JP2014011826A - Battery state of charge controller for vehicle - Google Patents

Battery state of charge controller for vehicle Download PDF

Info

Publication number
JP2014011826A
JP2014011826A JP2012144847A JP2012144847A JP2014011826A JP 2014011826 A JP2014011826 A JP 2014011826A JP 2012144847 A JP2012144847 A JP 2012144847A JP 2012144847 A JP2012144847 A JP 2012144847A JP 2014011826 A JP2014011826 A JP 2014011826A
Authority
JP
Japan
Prior art keywords
battery
charge
state
vehicle
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012144847A
Other languages
Japanese (ja)
Inventor
Takamitsu Hase
貴充 長谷
Takashi Watanabe
剛史 渡邊
Yugo Mogi
勇悟 茂木
Satoshi Yajima
聡 矢島
Tetsutaro Nakagawa
哲太郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012144847A priority Critical patent/JP2014011826A/en
Publication of JP2014011826A publication Critical patent/JP2014011826A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery state of charge controller for a vehicle capable of accurately determining a state of charge of a battery on the basis of a current value of charge/discharge current of the battery, even when the battery has been deteriorated.SOLUTION: A battery state of charge controller for a vehicle comprises: a power generator which is driven by an engine and supplies power to an electric apparatus for the vehicle while charging a battery; and a current sensor for detecting a current value of charge/discharge current of the battery. The controller determines that the charge of the battery is completed, when the current value of the battery decreases to equal to or lower than a predetermined charge threshold C1. The controller detects the degree of deterioration of the battery, and corrects the charge threshold depending on the degree of deterioration of the battery so that the charge threshold is lower (C2 and C3) as the degree of deterioration of the battery increases.

Description

本発明は、車両に搭載されるバッテリの充電状態(SOC:state of charge)を制御する技術に関する。   The present invention relates to a technique for controlling a state of charge (SOC) of a battery mounted on a vehicle.

バッテリを搭載する車両では、車両の減速時に発電機の出力電圧(発電電圧)を高めて回生発電を行ってバッテリを充電し、その後、回生発電によりバッテリに蓄えた電気で車載の電気装置の消費電力を賄うことにより、発電機の駆動に要するエネルギーを低減し、燃費を向上させるようにしている(特許文献1参照)。   In a vehicle equipped with a battery, when the vehicle decelerates, the generator output voltage (power generation voltage) is increased to generate regenerative power to charge the battery, and then the electric power stored in the battery by regenerative power generation consumes in-vehicle electrical equipment. By covering the electric power, the energy required for driving the generator is reduced and the fuel consumption is improved (see Patent Document 1).

この発電機の減速回生制御による燃費低減効果や減速加速度性能等を一定に保つためには、バッテリの充電状態、つまりは、バッテリの充電可能容量に対して実際に充電されている充電量の割合(%)を、充電可能な予め定めた設定範囲内(例えば、80〜85%)に制御する必要がある。   In order to keep the fuel consumption reduction effect and deceleration acceleration performance, etc., by the deceleration regeneration control of this generator constant, the charge state of the battery, that is, the ratio of the charge amount actually charged to the chargeable capacity of the battery (%) Needs to be controlled within a predetermined setting range (for example, 80 to 85%) that can be charged.

そこで、バッテリの充電状態(SOC)を検出する方法として、例えば上記の特許文献1にも記載のものでは、バッテリの充電状態が高くなるほど、バッテリの充放電電流の電流値が低くなる特性を利用し、このバッテリの電流値を用いてバッテリの充電完了を判定している。   Therefore, as a method for detecting the state of charge (SOC) of the battery, for example, the method described in Patent Document 1 uses the characteristic that the current value of the charge / discharge current of the battery decreases as the state of charge of the battery increases. Then, the completion of charging of the battery is determined using the current value of the battery.

一方、バッテリの充放電が繰り返されると、バッテリが不可避的に劣化し、バッテリの充電可能容量が低下していくことが知られている(特許文献2参照)。
特開2007−318888号公報 特開2004−180478号公報
On the other hand, it is known that when the battery is repeatedly charged and discharged, the battery inevitably deteriorates and the chargeable capacity of the battery decreases (see Patent Document 2).
JP 2007-318888 A JP 2004-180478 A

バッテリの劣化に伴い、バッテリの電流値とバッテリの充電状態との関係が変化するために、バッテリの劣化を考慮することなく、バッテリの電流値に基づいてバッテリの充電状態を判定すると、バッテリの充電状態を誤って判定するおそれがある。このために、例えば、実際には充電が完了していないのに充電完了と誤判定された場合、十分に充電されていない状態でバッテリが放電モードとなり、バッテリの充電状態が過剰に低下するおそれがある。   Since the relationship between the battery current value and the battery charge state changes as the battery deteriorates, if the battery charge state is determined based on the battery current value without considering the battery deterioration, There is a risk of erroneously determining the state of charge. For this reason, for example, when it is erroneously determined that the charging is completed even though the charging is not actually completed, the battery is in the discharge mode in a state where the charging is not sufficiently performed, and the charging state of the battery may be excessively lowered. There is.

本発明は、このような事情に鑑みてなされたものであり、バッテリが劣化しても、バッテリの充放電電流の電流値に基づいてバッテリの充電状態を精度良く判定し得る新規な車両のバッテリ充電状態制御装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and a battery for a novel vehicle that can accurately determine the state of charge of the battery based on the current value of the charge / discharge current of the battery even if the battery deteriorates. It aims at providing a charge condition control apparatus.

本発明に係る車両のバッテリ充電状態制御装置は、車両に搭載されて、電力の充電及び放電が可能なバッテリと、エンジンにより駆動されて、車両用の電気装置へ電力を供給するとともに、上記バッテリを充電する発電機と、を備え、バッテリの充電状態に応じて発電機の発電を抑制し、バッテリからの放電により車両用の電気装置へ電力を供給可能である。そして、上記バッテリの充放電電流の電流値を検出する電流値検出手段と、エンジン始動に伴って上昇し、その後低下する充電電流値が所定の充電閾値以下になると、上記バッテリの充電が完了したと判定するバッテリ充電完了判定手段と、上記バッテリの劣化度を検出するバッテリ劣化度検出手段と、上記バッテリの劣化度に応じて、上記充電閾値を補正する閾値補正手段と、を有することを特徴としている。   A battery charge state control device for a vehicle according to the present invention is mounted on a vehicle and is capable of charging and discharging electric power, and is driven by an engine to supply electric power to an electric device for the vehicle. And a generator that charges the vehicle, suppresses the power generation of the generator according to the state of charge of the battery, and can supply electric power to the electric device for the vehicle by discharging from the battery. Then, the current value detecting means for detecting the current value of the charging / discharging current of the battery, and the charging of the battery is completed when the charging current value that rises with engine start and then falls below a predetermined charging threshold value Battery charge completion determination means for determining, battery deterioration detection means for detecting the battery deterioration degree, and threshold correction means for correcting the charging threshold according to the battery deterioration degree. It is said.

本発明によれば、バッテリの劣化度に応じて充電閾値を補正することで、バッテリが劣化した場合であっても、バッテリの劣化度を考慮した形で、バッテリの充電電流値に基づいてバッテリの充電状態を精度良く判定することができる。従って、バッテリの充電状態を予め定めた設定範囲内に制御することが可能となり、充放電性能が向上するとともに、バッテリの過放電や過充電を抑制することができる。   According to the present invention, by correcting the charging threshold according to the degree of deterioration of the battery, even if the battery is deteriorated, the battery is determined based on the charging current value of the battery in a form that takes into account the degree of deterioration of the battery. Can be accurately determined. Therefore, it is possible to control the state of charge of the battery within a predetermined setting range, improving the charge / discharge performance and suppressing the overdischarge and overcharge of the battery.

本発明の一実施例に係る車両のバッテリ充電状態制御装置を示すシステム構成図。1 is a system configuration diagram showing a vehicle battery charge state control device according to an embodiment of the present invention. 本実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control concerning a present Example. 本実施例を適用した場合のバッテリ充電状態等の変化を示すタイミングチャート。The timing chart which shows changes, such as a battery charge state at the time of applying a present Example. 本実施例に係るエンジン始動直後の充電状態におけるバッテリ劣化度に応じた充電閾値の補正を説明するための説明図。Explanatory drawing for demonstrating correction | amendment of the charge threshold value according to the battery deterioration degree in the charge state immediately after engine starting which concerns on a present Example. 同じく本実施例に係るエンジン始動直後の充電状態におけるバッテリ劣化度に応じた充電閾値の補正を説明するための説明図。Explanatory drawing for demonstrating correction | amendment of the charge threshold value according to the battery degradation degree in the charge state immediately after engine starting which concerns on a present Example. 本実施例に係る回生制御状態でのバッテリの劣化度に応じた充電閾値の補正を説明するための説明図。Explanatory drawing for demonstrating correction | amendment of the charge threshold value according to the deterioration degree of the battery in the regeneration control state which concerns on a present Example.

以下、図示実施例により本発明を説明する。図1は、本発明に係る車両のバッテリ充電状態制御装置の一実施例を示すシステム構成図である。この車両には、タイミングベルト2を介してエンジン1により駆動されて発電を行う発電機3と、電力の充電及び発電を行うバッテリ4と、バッテリ4や発電機3から供給される電力により作動するエアコンコンプレッサ等の電気装置5と、が設けられている。バッテリ4のマイナス側のケーブルには電流センサ6が取り付けられ、バッテリ4の充放電電流を検知し、その電流値に応じた電圧信号を制御部としてのECM(エンジンコントロールモジュール)7へ送信する。   Hereinafter, the present invention will be described with reference to illustrated embodiments. FIG. 1 is a system configuration diagram showing an embodiment of a battery charge state control device for a vehicle according to the present invention. This vehicle is operated by a generator 3 that is driven by the engine 1 through the timing belt 2 to generate power, a battery 4 that charges and generates power, and power supplied from the battery 4 and the generator 3. And an electric device 5 such as an air conditioner compressor. A current sensor 6 is attached to the negative cable of the battery 4, detects a charge / discharge current of the battery 4, and transmits a voltage signal corresponding to the current value to an ECM (engine control module) 7 as a control unit.

ECM7は、各種エンジン制御処理を記憶及び実行可能なものであり、後述するように、電流センサ6により検出されるバッテリ4の(充電)電流値に基づいてバッテリ4の充電状態SOCを判定するとともに、このバッテリ4の充電状態SOCに応じて、発電機3の発電電圧可変制御を行い、バッテリの4の充放電を制御する。   The ECM 7 can store and execute various engine control processes. As will be described later, the ECM 7 determines the state of charge SOC of the battery 4 based on the (charge) current value of the battery 4 detected by the current sensor 6. Depending on the state of charge SOC of the battery 4, the power generation voltage variable control of the generator 3 is performed to control charging / discharging of the battery 4.

すなわち、ECM7は、バッテリ4の充電状態に応じた目標発電電圧を演算し、その演算値を発電指令値として電装系コントローラ8へ送信する。電装系コントローラ8は、受信した発電指令DUTY値を発電指令信号に変換して、レギュレータ9へ送信する。レギュレータ9は、受信した発電指令信号に基づいて、発電機3の出力電圧(発電電圧)が目標発電電圧となるように制御する。なお、電装系コントローラ8を省略し、ECM7からレギュレータ9へ発電指令信号を直接的に送信するように構成しても良い。   That is, the ECM 7 calculates a target generated voltage according to the state of charge of the battery 4 and transmits the calculated value to the electrical system controller 8 as a power generation command value. The electrical system controller 8 converts the received power generation command DUTY value into a power generation command signal and transmits it to the regulator 9. Based on the received power generation command signal, the regulator 9 performs control so that the output voltage (power generation voltage) of the generator 3 becomes the target power generation voltage. The electrical system controller 8 may be omitted, and the power generation command signal may be directly transmitted from the ECM 7 to the regulator 9.

ECM7は、バッテリ4の充電状態SOC、つまり、バッテリ4の充電可能容量に対して実際に充電している割合(%)を判定し、この充電状態SOCが所定の制御範囲内(例えば、80%〜85%)となるように、バッテリ4の充電状態SOCに応じて、発電機3の出力電圧(目標発電電圧)を制御している。   The ECM 7 determines the state of charge SOC of the battery 4, that is, the proportion (%) of the battery 4 that is actually charged with respect to the chargeable capacity, and the state of charge SOC is within a predetermined control range (for example, 80%). The output voltage (target power generation voltage) of the generator 3 is controlled in accordance with the state of charge SOC of the battery 4 so as to be (˜85%).

図2は、このようなバッテリ4の充電状態SOCに応じた発電機3の出力電圧の制御の流れを示すフローチャートである。ステップS11では、エンジン1の1回目の始動、つりエンジン始動直後であるかを判定する。エンジン始動直後であれば、ステップS15へ進み、発電機3の出力電圧を、バッテリ電圧(例えば約13V)よりも高い値(例えば14〜15V)に設定する。これにより、発電機3の発電によりバッテリ4が充電される充電モードとなる。   FIG. 2 is a flowchart showing a flow of control of the output voltage of the generator 3 according to the state of charge SOC of the battery 4. In step S11, it is determined whether or not the engine 1 has been started for the first time and the suspension engine has just been started. If it is immediately after engine starting, it will progress to step S15 and will set the output voltage of the generator 3 to a value (for example, 14-15V) higher than a battery voltage (for example, about 13V). Thereby, it will be in the charge mode in which the battery 4 is charged by the power generation of the generator 3.

エンジン始動直後でなければ、ステップS11からステップS12へ進み、バッテリ4の充電状態SOCが所定の上限値α1(例えば、85%)以下であるか否か、つまりバッテリ4の充電が完了したか否かが判定される。ここで、バッテリ充電状態SOCが大きくなるほど、バッテリ4の電流値が小さくなる関係にあることから、このバッテリ充電完了の判定は、バッテリ4の電流値を用いて行われる。つまりバッテリ4の電流値が所定の充電閾値C1(C1’)以下に低下した時点で、バッテリ充電状態SOCが上限値α1に達したと判定している。   If not immediately after the engine is started, the process proceeds from step S11 to step S12, and whether or not the state of charge SOC of the battery 4 is equal to or lower than a predetermined upper limit value α1 (for example, 85%), that is, whether or not the charging of the battery 4 is completed. Is determined. Here, since the current value of the battery 4 decreases as the battery charge state SOC increases, this battery charge completion determination is performed using the current value of the battery 4. That is, when the current value of the battery 4 falls below a predetermined charging threshold C1 (C1 '), it is determined that the battery charge state SOC has reached the upper limit value α1.

バッテリ充電状態が上限値α1を超えていれば、ステップS12からステップS17へ進み、発電機3の出力電圧を、バッテリ電圧(約13V)よりも低い値(例えば11〜12V)に設定する。これによって、バッテリ4の放電によりバッテリ4から電気装置5へ電力が供給される放電モードとり、発電機3の発電によるエンジン負荷を軽減し、燃料消費量を低減することができる。   If the battery charge state exceeds the upper limit α1, the process proceeds from step S12 to step S17, and the output voltage of the generator 3 is set to a value (for example, 11 to 12V) lower than the battery voltage (about 13V). As a result, the discharge mode in which electric power is supplied from the battery 4 to the electric device 5 by discharging the battery 4 can be reduced, the engine load due to power generation by the generator 3 can be reduced, and the fuel consumption can be reduced.

バッテリ充電状態SOCが上限値α1以下であれば、バッテリ4が充電可能な状態にあると判断して、ステップS12からステップS13へ進む。このステップS13では、エンジン1の燃料カットを伴う車両の減速中であるか否かが判定される。減速中であれば、ステップS15へ進み、車両走行エネルギーを回生してバッテリ4を充電する回生制御が行われる。具体的には、ステップS15において、発電機3の出力電圧をバッテリ電圧よりも高い値(例えば14〜15V)に設定し、発電機3の発電によりバッテリ4を充電する充電モードとされる。   If the battery charge state SOC is not more than the upper limit value α1, it is determined that the battery 4 is in a chargeable state, and the process proceeds from step S12 to step S13. In step S13, it is determined whether the vehicle accompanying the fuel cut of the engine 1 is being decelerated. If it is decelerating, it will progress to step S15 and regeneration control which regenerates vehicle driving energy and charges the battery 4 will be performed. Specifically, in step S <b> 15, the output voltage of the generator 3 is set to a value (for example, 14 to 15 V) higher than the battery voltage, and the battery 4 is charged by the power generation of the generator 3.

一方、減速中でなければ、ステップS13からステップS14へ進み、バッテリ充電状態SOCが、上記の上限値α1よりも低い値である所定の下限値α2(例えば80%)以下であるか否かを判定する。例えば、電流センサ6により検出されるバッテリ4の電流値を用いてバッテリ4の充電電流の積算値を求め、この積算値を用いてバッテリ充電状態SOCが下限値α2以下であるかの判定を行うことができる。   On the other hand, if the vehicle is not decelerating, the process proceeds from step S13 to step S14, and it is determined whether or not the battery charge state SOC is equal to or lower than a predetermined lower limit value α2 (for example, 80%) that is a value lower than the upper limit value α1. judge. For example, the integrated value of the charging current of the battery 4 is obtained using the current value of the battery 4 detected by the current sensor 6, and it is determined whether the battery charge state SOC is equal to or lower than the lower limit value α2 using this integrated value. be able to.

バッテリ充電状態SOCが下限値α2よりも大きければ(α2<SOC<α1)、ステップS14からステップS17へ進み、出力電圧をバッテリ電圧よりも低い値に設定して、上記の放電モードとする。一方、バッテリ充電状態SOCが下限値α2以下に低下していれば、ステップS14からステップS16へ進み、発電機3の出力電圧を、バッテリ電圧とほぼ同等の中間の値(例えば、約13V)に設定する。これによって、バッテリ4が充電も放電もされない状態となり、バッテリ4が充電もしくは放電される機会を軽減し、バッテリ4の劣化の進行を抑制することができる。   If the battery charge state SOC is larger than the lower limit value α2 (α2 <SOC <α1), the process proceeds from step S14 to step S17, the output voltage is set to a value lower than the battery voltage, and the above discharge mode is set. On the other hand, if the battery state of charge SOC has dropped below the lower limit value α2, the process proceeds from step S14 to step S16, and the output voltage of the generator 3 is set to an intermediate value (for example, about 13V) substantially equal to the battery voltage. Set. As a result, the battery 4 is neither charged nor discharged, the opportunity for the battery 4 to be charged or discharged is reduced, and the progress of deterioration of the battery 4 can be suppressed.

図3は、このような本実施例を適用した場合のバッテリ充電状態SOC等の変化を示すタイミングチャートである。バッテリ4の充電状態SOCが低いエンジン1の始動直後では(t1〜)、上述したように、発電機3の出力電圧が高い値に設定されて充電モードとなり、バッテリ4の充電が行われる。そして、バッテリ4の電流値が所定の充電閾値C1まで低下すると(t2)、バッテリ4の充電状態SOCが上限値α1に達し、充電が完了したと判断して、出力電圧を低い値として、放電モードへと移行する。   FIG. 3 is a timing chart showing changes in the battery charge state SOC or the like when the present embodiment is applied. Immediately after the start of the engine 1 where the state of charge SOC of the battery 4 is low (t1 to t), as described above, the output voltage of the generator 3 is set to a high value to enter the charge mode, and the battery 4 is charged. When the current value of the battery 4 decreases to the predetermined charging threshold C1 (t2), the charging state SOC of the battery 4 reaches the upper limit value α1, it is determined that the charging is completed, and the output voltage is reduced to a low value. Transition to mode.

車両走行中に、燃料カットを伴う車両減速状態となると(t3,t5)、回生制御が実施される。つまり、発電機3の出力電圧をバッテリ電圧よりも高い値に設定して充電モードへと移行し、バッテリ4の充電を行う。このように車両減速時にバッテリ4の充電を行うことにより、車両減速エネルギーを回収して燃費向上を図ることができる。   When the vehicle is decelerated with fuel cut while the vehicle is running (t3, t5), regenerative control is performed. That is, the output voltage of the generator 3 is set to a value higher than the battery voltage, the mode is shifted to the charging mode, and the battery 4 is charged. Thus, by charging the battery 4 when the vehicle is decelerated, the vehicle deceleration energy can be recovered to improve fuel efficiency.

このような車両減速状態での回生制御中に、バッテリ電流値が所定の充電閾値C1’まで低下すると(t4,t6)、バッテリ4の充電状態SOCが上限値α1に達したと判断して、再び出力電圧を低い値として、放電モードへと移行する。   During the regenerative control in such a vehicle deceleration state, when the battery current value decreases to a predetermined charging threshold C1 ′ (t4, t6), it is determined that the state of charge SOC of the battery 4 has reached the upper limit value α1, Again, the output voltage is set to a low value and the mode is changed to the discharge mode.

ここで、回生制御状態では、エンジン始動直後のバッテリ充電状態に比して、バッテリ4の充電状態SOCに対するバッテリ4の電流値が低くなるために、回生制御における充電完了の判定に用いられる充電閾値C1’は、エンジン始動直後の充電状態での充電完了の判定に用いられる充電閾値C1に比して高い値に設定されている(C1’>C1)。   Here, in the regenerative control state, the current value of the battery 4 with respect to the state of charge SOC of the battery 4 is lower than in the battery charge state immediately after the engine is started. C1 ′ is set to a value higher than the charging threshold C1 used for determining the completion of charging in the charging state immediately after engine startup (C1 ′> C1).

次に、図4〜図6を参照して、本実施例の要部をなす充電閾値C1(C1’)の補正について説明する。図4及び図5は、エンジン始動直後のバッテリ充電状態における充電閾値C1の補正を説明するための説明図である。バッテリ4が充電及び放電の繰り返し等により経時的に劣化してくると、バッテリ4の充電可能容量が低下し、バッテリ4の電流値も低下する。このために、図4,図5の比較例で示すように、バッテリ4の劣化度を考慮することなく、バッテリ4の電流値が所定の充電閾値C1まで低下したときにバッテリ4の充電が完了したと判定した場合、図5に示すように、劣化初期段階L1に比してバッテリ4の劣化度が進行した劣化中期L2や劣化後期L3において、バッテリ4の充電状態が所定の上限値α1に達する前に充電が完了したと誤判定されて、バッテリ4の放電が行われることとなるために、バッテリ4の充電状態SOCが過剰に低下するおそれがある。   Next, with reference to FIGS. 4 to 6, correction of the charging threshold C <b> 1 (C <b> 1 ′) that is a main part of the present embodiment will be described. 4 and 5 are explanatory diagrams for explaining the correction of the charging threshold C1 in the battery charging state immediately after the engine is started. When the battery 4 deteriorates with time due to repeated charging and discharging, the chargeable capacity of the battery 4 decreases and the current value of the battery 4 also decreases. For this reason, as shown in the comparative examples of FIGS. 4 and 5, the charging of the battery 4 is completed when the current value of the battery 4 decreases to a predetermined charging threshold C <b> 1 without considering the degree of deterioration of the battery 4. When it is determined that the battery 4 has been charged, the state of charge of the battery 4 reaches a predetermined upper limit value α1 in the middle deterioration stage L2 or the late deterioration stage L3 in which the degree of deterioration of the battery 4 has advanced as compared to the initial deterioration stage L1, as shown in FIG. Since it is erroneously determined that the charging is completed before reaching the battery 4 and the battery 4 is discharged, the state of charge SOC of the battery 4 may be excessively lowered.

そこで本実施例では、バッテリ4の放電積算量に基づいてバッテリ4の劣化度を求め、このバッテリ4の劣化度が大きくなるほど充電閾値C1が低くなるように、バッテリ4の劣化度に応じて充電閾値C1を補正している。なお、バッテリ4の放電積算量は、電流センサ6により検出されるバッテリ4の放電電流の電流値を積算することにより求めることができる。   Therefore, in this embodiment, the degree of deterioration of the battery 4 is obtained based on the integrated amount of discharge of the battery 4, and charging is performed according to the degree of deterioration of the battery 4 so that the charging threshold C1 becomes lower as the degree of deterioration of the battery 4 increases. The threshold value C1 is corrected. The accumulated discharge amount of the battery 4 can be obtained by integrating the current value of the discharge current of the battery 4 detected by the current sensor 6.

具体的には、図4及び図5に示すように、放電積算量がA1以下の劣化初期段階L1での充電閾値C1に対し、放電積算量がA1以上かつA2以下の劣化中期L2では、充電閾値C2を劣化初期段階L1での充電閾値C1よりも低く補正し(C2<C1)、放電積算量がA2を超える劣化後期L3では、充電閾値C3を劣化中期L2での充電閾値C2よりも更に低い値に補正している(C3<C2)。   Specifically, as shown in FIG. 4 and FIG. 5, charging is performed in the deterioration middle period L2 where the integrated discharge amount is A1 or more and A2 or less with respect to the charging threshold C1 in the deterioration initial stage L1 where the integrated discharge amount is A1 or less. The threshold value C2 is corrected to be lower than the charging threshold value C1 in the initial deterioration stage L1 (C2 <C1), and the charging threshold value C3 is further set to be lower than the charging threshold value C2 in the middle deterioration period L2 in the late deterioration stage L3 in which the integrated discharge amount exceeds A2. It is corrected to a low value (C3 <C2).

このようにバッテリ4の劣化度を考慮した形で充電閾値を補正することによって、バッテリ4の劣化度にかかわらず、充電完了の上限値α1付近までバッテリ4を充電することが可能となり、バッテリ4が劣化した場合にもバッテリ4の充電容量を十分に使用することができ、充放電性能が向上する。また、上記比較例のようにバッテリ4の充電状態が上限値α1に達する前に充電が完了したと誤判定されることを抑制し、この誤判定に起因するバッテリ4の過充電や過放電を抑制することができる。   In this way, by correcting the charging threshold in consideration of the degree of deterioration of the battery 4, it becomes possible to charge the battery 4 up to the vicinity of the upper limit α1 of the charging completion regardless of the degree of deterioration of the battery 4. Even when the battery is deteriorated, the charge capacity of the battery 4 can be fully used, and the charge / discharge performance is improved. Further, as in the comparative example, it is possible to suppress erroneous determination that the charging is completed before the charging state of the battery 4 reaches the upper limit value α1, and to prevent overcharging and overdischarging of the battery 4 due to the erroneous determination. Can be suppressed.

なお、この実施例ではバッテリ4の劣化度を3段階にわけて充電閾値を補正しているが、バッテリ4の劣化度を更に多くの段階に分けるようにしても良く、あるいは、このように劣化度を段階的に分けることなく、バッテリ4の劣化度が大きくなるに従って充電閾値が徐々に(連続的に)低くなるようにしても良い。   In this embodiment, the charging threshold is corrected by dividing the deterioration degree of the battery 4 into three stages, but the deterioration degree of the battery 4 may be divided into more stages, or in this way Instead of dividing the degree in stages, the charging threshold may be gradually (continuously) lowered as the degree of deterioration of the battery 4 increases.

図4及び図5では、エンジン始動直後の充電状態で用いられる充電閾値C1の補正について説明したが、図6に示すように、回生制御状態(回生シーン)で用いられる充電閾値C1’についても同様に、バッテリ4の劣化度が大きくなるほど充電閾値が低い値となるように、バッテリ4の劣化度に応じて充電閾値を補正している。具体的には、図6に示すように、劣化中期L2では、充電閾値C2’を劣化初期段階L1での充電閾値C1’よりも低く補正し(C2’<C1’)、劣化後期L3では、充電閾値C3’を、劣化中期L2での充電閾値C2’よりも更に低く補正している(C3’<C2’)。   4 and 5, the correction of the charging threshold C1 used in the charging state immediately after engine startup has been described. However, the same applies to the charging threshold C1 ′ used in the regeneration control state (regeneration scene) as shown in FIG. In addition, the charging threshold is corrected according to the degree of deterioration of the battery 4 so that the charging threshold becomes lower as the degree of deterioration of the battery 4 increases. Specifically, as shown in FIG. 6, in the middle deterioration period L2, the charging threshold C2 ′ is corrected to be lower than the charging threshold C1 ′ in the deterioration initial stage L1 (C2 ′ <C1 ′). The charging threshold C3 ′ is corrected to be lower than the charging threshold C2 ′ in the middle deterioration period L2 (C3 ′ <C2 ′).

なお、バッテリ4の電流値はバッテリ4の温度にも依存しており、バッテリ温度が高くなるほど電流値は大きくなることから、バッテリ4の温度を温度センサ等を用いて検出もしくは推定し、このバッテリ温度に基づいてバッテリ4の電流値を補正するようにしても良い。   Note that the current value of the battery 4 also depends on the temperature of the battery 4, and the current value increases as the battery temperature increases. Therefore, the temperature of the battery 4 is detected or estimated using a temperature sensor or the like. The current value of the battery 4 may be corrected based on the temperature.

これによって、エンジン始動直後の充電状態の場合と同様、回生制御状態の場合にも、バッテリ4の劣化度を考慮した形で充電閾値を補正することによって、バッテリ4の劣化度にかかわらず、充電完了の上限値α1付近までバッテリ4を充電することが可能となり、バッテリ4が劣化した場合にもバッテリ4の充電容量を十分に使用することができ、充放電性能が向上するとともに、バッテリ4の過充電や過放電を抑制することができる。   As a result, in the regenerative control state as well as in the charging state immediately after the engine is started, the charging threshold value is corrected in consideration of the deterioration level of the battery 4, so that the charging is performed regardless of the deterioration level of the battery 4. It becomes possible to charge the battery 4 to near the upper limit α1 of completion, and even when the battery 4 is deteriorated, the charge capacity of the battery 4 can be fully used, and the charge / discharge performance is improved. Overcharge and overdischarge can be suppressed.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、種々の変形・変更を含むものである。例えば、エンジンとモータとを併用するハイブリッド車両に本発明を適用することもできる。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes. For example, the present invention can also be applied to a hybrid vehicle that uses both an engine and a motor.

1…エンジン
3…発電機
4…バッテリ
6…電流センサ(電流値検出手段)
7…ECM
8…電装系コントローラ
DESCRIPTION OF SYMBOLS 1 ... Engine 3 ... Generator 4 ... Battery 6 ... Current sensor (Current value detection means)
7 ... ECM
8 ... Electrical controller

Claims (5)

車両に搭載されて、電力の充電及び放電が可能なバッテリと、
エンジンにより駆動されて、車両用の電気装置へ電力を供給するとともに、上記バッテリを充電する発電機と、を備え、バッテリの充電状態に応じて発電機の発電を抑制し、バッテリからの放電により車両用の電気装置へ電力を供給可能な車両の充電状態制御装置において、
上記バッテリの充放電電流の電流値を検出する電流値検出手段と、
エンジン始動に伴って上昇し、その後低下する充電電流値が所定の充電閾値以下になると、上記バッテリの充電が完了したと判定するバッテリ充電完了判定手段と、
上記バッテリの劣化度を検出するバッテリ劣化度検出手段と、
上記バッテリの劣化度に応じて、上記充電閾値を補正する閾値補正手段と、
を有することを特徴とする車両のバッテリ充電状態制御装置。
A battery mounted on a vehicle and capable of charging and discharging power;
A power generator that is driven by an engine to supply power to an electric device for a vehicle and that charges the battery, and suppresses power generation of the power generator according to the state of charge of the battery, and discharges from the battery In a vehicle charge state control device capable of supplying electric power to an electric device for a vehicle,
Current value detection means for detecting the current value of the charge / discharge current of the battery;
Battery charge completion determination means for determining that the charging of the battery is completed when a charging current value that increases with engine startup and then decreases is equal to or less than a predetermined charging threshold;
Battery deterioration degree detecting means for detecting the deterioration degree of the battery;
Threshold correction means for correcting the charging threshold according to the degree of deterioration of the battery;
A battery state-of-charge control device for a vehicle, comprising:
上記閾値補正手段は、上記バッテリの劣化度が大きくなるほど、上記充電閾値を低下側に補正することを特徴とする請求項1に記載の車両のバッテリ充電状態制御装置。   2. The vehicle battery charge state control device according to claim 1, wherein the threshold correction unit corrects the charging threshold to a lower side as the degree of deterioration of the battery increases. 上記バッテリ劣化度検出手段は、上記電流値に基づいて、上記バッテリの放電積算量を算出し、この放電積算量に基づいて、上記バッテリの劣化度を求めることを特徴とする請求項1又は2に記載の車両のバッテリ充電状態制御装置。   3. The battery deterioration degree detecting means calculates an accumulated discharge amount of the battery based on the current value, and obtains a deterioration degree of the battery based on the accumulated discharge amount. The battery state-of-charge control device for a vehicle according to claim 1. 上記バッテリの充電状態に応じて、上記発電機の出力電圧を制御することにより、上記バッテリの充放電を制御する発電電圧制御手段を有し、
車両減速時には、上記発電電圧制御手段により発電機の出力電圧を上記バッテリの電圧よりも高くすることで、上記バッテリを充電する回生制御が行われ、
上記バッテリ充電完了判定手段は、上記閾値補正手段により補正された充電閾値に基づいて、エンジン始動直後の充電状態におけるバッテリの充電完了の判定を行うとともに、上記回生制御状態におけるバッテリの充電完了の判定を行うことを特徴とする請求項1〜3のいずれかに記載の車両のバッテリ充電状態制御装置。
According to the state of charge of the battery, by controlling the output voltage of the generator, it has power generation voltage control means for controlling charging and discharging of the battery,
At the time of vehicle deceleration, regenerative control for charging the battery is performed by making the output voltage of the generator higher than the voltage of the battery by the generated voltage control means.
The battery charge completion determination means determines whether or not the battery has been completely charged in the charge state immediately after the engine is started based on the charge threshold value corrected by the threshold value correction means, and determines whether or not the battery has been fully charged in the regenerative control state. The battery state-of-charge control device for a vehicle according to any one of claims 1 to 3, wherein:
上記回生制御状態では、上記エンジン始動直後の充電状態に比して、上記閾値補正手段により補正された充電閾値の値を高く設定することを特徴とする請求項4に記載の車両のバッテリ充電状態制御装置。   5. The vehicle battery charge state according to claim 4, wherein in the regenerative control state, a value of the charge threshold value corrected by the threshold value correction unit is set higher than that in the charge state immediately after the engine is started. Control device.
JP2012144847A 2012-06-28 2012-06-28 Battery state of charge controller for vehicle Pending JP2014011826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144847A JP2014011826A (en) 2012-06-28 2012-06-28 Battery state of charge controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144847A JP2014011826A (en) 2012-06-28 2012-06-28 Battery state of charge controller for vehicle

Publications (1)

Publication Number Publication Date
JP2014011826A true JP2014011826A (en) 2014-01-20

Family

ID=50108078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144847A Pending JP2014011826A (en) 2012-06-28 2012-06-28 Battery state of charge controller for vehicle

Country Status (1)

Country Link
JP (1) JP2014011826A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205252A1 (en) 2015-03-24 2016-09-29 Robert Bosch Gmbh Battery system and method for operating a battery system
JP2017034807A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 Power generation voltage control system
US20170294801A1 (en) * 2016-04-08 2017-10-12 Hyundai Motor Company Apparatus and method for controlling power generaton
WO2019124738A1 (en) * 2017-12-18 2019-06-27 주식회사 엘지화학 Battery charge management device and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205252A1 (en) 2015-03-24 2016-09-29 Robert Bosch Gmbh Battery system and method for operating a battery system
WO2016150584A1 (en) 2015-03-24 2016-09-29 Robert Bosch Gmbh Battery system and method for operating a battery system
JP2017034807A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 Power generation voltage control system
US10065584B2 (en) 2015-07-30 2018-09-04 Toyota Jidosha Kabushiki Kaisha Generation voltage determination apparatus and generation voltage control system
US20170294801A1 (en) * 2016-04-08 2017-10-12 Hyundai Motor Company Apparatus and method for controlling power generaton
KR101786706B1 (en) * 2016-04-08 2017-10-18 현대자동차 주식회사 System and method for power generation management
WO2019124738A1 (en) * 2017-12-18 2019-06-27 주식회사 엘지화학 Battery charge management device and method
CN110679056A (en) * 2017-12-18 2020-01-10 株式会社Lg化学 Battery charging management apparatus and method
US11397217B2 (en) 2017-12-18 2022-07-26 Lg Energy Solution, Ltd. Battery charging management apparatus and meihod
CN110679056B (en) * 2017-12-18 2023-05-09 株式会社Lg新能源 Battery charge management apparatus and method

Similar Documents

Publication Publication Date Title
KR101924252B1 (en) Electric power supply device
US8639413B2 (en) Vehicle power supply system and method for controlling the same
JP6270009B2 (en) Vehicle power control device
CN110535218B (en) Battery discharge control device
US9895994B2 (en) Vehicle control system
JP6558280B2 (en) Control system
WO2011089786A1 (en) Vehicle control device and control method
JP2013252015A (en) Power supply control method and device for vehicle
US9796294B2 (en) Vehicle driven by electric motor and control method for vehicle
US8501360B2 (en) Fuel cell output control device
CN106347358B (en) A kind of power source and power source method for handover control for electric vehicle
WO2016021136A1 (en) In-vehicle electricity storage system
JP2012011896A (en) Power supply device for hybrid car
WO2016072091A1 (en) Charging control device and charging control method
CN105703461A (en) Charging apparatus
US10498154B2 (en) Electric power system
US9871401B2 (en) Method and apparatus for controlling low-voltage battery charging
JP2014011826A (en) Battery state of charge controller for vehicle
JP2015220952A (en) Power charging apparatus
JP2010273523A (en) Charge control device
JP6131533B2 (en) Vehicle power supply control method and apparatus
JP3839382B2 (en) Control device for in-vehicle power storage device
JP2013252016A (en) Power supply control method and device for vehicle
JP4064398B2 (en) Charge / discharge control device for motor battery
JP6270010B2 (en) Vehicle power control device