JP2004170345A - 導電薄膜の導電性測定装置 - Google Patents

導電薄膜の導電性測定装置 Download PDF

Info

Publication number
JP2004170345A
JP2004170345A JP2002339127A JP2002339127A JP2004170345A JP 2004170345 A JP2004170345 A JP 2004170345A JP 2002339127 A JP2002339127 A JP 2002339127A JP 2002339127 A JP2002339127 A JP 2002339127A JP 2004170345 A JP2004170345 A JP 2004170345A
Authority
JP
Japan
Prior art keywords
thin film
conductive thin
polarization
wave
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339127A
Other languages
English (en)
Other versions
JP4107382B2 (ja
Inventor
Asaaki Yanaka
雅顕 谷中
Noritaka Ihashi
紀孝 伊橋
Hiroshi Urabe
啓 卜部
Tomonaga Okabe
朋永 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toppan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toppan Printing Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002339127A priority Critical patent/JP4107382B2/ja
Publication of JP2004170345A publication Critical patent/JP2004170345A/ja
Application granted granted Critical
Publication of JP4107382B2 publication Critical patent/JP4107382B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

【課題】導電薄膜の導電異方性と、導電薄膜に存在する傷の方向性とを、測定時に導電薄膜を傷つけることなく、高精度で測定すること。
【解決手段】本発明によれば、導電薄膜の導電性を非接触で測定する測定装置において、電磁波発振器10によって発振された電磁波Aを、偏波面回転装置16によって所定の偏波角度に偏波し、偏波面回転装置16によって偏波された電磁波Bを入射波として、ホーンアンテナ18(#a)を介して導電薄膜25の膜面に対する垂直方向から導電薄膜25に入射させ、入射波が導電薄膜25を透過してなる透過波Eのうち、入射波が入射した方向における成分の強度と、偏波角度との相関関係に基づいて、導電薄膜25の導電異方性、および導電薄膜25に存在する傷の方向性を偏分波器22によって測定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えばガラスや高分子フィルム等の表面に、電気抵抗の低い金属薄膜あるいは金属酸化物薄膜を付着させることによって構成される導電薄膜を対象に、導電異方性や傷の方向性といった導電性を非接触で測定する導電性測定装置に関するものである。
【0002】
【従来の技術】
ガラスまたは高分子フィルムなどの表面に電気抵抗の低い金属薄膜または金属酸化物薄膜を付着することによって構成される導電薄膜は、電気・電子分野で広く使用されている。その具体例として、液晶ディスプレーやELディスプレーといったフラットパネルディスプレー、太陽電池などの透明電極、あるいは透明電磁波シールド材などが挙げられる。
【0003】
この種の導電薄膜は、一般的には、二探針または四探針式の接触式表面抵抗測定法によって電気抵抗の測定がなされている。しかしながら、この接触式表面抵抗測定法は、測定時に導電薄膜の表面に傷をつける場合があり、これによって導電薄膜の導電性能の劣化をもたらしてしまうという恐れがある。
【0004】
表面に傷をつけることなく電気抵抗を測定するための技術としては、電磁誘導コイルと導電薄膜との間の電磁誘導現象を利用する渦電流測定法が知られている。しかしながら、この渦電流測定法は、成膜プロセス中に何らかの理由により導電薄膜に傷が生じている場合には、導電性の劣化自体を検出することは可能であるが、抵抗の面内異方性、すなわち傷の方向による抵抗の違いを測定することは原理上不可能である。
【0005】
このことは、導電薄膜に生じた傷の形態によっては無視できない事態となる。すなわち、導電薄膜中には、しばしば一方向に伸びるクラック状の傷が発生する。この場合、傷に平行な方向では抵抗の増加はほとんどみられない。しかしながら、傷に垂直な方向では非常に高い抵抗値となり、劣化が促進されてしまう恐れがある。そのため、傷の方向性を正しく検出する必要があるが、渦電流測定法では、上述したように傷の方向による抵抗の違いを測定することができないために、傷の方向性を正しく検出することができない。
【0006】
電気的な面内異方性については、上述した四探針式の表面抵抗測定法でもある程度は測定可能である。しかしながら、四探針式の表面抵抗測定法では、傷の長さとプローブ間隔の関係によっては測定結果が大きく影響を受けてしまう場合がある。また、測定角度を変化させながら測定する毎に導電薄膜に接触する必要があり測定に膨大な時間を要する。更には、接触式であるが故に、試料である導電薄膜に傷をつける恐れがあるといった不都合が生じてしまう。
【0007】
一方、非接触で、かつ電気的な手法で導電薄膜の面内異方性を検出する方法として、特許文献1に記載されているような電磁波を用いた方法が知られている。この方法は、一方向繊維強化複合材料中の繊維の配向ムラを評価するために考案されたものである。この方法の基本的な測定原理について以下に説明する。
【0008】
すなわち、特許文献1で開示された方法では、直線偏波の電磁波を、試料である導電薄膜に対して垂直入射させ、透過波を入射波の偏波面に平行な成分である主偏波成分と、これに直交する成分である交差偏波成分に分離する。そして交差偏波成分の強度を測定する事により、試料である導電薄膜の電気的な主軸の傾きや異方性の強さを検知することが出来る。
【0009】
この方法の具体的な利用例として、特許文献1では、短繊維一方向プリプレグ製造過程における繊維方向の乱れの検出に用いる例が開示されている。これは、入射波の偏波面を所定の繊維方向に対して直角になるように調整し、プリプレグ面上を走査すれば、繊維が所定方向に整列していれば交差偏波成分の強度は0(零)となるが、もし繊維の配向に乱れが生じると交差波成分の出力が検出されるというものである.
【0010】
【特許文献1】
特公平2−36898号公報
【0011】
【発明が解決しようとする課題】
しかしながら、このような特許文献1で開示された方法では、以下のような問題がある。
【0012】
すなわち、特許文献1で開示された方法では、予め配向状態が決まっている試料について、その状態からの乱れを検出するには好適である。しかしながら、導電薄膜にしばしば発生するクラック状の傷は、未知の方向に発生する。したがって、入射波の偏波方向を、予め傷の方向に対して垂直に設置することはできず、現実的には、乱れを検出することができないという問題がある。
【0013】
また、特許文献1において評価対象とされている繊維強化複合材料の厚みは数mm程度であり、このような繊維強化複合材料の導電性の測定に用いられる電磁波の周波数帯域は、3〜30(GHz)の範囲である。これは、10〜100(mm)の範囲の波長に相当する。
【0014】
しかしながら、多くの導電薄膜は、その厚みが、サブミクロン程度である。これは、上述したように10〜100(mm)の範囲の波長よりも更に5〜6桁も小さいオーダである。すなわち、厚みがサブミクロンオーダの導電薄膜の導電性の測定に、その厚みよりも5〜6桁も大きい波長の電磁波を用いて測定しても精度良い測定結果を得ることはできないことは明らかである。
【0015】
このように、導電薄膜の導電異方性、および導電薄膜に存在する傷の方向性の測定とを、非接触でかつ高精度で行うことができる装置の実現が望まれている。
【0016】
本発明はこのような事情に鑑みてなされたものであり、導電薄膜の導電異方性と、導電薄膜に存在する傷の方向性とを、非接触で電気的な測定方法を用いることによって、測定時に導電薄膜を傷つけることなく、かつ高精度で測定することが可能な導電薄膜の導電性測定装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記の目的を達成するために、本発明では、以下のような手段を講じる。
【0018】
すなわち、請求項1の発明は、導電薄膜の導電性を非接触で測定する測定装置において、電磁波を所定の偏波角度に偏波し、偏波された電磁波を入射波として、導電薄膜の膜面に対する垂直方向から導電薄膜に入射させ、入射波が導電薄膜を透過してなる透過波のうち、入射波が入射した方向における成分の強度と、偏波角度との相関関係に基づいて、導電薄膜の導電異方性、および導電薄膜に存在する傷の方向性を測定する。
【0019】
請求項2の発明は、導電薄膜の導電性を非接触で測定する測定装置において、電磁波を所定の偏波角度に偏波し、偏波された電磁波を入射波として、導電薄膜の膜面に対する垂直方向から導電薄膜に入射させ、入射波が導電薄膜を透過してなる透過波のうち、偏波角度の方向における成分の強度と、偏波角度との相関関係に基づいて、導電薄膜の導電異方性、および導電薄膜に存在する傷の方向性を測定する。
【0020】
請求項3の発明は、導電薄膜の導電性を非接触で測定する導電性測定装置において、電磁波発振手段と、第1の偏波手段と、入射用ホーンアンテナと、受波用ホーンアンテナと、第2の偏波手段と、分波手段と、測定手段とを備えている。
【0021】
そして、電磁波発振手段は、電磁波を発振し、第1の偏波手段は、自己が備えている偏波面の方向を調節することによって、電磁波発振手段によって発振された電磁波を、この偏波面によって所定の偏波角度に偏波し、入射用ホーンアンテナは、導電薄膜の膜面に対して直交する軸上に配置され、第1の偏波手段によって偏波された電磁波を入力波として導電薄膜の膜面に対する垂直方向から導電薄膜に対して入射させる。
【0022】
また、受波用ホーンアンテナは、導電薄膜を挟んで入射用ホーンアンテナと対向するように軸上に配置され、入射波が導電薄膜を透過してなる透過波を受波し、第2の偏波手段は、自己が備えている偏波面の方向を、偏波角度を補償するように調節することによって、受波用ホーンアンテナによって受波された透過波を、この偏波面によって偏波し、分波手段は、第2の偏波手段から出力された透過波を、入射波の入射方向の成分である主偏波成分と、偏波角度の方向の成分である交差偏波成分とに分波し、測定手段は、分波手段によって分波された主偏波成分の強度と、偏波角度との相関関係に基づいて、導電薄膜の導電異方性、および導電薄膜に存在する傷の方向性を測定する。
【0023】
請求項4の発明は、請求項1乃至3のうち何れか1項の発明の導電性測定装置において、入射波である電磁波の周波数を、30GHz(30ギガヘルツ)以上3THz(3テラヘルツ)以下とする。
【0024】
従って、以上に示すような本発明の導電薄膜の導電性測定装置においては、以上のような手段を講じることにより、導電薄膜の導電異方性と、導電薄膜に存在する傷の方向性とを、非接触で電気的な方法を用いることによって、測定時に導電薄膜を傷つけることなく、かつ高精度で測定すること可能となる。
【0025】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しながら説明する。
【0026】
本発明の実施の形態を図1から図6を用いて説明する。
【0027】
図1は、本発明の実施の形態に係る導電性測定装置の構成例を示す機能ブロック図である。
【0028】
すなわち、本発明の実施の形態に係る導電性測定装置は、導電薄膜の導電性を非接触で測定する装置であって、電磁波発振器10と、矩形導波管12と、矩形円形変換導波管14と、偏波面回転装置16と、一対の円錐形のホーンアンテナ18(#a,#b)と、偏波面回転装置20と、偏分波器22とを備えている。
【0029】
電磁波発振器10は、電磁波Aを発振し、発振した電磁波Aを矩形導波管12側に出力する。
【0030】
矩形導波管12は、電磁波発振器10から出力された電磁波Aを、TE10モードに変換して、矩形円形変換導波管14へと伝搬する。
【0031】
矩形円形変換導波管14は、矩形導波管12からTE10モードで伝搬された電磁波Aを、TE11モードに変換して、偏波面回転装置16へと伝搬する。
【0032】
偏波面回転装置16は、例えば、回転可能な半波長誘電体板を内蔵した円形導波管からなる図示しない偏波面を備えている。そして、この偏波面を規定角度だけ回転させることによって、矩形円形変換導波管14から伝搬されたTE11モードの電磁波Aの偏波角度を偏波し、この偏波された電磁波を入射電磁波Bとしてホーンアンテナ18(#a)側へと出力する。また、偏波面回転装置16は、偏波面を高速で規定角度だけ回転させることができるような構成としているので、偏波面の回転動作が律速となって測定処理の効率を妨げることがないようにしている。
【0033】
一対のホーンアンテナ18(#a,#b)の間には、試験体である導電薄膜25が配置されるようにしている。そして、偏波面回転装置16側に配置されたホーンアンテナ18(#a)は、導電薄膜25の膜面に対して直交する軸G上に配置され、偏波面回転装置16から出力された入射電磁波Bを、導電薄膜25の一方の膜面(図1中に示す導電薄膜25の左側の面)に対する垂直方向から、導電薄膜25に入射させる。なお、入射電磁波Bの周波数は、30(GHz)(30ギガヘルツ)以上3(THz)(3テラヘルツ)以下、好ましくは100(GHz)(100ギガヘルツ)以上の短波長を用いる。その理由は、図2に示すように、この周波数域の電磁波は、非常に薄い導電薄膜の測定に対して充分な検出感度を得ることができるからである。なお、図2は、10(mm)の傷が導電薄膜中に一本存在した時の検出感度について、電磁波の周波数に対してプロットしたものである。縦軸は30(GHz)での感度を1としたときの相対値として表している。また、長さ10(mm)の傷は、ITO薄膜に発生する傷としては典型的な長さである。
【0034】
一方、偏波面回転装置20側に配置されたホーンアンテナ18(#b)は、軸G上に、導電薄膜25を挟んでホーンアンテナ18(#a)と対向するように配置している。そして、入射電磁波Bが導電薄膜25を透過し、導電薄膜25に入射電磁波Bが入射した膜面(図1中に示す導電薄膜25の左側の面)とは逆の膜面(図1中に示す導電薄膜25の右側の面)から出射されてなる透過電磁波Eを受波し、受波した透過電磁波Eを偏波面回転装置20へと出力する。
【0035】
偏波面回転装置20もまた、偏波面回転装置16と同様に図示しない偏波面を備えており、この偏波面を、偏波面回転装置16によって偏波された入射偏波角度を補償するような角度に回転させることによって、ホーンアンテナ18(#b)から出力された透過電磁波Eの偏波角度を偏波し、この偏波された透過電磁波Fを偏分波器22へと出力する。偏波面回転装置20もまた、偏波面回転装置16と同様に、偏波面を高速で規定角度だけ回転させることができるような構成としているので、偏波面の回転動作が律速となって測定処理の効率を妨げることがないようにしている。
【0036】
偏分波器22は、偏波面回転装置20から出力された透過電磁波Fを、入射電磁波Bの入射方向の成分である主偏波成分Fと、入射電磁波Bの偏波角度の方向の成分である交差偏波成分Fとに分波した後、各偏波成分の強度を測定する。この一連の測定を、偏波面回転装置16の偏波面を回転させることによって実現される偏波角度を変化させながら繰り返すことによって、透過電磁波Fの主偏波成分Fおよび交差偏波成分Fの偏波角度(0〜180(deg))に対応する強度変化を取得する。
【0037】
次に、以上のように構成した本発明の実施の形態に係る導電性測定装置の作用について、導電薄膜25としてPETフィルム上に形成したITO薄膜を試験体とし、この試験体に対して周波数35(GHz)のミリ波を入射電磁波Bとして測定した場合を例に図3のフローチャートを用いて説明する。傷による導電異方性の検出時における測定結果を示すために、長さ10(mm)のクラック状の傷を人工的に1本および3本備え、図4の平面図に示すように、傷が3本ある場合には、各傷が平行でかつ1(mm)間隔で形成された試験体を用いた測定も行った。
【0038】
まず、電磁波発振器10から矩形導波管12に向けて電磁波Aが出力される(S1)。電磁波Aは、矩形導波管12においてTE10モードに変換された後に矩形円形変換導波管14へと伝搬される。そして、矩形円形変換導波管14では、矩形導波管12からTE10モードで伝搬された電磁波Aが、TE11モードに変換された後に偏波面回転装置16へと伝搬される(S2)。
【0039】
偏波面回転装置16では、偏波面が規定角度だけ回転されることによって、矩形円形変換導波管14側から伝搬されたTE11モードの電磁波Aが所定の偏波角度で偏波される(S3)。そして、この偏波された電磁波が、入射電磁波Bとしてホーンアンテナ18(#a)へと出力される。
【0040】
ホーンアンテナ18(#a)は、導電薄膜25の膜面に対して直交する軸G上に配置されている。偏波面回転装置16から出力された入射電磁波Bは、このようなホーンアンテナ18(#a)によって、導電薄膜25の一方の膜面(図1中に示す導電薄膜25における左側の面)に対して垂直入射される(S4)。なお、入射電磁波Bの周波数は、上述したように35(GHz)(35ギガヘルツ)のミリ波である。
【0041】
このようにして導電薄膜25に入射された入射電磁波Bのうちの透過成分は、透過電磁波Eとして、導電薄膜25に入射電磁波Bが入射した膜面(図1中に示す導電薄膜25の左側の面)とは逆の膜面(図1中に示す導電薄膜25の右側の面)から出射される(S5)。そして、ホーンアンテナ18(#b)によって受波され、更にホーンアンテナ18(#b)から偏波面回転装置20へと出力される。
【0042】
偏波面回転装置20では、偏波面回転装置16によって偏波された入射偏波角度を補償するような角度に偏波面が回転される(S6)。これによって、ホーンアンテナ18(#b)から出力された透過電磁波Eの偏波角度が偏波される。そして、この偏波された透過電磁波Fが、偏分波器22へと出力され、偏分波器22において入射電磁波Bの入射方向の成分である主偏波成分Fと、入射電磁波Bの偏波角度の方向成分である交差偏波成分Fとに分波され(S7)た後、各偏波成分の強度が測定される(S8)。
【0043】
ステップS3からステップS8までからなる一連の測定が、入射電磁波Bに対する偏波角度を変化させながら繰り返す(S9)ことによって、透過電磁波Fの主偏波成分Fおよび交差偏波成分Fの偏波角度(0〜180(deg))に対する強度変化が取得される。偏波面回転装置16および偏波面回転装置20は、偏波面の角度を高速で回転させる構成としているため、上記一連の測定は、最短で0.25秒以内で完了される。
【0044】
上述したようにして偏分波器22によって取得された結果を、図5および図6に示す。
【0045】
図5は、偏波面回転角度、すなわち偏波角度に対する主偏波成分Fの強度を、また図6は、偏波面回転角度、すなわち偏波角度に対する交差偏波成分Fの強度をそれぞれ示している。図5および図6ともに、強度は、試験体を用いない場合で得られた強度で規格化し、偏波角度は、傷の方向との相対角度で示している。
【0046】
図5および図6に示すように、主偏波成分Fおよび交差偏波成分Fの何れにおいても、傷がある場合には、傷がない場合には全く見られなかった強度の異方性が明瞭に表される。このため、傷があることを容易に把握することが可能となる。
【0047】
さらに、図6に示すように交差偏波成分Fの場合、その強度は、角度が傷に対して平行な場合(0(deg),180(deg))と垂直な場合(90(deg))に急激に弱くなり、傷の方向に非常に敏感になっている。したがって、傷の方向を特定するためには、図5に示すような主偏波成分Fの強度よりも、図6に示すような交差偏波成分Fの強度に基づいて判断するのが有効であることがわかる。
【0048】
上述したように、本発明の実施の形態に係る導電性測定装置においては、上記のような作用により、図5および図6に示すような、偏波角度に対する主偏波成分Fおよび交差偏波成分Fの強度を精度良く測定することができる。なお、測定中に、各ホーンアンテナ18(#a,#b)と導電薄膜25との配置距離が若干変化しても、交差偏波成分Fの強度は原理的に影響を受けにくいことから、インラインで測定を行った場合でも、パスライン変動による影響を受けにくく、実験条件の変動により測定結果の受ける影響は少ないという長所を有している。従来技術で説明した渦電流方式では、測定中における試験体とセンサであるコイルとの距離が変動すると、測定結果が大きく変動してしまうために、試験体とセンサとの間の距離を一定に保つ機構が必要であったが、本発明の実施の形態に係る導電性測定装置では、このような機構は不要となり、装置の複雑化をもたらすことなく実現できるものである。
【0049】
また、本発明の実施の形態に係る導電性測定装置においては、偏波角度を変化させて測定を行う場合、試験体である導電薄膜25は一切動かす必要はなく、偏波面回転装置16および偏波面回転装置20に備えられた各偏波面を高速で回転させることによって行っているので、短時間に測定を完了することができる。更に、試験体である導電薄膜25に対して非接触な状態で測定するために、測定時に試験体を傷つけることはない。
【0050】
更に、本発明の実施の形態に係る導電性測定装置では、図5や図6に示すような結果が得られるので、試験体である導電薄膜25に傷が存在する場合には、傷が存在していることを容易に判定することができるのみならず、図6に示すような偏波角度に対する交差偏波成分Fの強度についての測定結果に基づいて、その傷の方向性をも容易にかつ精度良く測定することができる。
【0051】
なお、上記実施の形態では、試験体として、クラック状の傷を有するITO薄膜を用いた場合を例に説明したが、勿論これに限定されるものではない。他の導電薄膜に対する実施例としては、例えばフラットパネルディスプレーなどで用いられる透明導電薄膜が挙げられる。
【0052】
この場合、導電薄膜は、マトリクス駆動の電極として用いられるために、エッチングなどにより電気的に孤立した細長い短冊状要素の列に加工される場合が多い。したがって、長手方向のみに導電性を持つことになるが、本発明は、このような場合でも、透過電磁波Eの交差偏波成分Fの強度の、偏波角度に対する相関関係を測定し、この相関関係を正常品のものと比較することにより、エッチングなどの加工工程が適切に行われたかどうかを確認する事に適用することも可能である。
【0053】
以上、本発明の好適な実施の形態について、添付図面を参照しながら説明したが、本発明はかかる構成に限定されない。特許請求の範囲の発明された技術的思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の技術的範囲に属するものと了解される。
【0054】
【発明の効果】
以上説明したように、本発明によれば、導電薄膜の導電異方性と、導電薄膜に存在する傷の方向性とを、非接触で電気的な測定方法を用いることによって、測定時に導電薄膜を傷つけることなく、かつ高精度で測定することが可能な導電薄膜の導電性測定装置を実現することができる。このことは、電気・電子分野で広く使われている導電薄膜を生産管理する上で非常に有効である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る導電性測定装置の構成例を示す機能ブロック図
【図2】電磁波の波長と、測定感度との相関関係を示す図
【図3】本発明の実施の形態に係る導電性測定装置の動作を示すフローチャート
【図4】クラック状の傷が3本形成された試験体の平面図
【図5】偏波面回転角度に対する主偏波成分強度の測定結果の一例を示す図
【図6】偏波面回転角度に対する交差偏波成分強度の測定結果の一例を示す図
【符号の説明】
A…電磁波
B…入射電磁波
E,F…透過電磁波
…主偏波成分
…交差偏波成分
10…電磁波発振器
12…矩形導波管
14…矩形円形変換導波管
16,20…偏波面回転装置
18…ホーンアンテナ
22…偏分波器
25…導電薄膜

Claims (4)

  1. 導電薄膜の導電性を非接触で測定する測定装置において、
    電磁波を所定の偏波角度に偏波し、
    前記偏波された電磁波を入射波として、前記導電薄膜の膜面に対する垂直方向から前記導電薄膜に入射させ、
    前記入射波が前記導電薄膜を透過してなる透過波のうち、前記入射波が入射した方向における成分の強度と、前記偏波角度との相関関係に基づいて、前記導電薄膜の導電異方性、および前記導電薄膜に存在する傷の方向性を測定するようにした導電性測定装置。
  2. 導電薄膜の導電性を非接触で測定する測定装置において、
    電磁波を所定の偏波角度に偏波し、
    前記偏波された電磁波を入射波として、前記導電薄膜の膜面に対する垂直方向から前記導電薄膜に入射させ、
    前記入射波が前記導電薄膜を透過してなる透過波のうち、前記偏波角度の方向における成分の強度と、前記偏波角度との相関関係に基づいて、前記導電薄膜の導電異方性、および前記導電薄膜に存在する傷の方向性を測定するようにした導電性測定装置。
  3. 導電薄膜の導電性を非接触で測定する導電性測定装置において、
    電磁波を発振する電磁波発振手段と、
    自己が備えている偏波面の方向を調節することによって、前記電磁波発振手段によって発振された電磁波を、この偏波面によって所定の偏波角度に偏波する第1の偏波手段と、
    前記導電薄膜の膜面に対して直交する軸上に配置され、前記第1の偏波手段によって偏波された電磁波を入力波として前記導電薄膜の膜面に対する垂直方向から前記導電薄膜に対して入射させる入射用ホーンアンテナと、
    前記導電薄膜を挟んで前記入射用ホーンアンテナと対向するように前記軸上に配置され、前記入射波が前記導電薄膜を透過してなる透過波を受波する受波用ホーンアンテナと、
    自己が備えている偏波面の方向を、前記偏波角度を補償するように調節することによって、前記受波用ホーンアンテナによって受波された透過波を、この偏波面によって偏波する第2の偏波手段と、
    前記第2の偏波手段から出力された透過波を、前記入射波の入射方向の成分である主偏波成分と、前記偏波角度の方向の成分である交差偏波成分とに分波する分波手段と、
    前記分波手段によって分波された主偏波成分の強度と、前記偏波角度との相関関係に基づいて、前記導電薄膜の導電異方性、および前記導電薄膜に存在する傷の方向性を測定する測定手段と
    を備えた導電性測定装置。
  4. 請求項1乃至3のうち何れか1項に記載の導電性測定装置において、
    前記入射波である電磁波の周波数を、30GHz(30ギガヘルツ)以上3THz(3テラヘルツ)以下とした導電性測定装置。
JP2002339127A 2002-11-22 2002-11-22 導電薄膜の導電性測定装置 Expired - Lifetime JP4107382B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339127A JP4107382B2 (ja) 2002-11-22 2002-11-22 導電薄膜の導電性測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339127A JP4107382B2 (ja) 2002-11-22 2002-11-22 導電薄膜の導電性測定装置

Publications (2)

Publication Number Publication Date
JP2004170345A true JP2004170345A (ja) 2004-06-17
JP4107382B2 JP4107382B2 (ja) 2008-06-25

Family

ID=32702150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339127A Expired - Lifetime JP4107382B2 (ja) 2002-11-22 2002-11-22 導電薄膜の導電性測定装置

Country Status (1)

Country Link
JP (1) JP4107382B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002214A (ja) * 2008-06-18 2010-01-07 Advantest Corp 光検出装置
EP2796902A1 (en) * 2013-04-23 2014-10-29 Spinner GmbH Millimeter Wave Scanning Imaging System
CN107078786A (zh) * 2014-11-13 2017-08-18 株式会社日立制作所 无线通信系统及其利用系统
WO2018163608A1 (ja) * 2017-03-10 2018-09-13 三菱重工業株式会社 プリプレグシート用保護シートの剥離方法、および、プリプレグシート用保護シートの剥離装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002214A (ja) * 2008-06-18 2010-01-07 Advantest Corp 光検出装置
EP2796902A1 (en) * 2013-04-23 2014-10-29 Spinner GmbH Millimeter Wave Scanning Imaging System
WO2014173831A3 (en) * 2013-04-23 2015-01-22 Spinner Gmbh Millimeter wave scanning imaging system
CN107078786A (zh) * 2014-11-13 2017-08-18 株式会社日立制作所 无线通信系统及其利用系统
CN107078786B (zh) * 2014-11-13 2020-06-16 株式会社日立制作所 无线通信系统及其利用系统
WO2018163608A1 (ja) * 2017-03-10 2018-09-13 三菱重工業株式会社 プリプレグシート用保護シートの剥離方法、および、プリプレグシート用保護シートの剥離装置
JP2018150098A (ja) * 2017-03-10 2018-09-27 三菱重工業株式会社 プリプレグシート用保護シートの剥離方法、および、プリプレグシート用保護シートの剥離装置
US11331898B2 (en) 2017-03-10 2022-05-17 Mitsubishi Heavy Industries, Ltd. Method of peeling protective sheet for prepreg sheet and apparatus for peeling protective sheet from prepreg sheet

Also Published As

Publication number Publication date
JP4107382B2 (ja) 2008-06-25

Similar Documents

Publication Publication Date Title
Nagashima et al. Polarization-sensitive THz-TDS and its application to anisotropy sensing
US10215696B2 (en) System for determining at least one property of a sheet dielectric sample using terahertz radiation
EP1864111B1 (en) Inspection apparatus using terahertz waves
KR101441876B1 (ko) 광학이방성 패러미터 측정 방법 및 측정 장치
WO2017054374A1 (zh) 一种适用于二维电场测量的光学传感装置
WO2020007043A1 (zh) 液晶介电常数的测量装置、测量设备、测量方法
US9678009B2 (en) Method for localized surface plasmon resonance sensing system
JP4107382B2 (ja) 導電薄膜の導電性測定装置
US7769250B2 (en) Electrooptic probe for measuring temperature and electromagnetic field
Deng et al. A metamaterial-based absorber for liquid sensing in terahertz regime
CN111982290A (zh) 一种圆偏振光探测器
Antsygin et al. Specific features of studying anisotropic media by methods of time-domain terahertz spectroscopy
WO2017120717A1 (zh) 电光相位调制系统
CN113820052B (zh) 用于介电材料中应力的表征方法
CN112268617B (zh) 可同时检测太赫兹波偏振度及时域波形的探测天线阵列
JP3772603B2 (ja) 配向測定装置
JPH01270648A (ja) 材料の電気的特性測定装置
JP4985128B2 (ja) シート状物の物性を測定する測定装置および方法
Jia et al. On the terahertz response of metal-gratings on anisotropic dielectric substrates and its prospective application for anisotropic refractive index characterization
TWI464387B (zh) 振幅解調及偏振態無關之干涉式橢圓儀
RU2453856C1 (ru) Устройство для определения диэлектрической проницаемости образца материала при воздействии внешних факторов
CN105717467B (zh) 铁磁半导体平面内磁各向异性的光电流测试系统及方法
Wang et al. Modified bow-tie antenna array with efficient electric near-field enhancement for terahertz band
Hamelo et al. Thickness Dependent Microwave Magnetic Field Heating on Aluminum thin Films by Using Thermo-elastic Optical Indicator Microscopy Method
JP2003254915A (ja) オンライン配向測定における補正係数算出方法および配向測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term