JP2007318913A - State-of-charge controller of battery - Google Patents

State-of-charge controller of battery Download PDF

Info

Publication number
JP2007318913A
JP2007318913A JP2006145676A JP2006145676A JP2007318913A JP 2007318913 A JP2007318913 A JP 2007318913A JP 2006145676 A JP2006145676 A JP 2006145676A JP 2006145676 A JP2006145676 A JP 2006145676A JP 2007318913 A JP2007318913 A JP 2007318913A
Authority
JP
Japan
Prior art keywords
battery
state
charge
power generation
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006145676A
Other languages
Japanese (ja)
Inventor
Takamitsu Hase
貴充 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006145676A priority Critical patent/JP2007318913A/en
Publication of JP2007318913A publication Critical patent/JP2007318913A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a state-of-charge controller of battery in which fuel consumption reduction effect can be ensured through regenerative power generation by controlling the state of charge (SOC) of a battery to an always chargeable state. <P>SOLUTION: Battery voltage C at a discharge start point after regenerative power generation is compared with upper and lower limit values D1 and D2 of a predetermined threshold range and a threshold D3 for judging overdischarge (S2-S4). If C>D1, the state of charge (SOC) of a battery is estimated to be large and the state of discharge is increased more than the state of charge obtained by regenerative power generation (S5). If D2>C>D3, the state of charge (SOC) of a battery is estimated to be small and the state of discharge is made fewer than the state of charge obtained by regenerative power generation (S6). If C<D3, transition is made to charge mode by estimating overdischarge state and forced charging is performed (S11). Regenerative control is forbidden if overdischarge state is judged even after repeating forced charging (S12). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バッテリの充電状態制御装置に関し、特に、バッテリの充電状態(SOC:state of charge)をオルタネータによる回生発電制御により充電が可能な設定値に制御する技術に関する。   The present invention relates to a state-of-charge control device for a battery, and more particularly to a technique for controlling a state of charge (SOC) of a battery to a set value that can be charged by regenerative power generation control by an alternator.

近年、車両の減速時にオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電し、その後、回生発電によりバッテリに蓄えた電気で車載電気負荷の消費電力を賄うことにより、オルタネータの駆動に要するエネルギを低減し、燃費を向上させるようにしている。このオルタネータの減速回生制御による燃費低減効果や減速加速度性能等を一定に保つためには、バッテリの充電状態(SOC)を、充電可能な予め定めた設定値に制御する必要がある。   In recent years, when the vehicle is decelerating, the generator voltage is increased and regenerative power generation is performed to charge the battery, and then the power stored in the battery by regenerative power generation is used to cover the power consumption of the in-vehicle electric load, thereby driving the alternator. Energy is reduced and fuel consumption is improved. In order to keep constant the fuel consumption reduction effect and the deceleration acceleration performance by the deceleration regeneration control of the alternator, it is necessary to control the state of charge (SOC) of the battery to a predetermined set value that can be charged.

そこで、バッテリの充電状態(SOC)を検出する方法として、バッテリの充放電電流値を積算する方法が一般的に知られており(例えば、特許文献1参照)、回生発電時の充電電流を積算して回生発電でバッテリに蓄えられた充電量を検出して記憶し、その後、回生発電で蓄えられた充電量分を放電することで、バッテリの充電状態(SOC)を設定値に制御することが考えられる。
特開2003−52131号公報
Thus, as a method for detecting the state of charge (SOC) of the battery, a method of integrating the charge / discharge current value of the battery is generally known (see, for example, Patent Document 1), and the charge current during regenerative power generation is integrated. Then, the amount of charge stored in the battery by regenerative power generation is detected and stored, and then the state of charge (SOC) of the battery is controlled to a set value by discharging the amount of charge stored by regenerative power generation. Can be considered.
JP 2003-52131 A

しかしながら、上述のように回生発電による充電分を放電させてバッテリの充電状態(SOC)を充電可能な設定値に保つ制御では、例えば、バッテリの劣化や電流センサの誤差等によってバッテリの充電状態(SOC)が予め定めた充電可能な設定値からずれていると、この充電状態(SOC)のずれが解消されず、回生発電時に狙い通りの充電量が確保できずに燃費低減効果が低下する虞れがある。また、この充電状態(SOC)のずれを放置すると、過放電によるバッテリ上がりを起こす虞れがある。更には、バッテリが劣化した場合や性能の低いバッテリ(回生制御用の強化バッテリ以外のバッテリ)に交換された場合等に、無理に回生制御を行うことによりバッテリの更なる劣化を招く虞れもある。   However, as described above, in the control that discharges the rechargeable power generation and keeps the battery charge state (SOC) at a chargeable setting value, for example, the battery charge state (due to battery deterioration or current sensor error) ( If the SOC is deviated from a predetermined chargeable setting value, the deviation in the state of charge (SOC) is not eliminated, and the target charge amount cannot be secured during regenerative power generation, which may reduce the fuel consumption reduction effect. There is. Further, if this deviation in the state of charge (SOC) is left unattended, there is a risk that the battery will run out due to overdischarge. Furthermore, when the battery has deteriorated or has been replaced with a low-performance battery (a battery other than a reinforced battery for regenerative control), the battery may be further deteriorated by forcibly performing regenerative control. is there.

本発明は上記問題点に着目してなされたもので、回生制御時にバッテリの充電状態(SOC)のずれを修正して、バッテリを回生発電により常時充電可能な状態に制御できるバッテリの充電状態制御装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and corrects the state of charge (SOC) of the battery during regenerative control so that the battery can be controlled to be constantly charged by regenerative power generation. An object is to provide an apparatus.

このため、本発明は、車両の減速時に、エンジンで駆動するオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電した後、オルタネータの発電電圧を下げてバッテリを放電させて、バッテリの充電状態(SOC)を予め定めた充電可能な設定値に制御するバッテリの充電状態御装置であって、前記回生発電後の放電時のバッテリ電圧に基づいて前記バッテリの充電状態(SOC)を推定し、推定結果に基づいてバッテリの放電量を可変制御し、バッテリの充電状態(SOC)を前記設定値となるように制御する構成としたことを特徴とする。   Therefore, according to the present invention, when the vehicle is decelerated, the power generation voltage of the alternator driven by the engine is increased to perform regenerative power generation to charge the battery, and then the power generation voltage of the alternator is decreased to discharge the battery to A battery charge state control device for controlling a state (SOC) to a predetermined chargeable set value, wherein the state of charge (SOC) of the battery is estimated based on a battery voltage at the time of discharging after the regenerative power generation. The battery discharge amount is variably controlled based on the estimation result, and the state of charge (SOC) of the battery is controlled to be the set value.

本発明によれば、回生発電後の放電時のバッテリ電圧に基づいてバッテリ充電状態(SOC)を推定し、充電状態(SOC)が設定値より小さいと推定される場合はその後の放電量を抑制し、充電状態(SOC)が設定値より大きいと推定される場合はその後の放電量を多くするので、バッテリを回生発電により常時充電可能な一定状態に保つことができる。従って、回生発電時に所望の充電量を得ることができ、所望の燃費低減効果を及び減速性能を確保できる。また、回生制御の度にバッテリ充電状態を推定して修正できるので、バッテリ充電状態(SOC)が大きく変化するのを防止でき、燃費低減効果や減速性能が安定して得られる利点がある。   According to the present invention, the battery charge state (SOC) is estimated based on the battery voltage at the time of discharge after regenerative power generation, and the subsequent discharge amount is suppressed when the charge state (SOC) is estimated to be smaller than the set value. When the state of charge (SOC) is estimated to be larger than the set value, the subsequent discharge amount is increased, so that the battery can be kept in a constant state that can be always charged by regenerative power generation. Therefore, a desired charge amount can be obtained during regenerative power generation, and a desired fuel consumption reduction effect and deceleration performance can be ensured. Further, since the battery charge state can be estimated and corrected each time regenerative control is performed, there is an advantage that the battery charge state (SOC) can be prevented from changing greatly, and the fuel consumption reduction effect and the deceleration performance can be obtained stably.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係るバッテリの充電状態制御装置の一実施形態を示すシステム構成図である。
図1において、エンジン1によりファンベルトを介して駆動されて発電するオルタネータ2は、後述するマイクロコンピュータを内蔵するECM(エンジンコントロールモジュール)7からの発電電圧指令を受けてレギュレータ3により発電電圧が制御される。バッテリ4は、オルタネータ2の発電電圧に応じて充放電可能にオルタネータ2に接続されている。電流センサ5は、バッテリ4の充放電電流を検出し、その検出出力をECM7に入力する。6はバッテリ温度を検出する温度センサである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram showing an embodiment of a battery charge state control apparatus according to the present invention.
In FIG. 1, an alternator 2 that is driven by an engine 1 through a fan belt to generate electric power receives a generated voltage command from an ECM (engine control module) 7 having a microcomputer to be described later, and the generated voltage is controlled by a regulator 3. Is done. The battery 4 is connected to the alternator 2 so as to be chargeable / dischargeable according to the generated voltage of the alternator 2. The current sensor 5 detects the charge / discharge current of the battery 4 and inputs the detection output to the ECM 7. Reference numeral 6 denotes a temperature sensor for detecting the battery temperature.

ECM7は、例えばコンピュータを内蔵してバッテリ4からの電力供給により駆動し、図示しない各種センサからの信号によりエンジン運転状態を制御すると共に、減速時に回生制御を行う。また、回生制御後のバッテリ4の充電状態(SOC)を、回生発電時に充電可能なように予め定めた設定値(例えば定格容量の90%)に制御する。ECM7は、スロットルセンサとエンジン回転数センサからの信号により、スロットル弁が略全閉のアイドル状態でエンジン回転数が所定以上の減速時に、燃料噴射を停止する燃料カット制御を行い、この燃料カット中に、オルタネータ2のレギュレータ3に対して高い発電電圧指令値(例えば14.5V)を出力して回生発電させてバッテリ4を充電し、この回生発電後、バッテリ電圧(例えば約12.8V)より低い発電電圧指令値(例えば12.5V)を出力してバッテリ4を放電させる。この回生制御において、回生発電後の放電時のバッテリ電圧値からバッテリ4の充電状態(SOC)を推定し、推定結果に基づいてバッテリ4の放電量を可変制御することにより、回生制御後のバッテリ4の充電状態(SOC)が、常時充電可能な前記設定値となるよう制御する。また、ECM7は、充電モードに移行したときにバッテリ4を設定値まで強制充電するために、予めバッテリ4を設定値まで充電したときの充電電流値をメモリに記憶している。   The ECM 7 includes, for example, a computer and is driven by power supply from the battery 4. The ECM 7 controls the engine operating state by signals from various sensors (not shown) and performs regenerative control during deceleration. Further, the state of charge (SOC) of the battery 4 after the regenerative control is controlled to a preset value (for example, 90% of the rated capacity) so that the battery 4 can be charged during regenerative power generation. The ECM 7 performs fuel cut control to stop fuel injection when the engine speed is decelerated more than a predetermined value in the idle state where the throttle valve is substantially fully closed, based on signals from the throttle sensor and the engine speed sensor. In addition, a high power generation voltage command value (for example, 14.5V) is output to the regulator 3 of the alternator 2 to generate regenerative power to charge the battery 4, and after this regenerative power generation, from the battery voltage (for example, about 12.8V) A low power generation voltage command value (for example, 12.5 V) is output to discharge the battery 4. In this regenerative control, the state of charge (SOC) of the battery 4 is estimated from the battery voltage value at the time of discharge after regenerative power generation, and the discharge amount of the battery 4 is variably controlled based on the estimation result. 4 is controlled so that the state of charge (SOC) 4 becomes the set value that can be always charged. Further, the ECM 7 stores in memory a charge current value when the battery 4 is charged to the set value in advance in order to forcibly charge the battery 4 to the set value when the charging mode is shifted.

次に、本実施形態のECM7によるバッテリ4の充電状態制御動作を図2のフローチャートを参照して説明する。
ステップ1(図中、S1で示し、以下同様とする)では、放電開始か否かを判定する。図3に示すように、減速燃料カット中にECM7から高い発電電圧指令値(例えば14.5V)がオルタネータ2に出力され回生発電が開始され、その後、ECM7から低い発電電圧指令値(例えば12.5V)が出力されると放電開始と判断し、判定がYESとなりステップ2に進む。
Next, the charge state control operation of the battery 4 by the ECM 7 of this embodiment will be described with reference to the flowchart of FIG.
In step 1 (indicated by S1 in the figure, the same shall apply hereinafter), it is determined whether or not the discharge is started. As shown in FIG. 3, during the deceleration fuel cut, a high power generation voltage command value (for example, 14.5 V) is output from the ECM 7 to the alternator 2 and regenerative power generation is started. 5V) is output, it is determined that the discharge is started, the determination is YES, and the process proceeds to step 2.

ステップ2〜4で、電流センサ5の出力状態からバッテリ4の放電開始が確認されたときのバッテリ電圧を放電時のバッテリ電圧C(図4の黒丸で示す)とし、このバッテリ電圧Cとバッテリ4の充電状態(SOC)判定用に図4に示すように予め設定した閾値範囲の上下限値D1,D2及び過放電判定用閾値D3の比較判定を行う。
ステップ2では、放電時のバッテリ電圧Cと閾値範囲の上限値D1とを比較しC>D1か否かを判定する。判定がNOであればステップ3に進む。ステップ3では、バッテリ電圧Cと前記閾値範囲の下限値D2及び過放電判定用閾値D3と比較しD2>C>D3か否かを判定する。判定がNOであればステップ4に進む。ステップ4では、バッテリ電圧Cと過放電判定用閾値D3と比較しC<D3か否かを判定する。
In steps 2 to 4, the battery voltage when the start of discharging of the battery 4 is confirmed from the output state of the current sensor 5 is the battery voltage C at the time of discharging (indicated by a black circle in FIG. 4). As shown in FIG. 4, the upper and lower limit values D1 and D2 of the preset threshold range and the overdischarge determination threshold value D3 are compared for determination of the state of charge (SOC).
In step 2, the battery voltage C at the time of discharging is compared with the upper limit value D1 of the threshold range, and it is determined whether C> D1. If the determination is NO, the process proceeds to step 3. In step 3, it is determined whether D2>C> D3 by comparing the battery voltage C with the lower limit value D2 of the threshold value range and the overdischarge determination threshold value D3. If the determination is NO, the process proceeds to step 4. In step 4, the battery voltage C is compared with the overdischarge determination threshold D3 to determine whether C <D3.

ステップ2〜4の判定が全てNO、即ち、放電時のバッテリ電圧Cが図4に実線で示すように前記閾値範囲内(D2≦C≦D1)にあるときは、回生発電前のバッテリ4の充電状態(SOC)が予め定めた常時充電可能な設定値(例えば90%)であると推定する。この場合、その後の放電時では、回生発電で蓄えられた充電量SOC(充電電流積算値)分を放電するよう放電時間を設定し、その間、オルタネータ2の発電電圧指令値を12.5Vとしてバッテリ4を放電させる。   When all the determinations in steps 2 to 4 are NO, that is, when the battery voltage C at the time of discharging is within the threshold range (D2 ≦ C ≦ D1) as shown by the solid line in FIG. It is estimated that the state of charge (SOC) is a preset value (for example, 90%) that can be charged at any time. In this case, at the time of subsequent discharge, the discharge time is set so as to discharge the charge amount SOC (charge current integrated value) stored in the regenerative power generation, and during that time, the power generation voltage command value of the alternator 2 is set to 12.5V. 4 is discharged.

一方、ステップ2で、図4の点線で示すようにバッテリ電圧Cが上限値D1より大(C>D1)で判定がYESの場合は、回生発電前のバッテリの充電状態(SOC)は予め定めた充電可能な設定値(例えば90%)より大きいと推定し、ステップ5に進む。
ステップ5では、回生発電中の充電電流積算値(充電量SOCに相当する)に予め定めた所定量(例えばバッテリ4の定格SOCの1%)加算し、回生発電による充電分より多い放電量に設定してバッテリ4の充電状態(SOC)を低下させる方向に修正する。この場合、その後の放電時では、回生発電で蓄えられた充電量SOC(充電電流積算値)分より多い放電量となるよう放電時間を長くする。
On the other hand, in step 2, when the battery voltage C is larger than the upper limit value D1 (C> D1) and the determination is YES as shown by the dotted line in FIG. 4, the state of charge (SOC) of the battery before regenerative power generation is determined in advance. It is estimated that the set value is larger than the settable chargeable value (for example, 90%), and the process proceeds to Step 5.
In step 5, a predetermined amount (for example, 1% of the rated SOC of the battery 4) is added to the charge current integrated value (corresponding to the charge amount SOC) during regenerative power generation, so that the discharge amount is larger than the charge amount due to regenerative power generation. It is set and corrected so as to decrease the state of charge (SOC) of the battery 4. In this case, at the time of subsequent discharge, the discharge time is lengthened so that the discharge amount is larger than the charge amount SOC (charge current integrated value) stored in the regenerative power generation.

また、ステップ3で、図4の一点鎖線で示すようにバッテリ電圧Cが下限値D2と過放電判定用閾値D3の間(D2>C>D3)にあり判定がYESになると、回生発電前のバッテリの充電状態(SOC)は予め定めた充電可能な設定値(例えば90%)より小さいと推定し、ステップ6に進む。
ステップ6では、回生発電中の充電電流積算値(充電量SOCに相当する)から予め定めた所定量(例えばバッテリ4の定格SOCの1%)減算し、回生発電による充電分より少ない放電量に設定してバッテリ4の充電状態(SOC)を増大させる方向に修正する。この場合、その後の放電時では、回生発電で蓄えられた充電量SOC(充電電流積算値)分より少ない放電量となるよう放電時間を短くする。
In step 3, when the battery voltage C is between the lower limit value D2 and the overdischarge determination threshold D3 (D2>C> D3) as shown by the one-dot chain line in FIG. 4, the determination becomes YES. The state of charge (SOC) of the battery is estimated to be smaller than a predetermined chargeable setting value (for example, 90%), and the process proceeds to step 6.
In step 6, a predetermined amount (for example, 1% of the rated SOC of the battery 4) is subtracted from the charging current integrated value (corresponding to the charging amount SOC) during the regenerative power generation, so that the discharge amount is smaller than the charge amount due to the regenerative power generation. It is set and corrected so as to increase the state of charge (SOC) of the battery 4. In this case, at the time of subsequent discharge, the discharge time is shortened so that the discharge amount is smaller than the charge amount SOC (charge current integrated value) stored in the regenerative power generation.

ステップ6の修正が連続n回行われるまでは、ステップ7の判定はNOとなり、ステップ8に進み、バッテリ4を強制充電する充電モードに移行する。充電モードに移行した場合は、バッテリ充電状態(SOC)が設定値(90%)相当のときの予め記憶させた充電電流値となるようにオルタネータ2の発電電圧を強制的に高くして、バッテリ4の充電状態(SOC)を強制的に設定値(SOC90%)まで充電してバッテリ上がりを防止する。強制充電したにも拘わらず、ステップ3のYES判定が連続n回行われた場合は、ステップ7からステップ9に進み、強制充電しているにも拘わらずバッテリ4の過放電状態が解消されないことから、バッテリ4は劣化していると判断し、回生制御を禁止してバッテリ4の劣化の進行を抑える。   Until the correction in step 6 is performed n times in succession, the determination in step 7 is NO, and the process proceeds to step 8 where the battery 4 is forcibly charged. When the mode is changed to the charging mode, the power generation voltage of the alternator 2 is forcibly increased so that the charging current value stored in advance when the battery charging state (SOC) corresponds to the set value (90%) is obtained. 4 is forcibly charged to a set value (SOC 90%) to prevent the battery from running out. If YES in step 3 is performed n times in spite of the forced charging, the process proceeds from step 7 to step 9 and the overdischarge state of the battery 4 is not cleared despite the forced charging. Therefore, it is determined that the battery 4 has deteriorated, and the regeneration control is prohibited to suppress the progress of deterioration of the battery 4.

また、ステップ4で、図4の二点鎖線で示すようにバッテリ電圧Cが過放電判定用閾値D3より小(C<D3)で判定がYESになると、回生発電前のバッテリの充電状態(SOC)は過放電状態と推定する。そして、ステップ10で、ステップ4のYES判定がn回連続したか否かを判定し、n回未満であればステップ11に進む。
ステップ11では、バッテリ充電モードに移行し、ステップ8と同様にしてバッテリ4を強制充電してバッテリ上がりを防止する。
In step 4, when the battery voltage C is smaller than the overdischarge determination threshold D3 (C <D3) and the determination is YES as shown by a two-dot chain line in FIG. 4, the state of charge of the battery (SOC) before regenerative power generation is determined. ) Is assumed to be an overdischarged state. Then, in step 10, it is determined whether or not the YES determination in step 4 is continued n times. If it is less than n times, the process proceeds to step 11.
In step 11, the battery charging mode is entered and the battery 4 is forcibly charged in the same manner as in step 8 to prevent the battery from running out.

過放電判定がn回連続してステップ10の判定がYESになるとステップ12に進み、強制充電しているにも拘わらず過放電状態が解消されないことから、バッテリ4は劣化していると判断して回生制御を禁止し、バッテリ4の劣化の進行を抑える。
尚、ステップ5の放電量の増大制御を繰り返してもバッテリ電圧Cが低下しない場合は、システムの異常が考えられるので、装置異常と判断し適切な異常処理を行うことが望ましい。
If the determination of step 10 becomes YES after the overdischarge determination is continued n times, the process proceeds to step 12 and the battery 4 is determined to be deteriorated because the overdischarge state is not resolved despite the forced charging. Regenerative control is prohibited, and the progress of deterioration of the battery 4 is suppressed.
If the battery voltage C does not decrease even if the discharge amount increase control in step 5 is repeated, it is considered that the system is abnormal. Therefore, it is desirable to determine that the apparatus is abnormal and perform appropriate abnormality processing.

かかる本実施形態のバッテリの充電状態制御装置によれば、回生発電後の放電開始時のバッテリ電圧に基づいて回生制御前のバッテリ充電状態(SOC)を推定し、充電状態(SOC)が設定値より小さいと推定される場合にはその後の放電量を回生発電で得られた充電量より少なくし、充電状態(SOC)が設定値より大きいと推定される場合にはその後の放電量を回生発電で得られた充電量より多くするよう放電量を可変制御するので、バッテリ4を回生発電によって常時充電可能な一定状態に保つことができる。従って、所望の燃費低減効果を及び減速性能を確保できる。   According to the battery state of charge control device of this embodiment, the battery state of charge (SOC) before regenerative control is estimated based on the battery voltage at the start of discharge after regenerative power generation, and the state of charge (SOC) is a set value. If it is estimated to be smaller, the subsequent discharge amount is made smaller than the charge amount obtained by regenerative power generation. If the state of charge (SOC) is estimated to be larger than the set value, the subsequent discharge amount is regenerated. Since the discharge amount is variably controlled so as to be larger than the charge amount obtained in the above, the battery 4 can be kept in a constant state that can be always charged by regenerative power generation. Therefore, a desired fuel consumption reduction effect and deceleration performance can be ensured.

また、放電開始時のバッテリ電圧の低下が大きく過放電状態と判断した場合、強制充電することによりバッテリ上がりを防止できる。更に、強制充電を繰り返しても過放電と判定される場合や放電量の減少制御を繰り返してもバッテリ電圧が上昇しない場合、バッテリ4の劣化と判断して回生制御を禁止するので、バッテリ4の劣化の進行を抑えることができる。   In addition, when it is determined that the battery voltage is greatly reduced at the start of discharging and is in an overdischarged state, the battery can be prevented from being discharged by forcibly charging. Further, if it is determined that the battery is over-discharged even after repeated forced charging, or if the battery voltage does not rise even after repeated discharge amount reduction control, it is determined that the battery 4 has deteriorated and regenerative control is prohibited. Progress of deterioration can be suppressed.

また、回生制御の度にバッテリ充電状態を推定し修正できるので、バッテリ充電状態(SOC)が大きく変化するのを防止でき、燃費低減効果や減速性能が安定して得られる。
尚、放電時のバッテリ電圧は、バッテリ4の温度と放電電流に依存するので、放電時のバッテリ電圧Cを、放電電流とバッテリ温度に基づいて補正し、補正したバッテリ電圧Cと上下限値D1,D2及び過放電判定用閾値D3とを比較するようにすれば、バッテリ4の充電状態(SOC)の推定精度が向上する。尚、バッテリ温度は、吸気温度、エンジン水温等から推定するようにしてもよい。
Further, since the battery charge state can be estimated and corrected every time regenerative control is performed, it is possible to prevent the battery charge state (SOC) from changing greatly, and the fuel consumption reduction effect and the deceleration performance can be stably obtained.
Since the battery voltage at the time of discharge depends on the temperature and discharge current of the battery 4, the battery voltage C at the time of discharge is corrected based on the discharge current and the battery temperature, and the corrected battery voltage C and the upper and lower limit values D1 are corrected. , D2 and the overdischarge determination threshold value D3, the estimation accuracy of the state of charge (SOC) of the battery 4 is improved. The battery temperature may be estimated from the intake air temperature, the engine water temperature, and the like.

本発明に係るバッテリの充電状態制御装置の一実施形態のシステム構成図The system block diagram of one Embodiment of the charge condition control apparatus of the battery which concerns on this invention 同上実施形態の充電状態制御動作を説明するフローチャートFlowchart for explaining the charge state control operation of the embodiment 同上実施形態の充電状態制御動作を説明するタイミングチャートTiming chart for explaining the charge state control operation of the embodiment 放電時のバッテリ電圧と上下限値及び放電判定用閾値との関係を示す図The figure which shows the relationship between the battery voltage at the time of discharge, the upper and lower limit value, and the threshold value for discharge determination

符号の説明Explanation of symbols

1 エンジン
2 オルタネータ
3 レギュレータ
4 バッテリ
5 電流センサ
6 温度センサ
7 ECM
1 Engine 2 Alternator 3 Regulator 4 Battery 5 Current sensor 6 Temperature sensor 7 ECM

Claims (8)

車両の減速時に、エンジンで駆動するオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電した後、オルタネータの発電電圧を下げてバッテリを放電させて、バッテリの充電状態(SOC)を予め定めた充電可能な設定値に制御するバッテリの充電状態御装置であって、
前記回生発電後の放電時のバッテリ電圧に基づいて前記バッテリの充電状態(SOC)を推定し、推定結果に基づいてバッテリの放電量を可変制御し、バッテリの充電状態(SOC)を前記設定値となるように制御する構成としたことを特徴とするバッテリの充電状態制御装置。
When the vehicle decelerates, the power generation voltage of the alternator driven by the engine is increased and regenerative power generation is performed to charge the battery. Then, the power generation voltage of the alternator is decreased to discharge the battery, and the state of charge (SOC) of the battery is determined in advance. A battery charge state control device that controls the set value to be rechargeable,
The state of charge (SOC) of the battery is estimated based on the battery voltage at the time of discharging after the regenerative power generation, the amount of discharge of the battery is variably controlled based on the estimation result, and the state of charge (SOC) of the battery is set to the set value. The battery state-of-charge control device is configured to control so that
前記放電時のバッテリ電圧が予め設定した閾値範囲の上限値より大きいとき、バッテリの充電状態(SOC)が前記設定値より大きいと推定し、前記放電量を、前記回生発電で得られた充電量より多くする構成としたことを特徴とする請求項1に記載のバッテリの充電状態制御装置。   When the battery voltage at the time of discharging is larger than an upper limit value of a preset threshold range, it is estimated that the state of charge (SOC) of the battery is larger than the set value, and the amount of discharge is obtained by the regenerative power generation. The battery charge state control device according to claim 1, wherein the battery charge state control device is further increased. 前記放電時のバッテリ電圧が予め設定した閾値範囲の下限値より小さいとき、バッテリの充電状態(SOC)が前記設定値より小さいと推定し、前記放電量を、前記回生発電で得られた充電量より少なくする構成としたことを特徴とする請求項1又は2に記載のバッテリの充電状態制御装置。   When the battery voltage at the time of discharging is smaller than a lower limit value of a preset threshold range, it is estimated that the state of charge (SOC) of the battery is smaller than the set value, and the amount of discharge is obtained by the regenerative power generation. The battery state-of-charge control device according to claim 1, wherein the battery charge state control device is further reduced. 前記閾値範囲の下限値より小さい過放電判定用閾値を設定し、前記放電時のバッテリ電圧が前記過放電判定用閾値より小さいとき、バッテリが過放電状態と判定し、バッテリを前記設定値まで強制充電する構成としたことを特徴とする請求項2又は3のいずれか1つに記載のバッテリの充電状態制御装置。   An overdischarge determination threshold value smaller than the lower limit value of the threshold range is set, and when the battery voltage at the time of discharge is smaller than the overdischarge determination threshold value, the battery is determined to be in an overdischarge state and the battery is forced to the set value. The charging state control device for a battery according to any one of claims 2 and 3, wherein the charging state control device is configured to be charged. 前記バッテリ過放電判定が所定回数連続したとき、回生制御を禁止する構成としたことを特徴とする請求項4に記載のバッテリの充電状態制御装置。   The battery state-of-charge control device according to claim 4, wherein regenerative control is prohibited when the battery overdischarge determination is continued a predetermined number of times. 前記放電量は、予め定めた所定量ずつ増減する構成としたことを特徴とする請求項2〜5のいずれか1つに記載のバッテリの充電状態制御装置。   6. The battery charge state control device according to claim 2, wherein the discharge amount is increased or decreased by a predetermined amount. 前記放電時のバッテリ電圧は、バッテリの放電開始点の値を用いることを特徴とする請求項1〜6のいずれか1つに記載のバッテリの充電状態制御装置。   The battery charge state control device according to any one of claims 1 to 6, wherein a value of a discharge start point of the battery is used as the battery voltage at the time of discharging. 前記放電時のバッテリ電圧を、バッテリの温度と放電電流に応じて補正することを特徴とする請求項1〜7のいずれか1つに記載のバッテリの充電状態制御装置。   The battery state-of-charge control device according to claim 1, wherein the battery voltage at the time of discharging is corrected according to a temperature and a discharging current of the battery.
JP2006145676A 2006-05-25 2006-05-25 State-of-charge controller of battery Pending JP2007318913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145676A JP2007318913A (en) 2006-05-25 2006-05-25 State-of-charge controller of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145676A JP2007318913A (en) 2006-05-25 2006-05-25 State-of-charge controller of battery

Publications (1)

Publication Number Publication Date
JP2007318913A true JP2007318913A (en) 2007-12-06

Family

ID=38852250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145676A Pending JP2007318913A (en) 2006-05-25 2006-05-25 State-of-charge controller of battery

Country Status (1)

Country Link
JP (1) JP2007318913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038983A (en) * 2011-08-10 2013-02-21 Mitsubishi Electric Corp Charger, on-vehicle charger, charging method for on-vehicle charger
JP2015504648A (en) * 2011-11-30 2015-02-12 ハー−テク アーゲー Method and apparatus for charging a rechargeable battery
US9969294B2 (en) 2015-07-31 2018-05-15 Toyota Jidosha Kabushiki Kaisha Power supply control system
WO2019176369A1 (en) * 2018-03-14 2019-09-19 日立オートモティブシステムズ株式会社 Charging control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038983A (en) * 2011-08-10 2013-02-21 Mitsubishi Electric Corp Charger, on-vehicle charger, charging method for on-vehicle charger
JP2015504648A (en) * 2011-11-30 2015-02-12 ハー−テク アーゲー Method and apparatus for charging a rechargeable battery
US9793733B2 (en) 2011-11-30 2017-10-17 H-Tech Ag Method and apparatus for charging rechargeable cells
US9969294B2 (en) 2015-07-31 2018-05-15 Toyota Jidosha Kabushiki Kaisha Power supply control system
WO2019176369A1 (en) * 2018-03-14 2019-09-19 日立オートモティブシステムズ株式会社 Charging control device

Similar Documents

Publication Publication Date Title
US7570021B2 (en) Rechargeable battery controller and method for controlling output of rechargeable battery
US9156467B2 (en) Vehicle power generating device and power generation control method
KR101888987B1 (en) Power supply system for vehicle
CN110535218B (en) Battery discharge control device
CN109387790B (en) Power supply system
JP2010140762A (en) Determination device for determining lithium ion battery state
US10498154B2 (en) Electric power system
US20150048802A1 (en) Power generation device for vehicle and power generation control method
JP4858277B2 (en) Vehicle power generation control device
JP2007318913A (en) State-of-charge controller of battery
JP2010273523A (en) Charge control device
JP4064398B2 (en) Charge / discharge control device for motor battery
JP4635961B2 (en) Battery charge state control device
JP2005218251A (en) Torque controller
JP2014011826A (en) Battery state of charge controller for vehicle
JP2006022710A (en) Control device for idling stop vehicle
JP6587432B2 (en) Alternator power generation control device
JP6464964B2 (en) Control device for internal combustion engine
JP6471599B2 (en) Vehicle power generation control device
JP2007057422A (en) Error correction device for current sensor
JP2005348526A (en) Voltage controller for generator in vehicle
JP4049044B2 (en) Voltage generator for vehicle generator
JP5277976B2 (en) Vehicle power generation control device
JP2015004356A (en) Vehicular power supply device
JP2014135873A (en) Secondary battery management device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331