JP4435026B2 - Power generation control device for internal combustion engine - Google Patents

Power generation control device for internal combustion engine Download PDF

Info

Publication number
JP4435026B2
JP4435026B2 JP2005162650A JP2005162650A JP4435026B2 JP 4435026 B2 JP4435026 B2 JP 4435026B2 JP 2005162650 A JP2005162650 A JP 2005162650A JP 2005162650 A JP2005162650 A JP 2005162650A JP 4435026 B2 JP4435026 B2 JP 4435026B2
Authority
JP
Japan
Prior art keywords
power generation
fuel consumption
increase
target
consumption increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005162650A
Other languages
Japanese (ja)
Other versions
JP2006340513A (en
Inventor
山下  幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005162650A priority Critical patent/JP4435026B2/en
Priority to US11/443,374 priority patent/US7355292B2/en
Priority to DE102006000265A priority patent/DE102006000265A1/en
Publication of JP2006340513A publication Critical patent/JP2006340513A/en
Application granted granted Critical
Publication of JP4435026B2 publication Critical patent/JP4435026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、発電機の発電による燃料消費量増加分を考慮して発電機を制御する機能を備えた内燃機関の発電制御装置に関する発明である。   The present invention relates to a power generation control device for an internal combustion engine having a function of controlling a power generator in consideration of an increase in fuel consumption due to power generation by the power generator.

車両に搭載された発電機(オルタネータ)の制御は、バッテリの充電状態を監視して、バッテリが充電不足とならないように発電機の制御電流(界磁電流)を制御して発電量を制御するようにしたものが多い(特許文献1,2参照)。   Control of the generator (alternator) mounted on the vehicle monitors the charge state of the battery, and controls the generator control current (field current) to prevent the battery from being insufficiently charged, thereby controlling the amount of power generation. There are many cases (see Patent Documents 1 and 2).

この発電機は、内燃機関(エンジン)の動力で駆動されて行うため、発電時には、発電機を駆動する負荷に応じて燃料が余分に消費されることになる。そこで、発電時の燃料消費量が少なくなる領域でのみ、発電機の発電を行うようにしたものがある(特許文献3,4参照)。
特開2000−4502号公報 特開2001−78365号公報 特表平6−505619号公報 特開2005−12971号公報
Since this power generator is driven by the power of the internal combustion engine (engine), extra fuel is consumed during power generation according to the load that drives the power generator. Therefore, there is one in which the generator generates power only in a region where the amount of fuel consumed during power generation is reduced (see Patent Documents 3 and 4).
JP 2000-4502 A JP 2001-78365 A JP-T 6-505619 JP 2005-12971 A

上記特許文献3,4の技術は、いずれも発電による燃料消費量増加分を低減する技術であるが、発電を実行する運転条件を予め設定されたマップで決定するため、マップの精度や車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきによって燃費節減効果が左右されやすく、必ずしも十分な燃費節減効果が得られるとは限らない。   The techniques of Patent Documents 3 and 4 are techniques for reducing the increase in fuel consumption due to power generation. However, since the driving conditions for executing power generation are determined by a preset map, the accuracy of the map and the vehicle The fuel consumption saving effect is likely to be affected by the usage environment (differences in driving road conditions, differences in vehicle speed / acceleration / deceleration by the driver) and variations in vehicle characteristics, and a sufficient fuel consumption saving effect is not always obtained.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、必要な発電量を確保しつつ、発電による燃料消費量増加分を確実に低減することができる内燃機関の発電制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to generate electric power from an internal combustion engine that can reliably reduce the increase in fuel consumption due to electric power generation while securing the necessary electric power generation amount. It is to provide a control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリとを備え、前記発電機の発電を制御する内燃機関の発電制御装置において、前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分を算出する燃料消費量算出手段と、目標の燃料消費量増加分を設定する目標燃料消費量増加分算出手段と、前記単位発電量当たりの燃料消費量増加分を前記目標の燃料消費量増加分に制御する発電制御手段とを備え、を備え、前記目標燃料消費量増加分算出手段は、前記バッテリの充電と放電の収支が0となるように前記目標の燃料消費量増加分を設定する手段と、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の使用頻度に基づいて前記目標の燃料消費量増加分を設定する手段とを有することを特徴とするものである。このように、単位発電量当たりの燃料消費量増加分を目標の燃料消費量増加分に制御するようにすれば、発電を実行する運転条件を予め設定されたマップで決定する従来の発電制御方式と比較して、マップの精度や車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきの影響が少なくなり、必要な発電量を確保しつつ、発電による燃料消費量増加分を確実に低減することができる。 To achieve the above object, the invention according to claim 1, a generator driven by the power of the internal combustion engine, and a battery power generated by the generator is charged, the power generation of the generator the power generation control device of the internal combustion engine that controls a fuel consumption calculating means for calculating a fuel consumption increase per unit power generation amount based on the power generation amount and the fuel consumption increase due to the power generation of the generator, A target fuel consumption increase calculating means for setting a target fuel consumption increase; and a power generation control means for controlling the fuel consumption increase per unit power generation amount to the target fuel consumption increase; The target fuel consumption increase calculation means includes means for setting the target fuel consumption increase so that the balance of charge and discharge of the battery becomes zero, and unit power generation amount in the past travel history Fuel consumption per unit Means for dividing the addition into predetermined ranges, and setting the target fuel consumption increase based on the usage frequency for each predetermined range of the fuel consumption increase per unit power generation amount in the past travel history; It is characterized by having. Thus, if the fuel consumption increase per unit power generation amount is controlled to the target fuel consumption increase amount, the conventional power generation control method for determining the operating conditions for executing power generation with a preset map Compared to, the accuracy of the map, the environment of use of the vehicle (differences in driving road conditions, differences in vehicle speed and acceleration / deceleration by the driver, etc.) and variations in vehicle characteristics are reduced, and the necessary power generation amount is secured. The increase in fuel consumption due to power generation can be reliably reduced.

この場合、請求項のように、現在の運転条件における単位発電量当たりの燃料消費量増加分を目標の燃料消費量増加分と比較して発電機の発電を実行するか否かを判定するようにすると良い。このようにすれば、例えば、単位発電量当たりの燃料消費量増加分が目標の燃料消費量増加分以下となる運転条件を優先的に選択して発電機の発電を実行するという極めて簡単な制御が可能となる。 In this case, as in claim 4 , it is determined whether or not to perform power generation by the generator by comparing the increase in fuel consumption per unit power generation amount under the current operating conditions with the target increase in fuel consumption amount. It is good to do so. In this way, for example, extremely simple control in which power generation by the generator is executed by preferentially selecting an operating condition in which the increase in fuel consumption per unit power generation is equal to or less than the target increase in fuel consumption. Is possible.

更に、請求項のように、バッテリの充電と放電の収支が0となる(充電量と放電量がバランスする)ように目標の燃料消費量増加分を設定すると良い。これにより、必要最小限の発電量でバッテリを過不足なく充電することができ、燃費低減と充放電収支の両立が可能となる。 Further, as in claim 1 , the target increase in fuel consumption may be set so that the balance of charge and discharge of the battery becomes zero (the charge amount and the discharge amount are balanced). As a result, the battery can be charged without excess or deficiency with the minimum required amount of power generation, and both reduction in fuel consumption and charge / discharge balance can be achieved.

また、請求項のように、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の使用頻度に基づいて目標の燃料消費量増加分を設定するようにしても良い。このようにすれば、車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきに合わせて目標の燃料消費量増加分を自動的に精度良く設定することができる。 Moreover, as of claim 1, divides the fuel consumption increase per unit power generation amount in the past travel history for each predetermined range, a predetermined fuel consumption increase per unit power generation amount in the past travel history The target increase in fuel consumption may be set based on the usage frequency for each range . In this way, the target fuel consumption increase is automatically and accurately set according to the vehicle usage environment (differences in driving road conditions, differences in vehicle speed and acceleration / deceleration by the driver, etc.) and vehicle characteristics. can do.

更に、請求項のように、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の使用頻度と発電可能量とに基づいて目標の燃料消費量増加分を設定するようにしても良い。このようにすれば、所定範囲毎の発電可能量も考慮して、より正確に目標の燃料消費量増加分を設定することができる。 Furthermore, as in claim 2, the increase in fuel consumption per unit power generation amount in the past travel history is divided into predetermined ranges, and the predetermined increase in fuel consumption per unit power generation amount in the past travel history is determined. The target increase in fuel consumption may be set based on the frequency of use for each range and the amount of power that can be generated. In this way, the target increase in fuel consumption can be set more accurately in consideration of the power generation possible amount for each predetermined range .

更に、請求項のように、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の所定範囲毎の使用頻度と発電可能量と平均消費電力とに基づいて目標の燃料消費量増加分を設定するようにしても良い。このようにすれば、所定範囲毎の発電可能量と平均消費電力も考慮して、より正確に目標の燃料消費量増加分を設定することができる。 Further, as described in claim 3 , the fuel consumption increase per unit power generation amount in the past travel history is divided into predetermined ranges, and the predetermined fuel consumption increase per unit power generation amount in the past travel history is determined. A target fuel consumption increase may be set based on the frequency of use, the amount of power that can be generated, and the average power consumption for each predetermined range . In this way, the target increase in fuel consumption can be set more accurately in consideration of the power generation possible amount and the average power consumption for each predetermined range .

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
図1に示す制御装置11は、バッテリ12からキースイッチ13を介して電源が供給され、エンジン運転中に点火装置14と噴射装置15の動作を制御すると共に、発電機16の発電を制御する発電制御手段として機能する。以下、本実施例の発電制御について説明する。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
A control device 11 shown in FIG. 1 is supplied with power from a battery 12 via a key switch 13, controls the operation of the ignition device 14 and the injection device 15 during engine operation, and controls the power generation of the generator 16. It functions as a control means. Hereinafter, the power generation control of this embodiment will be described.

図2は、単位時間当たりの燃料消費量である燃料消費率とエンジン運転条件との関係を示す図である。図2に示すように、燃料消費率は、エンジン回転速度とエンジントルクによって変化する。燃料消費率は、エンジントルクに応じて曲線的に変化するため、エンジン回転速度が一定の場合は、エンジントルクの増加量に対して、燃料消費率の増加量が大きい条件と小さい条件がある。例えば、発電機16で一定量の発電を実施した場合、発電によりエンジントルクに発電機16によるトルクが付加され、エンジンの動作点が変わる。このため、燃料消費率は、発電量により変化する。この時、燃料消費率が少ない条件のみ選択して、発電を実施すれば、燃料消費率を低減することが可能となる。   FIG. 2 is a diagram showing the relationship between the fuel consumption rate, which is the fuel consumption per unit time, and the engine operating conditions. As shown in FIG. 2, the fuel consumption rate varies depending on the engine speed and the engine torque. Since the fuel consumption rate changes in a curve according to the engine torque, when the engine rotational speed is constant, there are a condition where the increase amount of the fuel consumption rate is large and a condition where the increase amount is small. For example, when a certain amount of power is generated by the generator 16, the torque generated by the generator 16 is added to the engine torque by power generation, and the operating point of the engine changes. For this reason, a fuel consumption rate changes with electric power generation amounts. At this time, if only a condition with a low fuel consumption rate is selected and power generation is performed, the fuel consumption rate can be reduced.

そこで、本実施例では、発電制御のパラメータとして、単位発電量当たりの燃料消費率増加分(以下「電費」という)を用いる。この電費は、次のようにして算出される。まず、エンジン運転中(走行中)に、発電機16の発電を実行した場合の燃料消費率(発電時燃料消費率)と発電機16の発電を停止した場合の燃料消費率(非発電時燃料消費率)との差分から発電による燃料消費率増加分を求め、この発電による燃料消費率増加分を発電機16の発電量で割り算して電費(単位発電量当たりの燃料消費量増加分)を求める。   Therefore, in this embodiment, an increase in fuel consumption rate per unit power generation amount (hereinafter referred to as “electricity cost”) is used as a parameter for power generation control. This electricity cost is calculated as follows. First, while the engine is running (running), the fuel consumption rate when the generator 16 generates power (fuel consumption rate during power generation) and the fuel consumption rate when the generator 16 stops power generation (non-power generation fuel) The increase in fuel consumption rate due to power generation is calculated from the difference from the consumption rate), and the increase in fuel consumption rate due to power generation is divided by the power generation amount of the generator 16 to calculate the power consumption (increase in fuel consumption per unit power generation amount). Ask.

電費(g/skW) =(発電時燃料消費率−非発電時燃料消費率)/発電量
更に、本実施例では、走行中に、電費のクラス毎の使用頻度を求めると共に、クラス毎の発電可能量と平均消費電力を算出し、クラス毎の使用頻度と発電可能量と平均消費電力とに基づいてバッテリ12の充放電収支が0となる(充電量と放電量がバランスする)ように目標電費を設定し、現在の電費を目標電費と比較して発電機16の発電を実行するか否かを判定する。ここで、「クラス」とは、電費の最小値(0)から最大値までの範囲を所定数に分割した所定範囲を意味する。
Electricity cost (g / skW) = (Fuel consumption rate during power generation-Fuel consumption rate during non-power generation) / Power generation amount Furthermore, in this embodiment, the frequency of use of power consumption for each class is determined while driving, and power generation for each class Calculate the possible amount and average power consumption, and target the charge / discharge balance of the battery 12 to be zero (the charge amount and the discharge amount are balanced) based on the usage frequency, power generation possible amount and average power consumption for each class The power consumption is set, and the current power consumption is compared with the target power consumption to determine whether or not to generate power by the generator 16. Here, the “class” means a predetermined range obtained by dividing a range from the minimum value (0) to the maximum value of the power consumption into a predetermined number.

以上説明した本実施例の発電制御は、制御装置11によって図3乃至図7の各ルーチンによって実行される。以下、これら各ルーチンの処理内容を説明する。   The power generation control of the present embodiment described above is executed by the control device 11 according to the routines shown in FIGS. The processing contents of these routines will be described below.

[電費算出ルーチン]
図3の電費算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、特許請求の範囲でいう燃料消費量算出手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、現在の運転条件(例えばエンジン回転速度、吸入空気量、要求発電量等)を読み込む。ここで、要求発電量は、予め発電機16の最大発電可能量、発電機16の発電効率等から設定される。
[Electricity calculation routine]
The power consumption calculation routine of FIG. 3 is executed at a predetermined cycle (for example, a cycle of 8 ms) during engine operation, and serves as fuel consumption calculation means in the claims. When this routine is started, first, in step 101, the current operating conditions (for example, engine speed, intake air amount, required power generation amount, etc.) are read. Here, the required power generation amount is set in advance from the maximum power generation possible amount of the generator 16, the power generation efficiency of the generator 16, and the like.

この後、ステップ102に進み、現在の運転条件から現在のエンジントルクを算出した後、ステップ103に進み、要求発電量をトルクに換算し(つまり要求発電量分の発電を行うのに必要なトルクを算出し)、これを要求発電量トルクとして制御装置11のRAMに記憶する。   Thereafter, the process proceeds to step 102, the current engine torque is calculated from the current operating conditions, and then the process proceeds to step 103, where the required power generation amount is converted into torque (that is, the torque necessary for generating power for the required power generation amount). And this is stored in the RAM of the control device 11 as the required power generation amount torque.

そして、次のステップ104で、発電機16が発電中であるか否かを判定し、発電中であれば、ステップ105に進み、現在の発電量をトルクに換算して、これを現在の発電量トルクとして制御装置11のRAMに記憶し、次のステップ106で、上記ステップ102で算出した現在のエンジントルクから上記ステップ105で算出した現在の発電量トルクを差し引いて非発電時トルクを求める。この非発電時トルクは、発電機16の発電を停止した場合のエンジントルクに相当する。一方、上記ステップ104で、発電中でないと判定されれば、ステップ107に進み、現在のエンジントルクをそのまま非発電時トルクとする。   Then, in the next step 104, it is determined whether or not the generator 16 is generating power. If it is generating power, the process proceeds to step 105, where the current power generation amount is converted into torque, and this is converted into the current power generation. The amount torque is stored in the RAM of the control device 11, and in the next step 106, the current power generation amount torque calculated in step 105 is subtracted from the current engine torque calculated in step 102 to obtain a non-power generation torque. This non-power generation torque corresponds to the engine torque when power generation by the generator 16 is stopped. On the other hand, if it is determined in step 104 that power generation is not being performed, the process proceeds to step 107, where the current engine torque is directly used as the non-power generation torque.

以上のようにして非発電時トルクを算出した後、ステップ108に進み、上記ステップ102で算出した現在のエンジントルクに上記ステップ103で算出した要求発電量トルクを加算して発電時トルクを求める。この発電時トルクは、発電機16の発電を実行した場合のエンジントルクに相当する。   After calculating the non-power generation torque as described above, the routine proceeds to step 108, where the required power generation amount torque calculated in step 103 is added to the current engine torque calculated in step 102 to determine the power generation torque. This power generation torque corresponds to the engine torque when the generator 16 generates power.

この後、ステップ109に進み、現在のエンジン回転速度と非発電時トルクに応じた非発電時燃料消費率(g/s) を図2と同様の燃料消費率算出マップにより算出する。この非発電時燃料消費率は、発電機16の発電を停止した場合の燃料消費率に相当する。燃料消費率の算出マップは、定常運転条件における燃料消費率を予め計測し、設定しておく。   Thereafter, the routine proceeds to step 109, where the non-power generation fuel consumption rate (g / s) corresponding to the current engine speed and non-power generation torque is calculated by the fuel consumption rate calculation map similar to FIG. This non-power generation fuel consumption rate corresponds to the fuel consumption rate when power generation by the generator 16 is stopped. The fuel consumption rate calculation map is set in advance by measuring the fuel consumption rate under steady operation conditions.

この後、ステップ110に進み、現在のエンジン回転速度と発電時トルクに応じた発電時燃料消費率(g/s) を図2と同様の燃料消費率算出マップにより算出する。この発電時燃料消費率は、発電機16の発電を実行した場合の燃料消費率に相当する。   Thereafter, the routine proceeds to step 110, where the fuel consumption rate (g / s) during power generation corresponding to the current engine speed and torque during power generation is calculated using the same fuel consumption rate calculation map as in FIG. This fuel consumption rate during power generation corresponds to the fuel consumption rate when power generation by the generator 16 is executed.

この後、ステップ111に進み、発電時燃料消費率(g/s) と非発電時燃料消費率(g/s) との差分を現在の発電量(kW)で割り算して、単位発電量当たりの燃料消費率である電費CFC(g/skW) を求める。
CFC(g/kWs) =(発電時燃料消費率−非発電時燃料消費率)/発電量
Then, proceed to step 111, and divide the difference between the fuel consumption rate during power generation (g / s) and the fuel consumption rate during non-power generation (g / s) by the current power generation amount (kW) The electricity consumption CFC (g / skW), which is the fuel consumption rate, is calculated.
CFC (g / kWs) = (Fuel consumption rate during power generation-Fuel consumption rate during non-power generation) / Power generation amount

[電費クラスデータ蓄積ルーチン]
図4の電費クラスデータ蓄積ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、過去の走行履歴における電費CFCのクラス毎の使用頻度、電費平均値、発電可能量平均値を次のようにして算出して、それらのデータを制御装置11のRAMに蓄積する。
[Electricity class data storage routine]
The power consumption class data accumulation routine of FIG. 4 is executed at a predetermined cycle (for example, a cycle of 8 ms) during engine operation, and the usage frequency, the power consumption average value, and the power generation possible average value for each class of the power consumption CFC in the past travel history are calculated. Thus, the data is stored in the RAM of the control device 11.

本ルーチンが起動されると、まずステップ201で、エンジン回転速度と発電機16の発電特性との関係を表すマップ等から現在のエンジン回転速度に応じた発電可能量GPを算出する。この後、ステップ202に進み、現在までの合計サンプル数NFCtotal のカウント値をカウントアップして、ステップ203aに進み、今回の電費CFCが最小のクラスであるクラスAに含まれるか否か(電費CFC<Aか否か)を判定し、今回の電費CFCがクラスAに含まれれば、クラスAのデータを次のようにして更新する。   When this routine is started, first, in step 201, a power generation possible amount GP corresponding to the current engine rotation speed is calculated from a map or the like representing the relationship between the engine rotation speed and the power generation characteristics of the generator 16. Thereafter, the process proceeds to step 202, where the count value of the total number of samples NFCtotal up to the present time is counted up, and the process proceeds to step 203a to determine whether or not the current power consumption CFC is included in the class A which is the smallest class (electric power consumption CFC). <A or not> is determined, and if the current power consumption CFC is included in class A, the data of class A is updated as follows.

まず、ステップ204aで、クラスAのサンプル数NFC(A) のカウント値をカウントアップした後、ステップ205aに進み、クラスAの前回の電費平均値 oldCFCave(A)とサンプル数NFC(A) と今回の電費CFCから、クラスAの電費平均値CFCave(A)を次式により算出する。
CFCave(A)=[ oldCFCave(A)×{NFC(A) −1}+CFC]/NFC(A)
First, in step 204a, the count value of the class A sample number NFC (A) is counted up, and then the process proceeds to step 205a. The class A previous power consumption average oldCFCave (A), the sample number NFC (A) and the current time The average power consumption CFCave (A) of class A is calculated from the following power consumption CFC.
CFCave (A) = [oldCFCave (A) × {NFC (A) −1} + CFC] / NFC (A)

この後、ステップ206aに進み、クラスAの前回の発電可能量 oldGPave(A)とサンプル数NFC(A) と今回の発電可能量GPから、クラスAの発電可能量平均値GPave(A)を次式により算出する。
GPave(A)=[ oldGPave(A)×{NFC(A) −1}+GP]/NFC(A)
Thereafter, the process proceeds to step 206a, and the class A power generation capacity average value GPave (A) is calculated from the class A previous power generation capacity oldGPave (A), the number of samples NFC (A), and the current power generation capacity GP. Calculated by the formula.
GPave (A) = [oldGPave (A) × {NFC (A) −1} + GP] / NFC (A)

この後、ステップ207aに進み、クラスAのサンプル数NFC(A) を全クラスA〜Zの合計サンプル数NFCtotal で割り算してクラスAの使用頻度R(A) を求める。
R(A) =NFC(A) /NFCtotal
Thereafter, the process proceeds to step 207a, where the class A use frequency R (A) is obtained by dividing the class A sample number NFC (A) by the total sample number NFCtotal of all classes A to Z.
R (A) = NFC (A) / NFCtotal

一方、前記ステップ203で、今回の電費CFCがクラスAに含まれていないと判定されれば、ステップ203bに進み、今回の電費CFCがクラスAの次に大きいクラスBに含まれるか否か(A≦電費CFC<Bか否か)を判定し、今回の電費CFCがクラスBに含まれれば、ステップ204b〜207bの処理を実行して、上記と同様の方法で、クラスBのサンプル数NFC(B) 、電費平均値CFCave(B)、発電可能量平均値GPave(B)、使用頻度R(B) を算出して、それらの記憶データを更新する。 Meanwhile, in step 203 a, if it is determined that the current electricity cost CFC is not included in the class A, the process proceeds to step 203b, whether the current fuel efficiency CFC is contained in a large class B in the following Class A (A ≦ electric cost CFC <B or not) is determined, and if the current power cost CFC is included in class B, the processing of steps 204b to 207b is executed, and the number of samples of class B is determined in the same manner as described above. NFC (B), electricity cost average value CFCave (B), power generation possible amount average value GPave (B), usage frequency R (B) are calculated, and the stored data is updated.

以下、走行中に、同様の方法で、クラスC、クラスD、……クラスY、クラスZの電費平均値CFCave(C)〜CFCave(Z)、発電可能量平均値GPave(C)〜GPave(Z)、使用頻度R(C) 〜R(Z) を算出して、これらのデータを更新する。   Hereinafter, while traveling, the average power consumption values CFCave (C) to CFCave (Z), average power generation amount values GPave (C) to GPave () for class C, class D,. Z), usage frequencies R (C) to R (Z) are calculated, and these data are updated.

[平均消費電力算出ルーチン]
図5の平均消費電力算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行される。本ルーチンが起動されると、まずステップ301で、車両で消費される演算周期当たりの消費電力CPを算出する。この後、ステップ302に進み、前回の平均消費電力 oldCPave と合計サンプル数NFCtotal と今回の消費電力CPから、平均消費電力CPave を次式により算出する。
CPave ={ oldCPave ×(NFCtotal −1)+CP}/NFCtotal
[Average power consumption calculation routine]
The average power consumption calculation routine of FIG. 5 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation. When this routine is started, first, at step 301, the power consumption CP per calculation period consumed by the vehicle is calculated. Thereafter, the process proceeds to step 302, where the average power consumption CPave is calculated from the previous average power consumption oldCPave, the total number of samples NFCtotal, and the current power consumption CP by the following equation.
CPave = {oldCPave × (NFCtotal −1) + CP} / NFCtotal

[目標電費算出ルーチン]
図6の目標電費算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、特許請求の範囲でいう目標燃料消費量増加分算出手段としての役割を果たし、次のようにして目標電費TCFCを算出する。本ルーチンが起動されると、まずステップ401で、各クラスA〜Zの発電可能量平均値GPave(A)〜GPave(Z)にそれぞれ使用頻度R(A) 〜R(Z) を乗算して各クラスA〜Zの発電可能量GP(A) 〜GP(Z) を求める。
[Target electricity cost calculation routine]
The target electricity consumption calculation routine of FIG. 6 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation, and serves as a target fuel consumption increase calculation means referred to in the claims. The electricity cost TCFC is calculated. When this routine is started, first, in step 401, the average power generation amount values GPave (A) to GPave (Z) of the classes A to Z are multiplied by the usage frequencies R (A) to R (Z), respectively. The power generation possible amounts GP (A) to GP (Z) of the respective classes A to Z are obtained.

GP(A) =GPave(A)×R(A)
GP(B) =GPave(B)×R(B)
・・・・・・・・・・・・・
GP(Z) =GPave(Z)×R(Z)
GP (A) = GPave (A) x R (A)
GP (B) = GPave (B) x R (B)
...
GP (Z) = GPave (Z) x R (Z)

この後、ステップ402に進み、クラスAでの充放電収支BAL(A) を、クラスAの発電可能量GP(A) から平均消費電力CPave を差し引いて求める。
BAL(A) =GP(A) −CPave
Thereafter, the routine proceeds to step 402, where the charge / discharge balance BAL (A) in class A is obtained by subtracting the average power consumption CPave from the class A power generation possible amount GP (A).
BAL (A) = GP (A) -CPave

この後、ステップ40に進み、クラスAからクラスBまでの充放電収支BAL(B) をクラスAでの充放電収支BAL(A) にクラスBの発電可能量GP(B) を足し合わせて求める。
BAL(B) =BAL(A) +GP(B)
Thereafter, the process proceeds to step 40 3, by adding the amount capable of generating power GP class from class A to class B discharge balance BAL (B) a charge-discharge balance BAL (A) of Class A B (B) Ask.
BAL (B) = BAL (A) + GP (B)

以下、同様の処理を各クラスC〜Z毎に繰り返すことで、クラスAから各クラスC〜Zまでの充放電収支BAL(C) 〜BAL(Z) を算出する(ステップ404)。
BAL(C) =BAL(B) +GP(C)
・・・・・・・・・・・・・・・
BAL(Z) =BAL(Y) +GP(Z)
Thereafter, the same processing is repeated for each class C to Z to calculate the charge / discharge balance BAL (C) to BAL (Z) from class A to class C to Z (step 404).
BAL (C) = BAL (B) + GP (C)
...
BAL (Z) = BAL (Y) + GP (Z)

この後、ステップ405aに進み、クラスAでの充放電収支BAL(A) が0より大きいか否か(プラス値であるか否か)を判定する。その結果、クラスAでの充放電収支BAL(A) が0より大きい(プラス値)と判定されれば、クラスAのみの発電で充放電収支が取れる(クラスAの範囲内で目標電費TCFCを設定すれば良い)と判断して、ステップ406aに進み、クラスAの上限値[A]、充放電収支BAL(A) 、発電可能量GP(A) を用いて、目標電費TCFCを次式により算出する。
TCFC=A−(A−0)×BAL(A) /GP(A)
これにより、クラスAの範囲内で充放電収支が0となる電費を算出して、この電費を目標電費TCFCとする。
Thereafter, the process proceeds to step 405a, and it is determined whether the charge / discharge balance BAL (A) in class A is greater than 0 (whether it is a positive value). As a result, if it is determined that the charge / discharge balance BAL (A) in class A is greater than 0 (plus value), the charge / discharge balance can be obtained by power generation only in class A (the target power consumption TCFC is within the range of class A). The process proceeds to step 406a, and the target power consumption TCFC is calculated by the following equation using the upper limit value [A] of class A, the charge / discharge balance BAL (A), and the power generation possible amount GP (A) calculate.
TCFC = A- (A-0) x BAL (A) / GP (A)
As a result, the power cost at which the charge / discharge balance is 0 within the class A range is calculated, and this power cost is set as the target power cost TCFC.

一方、上記ステップ405aで、クラスAでの充放電収支BAL(A) が0以下(マイナス値)と判定されれば、ステップ405bに進み、クラスAからクラスBまでの充放電収支BAL(B) が0より大きいか否か(プラス値であるか否か)を判定する。その結果、クラスAからクラスBまでの充放電収支BAL(B) が0より大きい(プラス値)と判定されれば、クラスAからクラスBまでの発電で充放電収支が取れる(クラスBの範囲内で目標電費TCFCを設定すれば良い)と判断して、ステップ406bに進み、クラスBの上限値[B]、充放電収支BAL(B) 、発電可能量GP(B) を用いて、目標電費TCFCを次式により算出する。
TCFC=B−(B−A)×BAL(B) /GP(B)
これにより、クラスBの範囲内で充放電収支が0となる電費を算出して、この電費を目標電費TCFCとする。
On the other hand, if it is determined in step 405a that the charge / discharge balance BAL (A) in class A is 0 or less (minus value), the process proceeds to step 405b and the charge / discharge balance BAL (B) from class A to class B is reached. Is greater than 0 (whether it is a positive value). As a result, if it is determined that the charge / discharge balance BAL (B) from class A to class B is greater than 0 (plus value), the charge / discharge balance can be obtained by power generation from class A to class B (range of class B). The target power consumption TCFC may be set within the range), and the process proceeds to step 406b, where the target is calculated using the upper limit [B] of class B, the charge / discharge balance BAL (B), and the power generation possible amount GP (B). The electricity cost TCFC is calculated by the following formula.
TCFC = B- (BA) x BAL (B) / GP (B)
As a result, the power cost at which the charge / discharge balance is 0 within the class B range is calculated, and this power cost is set as the target power cost TCFC.

以下、同様の処理を各クラスC〜Y毎に繰り返すことで、充放電収支が0以上となる最小のクラスを探索して、充放電収支が0以上となる最小のクラスの範囲内で充放電収支が0となる電費を算出して、この電費を目標電費TCFCとする(ステップ405y、406y)。
TCFC=C−(C−B)×BAL(C) /GP(C)
・・・・・・・・・・・・・・・・・・・・・・
TCFC=Y−(Y−X)×BAL(Y) /GP(Y)
Hereinafter, by repeating the same process for each class C to Y, the minimum class in which the charge / discharge balance is 0 or more is searched, and the charge / discharge is performed within the range of the minimum class in which the charge / discharge balance is 0 or more. The power cost at which the balance is 0 is calculated, and this power cost is set as the target power cost TCFC (steps 405y and 406y).
TCFC = C- (CB) x BAL (C) / GP (C)
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
TCFC = Y− (Y−X) × BAL (Y) / GP (Y)

クラスAからクラスYまでの充放電収支BAL(Y) が0以下(マイナス値)となる場合は、クラスAからクラスYまでの範囲を使用して発電しても、充放電収支が取れないことを意味するため、ステップ406zに進み、目標電費TCFCを許容される最大の電費であるクラスZの上限値[Z]に設定する。
TCFC=Z
If the charge / discharge balance BAL (Y) from class A to class Y is 0 or less (negative value), the charge / discharge balance cannot be obtained even if power is generated using the range from class A to class Y. In step 406z, the target power consumption TCFC is set to the upper limit value [Z] of the class Z that is the maximum allowable power consumption.
TCFC = Z

[発電実行判定ルーチン]
図7の発電実行判定ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行される。本ルーチンが起動されると、まずステップ501で、現在の電費CFCが目標電費TCFCよりも大きいか否かを判定し、現在の電費CFCが目標電費TCFCよりも大きければ、ステップ502に進み、発電指令値を0にセットして、発電機16の発電を停止させる。これにより、バッテリ12の過充電を防止する。一方、現在の電費CFCが目標電費TCFC以下であれば、ステップ503に進み、発電指令値を要求発電量にセットする。これにより、走行中(エンジン運転中)に、発電機16の界磁コイルに発電指令値に応じた制御電流を流して、要求発電量に応じた電力を発電させることで、電費CFCを目標電費TCFCに制御して、バッテリ12の充電割合(SOC)を目標充電割合付近に制御する。ここで、要求発電量は、現在のエンジン回転速度や、発電機16の最大発電可能量、発電機16の発電効率等から定めておく。
[Power generation execution determination routine]
The power generation execution determination routine of FIG. 7 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation. When this routine is started, first, in step 501, it is determined whether or not the current power cost CFC is larger than the target power cost TCFC. If the current power cost CFC is larger than the target power cost TCFC, the process proceeds to step 502, The command value is set to 0, and the power generation of the generator 16 is stopped. Thereby, overcharging of the battery 12 is prevented. On the other hand, if the current power consumption CFC is less than or equal to the target power consumption TCFC, the process proceeds to step 503, and the power generation command value is set to the required power generation amount. As a result, while running (engine operation), a control current corresponding to the power generation command value is supplied to the field coil of the generator 16 to generate power corresponding to the required power generation amount, thereby reducing the power consumption CFC to the target power consumption. By controlling to TCFC, the charging rate (SOC) of the battery 12 is controlled near the target charging rate. Here, the required power generation amount is determined from the current engine rotation speed, the maximum power generation possible amount of the generator 16, the power generation efficiency of the generator 16, and the like.

以上説明した本実施例では、単位発電量当たりの燃料消費率増加分である電費CFCを目標電費TCFCに制御するようにしたので、発電を実行する運転条件を予め設定されたマップで決定する従来の発電制御方式と比較して、マップの精度や車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきの影響が少なくなり、必要な発電量を確保しつつ、発電による燃料消費量増加分を確実に低減することができ、燃費低減と充放電収支の両立が可能となる。   In the present embodiment described above, the power consumption CFC, which is an increase in the fuel consumption rate per unit power generation, is controlled to the target power consumption TCFC, so that the operating conditions for executing power generation are determined by a preset map. Compared with other power generation control methods, the influence of map accuracy, vehicle usage environment (differences in driving road conditions, differences in vehicle speed / acceleration / deceleration by the driver, etc.) and vehicle characteristics are reduced, and the required power generation amount The increase in fuel consumption due to power generation can be surely reduced while ensuring both the fuel efficiency and the charge / discharge balance.

しかも、本実施例では、バッテリ12の充放電収支が0となるように目標費TCFCを設定するようにしたので、必要最小限の発電量でバッテリ12を過不足なく充電することができる。 In addition, in the present embodiment, the target power consumption TCFC is set so that the charge / discharge balance of the battery 12 becomes 0, so that the battery 12 can be charged without excess or deficiency with the minimum necessary power generation amount.

更に、本実施例では、過去の走行履歴における電費CFCのクラス毎の使用頻度と発電可能量と平均消費電力とに基づいて目標電費TCFCを設定するようにしたので、車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきに合わせて目標電費TCFCを自動的に精度良く設定することができる。   Furthermore, in this embodiment, the target power consumption TCFC is set based on the frequency of use of the power consumption CFC for each class in the past travel history, the amount of power generation, and the average power consumption. The target electricity cost TCFC can be set automatically and accurately in accordance with the difference in the situation, the difference in vehicle speed and acceleration / deceleration by the driver, and the variation in vehicle characteristics.

この場合、過去の走行履歴における電費CFCのクラス毎の使用頻度のみに基づいて目標電費TCFCを設定したり、電費CFCのクラス毎の使用頻度と発電可能量とに基づいて目標電費TCFCを設定しても良い。   In this case, the target electricity consumption TCFC is set based only on the usage frequency for each class of the electricity consumption CFC in the past travel history, or the target electricity consumption TCFC is set based on the usage frequency for each class of the electricity consumption CFC and the power generation possible amount. May be.

本発明の一実施例のシステム構成を説明するブロック図である。It is a block diagram explaining the system configuration | structure of one Example of this invention. 燃料消費率とエンジン運転条件との関係を示す図である。It is a figure which shows the relationship between a fuel consumption rate and an engine driving | running condition. 電費算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a power consumption calculation routine. 電費クラスデータ蓄積ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a power consumption class data storage routine. 平均消費電力算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an average power consumption calculation routine. 目標電費算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a target electricity consumption calculation routine. 発電実行判定ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an electric power generation execution determination routine.

符号の説明Explanation of symbols

11…制御装置(発電制御手段,燃料消費量算出手段,目標燃料消費量増加分算出手段)、12…バッテリ、13…キースイッチ、16…発電機
DESCRIPTION OF SYMBOLS 11 ... Control apparatus (Power generation control means, Fuel consumption calculation means , Target fuel consumption increase calculation means ), 12 ... Battery, 13 ... Key switch, 16 ... Generator

Claims (4)

内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリとを備え、前記発電機の発電を制御する内燃機関の発電制御装置において、
前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分を算出する燃料消費量算出手段と、
目標の燃料消費量増加分を設定する目標燃料消費量増加分算出手段と、
前記単位発電量当たりの燃料消費量増加分を前記目標の燃料消費量増加分に制御する発電制御手段とを備え、
前記目標燃料消費量増加分算出手段は、前記バッテリの充電と放電の収支が0となるように前記目標の燃料消費量増加分を設定する手段と、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の使用頻度に基づいて前記目標の燃料消費量増加分を設定する手段とを有することを特徴とする内燃機関の発電制御装置。
A generator driven by the power of the internal combustion engine, and a battery power generated by the generator is charged, the power generation control device of the internal combustion engine that controls the power generation of the generator,
Fuel consumption calculation means for calculating a fuel consumption increase per unit power generation based on a fuel consumption increase and power generation by power generation of the generator ;
A target fuel consumption increase calculating means for setting a target fuel consumption increase;
Power generation control means for controlling the fuel consumption increase per unit power generation to the target fuel consumption increase,
The target fuel consumption increase calculation means includes means for setting the target fuel consumption increase so that the balance of charge and discharge of the battery becomes zero, and fuel per unit power generation amount in the past travel history Means for dividing the increase in consumption into predetermined ranges and setting the target increase in fuel consumption based on the usage frequency for each predetermined range of the increase in fuel consumption per unit power generation in the past travel history And a power generation control device for an internal combustion engine.
内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリとを備え、前記発電機の発電を制御する内燃機関の発電制御装置において、
前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分を算出する燃料消費量算出手段と、
目標の燃料消費量増加分を設定する目標燃料消費量増加分算出手段と、
前記単位発電量当たりの燃料消費量増加分を前記目標の燃料消費量増加分に制御する発電制御手段とを備え、
前記目標燃料消費量増加分算出手段は、前記バッテリの充電と放電の収支が0となるように前記目標の燃料消費量増加分を設定する手段と、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の使用頻度と発電可能量とに基づいて前記目標の燃料消費量増加分を設定する手段とを有することを特徴とする内燃機関の発電制御装置。
In a power generation control device for an internal combustion engine, comprising: a generator driven by the power of the internal combustion engine; and a battery charged with power generated by the generator;
Fuel consumption calculation means for calculating a fuel consumption increase per unit power generation based on a fuel consumption increase and power generation by power generation of the generator;
A target fuel consumption increase calculating means for setting a target fuel consumption increase;
Power generation control means for controlling the fuel consumption increase per unit power generation to the target fuel consumption increase,
The target fuel consumption increase calculation means includes means for setting the target fuel consumption increase so that the balance of charge and discharge of the battery becomes zero, and fuel per unit power generation amount in the past travel history Divide the increase in consumption for each predetermined range, and increase the target fuel consumption based on the usage frequency and the power generation amount for each predetermined range of the increase in fuel consumption per unit power generation in the past travel history power generation control device of the internal combustion engine you; and a means for setting a frequency.
内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリとを備え、前記発電機の発電を制御する内燃機関の発電制御装置において、
前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分を算出する燃料消費量算出手段と、
目標の燃料消費量増加分を設定する目標燃料消費量増加分算出手段と、
前記単位発電量当たりの燃料消費量増加分を前記目標の燃料消費量増加分に制御する発電制御手段とを備え、
前記目標燃料消費量増加分算出手段は、前記バッテリの充電と放電の収支が0となるように前記目標の燃料消費量増加分を設定する手段と、過去の走行履歴における単位発電量当たりの燃料消費量増加分を所定範囲毎に分割し、前記過去の走行履歴における単位発電量当たりの燃料消費量増加分の所定範囲毎の使用頻度と発電可能量と平均消費電力とに基づいて前記目標の燃料消費量増加分を設定する手段とを有することを特徴とする内燃機関の発電制御装置。
In a power generation control device for an internal combustion engine, comprising: a generator driven by the power of the internal combustion engine; and a battery charged with power generated by the generator;
Fuel consumption calculation means for calculating a fuel consumption increase per unit power generation based on a fuel consumption increase and power generation by power generation of the generator;
A target fuel consumption increase calculating means for setting a target fuel consumption increase;
Power generation control means for controlling the fuel consumption increase per unit power generation to the target fuel consumption increase,
The target fuel consumption increase calculation means includes means for setting the target fuel consumption increase so that the balance of charge and discharge of the battery becomes zero, and fuel per unit power generation amount in the past travel history The consumption increase is divided into predetermined ranges, and the target is calculated based on the usage frequency, the power generation possible amount and the average power consumption for each predetermined range of the fuel consumption increase per unit power generation amount in the past travel history. power generation control device of the internal combustion engine you; and a means for setting the consumption increase fuel.
前記発電制御手段は、現在の運転条件における単位発電量当たりの燃料消費量増加分を前記目標の燃料消費量増加分と比較して前記発電機の発電を実行するか否かを判定することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の発電制御装置。 The power generation control means compares the increase in fuel consumption per unit power generation under the current operating conditions with the target increase in fuel consumption to determine whether to execute power generation of the generator. The power generation control device for an internal combustion engine according to any one of claims 1 to 3 .
JP2005162650A 2005-06-02 2005-06-02 Power generation control device for internal combustion engine Expired - Fee Related JP4435026B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005162650A JP4435026B2 (en) 2005-06-02 2005-06-02 Power generation control device for internal combustion engine
US11/443,374 US7355292B2 (en) 2005-06-02 2006-05-31 Power generation control apparatus for internal combustion engine
DE102006000265A DE102006000265A1 (en) 2005-06-02 2006-06-01 Power generation control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162650A JP4435026B2 (en) 2005-06-02 2005-06-02 Power generation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006340513A JP2006340513A (en) 2006-12-14
JP4435026B2 true JP4435026B2 (en) 2010-03-17

Family

ID=37560565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162650A Expired - Fee Related JP4435026B2 (en) 2005-06-02 2005-06-02 Power generation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4435026B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888776B2 (en) * 2007-01-25 2012-02-29 株式会社デンソー Vehicle power generation control device
JP5353079B2 (en) * 2008-06-12 2013-11-27 日産自動車株式会社 Vehicle power supply
JP5218654B2 (en) 2009-06-01 2013-06-26 トヨタ自動車株式会社 Vehicle control device
JP6019985B2 (en) * 2012-09-19 2016-11-02 マツダ株式会社 Vehicle power supply
DE102017119291B4 (en) * 2017-08-23 2022-01-27 CPK Automotive GmbH & Co. KG Method of influencing the energy consumption of a motor

Also Published As

Publication number Publication date
JP2006340513A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US9855854B2 (en) Charge control device and charge control method
JP6384412B2 (en) Power supply
JP4209423B2 (en) Secondary battery control device and secondary battery output control method
US20060192533A1 (en) Method and apparatus for calculating/controlling power generation torque
JP2008058278A (en) Internal state estimating device for secondary cell, internal state estimation method for secondary cell, program, and recording medium
US20150226147A1 (en) Controller and control method for engines
JP4435026B2 (en) Power generation control device for internal combustion engine
JP2005261034A (en) Controller of electric storage mechanism
JP6577981B2 (en) Power system
JP4407826B2 (en) Power generation control device for internal combustion engine
JP2017025709A (en) Power supply system
US20230075768A1 (en) Drive control device, drive control method for electric vehicle, and non-transitory computer readable storage medium storing program
JP2004263619A (en) Power source control device for vehicle
JP2001292533A (en) Battery management device for electric vehicle
JP4435027B2 (en) Power generation control device for internal combustion engine
US8922036B2 (en) Vehicular power generation system and power generation control method for the same
JP4635961B2 (en) Battery charge state control device
JP2007049779A (en) Power generation controller of internal combustion engine
JP4432856B2 (en) Power generation control device for internal combustion engine
JP6019985B2 (en) Vehicle power supply
JP2002186108A (en) Device for adjusting revolution of engine and device for controlling hybrid power unit
JP2001268710A (en) Hybrid vehicle control device
JP4432860B2 (en) Power generation control device for internal combustion engine
JP3018956B2 (en) Variable output control device for power output of hybrid electric vehicle
JP2007037260A (en) Power generation controller for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees