JP4888776B2 - Vehicle power generation control device - Google Patents

Vehicle power generation control device Download PDF

Info

Publication number
JP4888776B2
JP4888776B2 JP2007014991A JP2007014991A JP4888776B2 JP 4888776 B2 JP4888776 B2 JP 4888776B2 JP 2007014991 A JP2007014991 A JP 2007014991A JP 2007014991 A JP2007014991 A JP 2007014991A JP 4888776 B2 JP4888776 B2 JP 4888776B2
Authority
JP
Japan
Prior art keywords
power generation
regenerative power
soc
generation section
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007014991A
Other languages
Japanese (ja)
Other versions
JP2008182838A (en
Inventor
久代 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007014991A priority Critical patent/JP4888776B2/en
Publication of JP2008182838A publication Critical patent/JP2008182838A/en
Application granted granted Critical
Publication of JP4888776B2 publication Critical patent/JP4888776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は、発電機の発電による燃料消費量増加分を考慮して発電機を制御する機能を備えた車両用発電制御装置に関する発明である。   The present invention relates to a vehicle power generation control device having a function of controlling a generator in consideration of an increase in fuel consumption due to power generation by the generator.

特許文献1(特開2000−4502号公報)に示すように、車両に搭載された発電機(オルタネータ)の制御は、バッテリの充電状態(SOC:State Of Charge )を監視して、バッテリが充電不足とならないように発電機の制御電流(界磁電流)を制御して発電量を制御するようにしたものが多い。   As shown in Patent Document 1 (Japanese Patent Laid-Open No. 2000-4502), the generator (alternator) mounted on the vehicle is controlled by monitoring the state of charge (SOC) of the battery and charging the battery. In many cases, the amount of power generation is controlled by controlling the control current (field current) of the generator so as not to become insufficient.

また、特許文献2(特開2005−160269公報)に示すように、バッテリの充電を効率良く行うために、走行経路の降坂区間で車両の減速エネルギで発電機を駆動して回生発電を行わせ、その回生発電電力をバッテリに充電するようにしたものがある。更に、この特許文献2では、ナビゲーションシステムの道路地図情報に基づいて走行経路の降坂区間を予測して、その降坂区間の開始地点でバッテリのSOCが許容下限値又はその付近となるようにバッテリの目標SOCを設定するようにしている。   Further, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 2005-160269), in order to charge the battery efficiently, regenerative power generation is performed by driving the generator with the deceleration energy of the vehicle in the downhill section of the travel route. In addition, there is a battery that charges the regenerative power generated by the battery. Furthermore, in this patent document 2, the downhill section of the travel route is predicted based on the road map information of the navigation system, and the SOC of the battery is at or near the allowable lower limit value at the start point of the downhill section. The target SOC of the battery is set.

ところで、降坂区間で回生発電できる発電量は、道路の勾配や距離によって変化するため、上記特許文献2のように、降坂区間の開始地点でバッテリのSOCが許容下限値又はその付近となるようにバッテリの目標SOCを設定すると、降坂区間の回生発電量が少ない場合には、降坂区間の終了地点までにバッテリのSOCが十分に回復しない。   By the way, since the power generation amount that can be regenerated in the downhill section changes depending on the slope and distance of the road, the SOC of the battery is at or near the allowable lower limit at the start point of the downhill section as in Patent Document 2 above. Thus, when the target SOC of the battery is set, when the amount of regenerative power generation in the downhill section is small, the SOC of the battery is not sufficiently recovered by the end point of the downhill section.

そこで、上記特許文献2では、降坂区間の回生発電によるSOC変化量(発電量)を予測して、予測SOC変化量が少ない場合は、降坂区間の開始地点で、バッテリの目標SOCを、その許容上限値と許容下限値との中央値よりも予測SOC変化量の1/2だけ低いSOCに設定することで、バッテリのSOCを許容上限値と許容下限値との中央値付近で制御するようにしている。
特開2000−4502号公報 特開2005−160269公報
Therefore, in Patent Document 2, the SOC change amount (power generation amount) due to regenerative power generation in the downhill section is predicted, and when the predicted SOC change amount is small, the target SOC of the battery at the start point of the downhill section is The SOC of the battery is controlled in the vicinity of the median value between the allowable upper limit value and the allowable lower limit value by setting the SOC lower than the median value between the allowable upper limit value and the allowable lower limit value by ½ of the predicted SOC change amount. I am doing so.
JP 2000-4502 A JP 2005-160269 A

発電機は、内燃機関(エンジン)の動力で駆動されて発電するため、発電時には、発電機を駆動する負荷に応じて燃料が余分に消費されることになる。単位発電量当たりの燃料消費量増加分(以下「電費」という)は、車両の運転条件や走行路面の勾配等によって変化するため、降坂区間開始前の電費と降坂区間終了後の電費がほぼ同じ場合もあるが、いずれか一方の電費が高く、他方の電費が安い場合もある。車両の平均燃費を低減するには、電費が安い区間で発電量を多くし、電費が高い区間で発電量を少なくすることが望ましい。   Since the generator is driven by the power of the internal combustion engine (engine) to generate electric power, at the time of power generation, extra fuel is consumed according to the load that drives the generator. The increase in fuel consumption per unit power generation (hereinafter referred to as “electricity cost”) varies depending on the driving conditions of the vehicle, the slope of the road surface, etc., so the power consumption before the downhill section starts and the power consumption after the downhill section ends. In some cases, the power consumption of either one is high and the other is low. In order to reduce the average fuel consumption of the vehicle, it is desirable to increase the amount of power generation in a section where the electricity cost is low and decrease the amount of power generation in a section where the power cost is high.

しかし、上記特許文献2では、降坂区間の回生発電量が少ない場合には、降坂区間の前後の電費とは関係なく、降坂区間終了時のバッテリのSOCが許容上限値と許容下限値との中央値付近となるように制御されるため、例えば、降坂区間開始前の電費が安く、降坂区間終了後の電費が高い場合には、電費が高い降坂区間終了後の発電量を十分に低減することができず、その分、車両の平均燃費が悪くなるという問題があった。   However, in Patent Document 2, when the amount of regenerative power generation in the downhill section is small, the SOC of the battery at the end of the downhill section is an allowable upper limit value and an allowable lower limit value regardless of the power consumption before and after the downhill section. For example, if the electricity cost before the start of the downhill section is low and the electricity cost after the end of the downhill section is high, the power generation amount after the end of the downhill section where the electricity cost is high There is a problem that the average fuel consumption of the vehicle is deteriorated.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、回生発電区間の前後の電費を考慮して車両の平均燃費が少なくなるように発電機の発電を制御することができる車両用発電制御装置を提供することにある。   The present invention has been made in view of such circumstances, and therefore the object thereof is to control the power generation of the generator so that the average fuel consumption of the vehicle is reduced in consideration of the power consumption before and after the regenerative power generation section. An object of the present invention is to provide a vehicular power generation control device capable of performing

上記目的を達成するために、請求項1に係る発明は、内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリと、内燃機関の運転中に前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分(以下「電費」という)を算出する電費算出手段と、内燃機関の運転中に消費電力を算出する消費電力算出手段と、前記バッテリの充電状態(以下「SOC」と表記する)を判定するSOC判定手段と、ナビゲーションシステムの道路地図情報に基づいて将来の車両の減速エネルギで前記発電機を駆動して発電する回生発電区間と回生発電量を予測する回生発電情報予測手段と、前記バッテリのSOCを目標SOCに一致させるように前記発電機の発電を制御する発電制御手段とを備え、前記電費算出手段は、前記回生発電区間が始まる前に当該回生発電区間の前後の電費を予測し、前記消費電力算出手段は、前記回生発電区間が始まる前に当該回生発電区間の消費電力量を予測し、前記SOC判定手段は、前記回生発電区間が始まる前に当該回生発電区間の予測SOC変化量を前記回生発電量と前記消費電力量との差分に基づいて予測し、前記発電制御手段は、前記回生発電区間の前後の電費と前記回生発電区間の予測SOC変化量に基づいて前記目標SOCを設定するようにしたものである。   In order to achieve the above object, an invention according to claim 1 includes a generator driven by the power of an internal combustion engine, a battery charged with electric power generated by the generator, and the power generation during operation of the internal combustion engine. Power consumption calculation means for calculating the fuel consumption increase per unit power generation (hereinafter referred to as “electricity cost”) based on the fuel consumption increase by the power generation of the engine and the power generation amount, and the power consumption during the operation of the internal combustion engine Power consumption calculating means for calculating, SOC determining means for determining the state of charge of the battery (hereinafter referred to as “SOC”), and the generator with the deceleration energy of the future vehicle based on the road map information of the navigation system. Regenerative power generation section that drives and generates power, regenerative power generation information prediction means that predicts the amount of regenerative power generation, and power generation control that controls power generation of the generator so that the SOC of the battery matches the target SOC The power consumption calculation means predicts the power consumption before and after the regenerative power generation section before the regenerative power generation section starts, and the power consumption calculation means calculates the regenerative power generation section before the regenerative power generation section starts. The SOC determination means predicts a predicted SOC change amount of the regenerative power generation section based on a difference between the regenerative power generation amount and the power consumption amount before the regenerative power generation section starts, The power generation control unit is configured to set the target SOC based on a power consumption before and after the regenerative power generation section and a predicted SOC change amount of the regenerative power generation section.

この構成によれば、回生発電区間の前後の電費を考慮して、電費が高い方の区間の発電量を少なくして、電費が安い方の区間の発電量を増やすように回生発電区間開始時又は回生発電区間終了時の目標SOCを設定するという制御が可能となり、それによって、バッテリのSOCを許容上限値と許容下限値との範囲内に制御しながら、発電による燃料消費量増加分を確実に低減することができ、車両の平均燃費低減の要求を満たすことができる。   According to this configuration, considering the electricity costs before and after the regenerative power generation section, at the start of the regenerative power generation section, the power generation amount in the section with the higher power consumption is reduced and the power generation amount in the section with the lower power consumption is increased. Alternatively, it is possible to control the setting of the target SOC at the end of the regenerative power generation period, thereby ensuring the increase in fuel consumption due to power generation while controlling the SOC of the battery within the allowable upper limit value and the allowable lower limit value. It is possible to reduce the average fuel consumption of the vehicle.

この場合、請求項2のように、前記回生発電区間の予測SOC変化量が前記SOCの許容上限値と許容下限値との間の幅よりも大きいときには、前記回生発電区間開始時のSOCが前記許容下限値又はその付近となるように目標SOCを設定するようにすると良い。このようにすれば、回生発電区間で、許容される最大限の回生発電量をバッテリに充電することができると共に、回生発電区間の前後の発電量を少なくすることができる。   In this case, as in claim 2, when the predicted SOC change amount in the regenerative power generation section is larger than the width between the allowable upper limit value and the allowable lower limit value of the SOC, the SOC at the start of the regenerative power generation section is The target SOC may be set so as to be at or near the allowable lower limit value. In this way, the maximum allowable regenerative power generation amount can be charged in the battery in the regenerative power generation section, and the power generation amount before and after the regenerative power generation section can be reduced.

また、請求項3のように、回生発電区間の予測SOC変化量が前記SOCの許容上限値と許容下限値との間の幅よりも小さい場合は、前記回生発電区間の前後の電費を比較して、前記回生発電区間前の電費が当該回生発電区間後の電費よりも安いときに、前記回生発電区間終了時のSOCが前記許容上限値又はその付近となるように目標SOCを設定し、前記回生発電区間前の電費が当該回生発電区間後の電費よりも高いときに、前記回生発電区間開始時のSOCが前記許容下限値又はその付近となるように目標SOCを設定するようにすると良い。このようにすれば、回生発電区間の前後の電費を比較して、電費が高い方の区間の発電量を少なくして、電費が安い方の区間の発電量を増やすように回生発電区間開始時又は回生発電区間終了時の目標SOCを設定することができる。   Further, as in claim 3, when the predicted SOC change amount in the regenerative power generation section is smaller than the width between the allowable upper limit value and the allowable lower limit value of the SOC, the power consumption before and after the regenerative power generation section is compared. When the electricity cost before the regenerative power generation section is lower than the power cost after the regenerative power generation section, the target SOC is set so that the SOC at the end of the regenerative power generation section is at or near the allowable upper limit value, When the power consumption before the regenerative power generation section is higher than the power consumption after the regenerative power generation section, the target SOC may be set so that the SOC at the start of the regenerative power generation section is at or near the allowable lower limit value. In this way, comparing the electricity costs before and after the regenerative power generation section, at the start of the regenerative power generation section to reduce the power generation amount in the section with the higher power consumption and increase the power generation amount in the section with the lower power consumption Alternatively, the target SOC at the end of the regenerative power generation section can be set.

この場合、請求項4のように、ナビゲーションシステムの道路地図情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して回生発電区間を予測するようにすれば良い。ここで、燃料カットが開始される地点は、例えば降坂路の開始地点や、右折又は左折する直前で車両の減速を開始する地点である。燃料カットの継続時間は、回生発電時間に相当する。   In this case, as in claim 4, the regenerative power generation section may be predicted by predicting the fuel cut start point and the duration of the fuel cut based on the road map information of the navigation system. Here, the point where the fuel cut is started is, for example, a start point of a downhill road or a point where the vehicle starts to decelerate immediately before turning right or left. The duration of the fuel cut corresponds to the regenerative power generation time.

また、請求項5のように、ナビゲーションシステムの道路地図情報に、道路の勾配の情報を持たせ、前記道路の勾配の情報と車速の情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して回生発電区間を予測するようにしても良い。降坂路であっても、勾配が小さい場合や車速が遅い場合には、燃料カットが行われないためである。   Further, as in claim 5, the road map information of the navigation system includes road gradient information, and the fuel cut start point and the fuel cut start point based on the road gradient information and the vehicle speed information. It is also possible to predict the regenerative power generation section by predicting the continuation time. This is because, even on a downhill road, fuel cut is not performed when the gradient is small or the vehicle speed is low.

また、請求項6のように、道路の勾配の情報は、道路の勾配が変化する地点毎に設定するようにすれば良い。このようにすれば、道路の勾配の情報のデータ量を少なくすることができる。   Further, as described in claim 6, the road gradient information may be set for each point where the road gradient changes. In this way, the data amount of road gradient information can be reduced.

また、請求項7のように、道路の勾配の情報として、道路の勾配が変化する地点毎に設定された道路の標高と地点間の距離の情報を持ち、地点間の標高差と地点間の距離とに基づいて道路の勾配を算出し、この道路の勾配と車速の情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して前記回生発電区間を予測するようにしても良い。この場合、地点間の距離は、地点間の道路の走行距離であっても良いし、地点間の道路の水平距離であっても良く、いずれの場合であっても、地点間の標高差との組み合わせで道路の勾配を算出することができる。   In addition, as described in claim 7, the road gradient information includes road elevation information and distance information between the points set for each point where the road gradient changes. A road slope is calculated based on the distance, and the regenerative power generation section is predicted by predicting the fuel cut start point and the duration of the fuel cut based on the road slope and vehicle speed information. May be. In this case, the distance between the points may be the road travel distance between the points, or the horizontal distance of the road between the points. The road gradient can be calculated by the combination of

以下、本発明を実施するための最良の形態を具体化した一実施例を図面に基づいて説明する。
図1に示す制御装置11は、バッテリ12からキースイッチ13を介して電源が供給され、エンジン運転中に点火装置14と噴射装置15の動作を制御すると共に、発電機16(オルタネータ)の発電を制御する発電制御手段として機能する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment embodying the best mode for carrying out the invention will be described with reference to the drawings.
A control device 11 shown in FIG. 1 is supplied with power from a battery 12 via a key switch 13, controls the operation of the ignition device 14 and the injection device 15 during engine operation, and generates power from a generator 16 (alternator). It functions as a power generation control means for controlling.

この制御装置11は、電流センサ17で検出したバッテリ12の充放電電流及び/又は電圧センサ18で検出したバッテリ12の開放端子電圧に基づいてバッテリ12の充電状態(SOC:State Of Charge )を算出する。例えば、バッテリ12の充放電電流を電流センサ17で検出して、その検出値を積算していく。この際、バッテリ12の充電電流をプラス値とし、バッテリ12の放電電流をマイナス値とすることで、充放電電流積算値をバッテリ12のSOCに応じて増減させる。これにより、充放電電流積算値をバッテリ12のSOCの検出データとして用いることが可能となる。或は、バッテリ12の開放端子電圧とSOCとの関係を表すマップを参照して、現在のバッテリ12の開放端子電圧に応じたSOCを算出するようにしても良い。勿論、バッテリ12の充放電電流積算値と開放端子電圧の両方に基づいてバッテリ12のSOCを算出するようにしても良い。   The control device 11 calculates the state of charge (SOC) of the battery 12 based on the charge / discharge current of the battery 12 detected by the current sensor 17 and / or the open terminal voltage of the battery 12 detected by the voltage sensor 18. To do. For example, the charge / discharge current of the battery 12 is detected by the current sensor 17 and the detected values are integrated. At this time, the charging current of the battery 12 is set to a positive value, and the discharging current of the battery 12 is set to a negative value, so that the integrated charging / discharging current value is increased or decreased according to the SOC of the battery 12. Thereby, the charge / discharge current integrated value can be used as the SOC detection data of the battery 12. Or you may make it calculate SOC according to the open terminal voltage of the battery 12 with reference to the map showing the relationship between the open terminal voltage of the battery 12 and SOC. Of course, the SOC of the battery 12 may be calculated based on both the charge / discharge current integrated value of the battery 12 and the open terminal voltage.

図2は、単位時間当たりの燃料消費量である燃料消費率とエンジン運転条件との関係を示す図である。図2に示すように、燃料消費率は、エンジン回転速度とエンジントルクによって変化する。燃料消費率は、エンジントルクに応じて曲線的に変化するため、エンジン回転速度が一定の場合は、エンジントルクの増加量に対して、燃料消費率の増加量が大きい条件と小さい条件がある。例えば、発電機16で一定量の発電を実施した場合、発電によりエンジントルクに発電機16によるトルクが付加され、エンジンの動作点が変わる。このため、燃料消費率は、発電量により変化する。この時、燃料消費率が少ない条件のみ選択して、発電を実施すれば、燃料消費率を低減することが可能となる。   FIG. 2 is a diagram showing the relationship between the fuel consumption rate, which is the fuel consumption per unit time, and the engine operating conditions. As shown in FIG. 2, the fuel consumption rate changes depending on the engine speed and the engine torque. Since the fuel consumption rate changes in a curve according to the engine torque, when the engine rotational speed is constant, there are a condition where the increase amount of the fuel consumption rate is large and a condition where the increase amount is small. For example, when a certain amount of power is generated by the power generator 16, the torque generated by the power generator 16 is added to the engine torque by power generation, and the operating point of the engine changes. For this reason, a fuel consumption rate changes with electric power generation amounts. At this time, if only a condition with a low fuel consumption rate is selected and power generation is performed, the fuel consumption rate can be reduced.

そこで、本実施例では、発電制御のパラメータとして、単位発電量当たりの燃料消費率増加分(以下「電費」という)を用いる。この電費は、制御装置11によって次のようにして算出される。   Therefore, in this embodiment, an increase in fuel consumption rate per unit power generation amount (hereinafter referred to as “electricity cost”) is used as a parameter for power generation control. This electricity cost is calculated by the control device 11 as follows.

まず、エンジン運転中(走行中)に、発電機16の発電を実行した場合の燃料消費率(発電時燃料消費率)と発電機16の発電を停止した場合の燃料消費率(非発電時燃料消費率)との差分から発電による燃料消費率増加分を求め、この発電による燃料消費率増加分を発電機16の発電量で割り算して電費(単位発電量当たりの燃料消費量増加分)を求める。
電費(g/skW) =(発電時燃料消費率−非発電時燃料消費率)/発電量
First, while the engine is running (running), the fuel consumption rate when the generator 16 generates power (fuel consumption rate during power generation) and the fuel consumption rate when the generator 16 stops power generation (non-power generation fuel) The increase in fuel consumption rate due to power generation is calculated from the difference from the consumption rate), and the increase in fuel consumption rate due to power generation is divided by the power generation amount of the generator 16 to calculate the power consumption (increase in fuel consumption per unit power generation amount). Ask.
Electricity cost (g / skW) = (Fuel consumption rate during power generation-Fuel consumption rate during non-power generation) / Power generation amount

更に、制御装置11は、ナビゲーションシステム19のメモリに格納された道路地図情報を読み込み、この道路地図情報に基づいて将来の車両の減速エネルギで発電機16を駆動して発電する回生発電区間と回生発電量を予測する。そして、回生発電区間が始まる前に、当該回生発電区間の前後の所定区間の平均電費を予測すると共に、当該回生発電区間の消費電力量を予測し、更に、当該回生発電区間のSOC変化量を回生発電量と回生発電区間の消費電力量との差分に基づいて次式により予測する。
回生発電区間のSOC変化量=(回生発電量−消費電力量)/バッテリ容量×100
上式において、回生発電量と消費電力量は、それぞれ回生発電区間の積算値である。
Further, the control device 11 reads the road map information stored in the memory of the navigation system 19, and based on this road map information, drives the generator 16 with the deceleration energy of the future vehicle to generate power and the regenerative power generation section and the regenerative section. Predict power generation. Then, before the regenerative power generation section starts, the average power consumption of the predetermined section before and after the regenerative power generation section is predicted, the power consumption of the regenerative power generation section is predicted, and the SOC change amount of the regenerative power generation section is further calculated. Based on the difference between the regenerative power generation amount and the power consumption amount in the regenerative power generation section, the following formula is used for prediction.
SOC change amount of regenerative power generation section = (regenerative power generation amount−power consumption amount) / battery capacity × 100
In the above equation, the amount of regenerative power generation and the amount of power consumption are integrated values of the regenerative power generation section.

そして、制御装置11は、回生発電区間の前後の所定区間の平均電費と回生発電区間の予測SOC変化量に基づいて目標SOCを次のように設定する。   And the control apparatus 11 sets target SOC as follows based on the average electricity consumption of the predetermined area before and behind a regenerative power generation area, and the prediction SOC variation | change_quantity of a regenerative power generation area.

(1)回生発電区間の予測SOC変化量がバッテリ12のSOCの許容上限値と許容下限値との間の幅よりも大きい場合は、図3に示すように、回生発電区間開始時のSOCが許容下限値(又はその付近)となるように目標SOCを設定する。   (1) When the predicted SOC change amount in the regenerative power generation section is larger than the range between the allowable upper limit value and the allowable lower limit value of the SOC of the battery 12, as shown in FIG. The target SOC is set so as to be the allowable lower limit value (or the vicinity thereof).

(2)回生発電区間の予測SOC変化量がバッテリ12のSOCの許容上限値と許容下限値との間の幅よりも小さい場合は、回生発電区間の前後の所定区間の平均電費を比較して、図4に示すように、回生発電区間前の所定区間の平均電費が当該回生発電区間後の所定区間の平均電費よりも安いときには、回生発電区間終了時のSOCが許容上限値(又はその付近)となるように目標SOCを設定する。   (2) When the predicted SOC change amount in the regenerative power generation section is smaller than the width between the allowable upper limit value and the allowable lower limit value of the SOC of the battery 12, the average power consumption in the predetermined section before and after the regenerative power generation section is compared. As shown in FIG. 4, when the average power consumption in the predetermined section before the regenerative power generation section is lower than the average power consumption in the predetermined section after the regenerative power generation section, the SOC at the end of the regenerative power generation section is an allowable upper limit value (or its vicinity) ) To set the target SOC.

反対に、図5に示すように、回生発電区間前の所定区間の平均電費が当該回生発電区間後の所定区間の平均電費よりも高いときには、回生発電区間開始時のSOCが許容下限値(又はその付近)となるように目標SOCを設定する。   On the other hand, as shown in FIG. 5, when the average power consumption in the predetermined section before the regenerative power generation section is higher than the average power consumption in the predetermined section after the regenerative power generation section, the SOC at the start of the regenerative power generation section is an allowable lower limit (or The target SOC is set so that

この場合、回生発電区間の予測方法は、ナビゲーションシステム19の道路地図情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して、回生発電区間を予測する。ここで、燃料カットが開始される地点は、例えば降坂路の開始地点や、走行方向を右折又は左折するために車両の減速を開始する地点である。燃料カットの継続時間は、回生発電時間に相当する。   In this case, the method for predicting the regenerative power generation section predicts the regenerative power generation section by predicting the fuel cut start point and the duration of the fuel cut based on the road map information of the navigation system 19. Here, the point where the fuel cut is started is, for example, a start point of a downhill road or a point where the vehicle starts to decelerate in order to turn right or left in the traveling direction. The duration of the fuel cut corresponds to the regenerative power generation time.

降坂路の開始地点を予測する手段として、ナビゲーションシステム19の道路地図情報に、道路の勾配の情報を持たせ、この道路の勾配の情報と車速の情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して回生発電区間を予測するようにすれば良い。この理由は、降坂路であっても、勾配が小さい場合や車速が遅い場合には、燃料カットが行われないためである。車速の情報は、学習してメモリに記憶させても良い。   As a means for predicting the start point of the downhill road, the road map information of the navigation system 19 is provided with road slope information, and the fuel cut is started based on the road slope information and the vehicle speed information. The duration of the fuel cut may be predicted to predict the regenerative power generation section. This is because, even on a downhill road, fuel cut is not performed when the gradient is small or the vehicle speed is slow. The vehicle speed information may be learned and stored in a memory.

また、道路の勾配の情報として、図6に示すように、道路の勾配が変化する地点毎に設定された道路の標高と地点間の距離の情報を持ち、地点間の標高差と地点間の距離とに基づいて道路の勾配を算出し、この道路の勾配と車速の情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して前記回生発電区間を予測するようにしても良い。   In addition, as shown in FIG. 6, the road slope information includes road elevation information and distance information between each point where the road slope changes. A road slope is calculated based on the distance, and the regenerative power generation section is predicted by predicting the fuel cut start point and the duration of the fuel cut based on the road slope and vehicle speed information. May be.

この場合、図6に示すように、地点間の距離は、地点間の道路の走行距離cであっても良いし、地点間の道路の水平距離aであっても良い。地点間の道路の水平距離aは、各地点の緯度・軽度から算出しても良い。   In this case, as shown in FIG. 6, the distance between the points may be the road traveling distance c between the points, or the horizontal distance a of the road between the points. The horizontal distance a of the road between points may be calculated from the latitude and lightness of each point.

勾配は、次式で算出しても良いし、坂道の角度θを算出しても良い。
勾配=b/a×100 [%]
θ=tan-1(b/a) 又は θ=sin-1(b/c)
また、よく通る道路であれば、回生発電区間(燃料カット区間)を学習してメモリに記憶させても良い。
次に、制御装置11が実行する図7乃至図9の各ルーチンの処理内容を説明する。
The gradient may be calculated by the following equation, or the slope angle θ may be calculated.
Gradient = b / a × 100 [%]
θ = tan −1 (b / a) or θ = sin −1 (b / c)
Further, if the road passes frequently, the regenerative power generation section (fuel cut section) may be learned and stored in the memory.
Next, the processing content of each routine of FIG. 7 thru | or FIG. 9 which the control apparatus 11 performs is demonstrated.

[回生発電情報予測ルーチン]
図7の回生発電情報予測ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう回生発電情報予測手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、現在地よりも先の走行経路の所定区間の勾配を読み込み、次のステップ102で、当該所定区間の車速予測値を読み込む。この車速予測値は、よく通る道路であれば、その道を走行したときに学習した車速を用いるようにしても良いし、道路の勾配と車速との関係を学習して、その学習データから所定区間の勾配に応じた車速を求めるようにしても良い。
[Regenerative power generation information prediction routine]
The regenerative power generation information prediction routine of FIG. 7 is executed at a predetermined cycle during engine operation, and plays a role as regenerative power generation information prediction means in the claims. When this routine is started, first, in step 101, the gradient of a predetermined section of the travel route ahead of the current location is read, and in the next step 102, the predicted vehicle speed of the predetermined section is read. If this road speed predicted value is a road that passes frequently, the vehicle speed learned when traveling on the road may be used, or the relationship between the road gradient and the vehicle speed is learned, and a predetermined section is obtained from the learned data. You may make it obtain | require the vehicle speed according to the gradient.

この後、ステップ103に進み、所定区間の勾配が判定値k未満であるか否かで、所定区間が燃料カット(回生発電)の可能性のある降坂路であるか否かを判定する。降坂路の場合は、勾配がマイナス値になるため、判定値kもマイナス値に設定されている。   Thereafter, the process proceeds to step 103, where it is determined whether or not the predetermined section is a downhill road with a possibility of fuel cut (regenerative power generation) depending on whether or not the gradient of the predetermined section is less than the determination value k. In the case of a downhill road, since the gradient becomes a negative value, the determination value k is also set to a negative value.

このステップ103で、所定区間の勾配が判定値k未満であると判定されれば、燃料カット(回生発電)の可能性のある降坂路と判断して、ステップ104に進み、降坂路の勾配と車速予測値に基づいて燃料カットが開始される地点(つまり回生発電区間の開始地点)を予測し、次のステップ105で、燃料カットの継続時間(つまり回生発電区間の継続時間)を予測して、本ルーチンを終了する。   If it is determined in step 103 that the gradient of the predetermined section is less than the determination value k, it is determined that the road has a possibility of fuel cut (regenerative power generation), and the process proceeds to step 104 where the slope of the downhill road is determined. Based on the predicted vehicle speed, the fuel cut start point (that is, the start point of the regenerative power generation section) is predicted, and in the next step 105, the fuel cut duration (that is, the regenerative power generation section duration) is predicted. This routine is terminated.

一方、上記ステップ103で、所定区間の勾配が判定値k未満でないと判定されれば、降坂路による燃料カット(回生発電)は発生しないと判断して、ステップ107に進み、現在地よりも先の走行経路の所定区間内に減速時燃料カットが発生する右折又は左折ポイントが存在するか否かを判定し、右折又は左折ポイントが存在しなければ、そのまま本ルーチンを終了する。   On the other hand, if it is determined in step 103 that the gradient of the predetermined section is not less than the determination value k, it is determined that a fuel cut (regenerative power generation) by the downhill road does not occur, the process proceeds to step 107, and ahead of the current location. It is determined whether there is a right turn or left turn point at which a fuel cut during deceleration occurs within a predetermined section of the travel route. If there is no right turn or left turn point, the present routine is terminated.

これに対して、上記ステップ107で、減速時燃料カットが発生する右折又は左折ポイントが存在すると判定されれば、ステップ108に進み、右折又は左折ポイントを読み込み、次のステップ109で、減速時燃料カット時間(つまり回生発電時間)を算出して、本ルーチンを終了する。   On the other hand, if it is determined in step 107 that there is a right or left turn point at which the fuel cut during deceleration occurs, the process proceeds to step 108, the right turn or left turn point is read, and the fuel during deceleration is read in the next step 109. The cut time (that is, regenerative power generation time) is calculated, and this routine is terminated.

[目標SOC設定ルーチン]
図8の目標SOC設定ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう発電制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ201で、ナビゲーションシステム19の道路地図情報を読み込み、次のステップ202で、エンジン回転速度とエンジントルクを推定する。
[Target SOC setting routine]
The target SOC setting routine of FIG. 8 is executed at a predetermined cycle during engine operation, and serves as power generation control means in the claims. When this routine is started, first, in step 201, road map information of the navigation system 19 is read, and in the next step 202, the engine speed and the engine torque are estimated.

この後、ステップ203に進み、回生発電区間の前後の所定区間の平均電費を算出する。このステップ203の処理が電費算出手段としての役割を果たす。そして、次のステップ204で、回生発電区間の消費電力量を推定する。このステップ204の処理が消費電力算出手段としての役割を果たす。   Then, it progresses to step 203 and calculates the average electricity consumption of the predetermined area before and behind a regenerative electric power generation area. The processing in step 203 serves as a power consumption calculation unit. Then, in the next step 204, the power consumption amount in the regenerative power generation section is estimated. The processing in step 204 serves as power consumption calculation means.

この後、ステップ205に進み、回生発電区間のSOC変化量(ΔSOC)を回生発電量と回生発電区間の消費電力量との差分に基づいて次式により予測する。
回生発電区間のΔSOC=(回生発電量−消費電力量)/バッテリ容量×100
上式において、回生発電量と消費電力量は、それぞれ回生発電区間の積算値である。
このステップ205の処理がSOC判定手段としての役割を果たす。
Thereafter, the process proceeds to step 205, and the SOC change amount (ΔSOC) in the regenerative power generation section is predicted based on the difference between the regenerative power generation amount and the power consumption amount in the regenerative power generation section by the following equation.
ΔSOC of regenerative power generation section = (regenerative power generation amount−power consumption amount) / battery capacity × 100
In the above equation, the amount of regenerative power generation and the amount of power consumption are integrated values of the regenerative power generation section.
The process of step 205 serves as an SOC determination unit.

この後、ステップ206に進み、回生発電区間のΔSOCをバッテリ12のSOCの許容上限値と許容下限値との間の幅(以下「上下限幅」という)と比較して、回生発電区間のΔSOCが上下限幅以上であれば、ステップ207に進み、図3に示すように、回生発電区間開始時の目標SOCを許容下限値(又はその付近)に設定する。   Thereafter, the process proceeds to step 206, where ΔSOC of the regenerative power generation section is compared with the width between the allowable upper limit value and the allowable lower limit value of the SOC of the battery 12 (hereinafter referred to as “upper / lower limit width”), and ΔSOC of the regenerative power generation section. Is equal to or greater than the upper / lower limit width, the process proceeds to step 207, and as shown in FIG. 3, the target SOC at the start of the regenerative power generation section is set to the allowable lower limit value (or the vicinity thereof).

これに対して、上記ステップ206で、回生発電区間のΔSOCが上下限幅よりも小さいと判定されれば、ステップ208に進み、回生発電区間の前後の所定区間の平均電費を比較して、回生発電区間前の所定区間の平均電費が当該回生発電区間後の所定区間の平均電費よりも安いと判定されれば、ステップ209に進み、図4に示すように、回生発電区間終了時の目標SOCを許容上限値(又はその付近)に設定する。   On the other hand, if it is determined in step 206 that the ΔSOC of the regenerative power generation section is smaller than the upper and lower limit width, the process proceeds to step 208 to compare the average power consumption of the predetermined section before and after the regenerative power generation section and If it is determined that the average power consumption of the predetermined section before the power generation section is lower than the average power consumption of the predetermined section after the regenerative power generation section, the process proceeds to step 209 and, as shown in FIG. 4, the target SOC at the end of the regenerative power generation section Is set to the allowable upper limit value (or the vicinity thereof).

また、上記ステップ208で、回生発電区間前の所定区間の平均電費が当該回生発電区間後の所定区間の平均電費よりも高いと判定されれば、ステップ210に進み、図5に示すように、回生発電区間開始時の目標SOCを許容下限値(又はその付近)に設定する。   If it is determined in step 208 that the average power consumption of the predetermined section before the regenerative power generation section is higher than the average power consumption of the predetermined section after the regenerative power generation section, the process proceeds to step 210, as shown in FIG. The target SOC at the start of the regenerative power generation section is set to the allowable lower limit value (or its vicinity).

[発電制御ルーチン]
図9の発電制御ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう発電制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ301で、電流センサ17で検出したバッテリ12の充放電電流及び/又は電圧センサ18で検出したバッテリ12の開放端子電圧に基づいてバッテリ12の実SOCを演算する。このステップ301の処理が特許請求の範囲でいうSOC判定手段としての役割を果たす。
[Power generation control routine]
The power generation control routine of FIG. 9 is executed at predetermined intervals during engine operation, and serves as power generation control means in the claims. When this routine is started, first, in step 301, the actual SOC of the battery 12 is calculated based on the charge / discharge current of the battery 12 detected by the current sensor 17 and / or the open terminal voltage of the battery 12 detected by the voltage sensor 18. To do. The process of step 301 serves as the SOC determination means in the claims.

この後、ステップ302に進み、上記図8の目標SOC設定ルーチンで設定した目標SOCを読み込む。そして、次のステップ303で、実SOCと目標SOCとの偏差を小さくするようにPID制御等により発電機16の制御電流(界磁電流)を制御して発電量を制御する。   Thereafter, the process proceeds to step 302, and the target SOC set in the target SOC setting routine of FIG. 8 is read. In the next step 303, the power generation amount is controlled by controlling the control current (field current) of the generator 16 by PID control or the like so as to reduce the deviation between the actual SOC and the target SOC.

以上説明した本実施例によれば、回生発電区間の前後の電費を考慮して、電費が高い方の区間の発電量を少なくして、電費が安い方の区間の発電量を増やすように回生発電区間開始時又は回生発電区間終了時の目標SOCを設定するという制御が可能となり、それによって、バッテリ12のSOCを許容上限値と許容下限値との範囲内に制御しながら、発電による燃料消費量増加分を確実に低減することができ、車両の平均燃費低減の要求を満たすことができる。   According to the present embodiment described above, the power generation before and after the regenerative power generation section is taken into consideration, the power generation amount in the section with higher power consumption is reduced, and the power generation amount in the section with lower power consumption is increased. Control of setting the target SOC at the start of the power generation section or at the end of the regenerative power generation section is possible, thereby controlling the SOC of the battery 12 within the range between the allowable upper limit value and the allowable lower limit value, and fuel consumption by power generation The amount of increase can be reliably reduced, and the demand for reduction in average fuel consumption of the vehicle can be satisfied.

本発明の一実施例のシステム構成を説明するブロック図である。It is a block diagram explaining the system configuration | structure of one Example of this invention. 燃料消費率とエンジン運転条件との関係を示す図である。It is a figure which shows the relationship between a fuel consumption rate and an engine driving | running condition. 回生発電区間の予測SOC変化量がバッテリのSOCの許容上限値と許容下限値との間の幅よりも大きい場合のSOC制御方法を説明する図である。It is a figure explaining the SOC control method in case the prediction SOC variation | change_quantity of a regenerative electric power generation area is larger than the width | variety between the allowable upper limit of a battery's SOC, and an allowable lower limit. 回生発電区間の予測SOC変化量がバッテリのSOCの許容上限値と許容下限値との間の幅よりも小さい場合に、回生発電区間前の所定区間の平均電費が当該回生発電区間後の所定区間の平均電費よりも安いときのSOC制御方法を説明する図である。When the predicted SOC change amount in the regenerative power generation section is smaller than the width between the allowable upper limit value and the allowable lower limit value of the SOC of the battery, the average power consumption of the predetermined section before the regenerative power generation section is the predetermined section after the regenerative power generation section. It is a figure explaining the SOC control method when it is cheaper than the average power consumption. 回生発電区間の予測SOC変化量がバッテリのSOCの許容上限値と許容下限値との間の幅よりも小さい場合に、回生発電区間前の所定区間の平均電費が当該回生発電区間後の所定区間の平均電費よりも高いときのSOC制御方法を説明する図である。When the predicted SOC change amount in the regenerative power generation section is smaller than the width between the allowable upper limit value and the allowable lower limit value of the SOC of the battery, the average power consumption of the predetermined section before the regenerative power generation section is the predetermined section after the regenerative power generation section. It is a figure explaining the SOC control method when it is higher than the average power consumption. 坂道の勾配の情報を取得する方法を説明する図である。It is a figure explaining the method to acquire the information of the slope of a slope. 回生発電情報予測ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a regenerative power generation information prediction routine. 目標SOC設定ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of target SOC setting routine. 発電制御ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an electric power generation control routine.

符号の説明Explanation of symbols

11…制御装置(発電制御手段,SOC判定手段,電費算出手段,消費電力算出手段,回生発電情報予測手段)、12…バッテリ、13…キースイッチ、16…発電機、17…電流センサ、18…電圧センサ、19…ナビゲーションシステム   DESCRIPTION OF SYMBOLS 11 ... Control apparatus (Power generation control means, SOC determination means, Power consumption calculation means, Power consumption calculation means, Regenerative power generation information prediction means), 12 ... Battery, 13 ... Key switch, 16 ... Generator, 17 ... Current sensor, 18 ... Voltage sensor, 19 ... Navigation system

Claims (7)

内燃機関の動力で駆動される発電機と、
前記発電機で発電した電力が充電されるバッテリと、
内燃機関の運転中に前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分(以下「電費」という)を算出する電費算出手段と、 内燃機関の運転中に消費電力を算出する消費電力算出手段と、
前記バッテリの充電状態(以下「SOC」と表記する)を判定するSOC判定手段と、 ナビゲーションシステムの道路地図情報に基づいて将来の車両の減速エネルギで前記発電機を駆動して発電する回生発電区間と回生発電量を予測する回生発電情報予測手段と、 前記バッテリのSOCを目標SOCに一致させるように前記発電機の発電を制御する発電制御手段とを備え、
前記電費算出手段は、前記回生発電区間が始まる前に当該回生発電区間の前後の電費を予測し、
前記消費電力算出手段は、前記回生発電区間が始まる前に当該回生発電区間の消費電力量を予測し、
前記SOC判定手段は、前記回生発電区間が始まる前に当該回生発電区間のSOC変化量を前記回生発電量と前記消費電力量との差分に基づいて予測し、
前記発電制御手段は、前記回生発電区間の前後の電費と前記回生発電区間の予測SOC変化量に基づいて前記目標SOCを設定することを特徴とする車両用発電制御装置。
A generator driven by the power of the internal combustion engine;
A battery charged with electric power generated by the generator;
A power consumption calculating means for calculating a fuel consumption increase per unit power generation amount (hereinafter referred to as “electricity cost”) based on the fuel consumption increase amount and the power generation amount generated by the generator during operation of the internal combustion engine; Power consumption calculating means for calculating power consumption during operation of the engine;
SOC determination means for determining the state of charge of the battery (hereinafter referred to as “SOC”), and a regenerative power generation section that generates power by driving the generator with deceleration energy of a future vehicle based on road map information of a navigation system Regenerative power generation information prediction means for predicting the amount of regenerative power generation, and power generation control means for controlling the power generation of the generator so that the SOC of the battery matches the target SOC,
The power consumption calculation means predicts power consumption before and after the regenerative power generation section before the regenerative power generation section starts,
The power consumption calculation means predicts the amount of power consumption of the regenerative power generation section before the regenerative power generation section starts,
The SOC determination means predicts an SOC change amount of the regenerative power generation section based on a difference between the regenerative power generation amount and the power consumption amount before the regenerative power generation section starts,
The vehicle power generation control device, wherein the power generation control unit sets the target SOC based on a power consumption before and after the regenerative power generation section and a predicted SOC change amount of the regenerative power generation section.
前記発電制御手段は、前記回生発電区間の予測SOC変化量が前記SOCの許容上限値と許容下限値との間の幅よりも大きいときに、前記回生発電区間開始時のSOCが前記許容下限値又はその付近となるように目標SOCを設定することを特徴とする請求項1に記載の車両用発電制御装置。   When the predicted SOC change amount of the regenerative power generation section is larger than the width between the allowable upper limit value and the allowable lower limit value of the SOC, the power generation control means determines that the SOC at the start of the regenerative power generation section is the allowable lower limit value. 2. The vehicle power generation control device according to claim 1, wherein the target SOC is set so as to be in the vicinity thereof. 前記発電制御手段は、前記回生発電区間の予測SOC変化量が前記SOCの許容上限値と許容下限値との間の幅よりも小さい場合は、前記回生発電区間の前後の電費を比較して、前記回生発電区間前の電費が当該回生発電区間後の電費よりも安いときに、前記回生発電区間終了時のSOCが前記許容上限値又はその付近となるように目標SOCを設定し、前記回生発電区間前の電費が当該回生発電区間後の電費よりも高いときに、前記回生発電区間開始時のSOCが前記許容下限値又はその付近となるように目標SOCを設定することを特徴とする請求項1又は2に記載の車両用発電制御装置。   When the predicted SOC change amount in the regenerative power generation section is smaller than the width between the allowable upper limit value and the allowable lower limit value of the SOC, the power generation control means compares the power consumption before and after the regenerative power generation section, When the power consumption before the regenerative power generation section is lower than the power consumption after the regenerative power generation section, a target SOC is set so that the SOC at the end of the regenerative power generation section is at or near the allowable upper limit value, and the regenerative power generation The target SOC is set so that the SOC at the start of the regenerative power generation section is at or near the allowable lower limit when the power consumption before the section is higher than the power consumption after the regenerative power generation section. The vehicle power generation control device according to 1 or 2. 前記回生発電情報予測手段は、前記ナビゲーションシステムの道路地図情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して前記回生発電区間を予測することを特徴とする請求項1乃至3のいずれかに記載の車両用発電制御装置。   The regenerative power generation information predicting unit predicts the regenerative power generation section by predicting a fuel cut start point and a duration of the fuel cut based on road map information of the navigation system. The vehicle power generation control device according to any one of 1 to 3. 前記ナビゲーションシステムの道路地図情報には、道路の勾配の情報が含まれ、
前記回生発電情報予測手段は、前記道路の勾配の情報と車速の情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して前記回生発電区間を予測することを特徴とする請求項4に記載の車両用発電制御装置。
The road map information of the navigation system includes road gradient information,
The regenerative power generation information predicting means predicts the regenerative power generation section by predicting the fuel cut start point and the duration of the fuel cut based on the road gradient information and vehicle speed information. The vehicle power generation control device according to claim 4.
前記道路の勾配の情報は、前記道路の勾配が変化する地点毎に設定されていることを特徴とする請求項5に記載の車両用発電制御装置。   6. The vehicular power generation control device according to claim 5, wherein the road gradient information is set for each point where the road gradient changes. 前記道路の勾配の情報は、前記道路の勾配が変化する地点毎に設定された道路の標高と地点間の距離の情報とからなり、
前記回生発電情報予測手段は、地点間の標高差と地点間の距離とに基づいて道路の勾配を算出し、この道路の勾配と車速の情報に基づいて燃料カットが開始される地点とその燃料カットの継続時間を予測して前記回生発電区間を予測することを特徴とする請求項4乃至6のいずれかに記載の車両用発電制御装置。
The road gradient information consists of the road elevation set for each point where the road gradient changes and the distance information between the points.
The regenerative power generation information predicting means calculates a road gradient based on the altitude difference between the points and the distance between the points, and the fuel cut start point and its fuel based on the road gradient and vehicle speed information. The vehicle power generation control device according to any one of claims 4 to 6, wherein the regenerative power generation section is predicted by predicting a duration of cut.
JP2007014991A 2007-01-25 2007-01-25 Vehicle power generation control device Active JP4888776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014991A JP4888776B2 (en) 2007-01-25 2007-01-25 Vehicle power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014991A JP4888776B2 (en) 2007-01-25 2007-01-25 Vehicle power generation control device

Publications (2)

Publication Number Publication Date
JP2008182838A JP2008182838A (en) 2008-08-07
JP4888776B2 true JP4888776B2 (en) 2012-02-29

Family

ID=39726305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014991A Active JP4888776B2 (en) 2007-01-25 2007-01-25 Vehicle power generation control device

Country Status (1)

Country Link
JP (1) JP4888776B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849421B2 (en) * 2008-09-26 2012-01-11 三菱電機株式会社 Generator motor control device and vehicle system including the same
JP5533716B2 (en) * 2011-02-08 2014-06-25 トヨタ自動車株式会社 Vehicle power generation control system
KR102406065B1 (en) * 2016-12-14 2022-06-08 현대자동차주식회사 Method for controlling energy regeneration of mild hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322107A (en) * 1995-05-24 1996-12-03 Nippondenso Co Ltd Controller of hybrid vehicle
JP3211699B2 (en) * 1996-09-17 2001-09-25 トヨタ自動車株式会社 Power output device
JP4525448B2 (en) * 2005-04-25 2010-08-18 株式会社デンソー Power balance control type vehicle power supply system
JP4435026B2 (en) * 2005-06-02 2010-03-17 株式会社デンソー Power generation control device for internal combustion engine

Also Published As

Publication number Publication date
JP2008182838A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4307455B2 (en) Control device for hybrid vehicle
JP2008260361A (en) Vehicular control apparatus
JP5729484B2 (en) Driving environment prediction device, vehicle control device, and methods thereof
US11345347B2 (en) Brake control device for vehicle
US20210402976A1 (en) Method of Controlling Generator for Vehicle
CN107532528B (en) Control unit for alternator, method for controlling drive of alternator, and power management system for engine vehicle
JP2015050927A (en) Method for electrically regenerating energy accumulator
JP4416802B2 (en) Power management device
JP2007221868A (en) Battery charging apparatus and battery charging method
JP2006304574A (en) Power supply and its control method
JP4888776B2 (en) Vehicle power generation control device
CN105564257B (en) Method and device for operating a motor vehicle having an electrical energy accumulator
JP2010214991A (en) Driving control device for hybrid vehicle
JP4635961B2 (en) Battery charge state control device
JP4810803B2 (en) Power supply
JP6935664B2 (en) Mobile with fuel cell
CN110896149A (en) Fuel cell system
JP2020058207A (en) Electric vehicle
JP2007239528A (en) Control device for vehicle
WO2018003334A1 (en) Charging control device, charging control program, and storage medium
KR101566742B1 (en) Vehicle and controlling method of driving the vehicle
JP7447825B2 (en) Vehicle control devices, vehicle control systems, and hybrid vehicles
US20220219668A1 (en) Vehicle control devices, vehicle control systems, and hybrid vehicles
JP7110692B2 (en) Control device
JP2006176003A (en) Control device for vehicular generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R151 Written notification of patent or utility model registration

Ref document number: 4888776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250