency circuit Expired - Fee Related JP4458812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370211A JP4458812B2 (en) 2002-10-30 2003-10-30 Capacitor, capacitor manufacturing method, wiring board, decoupling circuit, and high-frequency circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002316793 2002-10-30
JP2003370211A JP4458812B2 (en) 2002-10-30 2003-10-30 Capacitor, capacitor manufacturing method, wiring board, decoupling circuit, and high-frequency circuit

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2006080615A Division JP2006222442A (en) 2002-10-30 2006-03-23 Capacitor and wiring board
JP2006080617A Division JP2006191147A (en) 2002-10-30 2006-03-23 Capacitor and wiring board
JP2006080616A Division JP2006179956A (en) 2002-10-30 2006-03-23 Method of manufacturing capacitor

Publications (2)

Publication Number Publication Date
JP2004172602A true JP2004172602A (en) 2004-06-17
JP4458812B2 JP4458812B2 (en) 2010-04-28

Family

ID=32715827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370211A Expired - Fee Related JP4458812B2 (en) 2002-10-30 2003-10-30 Capacitor, capacitor manufacturing method, wiring board, decoupling circuit, and high-frequency circuit

Country Status (1)

Country Link
JP (1) JP4458812B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135333A (en) * 2004-11-04 2006-05-25 Samsung Electro Mech Co Ltd Laminated capacitor array and its wiring connection structure
US7072169B2 (en) 2003-12-05 2006-07-04 Ngk Spark Plug Co., Ltd. Capacitor and method for manufacturing the same
JP2006303020A (en) * 2005-04-18 2006-11-02 Mitsubishi Electric Corp Capacitor built-in printed wiring board
JP2007096291A (en) * 2005-09-01 2007-04-12 Ngk Spark Plug Co Ltd Wiring board
KR100785207B1 (en) 2005-09-21 2007-12-11 티디케이가부시기가이샤 Laminated capacitor and manufacturing method thereof
JP2009135556A (en) * 2009-03-25 2009-06-18 Tdk Corp Multilayer capacitor and method of manufacturing the same
US7709929B2 (en) 2006-03-16 2010-05-04 Fujitsu Limited Capacitor sheet and electronic circuit board
CN101989495A (en) * 2009-07-29 2011-03-23 京瓷株式会社 Electronic apparatus
US8174815B2 (en) 2008-07-22 2012-05-08 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same
WO2012111370A1 (en) * 2011-02-16 2012-08-23 株式会社村田製作所 Electronic component
JP2018006736A (en) * 2016-06-27 2018-01-11 Tdk株式会社 Electronic component

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072169B2 (en) 2003-12-05 2006-07-04 Ngk Spark Plug Co., Ltd. Capacitor and method for manufacturing the same
US7233480B2 (en) 2003-12-05 2007-06-19 Ngk Spark Plug Co., Ltd. Capacitor and method for manufacturing the same
JP2006135333A (en) * 2004-11-04 2006-05-25 Samsung Electro Mech Co Ltd Laminated capacitor array and its wiring connection structure
JP2006303020A (en) * 2005-04-18 2006-11-02 Mitsubishi Electric Corp Capacitor built-in printed wiring board
JP2007096291A (en) * 2005-09-01 2007-04-12 Ngk Spark Plug Co Ltd Wiring board
KR100785207B1 (en) 2005-09-21 2007-12-11 티디케이가부시기가이샤 Laminated capacitor and manufacturing method thereof
US7312975B2 (en) 2005-09-21 2007-12-25 Tdk Corporation Laminated capacitor and manufacturing method thereof
US7709929B2 (en) 2006-03-16 2010-05-04 Fujitsu Limited Capacitor sheet and electronic circuit board
US8174815B2 (en) 2008-07-22 2012-05-08 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same
JP2009135556A (en) * 2009-03-25 2009-06-18 Tdk Corp Multilayer capacitor and method of manufacturing the same
CN101989495A (en) * 2009-07-29 2011-03-23 京瓷株式会社 Electronic apparatus
WO2012111370A1 (en) * 2011-02-16 2012-08-23 株式会社村田製作所 Electronic component
CN102754339A (en) * 2011-02-16 2012-10-24 株式会社村田制作所 Electronic component
JP5057001B2 (en) * 2011-02-16 2012-10-24 株式会社村田製作所 Electronic components
JP2012238872A (en) * 2011-02-16 2012-12-06 Murata Mfg Co Ltd Electronic component
US8547189B2 (en) 2011-02-16 2013-10-01 Murata Manufacturing Co., Ltd. Electronic component
CN103780217A (en) * 2011-02-16 2014-05-07 株式会社村田制作所 Electronic component
CN102754339B (en) * 2011-02-16 2015-06-10 株式会社村田制作所 Electronic component
CN103780217B (en) * 2011-02-16 2017-05-17 株式会社村田制作所 Electronic component
JP2018006736A (en) * 2016-06-27 2018-01-11 Tdk株式会社 Electronic component
JP7095230B2 (en) 2016-06-27 2022-07-05 Tdk株式会社 Electronic components

Also Published As

Publication number Publication date
JP4458812B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP5931044B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP2015023271A (en) Multilayer ceramic electronic component to be embedded in board and printed circuit board having multilayer ceramic electronic component embedded therein
KR101499715B1 (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
JP2009021512A (en) Multilayer capacitor
KR101525667B1 (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
JP6309313B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JPH04220004A (en) Voltage controlled oscillator
JP4458812B2 (en) Capacitor, capacitor manufacturing method, wiring board, decoupling circuit, and high-frequency circuit
KR20140143340A (en) Multi-layered ceramic capacitor and board for mounting the same
KR101489815B1 (en) Multi-layered ceramic capacitor
JP7215807B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2006222441A (en) Capacitor, wiring board, decoupling circuit, and high-frequency circuit
JP4356300B2 (en) Laminated LC composite parts
JP2001155953A (en) Multi-terminal laminated ceramic capacitor for three- dimensional mounting
JP2006222442A (en) Capacitor and wiring board
JP2001044074A (en) Multilayer ceramic capacitor
JP2005203623A (en) Capacitor, manufacturing method thereof, wiring board, decoupling circuit, and high frequency circuit
JP2006191147A (en) Capacitor and wiring board
JP2001313230A (en) Capacitor array
JP4906990B2 (en) Through-type multilayer ceramic capacitors for three-dimensional mounting
JP2009027044A (en) Multi-layer capacitor and wiring board with built-in capacitor
JP2003347160A (en) Multiple capacitor
JP2006179956A (en) Method of manufacturing capacitor
JP2004140350A (en) Capacitor, wiring board, decoupling circuit, and high-frequency circuit
JP4931329B2 (en) Capacitor, wiring board, decoupling circuit and high frequency circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees