JP2004168126A - Capacity detection control device for vehicular battery - Google Patents

Capacity detection control device for vehicular battery Download PDF

Info

Publication number
JP2004168126A
JP2004168126A JP2002334614A JP2002334614A JP2004168126A JP 2004168126 A JP2004168126 A JP 2004168126A JP 2002334614 A JP2002334614 A JP 2002334614A JP 2002334614 A JP2002334614 A JP 2002334614A JP 2004168126 A JP2004168126 A JP 2004168126A
Authority
JP
Japan
Prior art keywords
battery
voltage
charging
capacity
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002334614A
Other languages
Japanese (ja)
Inventor
Tetsuya Nishisato
鉄也 西里
Tadashi Yagumo
正 八雲
Tatsuro Takahashi
達朗 高橋
Tsukasa Harada
司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2002334614A priority Critical patent/JP2004168126A/en
Publication of JP2004168126A publication Critical patent/JP2004168126A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity detection control device for a vehicular battery capable of promptly and surely charging and activating a battery as soon as an engine is started, and of accurately detecting battery capacity. <P>SOLUTION: The capacity detection control device for the vehicular battery is provided with the battery supplying an electric load for a vehicle with electric power and a dynamo-electric generator driven by the engine to supply the electric load with the electric power and charge the battery. After detecting the completion of engine starting, as a target output voltage for battery charge control, a first voltage V1 accelerating the charge of the battery is intermittently set plural times and a second voltage V2 lower than the first voltage 1 for slowly charging the battery is set between the first voltages set plural times, and at the last charging under the first voltage V1, whether the battery is charged to the prescribed capacity is detected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用バッテリの容量検出制御装置に関し、詳しくはバッテリの充電時の容量を検出する容量検出制御装置の分野に属する。
【0002】
【従来の技術】
自動車等の車両には、エアコンやヘッドライト等の電気負荷に電力を供給するバッテリと、上記電気負荷に電力を供給すると共にバッテリを充電する発電機とが備えられており、車両の運転状態に応じて、これらのいずれか一方あるいは両方から上記電気負荷に電力を供給するように構成されている。また、バッテリから電気負荷に電力を供給するには、バッテリに十分な電力が蓄えられている必要があることから、バッテリの残存容量を検出するバッテリ容量検出装置を設け、その検出された容量に応じてバッテリの充電を行うようにすることがある。
【0003】
この種のバッテリ容量検出装置として、例えば、エンジン始動時におけるバッテリの放電電流が所定の値に達したときのバッテリの出力電圧を検出すると共に、該出力電圧を予め求めておいた放電特性(バッテリの残存容量に対する出力電圧の物性関係)に照合することにより上記エンジン始動時におけるバッテリの残存容量を算出し、かつ、その後の残存容量を、上記エンジン始動時における残存容量とその後の充放電電流の積算値とに基づいて算出するものがある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平3−231175号公報(第2−14頁、図1〜図5)
【0005】
【発明が解決しようとする課題】
ところで、エンジン始動時にはエンジンスタータにバッテリから大量の電力が供給されて、その始動直後にはバッテリの残存容量が低下しているから、電気負荷の増加等に備えてできるだけ早くバッテリの残存容量を回復させる必要があるが、例えば始動後にエンジン回転数が低い状況が長時間続くような場合、発電機の発電量が低下してバッテリの充電が不十分になり、いつまでもバッテリの残存容量が回復しないこととなる。
【0006】
そして、そのような状況で電気負荷が大きく増加して発電量より多くなった場合、バッテリからも不足分の電力が供給されることとなるが、これが長時間継続するとバッテリ上がりを起す虞がある。仮に、バッテリ上がりを起さなくても、十分に充電されていない状態が長期的に継続すると、バッテリ内の電解液が十分に攪拌されずにバッテリの下方部は高濃度の電解液に浸されると共に、バッテリの充電は上方部から開始されるため、バッテリ下方部の負極板に充填された活物質の不活性化が発生し、バッテリの充放電能力が低下することとなる。
【0007】
一方、バッテリを充電して所定の容量(例えばバッテリの定格容量)に回復させる場合に、所定容量に回復したか否かを、発電機によるバッテリへの充電電流が所定の電流値より低下したことによって検出するものがあるが、前述のようにバッテリの活性が低下すると、バッテリが実際には所定の容量にまで回復していないのに充電電流が減少するような変化が生じ、この結果、バッテリが実際には所定容量にまで回復していないのに回復したと誤検出され、所定容量に回復しないまま充電が終了する虞がある。また、このように電流値の低下によって検出するものによると、電気負荷の増加等によって充電電流が所定の電流値より減少した場合にも、充電が終了したと誤検出され、バッテリの充電が不十分なまま終了する虞がある。
【0008】
そして、その後のバッテリの残留容量を、この所定容量に基づいて算出した場合、その残留容量の値は実際とは異なったものとなるから、この残留容量の値に基づいてその後のバッテリの充電制御を行うようなものの場合、その制御が的確に行えなくなる。
【0009】
そこで、本発明は、エンジンの始動完了後、バッテリを迅速かつ確実に充電して活性化すると共に、バッテリ容量を正確に検出することができる車両用バッテリの容量検出制御装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
すなわち、本願の請求項1に記載の発明は、車両用電気負荷に電力を供給するバッテリと、エンジンに駆動されて上記電気負荷に電力を供給すると共にバッテリを充電する発電機とが備えられた車両用バッテリの容量検出制御装置であって、上記エンジンの始動完了を検出する始動完了検出手段と、該始動完了検出手段によってエンジンの始動完了が検出された後、発電機によるバッテリ充電制御のための目標出力電圧として、バッテリの充電を促進する第1電圧を断続的に複数回設定すると共に、上記第1電圧よりも低く、バッテリを緩やかに充電する第2電圧を、上記複数回設定される第1電圧同士の間に設定する発電電圧設定手段と、上記複数回設定される第1電圧のうちの最後の第1電圧での充電時に、バッテリが所定容量まで充電されたことを検出するバッテリ容量検出手段とが設けられていることを特徴とする。
【0011】
この発明によれば、エンジンの始動完了後、バッテリは、充電を促進する第1電圧で断続的に複数回充電されると共に、上記複数回設定される第1電圧同士の間は、上記第1電圧よりも低く、バッテリを緩やかに充電する第2電圧で充電されるから、バッテリの電解液が迅速かつ確実に攪拌されると共にバッテリの活物質等が活性化され、ひいてはバッテリが活性化されることとなる。
【0012】
そして、複数回設定される第1電圧のうちの最後の第1電圧での充電時に、言い換えればバッテリが活性化された状態において、バッテリが所定容量まで充電されたことを検出するから、その容量を正確に検出することができる。
【0013】
次に、請求項2に記載の発明は、請求項1に記載の発明において、発電機によるバッテリへの充電電流を検出する充電電流検出手段が備えられており、バッテリ容量検出手段は、最後の第1電圧での充電時における上記充電電流検出手段で検出された充電電流が所定電流以下になったときにバッテリが所定容量まで充電されたことを検出するように構成されていることを特徴とする。
【0014】
この発明によれば、最後の第1電圧での充電時における充電電流が所定電流以下になったときに、バッテリが所定容量まで充電されたことが検出される。
【0015】
その場合に、バッテリの容量は、最後の第1電圧での充電までに、それ以前の充電によって増加しているから、最後の第1電圧での充電時には、その充電開始から充電電流が所定電流以下の電流になるまでの時間は、連続的に1回で充電する場合よりも短くなる。すなわち、バッテリの容量が所定容量に達したことを検出する最後の第1電圧での充電中に、電気負荷が作動する虞が減少し、これによるバッテリの容量の誤検出が抑制される。
【0016】
次に、請求項3に記載の発明は、請求項2に記載の発明において、発電電圧設定手段は、第1電圧での充電時における充電電流検出手段で検出された充電電流が所定電流以下になったときに目標出力電圧を第2電圧に切換えるように構成されていることを特徴とする。
【0017】
この発明によれば、第1電圧での充電時に充電電流検出手段で検出された充電電流が所定電流以下になったとき、言い換えればバッテリの充電が進行して充電電流が減少してきたときに、目標出力電圧が第2電圧に切換えられる。
【0018】
その場合、第1電圧での充電が繰り返されるたびにバッテリが満充電に近づくと共に、第1電圧で充電を開始してからその充電電流が所定電流以下になるまでの時間が徐々に短くなるから、最後の第1電圧での充電の時間は一層短くなる。すなわち、バッテリの容量が所定容量に達したことを検出する最後の第1電圧での充電時に、電気負荷が作動する虞が一層減少し、これによるバッテリの容量の誤検出が一層抑制される。
【0019】
ところで、バッテリが十分に充電された状態において、さらに充電を促進する電圧で充電すると、バッテリが過充電となってバッテリの劣化が促進される虞がある。
【0020】
そこで、請求項4に記載の発明は、請求項3に記載の発明において、第2電圧から第1電圧に設定される都度、該第1電圧を低下させる第1電圧低下手段が備えられていることを特徴とする。
【0021】
この発明によれば、バッテリの充電を促進する第1電圧が、第2電圧から第1電圧に設定される都度、低下させられるから、低下させないときと比較して、バッテリの劣化が抑制される。また、逆に、第1電圧を最初から低目の値に設定する場合よりもバッテリの充電が促進され、充電完了までの時間が短縮される。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態に係る車両用バッテリの容量検出制御装置について説明する。
【0023】
図1は、この容量検出制御装置1が設けられた車両の電気系統を示している。該車両には、エアコン、ヘッドライト、デフォッガ等の車両用電気負荷2に電力を供給するバッテリ3と、上記車両用電気負荷2に電力を供給すると共にバッテリ3を充電する発電機4とが設けられている。ここで、バッテリ3は自動車用に一般的に用いられる鉛蓄電池であり、発電機4はオルタネータ及び出力電圧調整用のレギュレータ等で構成されている。
【0024】
この制御装置1には、発電機3によるバッテリ3の充電電流を検出する電流検出器5と、エンジン回転数を検出するエンジン回転センサ6とが接続されている。また、該制御装置1は、発電機4に接続されており、電流検出器5、回転センサ6からの信号、及び別途検出された運転状態に関する信号等に応じて発電機4の出力電圧を制御するように構成されている。
【0025】
その場合に、この制御装置1は、エンジン回転センサ6の信号に基づいて上記エンジンの始動完了を検出した後、発電機4によるバッテリ3の充電制御のための目標出力電圧として、バッテリ3の充電を促進する第1電圧を断続的に複数回設定すると共に、上記第1電圧よりも低く、バッテリ3を緩やかに充電する第2電圧を、上記複数回設定される第1電圧同士の間に設定し、上記複数回設定される第1電圧のうちの最後の第1電圧での充電時に、バッテリ3が所定容量まで充電されたことを検出するように構成されており、以下、図2のフローチャートを用いてその制御の詳細について説明する。
【0026】
まず、ステップ1では、エンジンの始動が完了したか否かの判定を、始動が完了したと判定するまで繰り返す。ここで、この始動が完了したか否かの判定は例えばエンジン回転数が500回転以上に達したか否かをもって行われる。
【0027】
そして、ステップS1で始動が完了したと判定されたときは、ステップS2で、バッテリ容量検出条件が成立したか否かの判定を、該条件が成立したと判定されるまで繰り返す。ここで、バッテリ容量検出の成立条件としては、例えば、エンジン水温が所定水温以上、吸気温が所定吸気温以上等が挙げられる。
【0028】
そして、ステップS2でバッテリ容量検出条件が成立したと判定されたときは、ステップS3で、発電機4の目標出力電圧を第1電圧V1に設定すると共に、ステップS4で、第1電圧V1を設定した回数nをカウントする。なお、この設定回数nの初期値は0であり、このステップS4を通過するたびに、1ずつ加算される。
【0029】
そして、この第1電圧V1での充電が開始された後しばらくの間は、充電電流はほぼ一定の値で推移するが、バッテリが満充電状態に近くなると、充電電流は減少し始めることとなる。ステップS5では、この充電電流が所定電流値I0以下となったか否かの判定を、所定電流値I0以下となったと判定されるまで繰り返す。ここで、この所定電流値I0は、バッテリ3がその定格容量に対して95%程度にまで充電されたときに流れる電流の値である。
【0030】
そして、ステップS5でバッテリ充電電流が所定電流値I0以下になったと判定されたときは、ステップS6で、第1電圧V1の設定回数nが所定回数N(本実施の形態においては、Nは3に設定されている)に達しているか否かを判定し、所定回数Nに達しているとき(YES)は、ステップS9で、バッテリが所定容量(定格容量の95%)まで充電されたことを検出し、バッテリ3の現在の容量が所定容量(上記95%)であると確定する。一方、所定回数Nに達していないときは、ステップS7で、目標出力電圧を第2電圧V2に設定する。
【0031】
次いで、ステップS8では、第2電圧V2での充電を開始してから所定時間t0が経過したか否かの判定を、経過したと判定されるまで繰り返し、所定時間t0が経過したと判定されたときは、ステップS3に戻って、このステップS3以後の処理を繰り返す。ここで、この所定時間t0は、バッテリ3の充電を迅速に行うために、できるだけ短い時間に設定することが好ましく、また、前回第1電圧V1で充電したときに発生した電解液の攪拌が、次に第1電圧V1で充電する際には収まり、バッテリ内が安定した状態から再び充電を開始できるような適度な時間(例えば60秒程度)を確保することが好ましい。
【0032】
次に、図3のタイムチャートを用いて本制御装置1の作用について説明する。
【0033】
まず、エンジンの始動を開始し、エンジン回転数が500回転以上に達して始動が完了したと判定してからバッテリ容量検出条件(エンジン水温が所定水温以上等)が成立するまでの間は、目標出力電圧は通常の発電電圧V0に設定される。一方、矢印アで示すように、バッテリ容量検出条件が成立すると、目標出力電圧が、バッテリの充電を促進する第1電圧V1に設定され、これに伴って充電電流がI1に大きく増加する。そして、その後しばらくの間は、この充電電流I1が流れて充電が促進されることとなるが、充電が進行してバッテリ3の容量が満充電状態に近づくにつれて、この充電電流は徐々に減少し始めることとなる。そして、この充電電流がさらに小さくなって、矢印イで示すように、所定電流値I0以下となったときに、制御装置1は、目標出力電圧を、前述のV1及びV0より小さく、バッテリを緩やかに充電する第2電圧V2に所定時間t0の間設定し、バッテリ3が放電状態とならない程度の充電状態に制御する。そして、この所定時間t0の経過後、制御装置1は、再度、矢印ウで示すように、第1電圧V1に設定し、その後、設定回数nが所定回数の3回に達するまで、第1電圧V1と第2電圧V2とを交互に設定する。そして、矢印エで示すように、3回目の第1電圧V1の設定時において、充電電流が減少して所定値I0以下となったときに、バッテリ3が所定容量(バッテリ3の定格容量の95%)まで充電されたことを検出し、バッテリ3の現在の容量を所定容量(上記95%)と確定する。そして、その後は、これ以降の異なる充電制御時にバッテリ3が充電電流を効率的に吸収できるように、目標出力電圧を第2電圧V2よりもさらに低い第3電圧V3に設定し、バッテリ3が軽い放電状態となるように制御する。なお、第1電圧V1での充電を開始してからその充電電流が所定電流値I0になるまでの時間は、図中ではそれぞれt1,t2,t3としているが、これは固定の値ではなく、充電開始前のバッテリの残存容量や電気負荷の作動状態等によって変化する値である。
【0034】
すなわち、この制御装置1によれば、エンジンの始動完了後、発電機4によるバッテリ3の充電制御のための目標出力電圧として、バッテリの充電を促進する第1電圧V1を断続的に複数回設定すると共に、上記第1電圧V1よりも低く、バッテリを緩やかに充電する第2電圧V2を、上記複数回設定される第1電圧V1同士の間に設定し、上記複数回設定される第1電圧V1のうちの最後の第1電圧V1での充電時に、バッテリ3が所定容量まで充電されたことを検出するように構成したことにより、エンジンの始動完了後、バッテリ3が、バッテリの充電を促進する第1電圧V1と、該第1電圧V1よりも低く、バッテリを緩やかに充電する第2電圧V2とで交互に充電され、この結果、バッテリ3の電解液が迅速かつ確実に攪拌されると共にバッテリ3の活物質等が活性化され、ひいてはバッテリ3が活性化されることとなる。
【0035】
そして、複数回設定される第1電圧V1のうちの最後の第1電圧V1での充電時に、言い換えればバッテリ3が活性化された状態において、バッテリ3が所定容量まで充電されたことを検出するから、その容量を正確に検出することができる。
【0036】
ところで、バッテリ3の容量は、最後の第1電圧V1での充電までに、それ以前の充電によって増加しているから、最後の第1電圧V1での充電時には、その充電開始から充電電流が所定電流I0以下の電流になるまでの時間は、連続的に1回で充電する場合よりも短くなる。すなわち、バッテリ3の容量が所定容量に達したことを検出する最後の第1電圧V1での充電中に、電気負荷2が作動する虞が減少し、これによるバッテリ3の容量の誤検出が抑制される。
【0037】
加えて、第1電圧V1での充電時に充電電流が所定電流I0以下になったときに、言い換えればバッテリ3の充電が進行して充電電流が減少してきたときに、目標出力電圧を第2電圧V2に切換えるように構成したことにより、第1電圧V1での充電が繰り返されるたびに、バッテリ3が満充電に近づくと共に、第1電圧V1で充電を開始してからその充電電流が所定電流I0以下になるまでの時間が徐々に短くなり、最後の第1電圧V1での充電の時間は一層短くなる。すなわち、バッテリ3の容量が所定容量に達したことを検出する最後の第1電圧V1での充電時に、電気負荷2が作動する虞が一層減少し、これによるバッテリ3の容量の誤検出が一層抑制される。
【0038】
ところで、バッテリが十分に充電された状態で、さらにバッテリの充電を促進する電圧で充電すると、バッテリが過充電となってバッテリの劣化が促進される虞がある。
【0039】
そこで、図3に矢印カ、キで示すように、第2電圧から第1電圧に設定される都度、該第1電圧V1を低下させるようにしてもよい。これによれば、第1電圧V1を低下させないときと比較して、バッテリ3の劣化が抑制される。また、逆に、第1電圧V1を最初から低目の値に設定する場合よりもバッテリ3の充電が促進され、充電完了までの時間が短縮される。
【0040】
なお、本実施の形態では、第1電圧V1を3回繰り返すように構成したが、3回に限定されるものではなく、例えば、電気負荷の想定される作動状態や運転状態等に応じて変更してもよい。
【0041】
また、上記第1電圧V1及び第2電圧V2の値としては、自動車等によく利用される定格12Vタイプの鉛蓄電池の場合、例えば、14.5V(第1電圧V1)及び12.3V(第2電圧)程度とすればよい。また、第1電圧を、順次低下させるときの低下幅は、例えば0.2V程度とすればよい。そして、電圧が異なる鉛蓄電池の場合にも、第1電圧及び第2電圧の値をその鉛蓄電池に応じた値にそれぞれ設定することにより本制御を適用可能である。
【0042】
【発明の効果】
以上のように、本発明によれば、車両用電気負荷に電力を供給するバッテリと、エンジンに駆動されて上記電気負荷に電力を供給すると共にバッテリを充電する発電機とが備えられた車両用バッテリの容量検出制御装置において、上記エンジンの始動完了を検出する始動完了検出手段と、該始動完了検出手段によってエンジンの始動完了が検出された後、発電機によるバッテリ充電制御のための目標出力電圧として、バッテリの充電を促進する第1電圧を断続的に複数回設定すると共に、上記第1電圧よりも低く、バッテリを緩やかに充電する第2電圧を、上記複数回設定される第1電圧同士の間に設定する発電電圧設定手段と、上記複数回設定される第1電圧のうちの最後の第1電圧での充電時に、バッテリが所定容量まで充電されたことを検出するバッテリ容量検出手段とを設けたことにより、バッテリは、エンジンの始動完了後、バッテリの充電を促進する第1電圧で断続的に複数回充電されると共に、上記複数回設定される第1電圧同士の間は、上記第1電圧よりも低く、バッテリを緩やかに充電する第2電圧で充電され、この結果、バッテリの電解液が迅速かつ確実に攪拌されると共にバッテリの活物質等が活性化され、ひいてはバッテリが活性化されることとなる。
【0043】
そして、複数回設定される第1電圧のうちの最後の第1電圧での充電時に、言い換えればバッテリが活性化された状態において、バッテリが所定容量まで充電されたことを検出するから、その容量を正確に検出することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る車両用バッテリの容量検出制御装置が設けられた車両の電気系統を説明するブロック図である。
【図2】同制御装置による制御のフローチャートの一例である。
【図3】同制御装置による制御のタイムチャートの一例である。
【符号の説明】
1 容量検出制御装置(始動完了検出手段、発電電圧設定手段、バッテリ容量検出手段、充電電流検出手段、発電電圧低下手段)
2 車両用電気負荷
3 バッテリ
4 発電機
5 電流検出器(充電電流検出手段)
6 エンジン回転センサ(始動完了検出手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacity detection control device for a vehicle battery, and more particularly, to the field of a capacity detection control device that detects the capacity of a battery when charging.
[0002]
[Prior art]
A vehicle such as an automobile is provided with a battery that supplies power to an electric load such as an air conditioner and a headlight, and a generator that supplies power to the electric load and charges the battery. Accordingly, it is configured to supply power to the electric load from one or both of them. In order to supply power from a battery to an electric load, it is necessary to store sufficient power in the battery. Therefore, a battery capacity detection device for detecting the remaining capacity of the battery is provided, and the detected capacity is The battery may be charged accordingly.
[0003]
As this type of battery capacity detection device, for example, a battery output voltage when a battery discharge current reaches a predetermined value at the time of engine start is detected, and the output voltage is determined in advance by a discharge characteristic (battery characteristic). The relationship between the remaining capacity of the battery at the time of starting the engine is calculated by comparing the remaining capacity with the remaining capacity at the time of starting the engine and the subsequent charge / discharge current. There is one that calculates based on the integrated value (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-3-231175 (pages 2-14, FIGS. 1-5)
[0005]
[Problems to be solved by the invention]
By the way, when the engine is started, a large amount of power is supplied from the battery to the engine starter, and immediately after the start, the remaining capacity of the battery decreases. Therefore, the remaining capacity of the battery is recovered as soon as possible in preparation for an increase in electric load. For example, if the engine speed is low for a long time after startup, the amount of power generated by the generator will decrease and the battery will be insufficiently charged, and the remaining capacity of the battery will not recover forever. It becomes.
[0006]
Then, in such a situation, when the electric load is greatly increased and becomes larger than the amount of power generation, the insufficient power is supplied from the battery. However, if this continues for a long time, the battery may run down. . If the battery is not sufficiently charged and the battery is not fully charged for a long time, the electrolyte in the battery will not be sufficiently agitated and the lower part of the battery will be immersed in high-concentration electrolyte. At the same time, since the charging of the battery is started from the upper part, the active material filled in the negative electrode plate at the lower part of the battery is inactivated, and the charge / discharge capability of the battery is reduced.
[0007]
On the other hand, when the battery is charged and restored to a predetermined capacity (for example, the rated capacity of the battery), whether the battery has recovered to the predetermined capacity is determined by the fact that the charging current to the battery by the generator has dropped below a predetermined current value. As described above, when the activity of the battery decreases, a change occurs such that the charging current decreases even though the battery has not actually recovered to the predetermined capacity. However, it is erroneously detected that the battery has recovered even though it has not actually recovered to the predetermined capacity, and charging may end without recovering to the predetermined capacity. In addition, according to the detection based on the decrease in the current value, even when the charging current decreases below a predetermined current value due to an increase in an electric load, etc., it is erroneously detected that the charging is completed, and the battery charging is not performed. There is a risk that the process will end with sufficient power.
[0008]
Then, when the remaining capacity of the battery is calculated based on the predetermined capacity, the value of the remaining capacity is different from the actual value. Therefore, the charge control of the subsequent battery is performed based on the value of the remaining capacity. In such a case, the control cannot be performed accurately.
[0009]
Therefore, an object of the present invention is to provide a vehicle battery capacity detection control device capable of promptly and surely charging and activating a battery after engine start is completed and capable of accurately detecting the battery capacity. And
[0010]
[Means for Solving the Problems]
That is, the invention according to claim 1 of the present application includes a battery that supplies electric power to a vehicle electric load, and a generator that is driven by an engine to supply electric power to the electric load and charge the battery. A vehicle battery capacity detection control device, comprising: a start completion detecting means for detecting completion of starting of the engine; and a battery charging control by a generator after completion of starting of the engine is detected by the start completion detecting means. As the target output voltage, a first voltage that promotes charging of the battery is set intermittently a plurality of times, and a second voltage lower than the first voltage and that slowly charges the battery is set a plurality of times. Generating voltage setting means for setting the first voltage between the first voltages, and charging the battery to a predetermined capacity when charging with the last first voltage of the plurality of first voltages set above Characterized in that the battery capacity detecting means for detecting that which is provided.
[0011]
According to the present invention, after the start of the engine is completed, the battery is intermittently charged a plurality of times at the first voltage that promotes charging, and the first voltage set between the plurality of times is the first voltage. Since the battery is charged with the second voltage that is lower than the voltage and slowly charges the battery, the electrolyte of the battery is rapidly and reliably stirred, and the active material and the like of the battery are activated, and thus the battery is activated. It will be.
[0012]
Then, at the time of charging with the last first voltage of the first voltages set a plurality of times, in other words, in a state where the battery is activated, it is detected that the battery has been charged to a predetermined capacity. Can be accurately detected.
[0013]
Next, according to a second aspect of the present invention, in the first aspect of the present invention, a charging current detecting means for detecting a charging current of the battery by the generator is provided. When the charging current detected by the charging current detecting means at the time of charging at the first voltage becomes equal to or less than a predetermined current, it is configured to detect that the battery has been charged to a predetermined capacity. I do.
[0014]
According to the present invention, it is detected that the battery has been charged to the predetermined capacity when the charging current at the time of the last charging at the first voltage becomes equal to or less than the predetermined current.
[0015]
In this case, the capacity of the battery has been increased by the previous charging by the last charging at the first voltage, so that at the last charging at the first voltage, the charging current from the start of charging to the predetermined current The time until the current becomes the following is shorter than in the case where the battery is continuously charged once. That is, during charging at the last first voltage for detecting that the capacity of the battery has reached the predetermined capacity, the possibility that the electric load operates is reduced, and erroneous detection of the capacity of the battery due to this is suppressed.
[0016]
Next, according to a third aspect of the present invention, in the second aspect of the present invention, the power generation voltage setting means sets the charging current detected by the charging current detection means at the time of charging at the first voltage to a predetermined current or less. In this case, the target output voltage is switched to the second voltage when it becomes.
[0017]
According to the present invention, when the charging current detected by the charging current detecting means at the time of charging at the first voltage becomes equal to or less than the predetermined current, in other words, when the charging of the battery progresses and the charging current decreases, The target output voltage is switched to the second voltage.
[0018]
In this case, each time the charging at the first voltage is repeated, the battery approaches full charge, and the time from the start of charging at the first voltage until the charging current becomes equal to or less than the predetermined current gradually decreases. In addition, the charging time at the last first voltage is further shortened. That is, at the time of charging at the last first voltage for detecting that the capacity of the battery has reached the predetermined capacity, the possibility that the electric load is activated is further reduced, and the erroneous detection of the capacity of the battery due to this is further suppressed.
[0019]
By the way, if the battery is charged with a voltage that further promotes charging while the battery is sufficiently charged, the battery may be overcharged and the deterioration of the battery may be accelerated.
[0020]
Therefore, a fourth aspect of the present invention, according to the third aspect, includes a first voltage lowering means for reducing the first voltage every time the second voltage is set to the first voltage. It is characterized by the following.
[0021]
According to the present invention, the first voltage that promotes charging of the battery is reduced every time the second voltage is set to the first voltage, so that deterioration of the battery is suppressed as compared with when the first voltage is not reduced. . Conversely, the charging of the battery is promoted as compared with the case where the first voltage is set to a lower value from the beginning, and the time until the charging is completed is shortened.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a vehicle battery capacity detection control device according to an embodiment of the present invention will be described.
[0023]
FIG. 1 shows an electric system of a vehicle provided with the capacity detection control device 1. The vehicle is provided with a battery 3 for supplying power to the vehicle electric load 2 such as an air conditioner, a headlight, and a defogger, and a generator 4 for supplying power to the vehicle electric load 2 and charging the battery 3. Have been. Here, the battery 3 is a lead storage battery generally used for automobiles, and the generator 4 is composed of an alternator, a regulator for adjusting the output voltage, and the like.
[0024]
The control device 1 is connected to a current detector 5 for detecting a charging current of the battery 3 by the generator 3 and an engine rotation sensor 6 for detecting an engine speed. The control device 1 is connected to the generator 4, and controls the output voltage of the generator 4 according to signals from the current detector 5, the rotation sensor 6, and a separately detected signal relating to the operating state. It is configured to
[0025]
In this case, after detecting the completion of the start of the engine based on the signal of the engine rotation sensor 6, the control device 1 sets the charging of the battery 3 as a target output voltage for controlling the charging of the battery 3 by the generator 4. The first voltage that promotes the battery voltage is set intermittently a plurality of times, and the second voltage lower than the first voltage and that slowly charges the battery 3 is set between the first voltages that are set a plurality of times. In addition, it is configured to detect that the battery 3 has been charged to a predetermined capacity at the time of charging with the last first voltage of the plurality of first voltages set as described above. The details of the control will be described with reference to FIG.
[0026]
First, in step 1, the determination whether or not the start of the engine has been completed is repeated until it is determined that the start has been completed. Here, whether or not the start has been completed is determined, for example, based on whether or not the engine speed has reached 500 or more.
[0027]
Then, when it is determined in step S1 that the start has been completed, in step S2, the determination as to whether or not the battery capacity detection condition has been satisfied is repeated until it is determined that the condition has been satisfied. Here, the conditions for establishing battery capacity detection include, for example, engine water temperature equal to or higher than a predetermined water temperature, intake air temperature equal to or higher than a predetermined intake air temperature, and the like.
[0028]
When it is determined in step S2 that the battery capacity detection condition is satisfied, the target output voltage of the generator 4 is set to the first voltage V1 in step S3, and the first voltage V1 is set in step S4. The number of times n is counted. Note that the initial value of the set number n is 0, and is incremented by one each time the process passes through step S4.
[0029]
Then, for a while after the charging at the first voltage V1 is started, the charging current changes at a substantially constant value, but when the battery approaches a fully charged state, the charging current starts to decrease. . In step S5, the determination whether the charging current has become equal to or less than the predetermined current value I0 is repeated until it is determined that the charging current has become equal to or less than the predetermined current value I0. Here, the predetermined current value I0 is a value of a current flowing when the battery 3 is charged to about 95% of its rated capacity.
[0030]
When it is determined in step S5 that the battery charging current has become equal to or less than the predetermined current value I0, in step S6, the set number n of the first voltage V1 is increased to the predetermined number N (in the present embodiment, N is 3 It is determined whether or not the battery has been charged to a predetermined capacity (95% of the rated capacity) in step S9 when the predetermined number N has been reached (YES). It is determined that the current capacity of the battery 3 is the predetermined capacity (the above 95%). On the other hand, if the predetermined number N has not been reached, the target output voltage is set to the second voltage V2 in step S7.
[0031]
Next, in step S8, the determination whether the predetermined time t0 has elapsed since the start of charging at the second voltage V2 is repeated until it is determined that the predetermined time t0 has elapsed, and it is determined that the predetermined time t0 has elapsed. In this case, the process returns to step S3, and the processes after step S3 are repeated. Here, the predetermined time t0 is preferably set as short as possible in order to quickly charge the battery 3, and the stirring of the electrolytic solution generated when the battery 3 was previously charged at the first voltage V1 is set as follows. Next, when charging with the first voltage V1, it is preferable to secure an appropriate time (for example, about 60 seconds) so that the charging can be stopped and charging can be started again from a stable state in the battery.
[0032]
Next, the operation of the control device 1 will be described with reference to the time chart of FIG.
[0033]
First, the start of the engine is started, and a period from when it is determined that the engine speed has reached 500 rpm or more and the start has been completed to when a battery capacity detection condition (engine water temperature is equal to or higher than a predetermined water temperature) is satisfied. The output voltage is set to the normal generated voltage V0. On the other hand, as shown by the arrow A, when the battery capacity detection condition is satisfied, the target output voltage is set to the first voltage V1 that promotes the charging of the battery, and accordingly, the charging current greatly increases to I1. Then, for a while thereafter, the charging current I1 flows to accelerate the charging. However, as the charging progresses and the capacity of the battery 3 approaches the fully charged state, the charging current gradually decreases. Will start. When the charging current further decreases and becomes equal to or less than the predetermined current value I0 as indicated by an arrow a, the control device 1 sets the target output voltage to be smaller than the aforementioned V1 and V0, and Is set to the second voltage V2 for charging for a predetermined time t0, and the battery 3 is controlled to a charged state that does not become a discharged state. Then, after the elapse of the predetermined time t0, the control device 1 sets the first voltage V1 again as indicated by an arrow c, and thereafter sets the first voltage V1 until the set number n reaches the predetermined number of three times. V1 and the second voltage V2 are set alternately. Then, as indicated by an arrow d, when the charging current decreases to a predetermined value I0 or less at the time of setting the first voltage V1 for the third time, the battery 3 reaches the predetermined capacity (95% of the rated capacity of the battery 3). %), And the current capacity of the battery 3 is determined to be a predetermined capacity (95% above). Thereafter, the target output voltage is set to a third voltage V3 which is lower than the second voltage V2 so that the battery 3 can efficiently absorb the charging current during different charging control thereafter, and the battery 3 is lighter. Control is performed so as to be in a discharge state. The time from the start of charging at the first voltage V1 until the charging current reaches the predetermined current value I0 is t1, t2, and t3 in the figure, respectively, but this is not a fixed value, but This is a value that changes depending on the remaining capacity of the battery before the start of charging, the operating state of the electric load, and the like.
[0034]
That is, according to the control device 1, after the engine has been started, the first voltage V1 that promotes the charging of the battery is intermittently set a plurality of times as the target output voltage for controlling the charging of the battery 3 by the generator 4. In addition, a second voltage V2 lower than the first voltage V1 and slowly charging the battery is set between the first voltages V1 set a plurality of times, and the first voltage set a plurality of times is set. By detecting that the battery 3 has been charged to the predetermined capacity at the time of charging at the last first voltage V1 of V1, the battery 3 promotes the charging of the battery after the engine start is completed. And the second voltage V2, which is lower than the first voltage V1 and slowly charges the battery, is alternately charged. As a result, the electrolyte of the battery 3 is rapidly and reliably stirred. Both active material of the battery 3 is activated, thus the battery 3 is to be activated.
[0035]
Then, when the battery 3 is charged with the last first voltage V1 of the plurality of first voltages V1, that is, in a state where the battery 3 is activated, it is detected that the battery 3 has been charged to the predetermined capacity. Thus, the capacity can be accurately detected.
[0036]
By the way, since the capacity of the battery 3 has been increased by the previous charging by the last charging at the first voltage V1, at the last charging at the first voltage V1, the charging current from the start of the charging becomes a predetermined value. The time until the current becomes equal to or less than the current I0 is shorter than in the case where the battery is continuously charged once. That is, the possibility that the electric load 2 operates during the last charging at the first voltage V1 for detecting that the capacity of the battery 3 has reached the predetermined capacity is reduced, and erroneous detection of the capacity of the battery 3 due to this is suppressed. Is done.
[0037]
In addition, when the charging current becomes equal to or less than the predetermined current I0 during charging at the first voltage V1, in other words, when the charging of the battery 3 proceeds and the charging current decreases, the target output voltage is changed to the second voltage. By switching to V2, each time the charging at the first voltage V1 is repeated, the battery 3 approaches full charge, and starts charging at the first voltage V1, and then the charging current becomes the predetermined current I0. The time until the voltage becomes lower than the above becomes gradually shorter, and the time for charging with the last first voltage V1 is further shortened. That is, at the time of the last charging at the first voltage V1 for detecting that the capacity of the battery 3 has reached the predetermined capacity, the possibility that the electric load 2 operates is further reduced, and the erroneous detection of the capacity of the battery 3 due to this is further reduced. Be suppressed.
[0038]
By the way, if the battery is charged with a voltage that promotes the charging of the battery while the battery is sufficiently charged, the battery may be overcharged and the deterioration of the battery may be accelerated.
[0039]
Therefore, the first voltage V1 may be reduced every time the second voltage is set to the first voltage, as indicated by arrows F and C in FIG. According to this, the deterioration of the battery 3 is suppressed as compared with the case where the first voltage V1 is not reduced. Conversely, the charging of the battery 3 is promoted as compared with the case where the first voltage V1 is set to a lower value from the beginning, and the time until the charging is completed is shortened.
[0040]
In the present embodiment, the first voltage V1 is configured to be repeated three times. However, the present invention is not limited to three times. For example, the first voltage V1 may be changed according to the assumed operating state or operating state of the electric load. May be.
[0041]
The values of the first voltage V1 and the second voltage V2 are, for example, 14.5V (first voltage V1) and 12.3V (first voltage V1) in the case of a rated 12V type lead storage battery often used in automobiles and the like. 2 voltage). Further, the decrease width when sequentially decreasing the first voltage may be, for example, about 0.2V. The present control can be applied to lead-acid batteries having different voltages by setting the values of the first voltage and the second voltage to values corresponding to the lead-acid batteries, respectively.
[0042]
【The invention's effect】
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a vehicle including a battery that supplies power to a vehicle electric load, and a generator that is driven by an engine to supply power to the electric load and charge the battery In the battery capacity detection control device, a start completion detecting means for detecting completion of starting of the engine, and a target output voltage for controlling battery charging by a generator after the completion of starting of the engine is detected by the start completion detecting means. The first voltage that promotes the charging of the battery is intermittently set a plurality of times, and the second voltage that is lower than the first voltage and that slowly charges the battery is connected to the first voltage that is set a plurality of times. A power generation voltage setting means that sets the battery to a predetermined capacity when charging with the last first voltage of the plurality of first voltages set above. With the provision of the battery capacity detecting means for detecting, after the start of the engine is completed, the battery is intermittently charged a plurality of times with the first voltage that promotes the charging of the battery, and the first set multiple times is used. Between the voltages, the battery is charged at a second voltage lower than the first voltage and slowly charging the battery. As a result, the electrolyte of the battery is rapidly and reliably stirred and the active material of the battery is activated. And the battery is activated.
[0043]
Then, at the time of charging with the last first voltage of the first voltages set a plurality of times, in other words, in a state where the battery is activated, it is detected that the battery has been charged to a predetermined capacity. Can be accurately detected.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an electric system of a vehicle provided with a vehicle battery capacity detection control device according to an embodiment of the present invention.
FIG. 2 is an example of a flowchart of control by the control device.
FIG. 3 is an example of a time chart of control by the control device.
[Explanation of symbols]
1. Capacity detection control device (start completion detection means, generation voltage setting means, battery capacity detection means, charging current detection means, generation voltage reduction means)
2 Electric load for vehicle 3 Battery 4 Generator 5 Current detector (charging current detecting means)
6. Engine rotation sensor (start completion detection means)

Claims (4)

車両用電気負荷に電力を供給するバッテリと、エンジンに駆動されて上記電気負荷に電力を供給すると共にバッテリを充電する発電機とが備えられた車両用バッテリの容量検出制御装置であって、上記エンジンの始動完了を検出する始動完了検出手段と、該始動完了検出手段によってエンジンの始動完了が検出された後、発電機によるバッテリ充電制御のための目標出力電圧として、バッテリの充電を促進する第1電圧を断続的に複数回設定すると共に、上記第1電圧よりも低く、バッテリを緩やかに充電する第2電圧を、上記複数回設定される第1電圧同士の間に設定する発電電圧設定手段と、上記複数回設定される第1電圧のうちの最後の第1電圧での充電時に、バッテリが所定容量まで充電されたことを検出するバッテリ容量検出手段とが設けられていることを特徴とする車両用バッテリの容量検出制御装置。A vehicle battery capacity detection control device comprising: a battery that supplies electric power to a vehicle electric load; and a generator that is driven by an engine to supply electric power to the electric load and charge the battery. A start completion detecting means for detecting completion of starting of the engine, and a target output voltage for battery charging control by the generator after the completion of starting of the engine is detected by the start completion detecting means, to promote charging of the battery. Power generation voltage setting means for intermittently setting one voltage a plurality of times, and setting a second voltage lower than the first voltage and slowly charging the battery between the first voltages set a plurality of times; And a battery capacity detecting means for detecting that the battery has been charged to a predetermined capacity at the time of charging with the last first voltage of the plurality of first voltages set above. Capacitance detecting control device for a vehicle battery, characterized in that is provided. 発電機によるバッテリへの充電電流を検出する充電電流検出手段が備えられており、バッテリ容量検出手段は、最後の第1電圧での充電時における上記充電電流検出手段で検出された充電電流が所定電流以下になったときにバッテリが所定容量まで充電されたことを検出するように構成されていることを特徴とする請求項1に記載の車両用バッテリの容量検出制御装置。Charging current detecting means for detecting a charging current to the battery by the generator, wherein the battery capacity detecting means detects the charging current detected by the charging current detecting means at the time of charging at the last first voltage; The vehicle battery capacity detection control device according to claim 1, wherein the battery capacity detection control device is configured to detect that the battery has been charged to a predetermined capacity when the current becomes equal to or less than the current. 発電電圧設定手段は、第1電圧での充電時における充電電流検出手段で検出された充電電流が所定電流以下になったときに目標出力電圧を第2電圧に切換えるように構成されていることを特徴とする請求項2に記載の車両用バッテリの容量検出制御装置。The power generation voltage setting means is configured to switch the target output voltage to the second voltage when the charging current detected by the charging current detection means at the time of charging at the first voltage becomes equal to or less than a predetermined current. The vehicle battery capacity detection control device according to claim 2, wherein: 第2電圧から第1電圧に設定される都度、該第1電圧を低下させる第1電圧低下手段が備えられていることを特徴とする請求項3に記載の車両用バッテリの容量検出制御装置。4. The vehicle battery capacity detection control device according to claim 3, further comprising first voltage reduction means for reducing the first voltage every time the second voltage is set to the first voltage.
JP2002334614A 2002-11-19 2002-11-19 Capacity detection control device for vehicular battery Abandoned JP2004168126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334614A JP2004168126A (en) 2002-11-19 2002-11-19 Capacity detection control device for vehicular battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334614A JP2004168126A (en) 2002-11-19 2002-11-19 Capacity detection control device for vehicular battery

Publications (1)

Publication Number Publication Date
JP2004168126A true JP2004168126A (en) 2004-06-17

Family

ID=32698950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334614A Abandoned JP2004168126A (en) 2002-11-19 2002-11-19 Capacity detection control device for vehicular battery

Country Status (1)

Country Link
JP (1) JP2004168126A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031671A1 (en) 2007-08-01 2009-02-05 Denso Corp., Kariya-shi Apparatus for estimating the state of charge of a rechargeable battery charged by a vehicle-mounted power-generating device
DE102008031670A1 (en) 2007-08-01 2009-02-05 Denso Corp., Kariya-shi Apparatus for estimating the state of charge of a rechargeable battery charged by a vehicle-mounted power generator device
JP2009029278A (en) * 2007-07-27 2009-02-12 Mitsubishi Motors Corp Control device for permanent magnet type generator
US7533746B2 (en) 2005-08-05 2009-05-19 Fujitsu Ten Limited Engine control apparatus, control method and control system
WO2011105005A1 (en) * 2010-02-26 2011-09-01 Takahashi Sachio Charger and charging apparatus
JP5015335B1 (en) * 2011-03-15 2012-08-29 幸男 高橋 Charger and charger
CN104297689A (en) * 2014-09-04 2015-01-21 中兴通讯股份有限公司 Method and device for displaying electricity amount of battery and electronic device
KR101492161B1 (en) 2014-05-12 2015-02-10 (주)디지파츠 Charging system and method for spare battery with car
CN114489027A (en) * 2022-03-04 2022-05-13 江苏海博流体控制有限公司 Comprehensive diagnosis device for diagnosis and debugging of field electric actuating mechanism

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533746B2 (en) 2005-08-05 2009-05-19 Fujitsu Ten Limited Engine control apparatus, control method and control system
JP2009029278A (en) * 2007-07-27 2009-02-12 Mitsubishi Motors Corp Control device for permanent magnet type generator
DE102008031670A1 (en) 2007-08-01 2009-02-05 Denso Corp., Kariya-shi Apparatus for estimating the state of charge of a rechargeable battery charged by a vehicle-mounted power generator device
US8040108B2 (en) 2007-08-01 2011-10-18 Denso Corporation Apparatus for estimating state of charge of rechargeable battery charged by vehicle-mounted power generation apparatus
DE102008031671B4 (en) 2007-08-01 2023-11-30 Denso Corporation Device for estimating the state of charge of a rechargeable battery being charged by a vehicle-mounted power generating device
DE102008031671A1 (en) 2007-08-01 2009-02-05 Denso Corp., Kariya-shi Apparatus for estimating the state of charge of a rechargeable battery charged by a vehicle-mounted power-generating device
US8288996B2 (en) 2007-08-01 2012-10-16 Denso Corporation Apparatus for estimating state of charge of rechargeable battery charged by vehicle-mounted power generation apparatus
DE102008031670B4 (en) 2007-08-01 2023-06-15 Denso Corporation Apparatus for estimating the state of charge of a rechargeable battery charged by a vehicle-mounted power generator device
US9293941B2 (en) 2010-02-26 2016-03-22 Sachio Takahashi Charger and charging apparatus
WO2011105005A1 (en) * 2010-02-26 2011-09-01 Takahashi Sachio Charger and charging apparatus
JP2011182496A (en) * 2010-02-26 2011-09-15 Yukio Takahashi Charger, and charging apparatus
CN102884706A (en) * 2010-02-26 2013-01-16 高桥幸男 Charger and charging apparatus
WO2012123994A1 (en) * 2011-03-15 2012-09-20 Takahashi Sachio Charger and charging device
JP5015335B1 (en) * 2011-03-15 2012-08-29 幸男 高橋 Charger and charger
KR101492161B1 (en) 2014-05-12 2015-02-10 (주)디지파츠 Charging system and method for spare battery with car
US10317470B2 (en) 2014-09-04 2019-06-11 Zte Corporation Method and device for displaying SOC of battery, and electronic equipment thereof
CN104297689A (en) * 2014-09-04 2015-01-21 中兴通讯股份有限公司 Method and device for displaying electricity amount of battery and electronic device
CN114489027A (en) * 2022-03-04 2022-05-13 江苏海博流体控制有限公司 Comprehensive diagnosis device for diagnosis and debugging of field electric actuating mechanism
CN114489027B (en) * 2022-03-04 2023-11-10 江苏海博流体控制有限公司 Comprehensive diagnostic device for diagnosing and debugging on-site electric actuating mechanism

Similar Documents

Publication Publication Date Title
JP5307847B2 (en) Vehicle power supply system
JP6465907B2 (en) Vehicle power supply system
JP6003743B2 (en) Power supply
CN107431252B (en) Monitoring device for power storage element, power storage device, and monitoring method for power storage element
WO2011089786A1 (en) Vehicle control device and control method
JP2007064209A (en) Engine control device, control method, and control system
JP6982787B2 (en) Fuel cell control device and its control method, fuel cell vehicle
US10498154B2 (en) Electric power system
JP2004168126A (en) Capacity detection control device for vehicular battery
JP4127078B2 (en) Vehicle power supply control device
JP2014036458A (en) Vehicular power system
JP2017197117A (en) Power supply controller
JP2008131772A (en) Power supply unit
JP2004023949A (en) Device and method for controlling charge/discharge for battery pack
JP2007318913A (en) State-of-charge controller of battery
CN108258783B (en) Power supply control system and power supply control method
JP4635961B2 (en) Battery charge state control device
JP2005348526A (en) Voltage controller for generator in vehicle
JP3888296B2 (en) Voltage generator for vehicle generator
JP4893434B2 (en) Vehicle generator control system
JPH05137275A (en) Power supply equipment for vehicle
JP2017011944A (en) Power generation control device of alternator
JP2009131076A (en) Control device for vehicle
JP2004112917A (en) Alternator controller
JP2004266937A (en) Self-diagnostic device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070704