JP4635961B2 - Battery charge state control device - Google Patents

Battery charge state control device Download PDF

Info

Publication number
JP4635961B2
JP4635961B2 JP2006144836A JP2006144836A JP4635961B2 JP 4635961 B2 JP4635961 B2 JP 4635961B2 JP 2006144836 A JP2006144836 A JP 2006144836A JP 2006144836 A JP2006144836 A JP 2006144836A JP 4635961 B2 JP4635961 B2 JP 4635961B2
Authority
JP
Japan
Prior art keywords
battery
charge
power generation
state
regenerative power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006144836A
Other languages
Japanese (ja)
Other versions
JP2007318888A (en
Inventor
貴充 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006144836A priority Critical patent/JP4635961B2/en
Publication of JP2007318888A publication Critical patent/JP2007318888A/en
Application granted granted Critical
Publication of JP4635961B2 publication Critical patent/JP4635961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、バッテリの充電状態制御装置に関し、特に、バッテリの充電状態(SOC:state of charge)をオルタネータによる回生発電制御により充電が可能な設定値に制御する技術に関する。   The present invention relates to a state-of-charge control device for a battery, and more particularly to a technique for controlling a state of charge (SOC) of a battery to a set value that can be charged by regenerative power generation control by an alternator.

近年、車両の減速時にオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電し、その後、回生発電によりバッテリに蓄えた電気で車載電気負荷の消費電力を賄うことにより、オルタネータの駆動に要するエネルギを低減し、燃費を向上させるようにしている。このオルタネータの減速回生制御による燃費低減効果や減速加速度性能等を一定に保つためには、バッテリの充電状態(SOC)を、充電可能な予め定めた設定値に制御する必要がある。   In recent years, when the vehicle is decelerating, the generator voltage is increased and regenerative power generation is performed to charge the battery, and then the power stored in the battery by regenerative power generation is used to cover the power consumption of the in-vehicle electric load, thereby driving the alternator. Energy is reduced and fuel consumption is improved. In order to keep constant the fuel consumption reduction effect and the deceleration acceleration performance by the deceleration regeneration control of the alternator, it is necessary to control the state of charge (SOC) of the battery to a predetermined set value that can be charged.

そこで、バッテリの充電状態(SOC)を検出する方法として、バッテリの充放電電流値を積算する方法が一般的に知られており(例えば、特許文献1参照)、回生発電時の充電電流を積算して回生発電でバッテリに蓄えられた充電量を検出して記憶し、その後、回生発電で蓄えられた充電量分を放電することで、バッテリの充電状態(SOC)を設定値に制御することが考えられる。
特開2003−52131号公報
Thus, as a method for detecting the state of charge (SOC) of the battery, a method of integrating the charge / discharge current value of the battery is generally known (see, for example, Patent Document 1), and the charge current during regenerative power generation is integrated. Then, the amount of charge stored in the battery by regenerative power generation is detected and stored, and then the state of charge (SOC) of the battery is controlled to a set value by discharging the amount of charge stored by regenerative power generation. Can be considered.
JP 2003-52131 A

しかしながら、上述のように回生発電による充電分を放電させてバッテリの充電状態(SOC)を充電可能な設定値に保つ制御では、例えば、バッテリの劣化や電流センサの誤差等によってバッテリの充電状態(SOC)が予め定めた充電可能な設定値からずれていると、この充電状態(SOC)のずれが解消されず、回生発電時に狙い通りの充電量が確保できずに燃費低減効果が低下する虞れがある。また、この充電状態(SOC)のずれを放置すると、過放電によるバッテリ上がりを起こす虞れがある。更には、バッテリが劣化した場合や性能の低いバッテリ(回生制御用の強化バッテリ以外のバッテリ)に交換された場合等に、無理に回生制御を行うことによりバッテリの更なる劣化を招く虞れもある。   However, as described above, in the control that discharges the rechargeable power generation and keeps the battery charge state (SOC) at a chargeable setting value, for example, the battery charge state (due to battery deterioration or current sensor error) ( If the SOC is deviated from a predetermined chargeable setting value, the deviation in the state of charge (SOC) is not eliminated, and the target charge amount cannot be secured during regenerative power generation, which may reduce the fuel consumption reduction effect. There is. Further, if this deviation in the state of charge (SOC) is left unattended, there is a risk that the battery will run out due to overdischarge. Furthermore, when the battery has deteriorated or has been replaced with a low-performance battery (a battery other than a reinforced battery for regenerative control), the battery may be further deteriorated by forcibly performing regenerative control. is there.

本発明は上記問題点に着目してなされたもので、回生制御時にバッテリの充電状態(SOC)のずれを修正して、バッテリを回生発電により常時充電可能な状態に制御できるバッテリの充電状態制御装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and corrects the state of charge (SOC) of the battery during regenerative control so that the battery can be controlled to be constantly charged by regenerative power generation. An object is to provide an apparatus.

このため、本発明は、車両の減速時に、エンジンで駆動するオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電した後、オルタネータの発電電圧を下げてバッテリを放電させて、バッテリの充電状態(SOC)を予め定めた充電可能な設定値に制御するバッテリの充電状態御装置であって、回生発電時のバッテリの充電電流値が予め設定した閾値範囲の上限値より大きいとき、その後のバッテリの放電量を、回生発電で得られた充電量より少なく制御する構成としたことを特徴とする。また、車両の減速時に、エンジンで駆動するオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電した後、オルタネータの発電電圧を下げてバッテリを放電させて、バッテリの充電状態(SOC)を予め定めた充電可能な設定値に制御するバッテリの充電状態御装置であって、回生発電時のバッテリの充電電流値が予め設定した閾値範囲の下限値より小さいとき、その後のバッテリの放電量を、回生発電で得られた充電量より多く制御する構成としたことを特徴とする。
Therefore, according to the present invention, when the vehicle is decelerated, the power generation voltage of the alternator driven by the engine is increased and regenerative power generation is performed to charge the battery, and then the power generation voltage of the alternator is decreased to discharge the battery. The state of charge (SOC) is a battery state-of-charge control device that controls a predetermined chargeable set value, and when the charge current value of the battery during regenerative power generation is greater than an upper limit value of a preset threshold range, The battery discharge amount is controlled to be less than the charge amount obtained by regenerative power generation . In addition, when the vehicle decelerates, the power generation voltage of the alternator driven by the engine is increased to perform regenerative power generation to charge the battery, and then the power generation voltage of the alternator is decreased to discharge the battery to change the state of charge (SOC) of the battery. A battery charge state control device that controls to a predetermined chargeable set value, and when the battery charge current value during regenerative power generation is smaller than a lower limit value of a preset threshold range, the subsequent battery discharge amount is The configuration is such that the amount of charge is controlled more than the amount of charge obtained by regenerative power generation.

本発明によれば、回生発電時の充電電流値に基づいて、回生発電時のバッテリの充電電流値が予め設定した閾値範囲の上限値より大きいときはその後の放電量を抑制し、あるいは、回生発電時のバッテリの充電電流値が予め設定した閾値範囲の下限値より小さいときはその後の放電量を多くするので、バッテリを回生発電により常時充電可能な一定状態に保つことができる。従って、回生発電時に所望の充電量を得ることができ、所望の燃費低減効果を及び減速性能を確保できる。また、回生制御の度にバッテリ充電状態に対応して修正できるので、バッテリ充電状態(SOC)が大きく変化するのを防止でき、燃費低減効果や減速性能が安定して得られる利点がある。
According to the present invention, based on the charging current value at the time of regenerative power generation, when the charging current value of the battery at the time of regenerative power generation is larger than the upper limit value of the preset threshold range, the subsequent discharge amount is suppressed, or When the charging current value of the battery at the time of power generation is smaller than the lower limit value of the preset threshold range, the subsequent discharge amount is increased, so that the battery can be kept in a constant state that can be always charged by regenerative power generation. Therefore, a desired charge amount can be obtained during regenerative power generation, and a desired fuel consumption reduction effect and deceleration performance can be ensured. Moreover, since it can correct according to a battery charge condition every time it performs regenerative control, it can prevent that a battery charge condition (SOC) changes greatly, and there exists an advantage by which a fuel-consumption reduction effect and deceleration performance are obtained stably.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係るバッテリの充電状態制御装置の一実施形態を示すシステム構成図である。
図1において、エンジン1によりファンベルトを介して駆動されて発電するオルタネータ2は、後述するマイクロコンピュータを内蔵するECM(エンジンコントロールモジュール)7からの発電電圧指令を受けてレギュレータ3により発電電圧が制御される。バッテリ4は、オルタネータ2の発電電圧に応じて充放電可能にオルタネータ2に接続されている。電流センサ5は、バッテリ4の充放電電流を検出し、その検出出力をECM7に入力する。6はバッテリ温度を検出する温度センサである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram showing an embodiment of a battery charge state control apparatus according to the present invention.
In FIG. 1, an alternator 2 that is driven by an engine 1 through a fan belt to generate electric power receives a generated voltage command from an ECM (engine control module) 7 having a microcomputer to be described later, and the generated voltage is controlled by a regulator 3. Is done. The battery 4 is connected to the alternator 2 so as to be chargeable / dischargeable according to the generated voltage of the alternator 2. The current sensor 5 detects the charge / discharge current of the battery 4 and inputs the detection output to the ECM 7. Reference numeral 6 denotes a temperature sensor for detecting the battery temperature.

ECM7は、例えばコンピュータを内蔵してバッテリ4からの電力供給により駆動し、図示しない各種センサからの信号によりエンジン運転状態を制御すると共に、減速時に回生制御を行う。また、回生制御後のバッテリ4の充電状態(SOC)を、回生発電時に充電可能なように予め定めた設定値(例えば定格容量の90%)に制御する。ECM7は、スロットルセンサとエンジン回転数センサからの信号により、スロットル弁が略全閉のアイドル状態でエンジン回転数が所定以上の減速時に、燃料噴射を停止する燃料カット制御を行い、この燃料カット中に、オルタネータ2のレギュレータ3に対して高い発電電圧指令値(例えば14.5V)を出力して回生発電させてバッテリ4を充電し、この回生発電後、バッテリ電圧(例えば約12.8V)より低い発電電圧指令値(例えば12.5V)を出力してバッテリ4を放電させる。この回生制御において、回生発電時の充電電流値からバッテリ4の充電状態(SOC)を推定し、推定結果に基づいてバッテリ4の放電量を可変制御することにより、回生制御後のバッテリ4の充電状態(SOC)が、常時充電可能な前記設定値となるよう制御する。   The ECM 7 includes, for example, a computer and is driven by power supply from the battery 4. The ECM 7 controls the engine operating state by signals from various sensors (not shown) and performs regenerative control during deceleration. Further, the state of charge (SOC) of the battery 4 after the regenerative control is controlled to a preset value (for example, 90% of the rated capacity) so that the battery 4 can be charged during regenerative power generation. The ECM 7 performs fuel cut control to stop fuel injection when the engine speed is decelerated more than a predetermined value in the idle state where the throttle valve is substantially fully closed, based on signals from the throttle sensor and the engine speed sensor. In addition, a high power generation voltage command value (for example, 14.5V) is output to the regulator 3 of the alternator 2 to generate regenerative power to charge the battery 4, and after this regenerative power generation, from the battery voltage (for example, about 12.8V) A low power generation voltage command value (for example, 12.5 V) is output to discharge the battery 4. In this regenerative control, the state of charge (SOC) of the battery 4 is estimated from the charging current value at the time of regenerative power generation, and the discharge amount of the battery 4 is variably controlled based on the estimation result, thereby charging the battery 4 after the regenerative control. Control is performed so that the state (SOC) becomes the set value that can be charged at all times.

次に、本実施形態のECM7によるバッテリ4の充電状態制御動作を図2のフローチャート及び図3のタイミングチャートを参照して説明する。
ステップ1(図中、S1で示し、以下同様とする)では、回生発電中か否かを判定する。ここで、図3に示すように、ECM7のオルタネータ2に対する発電電圧指令値が高い発電電圧指令値(例えば14.5V)になり回生発電を開始すると判定がYESとなりステップ2に進む。
Next, the charge state control operation of the battery 4 by the ECM 7 of this embodiment will be described with reference to the flowchart of FIG. 2 and the timing chart of FIG.
In step 1 (indicated by S1 in the figure, the same shall apply hereinafter), it is determined whether or not regenerative power generation is in progress. Here, as shown in FIG. 3, when the power generation voltage command value for the alternator 2 of the ECM 7 becomes a high power generation voltage command value (for example, 14.5 V) and regenerative power generation is started, the determination becomes YES and the process proceeds to step 2.

ステップ2では、回生発電が開始されてからt秒経過したか否かを判定し、t秒経過すると判定がYESとなり、ステップ3に進む。
ステップ3では、t秒経過したときの電流センサ5の検出充電電流値Aと予め定めた閾値範囲の上限値B1とを比較しA>B1か否かを判定する。判定がNOであればステップ4に進み、充電電流値Aと前記閾値範囲の下限値B2とを比較しA<B2か否かを判定する。ここで、回生発電直後では充電電流が不安定であるので、t秒経過して充電電流が安定したときの電流値と上限値B1とを比較することで、比較結果の信頼性を高めることができる。
In step 2, it is determined whether or not t seconds have elapsed since the start of regenerative power generation. If t seconds have elapsed, the determination is YES and the process proceeds to step 3.
In step 3, the detected charging current value A of the current sensor 5 when t seconds elapses is compared with an upper limit value B1 of a predetermined threshold range to determine whether A> B1. If the determination is NO, the process proceeds to step 4 to compare the charging current value A with the lower limit value B2 of the threshold range to determine whether A <B2. Here, since the charging current is unstable immediately after the regenerative power generation, the reliability of the comparison result can be improved by comparing the current value when the charging current is stabilized after elapse of t seconds and the upper limit value B1. it can.

ステップ3,4の判定が共にNOであれば、充電電流値Aが図3の実線で示すように前記閾値範囲内(B2≦A≦B1)にあり、回生発電前のバッテリの充電状態(SOC)は予め定めた充電可能な設定値(例えば90%)であると推定する。そして、その後の放電時では、回生発電で蓄えられた充電量SOC(充電電流積算値)分を放電するような放電時間(図3の実線で示す)の間、オルタネータ2の発電電圧指令値を12.5Vとしてバッテリ4を放電させる。   If both the determinations in steps 3 and 4 are NO, the charging current value A is within the threshold range (B2 ≦ A ≦ B1) as shown by the solid line in FIG. 3, and the state of charge of the battery (SOC) before regenerative power generation ) Is estimated to be a predetermined setting value (for example, 90%) that can be charged. At the time of subsequent discharge, the generated voltage command value of the alternator 2 is set during a discharge time (shown by a solid line in FIG. 3) that discharges the charge amount SOC (charge current integrated value) stored in the regenerative power generation. The battery 4 is discharged at 12.5V.

一方、ステップ3で、図3の一点鎖線で示すように充電電流値Aが上限値B1より大(A>B1)でステップ3の判定がYESになると、回生発電前のバッテリの充電状態(SOC)は予め定めた充電可能な設定値(例えば90%)より小さいと推定し、ステップ5に進む。
ステップ5では、ステップ3のYES判定が連続n回(n回は適宜設定する)以上か否かを判定し、連続回数がn回未満であればステップ6に進む。
On the other hand, when the charge current value A is larger than the upper limit value B1 (A> B1) and the determination in step 3 is YES as shown by the one-dot chain line in FIG. 3, the state of charge of the battery (SOC) before regenerative power generation becomes YES. ) Is estimated to be smaller than a predetermined chargeable setting value (for example, 90%), and the process proceeds to step 5.
In step 5, it is determined whether or not the YES determination in step 3 is n times or more (n times is set as appropriate). If the number of continuous times is less than n, the process proceeds to step 6.

ステップ6では、回生発電中の充電電流積算値(充電量SOCに相当する)から予め定めた所定量(例えばバッテリ4の定格SOCの1%)減算し、回生発電による充電分より少ない放電量に設定してバッテリ4の充電状態(SOC)を増大させる方向に修正する。この場合、その後の放電時では、回生発電で蓄えられた充電量SOC(充電電流積算値)分より少ない放電量となるよう放電時間を短くする(図3の一点鎖線で示す)。   In step 6, a predetermined amount (for example, 1% of the rated SOC of the battery 4) is subtracted from the charging current integrated value (corresponding to the charging amount SOC) during the regenerative power generation, so that the discharge amount is smaller than the charge amount due to the regenerative power generation. It is set and corrected so as to increase the state of charge (SOC) of the battery 4. In this case, at the time of the subsequent discharge, the discharge time is shortened so that the discharge amount is smaller than the charge amount SOC (charge current integrated value) stored in the regenerative power generation (indicated by a one-dot chain line in FIG. 3).

また、ステップ3のYES判定が連続n回目の場合は、ステップ7の判定はNOで、ステップ8のバッテリ4を強制充電する充電モードに移行する。充電モードに移行した場合は、バッテリ充電状態(SOC)が設定値(90%)相当のときの予め記憶させた充電電流値となるようにオルタネータ2の発電電圧を強制的に高くして、バッテリ4の充電状態(SOC)を強制的に設定値(SOC90%)まで充電する。そして、充電モード移行判定が連続n回行われた場合は、ステップ7の判定がYESとなり、ステップ9に進む。   Further, when the YES determination in step 3 is the nth consecutive time, the determination in step 7 is NO, and the process proceeds to the charging mode in which the battery 4 in step 8 is forcibly charged. When the mode is changed to the charging mode, the power generation voltage of the alternator 2 is forcibly increased so that the charging current value stored in advance when the battery charging state (SOC) corresponds to the set value (90%) is obtained. 4 is forcibly charged to a set value (SOC 90%). If the charging mode transition determination is performed n times consecutively, the determination in step 7 is YES, and the process proceeds to step 9.

ステップ9では、強制充電しているにも拘わらずバッテリ4の過放電状態が解消されないことから、バッテリ4は劣化していると判断し、回生制御を禁止してバッテリ4の劣化の進行を抑える。
また、ステップ4で、図3の点線で示すように充電電流値Aが下限値B2より小(A<B2)でステップ4の判定がYESになると、回生発電前のバッテリの充電状態(SOC)は予め定めた充電可能な設定値(例えば90%)より大きいと推定し、ステップ10に進む。
In step 9, since the overdischarge state of the battery 4 is not canceled despite the forced charging, it is determined that the battery 4 has deteriorated, and regenerative control is prohibited to suppress the progress of deterioration of the battery 4. .
In step 4, when the charging current value A is smaller than the lower limit value B2 (A <B2) and the determination in step 4 is YES as shown by the dotted line in FIG. 3, the state of charge of the battery (SOC) before regenerative power generation Is estimated to be larger than a predetermined settable value (for example, 90%), and the process proceeds to step 10.

ステップ10では、ステップ4のYES判定がn回連続したか否かを判定し、n回未満であればステップ11に進む。
ステップ11では、回生発電中の充電電流積算値(充電量SOCに相当する)に予め定めた所定量(例えばバッテリ4の定格SOCの1%)加算し、回生発電による充電分より多い放電量に設定してバッテリ4の充電状態(SOC)を低下させる方向に修正する。この場合、その後の放電時では、回生発電で蓄えられた充電量SOC(充電電流積算値)分より多い放電量となるよう放電時間を長くする(図3の点線で示す)。
In step 10, it is determined whether or not the YES determination in step 4 is continued n times, and if it is less than n times, the process proceeds to step 11.
In step 11, a predetermined amount (for example, 1% of the rated SOC of the battery 4) is added to a charging current integrated value (corresponding to the charging amount SOC) during regenerative power generation, so that the discharge amount is larger than the charge amount due to regenerative power generation. It is set and corrected so as to decrease the state of charge (SOC) of the battery 4. In this case, at the time of subsequent discharge, the discharge time is lengthened so that the discharge amount is larger than the charge amount SOC (charge current integrated value) stored in the regenerative power generation (indicated by the dotted line in FIG. 3).

ステップ4のYES判定がn回連続した場合は、ステップ10の判定がYESとなり、ステップ12に進む。
ステップ12では、放電量を増大しているにも拘わらず充電電流値が増大しないことから、バッテリ4の充電能力低下と判断して回生制御を禁止し、バッテリ4の劣化の進行を抑える。
If YES in step 4 is repeated n times, the determination in step 10 is YES and the process proceeds to step 12.
In step 12, since the charging current value does not increase despite the increase in the discharge amount, it is determined that the charging capacity of the battery 4 is reduced, and the regenerative control is prohibited to suppress the progress of deterioration of the battery 4.

かかる本実施形態のバッテリの充電状態制御装置によれば、回生発電期間での充電電流値に基づいて回生制御前のバッテリ充電状態(SOC)を推定し、充電状態(SOC)が設定値より小さいと推定される場合にはその後の放電量を回生発電で得られた充電量より少なくし、充電状態(SOC)が設定値より大きいと推定される場合にはその後の放電量を回生発電で得られた充電量より多くするので、バッテリ4を回生発電によって常時充電可能な一定状態に保つことができる。従って、所望の燃費低減効果を及び減速性能を確保できる。   According to the battery charge state control device of this embodiment, the battery charge state (SOC) before the regenerative control is estimated based on the charge current value in the regenerative power generation period, and the charge state (SOC) is smaller than the set value. If it is estimated that the subsequent discharge amount is smaller than the charge amount obtained by regenerative power generation, and if the state of charge (SOC) is estimated to be larger than the set value, the subsequent discharge amount is obtained by regenerative power generation. Since the amount of charge is larger than the charged amount, the battery 4 can be kept in a constant state that can be always charged by regenerative power generation. Therefore, a desired fuel consumption reduction effect and deceleration performance can be ensured.

また、強制充電を繰り返しても過放電と判定される場合や放電量の増大制御を繰り返しても充電電流値が増大しない場合は回生制御を禁止するので、バッテリ4の劣化の進行を抑えることができる。
また、回生制御の度にバッテリ充電状態を推定して修正できるので、バッテリ充電状態(SOC)が大きく変化するのを防止でき、燃費低減効果や減速性能が安定して得られる。
In addition, when it is determined that the battery is over-discharged even after repeated forced charging, or when the charging current value does not increase even after repeated increase control of the discharge amount, regenerative control is prohibited, so that the progress of deterioration of the battery 4 can be suppressed. it can.
In addition, since the battery charge state can be estimated and corrected every time regeneration control is performed, it is possible to prevent the battery charge state (SOC) from changing greatly, and the fuel consumption reduction effect and the deceleration performance can be stably obtained.

尚、充電電流は、バッテリ4の温度に依存し、バッテリ温度が高くなるほど充電電流値は大きくなる。従って、例えば温度による充電電流値のマップを作成し、回生発電時の充電電流値Aを、温度センサ6で検出されるバッテリ温度に基づいてマップから補正し、補正した充電電流値と上下限値B1,B2とを比較するようにすれば、バッテリ4の充電状態(SOC)の推定精度が向上する。尚、バッテリ温度は、吸気温度、エンジン水温等から推定するようにしてもよい。 The charging current is dependent on the temperature of the battery 4, the charging current value as the battery temperature becomes higher Ru size kuna. Therefore, to create a map of the charging current value due to e.g. temperature, the charging current value A at the time of regeneration, based on the battery temperature detected by the temperature sensor 6 is corrected from the map, and corrected charging current value If the upper and lower limit values B1 and B2 are compared, the estimation accuracy of the state of charge (SOC) of the battery 4 is improved. The battery temperature may be estimated from the intake air temperature, the engine water temperature, and the like.

本発明に係るバッテリの充電状態制御装置の一実施形態のシステム構成図The system block diagram of one Embodiment of the charge condition control apparatus of the battery which concerns on this invention 同上実施形態の充電状態制御動作を説明するフローチャートFlowchart for explaining the charge state control operation of the embodiment 同上実施形態の充電状態制御動作を説明するタイミングチャートTiming chart for explaining the charge state control operation of the embodiment

符号の説明Explanation of symbols

1 エンジン
2 オルタネータ
3 レギュレータ
4 バッテリ
5 電流センサ
6 温度センサ
7 ECM
1 Engine 2 Alternator 3 Regulator 4 Battery 5 Current sensor 6 Temperature sensor 7 ECM

Claims (8)

車両の減速時に、エンジンで駆動するオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電した後、オルタネータの発電電圧を下げてバッテリを放電させて、バッテリの充電状態(SOC)を予め定めた充電可能な設定値に制御するバッテリの充電状態御装置であって、
前記回生発電時のバッテリの充電電流値が予め設定した閾値範囲の上限値より大きいとき、その後のバッテリの放電量を、前記回生発電で得られた充電量より少なく制御する構成としたことを特徴とするバッテリの充電状態制御装置。
When the vehicle decelerates, the power generation voltage of the alternator driven by the engine is increased and regenerative power generation is performed to charge the battery. Then, the power generation voltage of the alternator is decreased to discharge the battery, and the state of charge (SOC) of the battery is determined in advance. A battery charge state control device that controls the set value to be rechargeable,
When the charge current value of the battery at the time of regenerative power generation is larger than the upper limit value of a preset threshold range, the subsequent battery discharge amount is controlled to be less than the charge amount obtained by the regenerative power generation. A battery charge state control device.
前記回生発電時のバッテリの充電電流値が予め設定した閾値範囲の上限値より大きいとき、バッテリの充電状態(SOC)が前記設定値より小さいと推定し、推定結果に基づいて前記放電量を、前記回生発電で得られた充電量より少なくする構成としたことを特徴とする請求項1に記載のバッテリの充電状態制御装置。 When the charging current value of the battery at the time of the regenerative power generation is larger than the upper limit value of the preset threshold range, it is estimated that the state of charge (SOC) of the battery is smaller than the set value, and the discharge amount based on the estimation result , The battery state-of-charge control device according to claim 1, wherein the charge amount is less than a charge amount obtained by the regenerative power generation. 車両の減速時に、エンジンで駆動するオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電した後、オルタネータの発電電圧を下げてバッテリを放電させて、バッテリの充電状態(SOC)を予め定めた充電可能な設定値に制御するバッテリの充電状態御装置であって、
前記回生発電時のバッテリの充電電流値が予め設定した閾値範囲の下限値より小さいとき、その後のバッテリの放電量を、前記回生発電で得られた充電量より多く制御する構成としたことを特徴とするバッテリの充電状態制御装置。
When the vehicle decelerates, the power generation voltage of the alternator driven by the engine is increased and regenerative power generation is performed to charge the battery. Then, the power generation voltage of the alternator is decreased to discharge the battery, and the state of charge (SOC) of the battery is determined in advance. A battery charge state control device that controls the set value to be rechargeable,
When the charge current value of the battery during the regenerative power generation is smaller than a lower limit value of a preset threshold range, the subsequent battery discharge amount is controlled to be greater than the charge amount obtained by the regenerative power generation. charge state control device Luba Tteri be between.
前記回生発電時のバッテリの充電電流値が予め設定した閾値範囲の下限値より小さいとき、バッテリの充電状態(SOC)が前記設定値より大きいと推定し、推定結果に基づいて前記放電量を、前記回生発電で得られた充電量より多くする構成としたことを特徴とする請求項3に記載のバッテリの充電状態制御装置。 When the charging current value of the battery at the time of the regenerative power generation is smaller than a lower limit value of a preset threshold range, it is estimated that the state of charge (SOC) of the battery is larger than the set value, and the amount of discharge based on the estimation result, The battery state-of-charge control device according to claim 3 , wherein the amount of charge obtained by the regenerative power generation is increased . 前記放電量は、予め定めた所定量ずつ増減する構成としたことを特徴とする請求項1〜4のいずれか1つに記載のバッテリの充電状態制御装置。 The battery charge state control device according to any one of claims 1 to 4, wherein the discharge amount is configured to increase or decrease by a predetermined amount . 前記回生発電時のバッテリの充電電流値が予め設定した閾値範囲の下限値より小さい状態が所定回数連続したとき、回生制御を禁止する構成としたことを特徴とする請求項3又は4に記載のバッテリの充電状態制御装置。 When less than that lower limit of the threshold range the charging current value of the battery during the regenerative power generation is preset to a predetermined number of times in succession, according to claim 3 or 4, characterized in that it has a configuration in which the regenerative control is prohibited Battery charge state control device. 前記回生発電時のバッテリの充電電流値が予め設定した閾値範囲の上限値より大きい状態が所定回数連続したとき、バッテリの充電状態(SOC)を前記設定値まで強制充電する構成としたことを特徴とする請求項1又は2に記載のバッテリの充電状態制御装置。 When the state where the charging current value of the battery during the regenerative power generation is larger than the upper limit value of a preset threshold range continues for a predetermined number of times, the charging state (SOC) of the battery is forcibly charged to the set value. The battery state-of-charge control device according to claim 1 or 2 . 前記バッテリの充電電流値は、回生発電を開始してから所定時間経過後の値を用いることを特徴とする請求項1〜7のいずれか1つに記載のバッテリの充電状態制御装置。
Charging current value of the battery, the battery state of charge control device according to any one of claims 1 to 7 from the start of the regeneration, wherein Rukoto using a value after a predetermined time.
JP2006144836A 2006-05-25 2006-05-25 Battery charge state control device Active JP4635961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144836A JP4635961B2 (en) 2006-05-25 2006-05-25 Battery charge state control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144836A JP4635961B2 (en) 2006-05-25 2006-05-25 Battery charge state control device

Publications (2)

Publication Number Publication Date
JP2007318888A JP2007318888A (en) 2007-12-06
JP4635961B2 true JP4635961B2 (en) 2011-02-23

Family

ID=38852229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144836A Active JP4635961B2 (en) 2006-05-25 2006-05-25 Battery charge state control device

Country Status (1)

Country Link
JP (1) JP4635961B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239611B2 (en) 2013-06-03 2017-11-29 古河電気工業株式会社 Charge control device and charge control method
JP5911897B2 (en) * 2014-01-30 2016-04-27 古河電気工業株式会社 Secondary battery charge control device and secondary battery charge control method
CN114123444B (en) * 2021-11-26 2024-08-06 隆鑫通用动力股份有限公司 Charging and discharging control method and device for storage battery and related equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274403A (en) * 1994-03-31 1995-10-20 Toshiba Corp Charge/discharge controller
JP2003052131A (en) * 2001-08-07 2003-02-21 Nippon Soken Inc Vehicle battery charging control apparatus and vehicle battery charge control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274403A (en) * 1994-03-31 1995-10-20 Toshiba Corp Charge/discharge controller
JP2003052131A (en) * 2001-08-07 2003-02-21 Nippon Soken Inc Vehicle battery charging control apparatus and vehicle battery charge control method

Also Published As

Publication number Publication date
JP2007318888A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US9855854B2 (en) Charge control device and charge control method
US9156467B2 (en) Vehicle power generating device and power generation control method
KR101641847B1 (en) Charging control device, charging control method and recording medium recording computer program
JP6548699B2 (en) Power supply system
JP2007162657A (en) Control device for secondary battery and output control method for secondary battery
US10498154B2 (en) Electric power system
JP4858277B2 (en) Vehicle power generation control device
JP2010273523A (en) Charge control device
JP4635961B2 (en) Battery charge state control device
JP4064398B2 (en) Charge / discharge control device for motor battery
JP2007318913A (en) State-of-charge controller of battery
JP4127078B2 (en) Vehicle power supply control device
JP2006022710A (en) Control device for idling stop vehicle
JP4253544B2 (en) Vehicle generator control device
JP3797242B2 (en) Vehicle power generation control device
US8922036B2 (en) Vehicular power generation system and power generation control method for the same
JP3826295B2 (en) Vehicle power supply control device
JP4888776B2 (en) Vehicle power generation control device
JP4810803B2 (en) Power supply
JP2007057422A (en) Error correction device for current sensor
JP4049044B2 (en) Voltage generator for vehicle generator
JP5277976B2 (en) Vehicle power generation control device
JP2006176003A (en) Control device for vehicular generator
JP4918814B2 (en) Air quantity control device for internal combustion engine
JP2005080396A (en) Device for controlling generator of vehicle

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4635961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150