WO2018003334A1 - Charging control device, charging control program, and storage medium - Google Patents

Charging control device, charging control program, and storage medium Download PDF

Info

Publication number
WO2018003334A1
WO2018003334A1 PCT/JP2017/018435 JP2017018435W WO2018003334A1 WO 2018003334 A1 WO2018003334 A1 WO 2018003334A1 JP 2017018435 W JP2017018435 W JP 2017018435W WO 2018003334 A1 WO2018003334 A1 WO 2018003334A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
fuel
charging
deterioration
charge
Prior art date
Application number
PCT/JP2017/018435
Other languages
French (fr)
Japanese (ja)
Inventor
琢磨 飯田
靖司 小林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018003334A1 publication Critical patent/WO2018003334A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/18Control strategies specially adapted for achieving a particular effect for avoiding ageing of fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a charge control device, a charge control program, and a storage medium storing the charge control program.
  • a hybrid vehicle that travels by a driving force by a driving motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank is known.
  • the charge control of the storage battery is appropriately controlled, and the storage battery can efficiently recover regenerative power during traveling.
  • An apparatus, a charging control program, and a storage medium storing the charging control program are provided.
  • the charging control device is applied to a hybrid vehicle that travels by a driving force by a motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank.
  • Control charging includes a storage unit and a charge amount adjustment unit.
  • the storage unit stores deterioration information indicating the degree of deterioration of the fuel stored in the fuel tank.
  • the charge amount adjustment unit adjusts the charge amount at the completion of the storage battery when the charge by the external power source is completed based on the deterioration information stored in the storage unit.
  • the charging control program of the present disclosure is applied to a hybrid vehicle that travels by a driving force by a motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank. Control charging.
  • This charge control program adjusts the charge amount at the time of completion of the storage battery at the time of completion of charging by the external power source based on the deterioration information indicating the degree of deterioration of the fuel stored in the fuel tank stored in the storage unit in the computer. Execute the process.
  • the charge control program can be stored in a non-transitory storage medium and read and executed by a computer.
  • the amount of charge of the storage battery can be appropriately controlled, and the regenerative power during traveling can be efficiently collected by the storage battery.
  • FIG. 1 The figure which shows an example of a structure of the vehicle which concerns on Embodiment 1.
  • FIG. 1 The figure which shows an example of a structure of vehicle ECU which concerns on Embodiment 1.
  • movement flow at the time of charge of vehicle ECU which concerns on Embodiment 1 The figure which shows an example of the operation
  • PHEV vehicle a plug-in hybrid vehicle
  • the mounted storage battery is charged to a fully charged state at home or a charging spot, and traveling centering on EV traveling is performed. .
  • the storage battery cannot recover the regenerative power generated by the drive motor during traveling, and is overcharged.
  • control for discarding the regenerative power is required, and the regenerative power is discharged as thermal energy. Therefore, the heat generation at this time adversely affects the drive motor and the like.
  • the storage battery is in a state of being nearly fully charged (for example, a charging rate of 90% or more), the recovery efficiency of regenerative power decreases. Therefore, it is desirable that the storage battery has a certain amount of remaining charge capacity.
  • a vehicle ECU Electronic Control Unit mounted on the hybrid vehicle adjusts the charge amount of the storage battery after charging is completed by an external power source (in other words, when charging by the external power source is completed).
  • the vehicle ECU corresponds to the charge control device according to the present disclosure.
  • the charging control device may be provided on the external power supply side without being mounted on the vehicle.
  • FIG. 1 is a diagram illustrating an example of a configuration of a hybrid vehicle (hereinafter, vehicle) A according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the vehicle ECU 10 according to the present embodiment.
  • the dotted line represents the path of the control signal.
  • the vehicle A includes a drive motor (hereinafter referred to as motor) 1, an engine 2, a fuel tank (hereinafter referred to as tank) 3, a fuel deterioration detection sensor (hereinafter referred to as sensor) 4, an inverter device 5, a storage battery 6, a charger 7, a battery ECU 8, The charging control unit 9 and the vehicle ECU 10 are included.
  • the vehicle A travels by the driving force by the motor 1 using the electric power of the storage battery 6 and the driving force by the engine 2 using the fuel stored in the tank 3.
  • the vehicle A can charge the storage battery 6 with power supplied from the external power source B via the charger 7.
  • the external power source B is a commercial power source of 60 Hz or 50 Hz supplied to a building or a charging spot, for example.
  • an arbitrary power source such as a storage battery of a vehicle different from the vehicle A may be used.
  • the motor 1 is a motor generator configured to include, for example, a permanent magnet type synchronous motor.
  • the motor 1 is supplied with electric power from the storage battery 6 and generates a driving force for driving the vehicle A during traveling.
  • the DC power from the storage battery 6 is converted into three-phase AC power by the inverter device 5 and supplied to the motor 1.
  • the motor 1 produces
  • the motor 1 functions as a generator that converts the kinetic energy of the axle into electric energy during braking. Then, the motor 1 sends the generated regenerative power to the storage battery 6 and charges the regenerative power in the storage battery 6. The motor 1 converts the regenerative power into direct-current power and sends it to the storage battery 6 by controlling the inverter device 5 by the vehicle ECU 10.
  • the engine 2 receives the supply of fuel stored in the tank 3 and generates a driving force for driving the vehicle A.
  • the engine 2 is, for example, a gasoline engine or a diesel engine.
  • the engine 2 generates a driving force for rotating the crankshaft by rotating the fuel supplied from the tank 3 to rotate the axle.
  • the vehicle A according to the present embodiment is driven by a parallel system in which the motor 1 and the engine 2 are rotated separately, but is driven by a series system in which the engine 2 and the motor 1 are directly connected. Also good.
  • Tank 3 stores fuel to be supplied to engine 2. Note that, as described above, the fuel corresponds to the type of the engine 2, and gasoline or the like is used.
  • Sensor 4 detects the degree of deterioration of the fuel stored in tank 3.
  • the sensor 4 detects, for example, a component of fuel sent from the tank 3 to the engine 2. Then, the sensor 4 transmits the detection signal to the vehicle ECU 10.
  • the degree of fuel deterioration can also be identified by the period of time stored in the tank 3 and the like, and the vehicle ECU 10 (fuel deterioration determination unit 10a) determines the degree of fuel deterioration based on the data indicating the period. If the sensor 4 is determined, the sensor 4 may not be provided.
  • the inverter device 5 converts the DC power supplied from the storage battery 6 into three-phase AC power and supplies it to the motor 1. Further, the inverter device 5 converts the regenerative power generated by the motor 1 into DC power and sends it to the storage battery 6.
  • a control signal for example, a PWM (Pulse Width Modulation) signal
  • PWM Pulse Width Modulation
  • the storage battery 6 is, for example, a lithium ion secondary battery, an electric double layer capacitor, or the like, and is an energy source that supplies electric power to the motor 1.
  • the storage battery 6 is charged with electric power supplied from the external power source B and also charged with regenerative electric power supplied from the motor 1.
  • the storage battery 6 is charged by the external power source B, it is charged by being converted from AC power to DC power via the charger 7 and charged by regenerative power supplied from the motor 1. Are charged by being converted from AC power to DC power via the inverter device 5.
  • the storage battery 6 when the storage battery 6 is nearly fully charged (for example, a charging rate of 90% or more), the recovery efficiency of the regenerative power from the motor 1 decreases, and most of the regenerative power is converted into thermal energy. Will be discharged as. Such a state may cause an adverse effect by causing the motor 1 to generate heat in addition to overcharging the storage battery 6 or deteriorating fuel consumption. Therefore, in consideration of efficiently recovering the regenerative power of the motor 1 when a regenerative power amount larger than the discharge amount is expected, the storage battery 6 has a certain remaining charge capacity (for example, a charging rate of 80% or less). It is desirable to have
  • the charger 7 is a device for charging the storage battery 6 from the external power source B.
  • the charger 7 includes, for example, a connection plug, a rectifier circuit, and a DCDC converter device.
  • the charger 7 is connected to a connection plug with a power supply cable of the external power source B, and receives power through the connection plug. Further, the charger 7 converts AC power supplied from the external power source B into DC power by the rectifier circuit, boosts the voltage by the DCDC converter device, supplies the power to the storage battery 6, and charges the storage battery 6.
  • the battery ECU 8 detects a current charging rate (state of charge: SOC) of the storage battery 6.
  • SOC state of charge
  • the battery ECU 8 charges the storage battery 6 by constantly detecting the voltage of each cell of the storage battery 6, the temperature of the storage battery 6, the power supplied from the external power source B to the storage battery 6, the power supplied from the storage battery 6 to the motor 1, and the like. The rate is constantly monitored.
  • the battery ECU 8 detects these states based on detection values of a known voltage detection circuit, current sensor, temperature sensor, and the like. Then, the battery ECU 8 transmits a signal related to the detected current charging rate of the storage battery 6 to the vehicle ECU 10.
  • the charging control unit 9 is a controller that controls the charger 7.
  • the charging control unit 9 outputs a switching signal to the DCDC converter device of the charger 7 or cuts off the electric path between the charger 7 and the storage battery 6.
  • the charging control unit 9 controls the start and end of charging from the external power source B to the storage battery 6 by the control signal from the vehicle ECU 10, and thereby the amount of power (charge amount) supplied from the external power source B to the storage battery 6 is controlled. It is controlled.
  • the vehicle ECU 10 is an electronic control unit that performs data communication with the sensor 4, the inverter device 5, the battery ECU 8, the charge control unit 9, and the like, and performs overall control thereof.
  • the vehicle ECU 10 has other driving states (for example, a state of a gear of a reduction gear, a depression amount of an accelerator pedal, a lever position of a shift lever, a traveling speed of a vehicle, a steering angle of a steering wheel, a depression amount of a brake pedal, etc.) Detection signals from various sensors for detecting the signal are also input.
  • the vehicle ECU 10 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the vehicle ECU 10 includes a fuel deterioration determination unit (hereinafter referred to as determination unit) 10a, a charge amount adjustment unit (hereinafter referred to as adjustment unit) 10b, a travel control unit (hereinafter referred to as control unit) 10c, and a fuel deterioration information storage unit (hereinafter referred to as storage unit). ) 10d function. These functions are realized, for example, by the CPU executing a computer program.
  • the determination unit 10a acquires information (for example, a detection signal of the sensor 4) indicating the degree of deterioration of the fuel stored in the tank 3 from the storage unit 10d, and determines the degree of deterioration of the fuel. For example, the determination unit 10a determines whether or not the degree of deterioration of the fuel stored in the tank 3 at that time exceeds a predetermined level. However, the determination unit 10 a may determine the degree of deterioration of the fuel based on the period during which the fuel is stored in the tank 3.
  • the determination unit 10a determines the degree of deterioration of the fuel stored in the tank 3 at that time, for example, based on the deterioration characteristics of the fuel, the deterioration of the fuel progresses to a state where the engine 2 cannot be used. Predict when to do. In other words, when the deterioration of the fuel progresses, it is predicted that the engine running ratio will increase due to the control of the control unit 10c described later and the driver's operation switching, so the determination unit 10a increases the engine running ratio. Judge whether to do.
  • the “state where fuel deterioration has progressed” means a state where fuel deterioration has progressed to a state where the engine 2 cannot be used.
  • the adjustment unit 10b adjusts the amount of charge of the storage battery 6 after the charging by the external power source B is completed based on the degree of deterioration of the fuel stored in the tank 3. More specifically, when the degree of deterioration of the fuel stored in the tank 3 exceeds a predetermined level, the adjustment unit 10b determines that the charge amount of the storage battery 6 after charging by the external power source B is normal (fuel So that the degree of deterioration is less than a predetermined level). As a result, the adjustment unit 10b adjusts the remaining charge capacity of the storage battery 6 so that the regenerative power can be efficiently recovered even when the engine running ratio increases and the regenerative power to be recovered increases.
  • the amount of power supplied from the external power supply B to the storage battery 6 is set to zero, and the storage battery 6 is charged from the external power supply B.
  • the aspect which prohibits is also included.
  • the control unit 10c controls the motor 1 (inverter device 5) and the engine 2 based on the accelerator opening and the like, thereby controlling the running state of the vehicle A.
  • the control unit 10c controls the motor 1
  • the control unit 10c controls the rotation speed of the motor 1 by controlling a control signal (PWM signal) output to a switching element that constitutes the inverter device 5.
  • the running speed is controlled.
  • the control unit 10 c controls, for example, the fuel injection amount and the injection timing into the combustion chamber of the engine 2.
  • control unit 10c performs switching control between engine running and EV running according to the running state. For example, at the time of starting, the control unit 10c controls the motor 1 (inverter device 5) to perform EV travel, and switches to control of the engine 2 as the travel speed increases, thereby performing engine travel.
  • control unit 10c determines that the fuel deterioration proceeds within a predetermined period based on the degree of fuel deterioration so that the fuel is consumed before the fuel stored in the tank 3 deteriorates.
  • the engine travel and EV travel are controlled to be switched so that the ratio of engine travel is increased.
  • the control unit 10c increases the engine travel ratio by lowering the reference value of the travel speed, which is a determination criterion when switching from EV travel to engine travel after starting.
  • the vehicle ECU 10 notifies the driver of the period until the deterioration of the fuel stored in the tank 3 progresses, so that the fuel It is good also as what promotes so that it may be consumed.
  • the storage unit 10d stores information indicating the degree of deterioration of the fuel stored in the tank 3. For example, the storage unit 10d acquires a detection signal from the sensor 4 and stores information indicating the degree of deterioration of the fuel in a storage unit such as a RAM. The storage unit 10d may store a period during which the fuel is stored in the tank 3 instead of the detection signal of the sensor 4 as information indicating the degree of deterioration of the fuel.
  • FIG. 3 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 (charging control device) of the vehicle A according to the present embodiment.
  • This operation flow is executed, for example, when the external power source B is connected to the charger 7 of the vehicle A.
  • This operation flow is executed by the vehicle ECU 10 according to a computer program, for example.
  • the vehicle ECU 10 first acquires a detection signal indicating the degree of fuel deterioration from the sensor 4 and stores it in the storage unit 10d (step S1).
  • the vehicle ECU 10 acquires the amount of charge of the storage battery 6 from the battery ECU 8 and stores it in the storage unit (step S2).
  • the battery ECU 8 calculates the charging rate of the storage battery 6 based on the voltage of each cell of the storage battery 6, the temperature of the storage battery 6, and the current flowing out of or flowing into the storage battery 6. ing.
  • the vehicle ECU 10 determines whether the degree of deterioration of the fuel exceeds a predetermined level based on, for example, the detection signal (for example, the degree of fuel oxidation) of the sensor 4 stored in the storage unit 10d. It is determined whether or not (step S3).
  • step S3 When it is determined that the degree of deterioration of the fuel exceeds a predetermined level (step S3: YES), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after the completion of charging of the storage battery 6 to the normal (fuel) Set to a value (for example, charging rate of 80%) lower than the target charging amount (for example, charging rate of 100%) after completion of charging of the storage battery 6 when the degree of deterioration of the battery does not exceed a predetermined level, A control signal is output to the charging controller 9 to start charging the storage battery 6 from the external power source B (step S4).
  • a value for example, charging rate of 80%
  • the target charging amount for example, charging rate of 100%
  • the vehicle ECU 10 (adjustment unit 10b) charges the storage battery 6 so as to have the remaining charge capacity by predicting that the ratio of engine running increases and the amount of regenerative power to be recovered increases.
  • the adjustment unit 10b may adjust the target charge amount after completion of the charge to be further reduced as the amount of fuel stored in the tank 3 is increased.
  • step S3 when it is determined that the degree of deterioration of the fuel is equal to or lower than a predetermined level (step S3: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a normal value (for example, charge rate). 100%), a control signal is output to the charging control unit 9, and charging from the external power source B to the storage battery 6 is started (step S5).
  • a normal value for example, charge rate
  • control unit 10c of the vehicle ECU 10 is also controlled to increase the ratio of engine travel during subsequent travel.
  • the engine travel of the vehicle A is determined based on the degree of deterioration of the fuel stored in the tank 3 mounted on the vehicle A. It is possible to predict the increase in the ratio and allow the storage battery 6 to have a charging capacity so as to correspond to this. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
  • the vehicle ECU 10 (adjustment unit 10b) according to the present embodiment differs from the first embodiment in that the vehicle ECU 10 (adjustment unit 10b) adjusts so that the amount of charge of the storage battery 6 after completion of charging decreases as the level of fuel deterioration increases. To do. Note that the description of the configuration common to the first embodiment is omitted (hereinafter, the same applies to other embodiments).
  • FIG. 4 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 according to the second embodiment. 4 is executed, for example, when the external power source B is connected to the charger 7 of the vehicle A, similarly to the operation flow of FIG.
  • step S14 and step S15 are the same as the processes in FIG.
  • the vehicle ECU 10 predicts that as the level of the degree of deterioration of the fuel increases, the ratio of engine travel increases and the amount of regenerative power to be recovered increases, and the following step S ⁇ b> 14 is performed. Step S15 is performed.
  • the vehicle ECU 10 first acquires a detection signal from the sensor 4 (step S11), acquires the charge amount of the storage battery 6 (step S12), and the degree of fuel deterioration exceeds a predetermined level, as in the first embodiment. (Step S13).
  • step S13 determines that the degree of deterioration of the fuel exceeds a predetermined level
  • step S14 determines that the degree of deterioration of the fuel exceeds a predetermined limit level
  • step S15 the state in which the degree of deterioration of the fuel exceeds a predetermined limit level represents a state in which the deterioration of the fuel has progressed to the point where the engine 2 cannot be used.
  • step S14 when the degree of deterioration of the fuel is equal to or lower than a predetermined limit level (step S14: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a value lower than the normal value (for example, , The charging rate is set to 80%), and a control signal is output to the charging control unit 9 to start charging the storage battery 6 from the external power source B (step S16).
  • a predetermined limit level for example, , the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a value lower than the normal value (for example, , The charging rate is set to 80%), and a control signal is output to the charging control unit 9 to start charging the storage battery 6 from the external power source B (step S16).
  • step S13 when it is determined in step S13 that the degree of deterioration of the fuel is not more than a predetermined level (step S13: NO), the vehicle ECU 10 (adjustment unit 10b), after the completion of charging of the storage battery 6, as in the first embodiment. Is set to a normal value (for example, a charging rate of 100%), a control signal is output to the charging control unit 9, and charging from the external power source B to the storage battery 6 is started (step S17).
  • a normal value for example, a charging rate of 100%
  • control unit 10c of the vehicle ECU 10 also determines that the degree of deterioration of the fuel exceeds the predetermined level when the degree of deterioration of the fuel exceeds a predetermined limit level in order to reduce the amount of fuel that deteriorates. It is assumed that the engine running ratio is further controlled to be larger than the case where the engine is running.
  • the amount can be adjusted.
  • the level of deterioration of the fuel stored in the tank 3 increases, the ratio of engine traveling increases, and the amount of regenerative power during traveling that should be recovered increases.
  • the vehicle ECU 10 can cause the storage battery 6 to have a charging capacity corresponding to the amount of power to be collected. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
  • the vehicle ECU 10 (adjustment unit 10b) according to the present embodiment differs from the first embodiment in that the amount of charge of the storage battery 6 after completion of charging is adjusted based on the travel history of the vehicle A.
  • FIG. 5 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 according to the third embodiment.
  • the operation flow of FIG. 5 is executed when the external power source B is connected to the charger 7 of the vehicle A, for example, similarly to the operation flow of FIG.
  • processes other than step S23, step S25, and step S26 are the same as the processes in FIG.
  • the vehicle ECU 10 estimates the amount of fuel consumed by the driver of the vehicle A over a certain period based on the travel history of the vehicle A. Then, the vehicle ECU 10 estimates the amount of fuel stored in the tank 3 that is expected to remain after the lapse of time from the amount of fuel consumed during the certain period, and the amount that is predicted to remain is large. As the engine travel ratio increases and the amount of regenerative power to be recovered is predicted to increase, the following steps S23, S25, and S26 are performed.
  • the vehicle ECU 10 first acquires a detection signal from the sensor 4 (step S21) and acquires the charge amount of the storage battery 6 (step S22), as in the first embodiment.
  • the vehicle ECU 10 calculates an average fuel consumption amount per one travel based on the past travel history of the vehicle A (step S23).
  • the average fuel consumption per one run is, for example, the average value of the fuel consumption from when the ignition switch of the vehicle A is turned on to when it is turned off.
  • the average fuel consumption per run may be an average value of the daily fuel consumption calculated on a daily basis for each run.
  • the vehicle ECU 10 determines whether or not the degree of deterioration of the fuel exceeds a predetermined level (step S24), and when the degree of deterioration of the fuel exceeds a predetermined level (step S24: YES). Further, it is determined whether or not the average fuel consumption calculated in step S23 is a predetermined value or less (step S25). When the average fuel consumption is equal to or less than the predetermined value (step S25: YES), the vehicle ECU 10 (adjustment unit 10b) prohibits external charging (step S26).
  • step S25 when the average fuel consumption exceeds a predetermined value (step S25: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a value (for example, charge) lower than the normal value.
  • the rate is set to 80%), and a control signal is output to the charging control unit 9 to start charging the storage battery 6 from the external power source B (step S27).
  • step S24 when the degree of deterioration of the fuel is equal to or lower than the predetermined level in step S24 (step S24: NO), the vehicle ECU 10 (adjustment unit 10b) charges the target after completion of charging of the storage battery 6 as in the first embodiment.
  • the amount is set to a normal value (for example, a charging rate of 100%), a control signal is output to the charging control unit 9, and charging from the external power source B to the storage battery 6 is started (step S28).
  • control unit 10c of the vehicle ECU 10 also increases the ratio of engine travel when the average fuel consumption per travel is less than or equal to a predetermined value in order to reduce the amount of fuel that progresses deterioration. It shall be controlled as follows.
  • vehicle ECU10 (adjustment part 10b) which concerns on this Embodiment
  • the charge of the storage battery 6 after completion of charge The amount can be adjusted. That is, it is predicted that the greater the amount of fuel stored in the tank 3 that is expected to remain after the lapse of the predetermined period, the higher the ratio of engine traveling and the amount of regenerative power during traveling that should be recovered.
  • the vehicle ECU 10 according to the present embodiment can cause the storage battery 6 to have a charging capacity corresponding to the amount of power to be collected. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
  • the vehicle ECU 10 adjusts the charge amount of the storage battery 6 after the completion of charging based on the fuel consumption (fuel consumption) for the next travel of the vehicle A.
  • the fuel consumption (fuel consumption) for the next travel of the vehicle A is, for example, the fuel consumption from when the ignition switch of the vehicle A is turned on to when it is turned off after completion of charging.
  • the fuel consumption (fuel consumption) for the next travel can be estimated by referring to the distance of the route to the destination (next destination) when traveling after completion of charging, for example.
  • FIG. 6 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 according to the fourth embodiment.
  • the operation flow of FIG. 6 is executed when the external power source B is connected to the charger 7 of the vehicle A, for example, similarly to the operation flow of FIG.
  • processes other than Step S33, Step S34, Step S36, and Step S37 are the same as the processes in FIG.
  • the vehicle ECU 10 estimates the fuel consumption (fuel consumption) for the next travel based on the destination of the next travel of the vehicle A. And vehicle ECU10 makes the charge amount of the storage battery 6 after charge completion small when the fuel consumption (fuel consumption) concerning the said next driving
  • the vehicle A switches between engine running and EV running according to the charge amount of the storage battery 6 (engine drive is performed if the charge amount of the storage battery 6 is small)
  • the ratio of engine running is actively increased and Regenerative power can be collected efficiently.
  • the vehicle ECU 10 first acquires a detection signal from the sensor 4 (step S31) and acquires the charge amount of the storage battery 6 (step S32), as in the first embodiment.
  • the vehicle ECU 10 determines whether the destination for the next travel of the vehicle A is input (step S33). For example, the determination is made based on whether or not the user of the vehicle A has set a destination in the navigation device (not shown) of the vehicle A before the start of charging. Alternatively, a destination corresponding to a day of the week or a date may be set in advance.
  • step S34 the fuel consumption (fuel consumption) up to the destination is calculated (step S34).
  • the fuel consumption (fuel consumption) up to the destination is calculated from, for example, a route to the destination, the distance of the route, the expected speed when traveling on the route, the past travel history, and the like.
  • the vehicle ECU 10 determines whether or not the degree of fuel deterioration exceeds a predetermined level (step S35), and if the degree of fuel deterioration exceeds a predetermined level (step S35: YES). Further, it is determined whether the fuel consumption (fuel consumption) up to the destination calculated in step S34 is equal to or less than a predetermined value (step S36). When the fuel consumption (fuel consumption) up to the destination is less than or equal to the predetermined value (step S36: YES), the vehicle ECU 10 (adjustment unit 10b) prohibits external charging (step S37).
  • step S36 when the fuel consumption (fuel consumption) up to the destination calculated in step S34 exceeds a predetermined value (step S36: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target after completion of charging of the storage battery 6.
  • the charge amount is set to a value lower than the normal value (for example, a charging rate of 80%), a control signal is output to the charge control unit 9, and charging from the external power source B to the storage battery 6 is started (step S38). .
  • step S33 if the destination in the next run is not input in step S33 (step S33: NO), or if the degree of fuel deterioration is less than a predetermined level in step S35 (step S35: NO), the vehicle ECU 10 (adjustment) Similarly to the first embodiment, the unit 10b) sets the target charge amount after the completion of charging of the storage battery 6 to a normal value (for example, a charging rate of 100%), and outputs a control signal to the charge control unit 9. Then, charging of the storage battery 6 from the external power source B is started (step S39).
  • a normal value for example, a charging rate of 100%
  • control unit 10c of the vehicle ECU 10 also increases the ratio of engine travel when the fuel consumption (fuel consumption) for the next travel is equal to or less than a predetermined value in order to reduce the amount of fuel that deteriorates. It shall be controlled so that
  • vehicle ECU10 (adjustment part 10b) which concerns on this Embodiment, based on the fuel consumption (fuel consumption) concerning the next driving
  • the amount of charge of the storage battery 6 after completion can be adjusted.
  • the vehicle A switches between engine travel and EV travel according to the charge amount of the storage battery 6 (engine travel is performed if the charge amount of the storage battery 6 is small)
  • the engine travel ratio is positively increased and travel is performed.
  • the regenerative power at the time can be efficiently recovered.
  • the charging control device may be an arbitrary device, and may be, for example, a charging device (not shown) that controls the charging control unit 9 or the external power source B installed outside the vehicle A.
  • the configuration of the determination unit 10a and the adjustment unit 10b may be provided in the external power source B installed outside the charging control unit 9 or the vehicle A.
  • the functions of the determination unit 10a, the adjustment unit 10b, and the control unit 10c are described as being realized by one computer, but are realized by a plurality of computers. May be.
  • the vehicle ECU 10 that is a charging control device is applied to the vehicle A and controls charging from the external power source B to the storage battery 6.
  • the vehicle A travels by the driving force by the motor using the electric power of the storage battery 6 and the driving force by the engine 2 using the fuel stored in the tank 3.
  • the vehicle ECU 10 includes a storage unit 10d and an adjustment unit 10b.
  • the storage unit 10 d stores information indicating the degree of deterioration of the fuel stored in the tank 3.
  • the adjustment unit 10b adjusts the amount of charge of the storage battery 6 at the time of completion of charging by the external power source B based on the deterioration information indicating the degree of deterioration of the fuel stored in the storage unit 10d.
  • an increase in the engine running ratio is predicted on the basis of the degree of deterioration of the fuel stored in the tank 3 mounted on the vehicle A, and the remaining battery 6 is charged in the storage battery 6 of the vehicle A to correspond to this. You can have it. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
  • the adjustment unit 10b compares the storage battery 6 after the charging by the external power source B is completed as compared with the case where the degree of deterioration is equal to or lower than the predetermined level. It may be adjusted so that the amount of charge of the battery becomes smaller. That is, the adjustment unit 10b adjusts the completion charge amount to the first charge amount when the deterioration degree indicated by the deterioration information is equal to or lower than the first level, and when the deterioration degree exceeds the first level, The charge amount is adjusted to a second charge amount that is less than the first charge amount.
  • the adjustment unit 10b may adjust the amount of charge at completion to be smaller as the deterioration degree indicated by the deterioration information is larger.
  • the amount of regenerative power to be collected during traveling can be predicted with higher accuracy, and the storage battery 6 can have a charging capacity corresponding to the amount of power.
  • the adjustment unit 10b may further adjust the charge amount at completion based on the travel history of the vehicle A. According to this configuration, the amount of regenerative power to be collected during traveling can be predicted with higher accuracy, and the storage battery 6 can have a charging capacity corresponding to the amount of power.
  • the adjustment unit 10b may adjust the charge amount at the time of completion as the amount of fuel stored in the tank 3 that is expected to remain after a predetermined period of time increases. According to this configuration, the amount of regenerative power to be collected during traveling can be predicted with higher accuracy, and the storage battery 6 can have a charging capacity corresponding to the amount of power.
  • the charging control program is applied to the vehicle A that travels by the driving force by the motor that uses the electric power of the storage battery 6 and the driving force by the engine 2 that uses the fuel stored in the tank 3.
  • This charging control program controls charging from the external power source B to the storage battery 6.
  • This charge control program causes the computer to execute the following processing. That is, the charge amount of the storage battery 6 after the charging is completed by the external power source B is adjusted based on the information indicating the degree of deterioration of the fuel stored in the tank 3 stored in the storage unit 10d.
  • a charge control program can be stored in a non-transitory storage medium, read by a computer, and executed. Examples of such a storage medium include a CD (compact disc), a DVD (Digital Versatile Disc), a USB (Universal Serial Bus) memory, and various memory cards.
  • the charge control device and the charge control program according to the present disclosure can be suitably used to appropriately control the charge amount of the storage battery when charging the storage battery mounted on the hybrid vehicle from an external power source.

Abstract

A charging control device according to the present invention is applied to a hybrid vehicle that runs using a driving force from a motor utilizing power from a storage battery and a driving force from an engine utilizing fuel stored in a fuel tank, and controls the charging of the storage battery by an external power source. The charging control device comprises a storage unit that stores degradation information indicating the degree of degradation of the fuel stored in the fuel tank, and a charge level regulation unit that regulates, on the basis of the degradation information stored in the storage unit, the final charge level of the storage battery when charging by the external power source is finished.

Description

充電制御装置、及び充電制御プログラム、記憶媒体CHARGE CONTROL DEVICE, CHARGE CONTROL PROGRAM, STORAGE MEDIUM
 本開示は、充電制御装置、及び充電制御プログラムとその充電制御プログラムを記憶した記憶媒体に関する。 The present disclosure relates to a charge control device, a charge control program, and a storage medium storing the charge control program.
 蓄電池の電力を利用した駆動モータによる駆動力と、燃料タンクに貯蔵された燃料を利用したエンジンによる駆動力とによって走行するハイブリッド車輌が知られている。 2. Description of the Related Art A hybrid vehicle that travels by a driving force by a driving motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank is known.
 ハイブリッド車輌においては、駆動モータを使用した電気走行(以下、「EV走行」と称する)を行うため、燃料の使用量が減少し、その結果、燃料が使用されずに燃料タンク内で劣化し、エンジンに使用できない状態になるおそれがある。このような事態を回避するため、燃料の劣化が予測される場合には、当該燃料が劣化するまでに計画的に消費されるようにするべく、当該内容を運転者に報知したり、燃料を利用したエンジンによる走行(以下、「エンジン走行」と称する)の比率を増加させるように制御したりするハイブリッド車輌が提案されている(例えば、特許文献1を参照)。 In a hybrid vehicle, since electric driving using a drive motor (hereinafter referred to as “EV driving”) is performed, the amount of fuel used is reduced. As a result, the fuel is not used and deteriorates in the fuel tank. The engine may become unusable. In order to avoid such a situation, when fuel deterioration is predicted, the driver is informed of the contents, or the fuel is turned off so that the fuel is consumed systematically before the fuel deteriorates. There has been proposed a hybrid vehicle that performs control so as to increase the ratio of travel using an engine (hereinafter referred to as “engine travel”) (see, for example, Patent Document 1).
特開2014-091467号公報JP 2014-091467 A
 本開示は、外部電源からハイブリッド車輌が搭載する蓄電池に充電を行う際に、蓄電池の充電量を適切に制御し、蓄電池に走行時の回生電力を効率的に回収させることを可能とする充電制御装置、及び充電制御プログラムとその充電制御プログラムを記憶した記憶媒体を提供する。 In the present disclosure, when charging a storage battery mounted on a hybrid vehicle from an external power supply, the charge control of the storage battery is appropriately controlled, and the storage battery can efficiently recover regenerative power during traveling. An apparatus, a charging control program, and a storage medium storing the charging control program are provided.
 本開示の充電制御装置は、蓄電池の電力を利用したモータによる駆動力と、燃料タンクに貯蔵された燃料を利用したエンジンによる駆動力とによって走行するハイブリッド車輌に適用され、外部電源から蓄電池への充電を制御する。この充電制御装置は、記憶部と、充電量調整部とを有する。記憶部は、燃料タンクに貯蔵された燃料の劣化度合いを示す劣化情報を記憶する。充電量調整部は、記憶部に記憶された劣化情報に基づいて、外部電源による充電完了時の蓄電池の完了時充電量を調整する。 The charging control device according to the present disclosure is applied to a hybrid vehicle that travels by a driving force by a motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank. Control charging. The charge control device includes a storage unit and a charge amount adjustment unit. The storage unit stores deterioration information indicating the degree of deterioration of the fuel stored in the fuel tank. The charge amount adjustment unit adjusts the charge amount at the completion of the storage battery when the charge by the external power source is completed based on the deterioration information stored in the storage unit.
 本開示の充電制御プログラムは、蓄電池の電力を利用したモータによる駆動力と、燃料タンクに貯蔵された燃料を利用したエンジンによる駆動力とによって走行するハイブリッド車輌に適用され、外部電源から蓄電池への充電を制御する。この充電制御プログラムは、コンピュータに、記憶部に記憶された、燃料タンクに貯蔵された燃料の劣化度合いを示す劣化情報に基づいて、外部電源による充電完了時の蓄電池の完了時充電量を調整する処理を実行させる。 The charging control program of the present disclosure is applied to a hybrid vehicle that travels by a driving force by a motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank. Control charging. This charge control program adjusts the charge amount at the time of completion of the storage battery at the time of completion of charging by the external power source based on the deterioration information indicating the degree of deterioration of the fuel stored in the fuel tank stored in the storage unit in the computer. Execute the process.
 上記充電制御プログラムは、一過性でない記憶媒体に記憶させ、コンピュータに読み取らせて実行することができる。 The charge control program can be stored in a non-transitory storage medium and read and executed by a computer.
 本開示によれば、外部電源からハイブリッド車輌が搭載する蓄電池に充電を行う際に、蓄電池の充電量を適切に制御し、蓄電池に走行時の回生電力を効率的に回収させることができる。 According to the present disclosure, when the storage battery mounted on the hybrid vehicle is charged from the external power source, the amount of charge of the storage battery can be appropriately controlled, and the regenerative power during traveling can be efficiently collected by the storage battery.
実施の形態1に係る車輌の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る車輌ECUの構成の一例を示す図The figure which shows an example of a structure of vehicle ECU which concerns on Embodiment 1. FIG. 実施の形態1に係る車輌ECUの充電時における動作フローの一例を示す図The figure which shows an example of the operation | movement flow at the time of charge of vehicle ECU which concerns on Embodiment 1 実施の形態2に係る車輌ECUの充電時における動作フローの一例を示す図The figure which shows an example of the operation | movement flow at the time of charge of vehicle ECU which concerns on Embodiment 2. FIG. 実施の形態3に係る車輌ECUの充電時における動作フローの一例を示す図The figure which shows an example of the operation | movement flow at the time of charge of vehicle ECU which concerns on Embodiment 3. 実施の形態4に係る車輌ECUの充電時における動作フローの一例を示す図The figure which shows an example of the operation | movement flow at the time of charge of vehicle ECU which concerns on Embodiment 4.
 本開示の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。ハイブリッド車輌の一種であるプラグインハイブリッド車輌(以下、「PHEV車」と称する)においては、搭載する蓄電池を自宅や充電スポットで満充電の状態まで充電し、EV走行を中心とした走行が行われる。 Prior to the description of the embodiment of the present disclosure, the problems in the prior art will be briefly described. In a plug-in hybrid vehicle (hereinafter referred to as a “PHEV vehicle”), which is a type of hybrid vehicle, the mounted storage battery is charged to a fully charged state at home or a charging spot, and traveling centering on EV traveling is performed. .
 そのため、PHEV車において、特許文献1の従来技術のように、燃料の劣化に応じてエンジン走行の比率を増加させる制御を行うと、PHEV車が搭載する蓄電池においては、EV走行による電力消費量が減少する。その結果、満充電の状態が継続する。 Therefore, in a PHEV vehicle, when control is performed to increase the ratio of engine travel according to fuel deterioration as in the prior art of Patent Document 1, in a storage battery mounted on a PHEV vehicle, power consumption due to EV travel is reduced. Decrease. As a result, the fully charged state continues.
 このような状態では、蓄電池は、走行時に駆動モータが生成する回生電力を回収することができず、過充電の状態となる。一方、過充電の状態を回避するためには、回生電力を破棄する制御が必要となるばかりか、回生電力を熱エネルギーとして排出することになる。そのため、この際の発熱が駆動モータ等に悪影響を与える。加えて、蓄電池は、一般に、満充電に近い状態(例えば、充電率90%以上)の場合には、回生電力の回収効率が低下する。そのため、蓄電池には、一定量の充電余力が存在する状態が望ましい。 In such a state, the storage battery cannot recover the regenerative power generated by the drive motor during traveling, and is overcharged. On the other hand, in order to avoid an overcharged state, control for discarding the regenerative power is required, and the regenerative power is discharged as thermal energy. Therefore, the heat generation at this time adversely affects the drive motor and the like. In addition, in general, when the storage battery is in a state of being nearly fully charged (for example, a charging rate of 90% or more), the recovery efficiency of regenerative power decreases. Therefore, it is desirable that the storage battery has a certain amount of remaining charge capacity.
 (実施の形態1)
 以下、図1、図2を参照して、本実施の形態に係るハイブリッド車輌の構成の一例について説明する。なお、本実施の形態では、ハイブリッド車輌に搭載された車輌ECU(Electronic Control Unit)は、外部電源により充電が完了した後(言い換えると、外部電源による充電完了時)の蓄電池の充電量を調整する。すなわち、車輌ECUは、本開示に係る充電制御装置に相当する。但し、充電制御装置は、車輌に搭載されず、外部電源側に設けられていてもよい。
(Embodiment 1)
Hereinafter, an example of the configuration of the hybrid vehicle according to the present embodiment will be described with reference to FIGS. 1 and 2. In the present embodiment, a vehicle ECU (Electronic Control Unit) mounted on the hybrid vehicle adjusts the charge amount of the storage battery after charging is completed by an external power source (in other words, when charging by the external power source is completed). . That is, the vehicle ECU corresponds to the charge control device according to the present disclosure. However, the charging control device may be provided on the external power supply side without being mounted on the vehicle.
 図1は、本実施の形態に係るハイブリッド車輌(以下、車輌)Aの構成の一例を示す図である。図2は、本実施の形態に係る車輌ECU10の構成の一例を示す図である。なお、図1中で、点線は制御信号の経路を表している。 FIG. 1 is a diagram illustrating an example of a configuration of a hybrid vehicle (hereinafter, vehicle) A according to the present embodiment. FIG. 2 is a diagram showing an example of the configuration of the vehicle ECU 10 according to the present embodiment. In FIG. 1, the dotted line represents the path of the control signal.
 車輌Aは、駆動モータ(以下、モータ)1、エンジン2、燃料タンク(以下、タンク)3、燃料劣化検出センサ(以下、センサ)4、インバータ装置5、蓄電池6、充電器7、電池ECU8、充電制御部9、車輌ECU10を含んで構成される。 The vehicle A includes a drive motor (hereinafter referred to as motor) 1, an engine 2, a fuel tank (hereinafter referred to as tank) 3, a fuel deterioration detection sensor (hereinafter referred to as sensor) 4, an inverter device 5, a storage battery 6, a charger 7, a battery ECU 8, The charging control unit 9 and the vehicle ECU 10 are included.
 車輌Aは、蓄電池6の電力を利用したモータ1による駆動力と、タンク3に貯蔵された燃料を利用したエンジン2による駆動力と、によって走行する。 The vehicle A travels by the driving force by the motor 1 using the electric power of the storage battery 6 and the driving force by the engine 2 using the fuel stored in the tank 3.
 また、車輌Aは、充電器7を介して、外部電源Bから供給される電力を蓄電池6に充電することが可能となっている。外部電源Bは、例えば、建物や充電スポットに供給される60Hzまたは50Hzの商用電源である。但し、外部電源Bは、車輌Aの外部の電源であれば、車輌Aとは別の車輌の蓄電池等、任意の電源であってもよい。 In addition, the vehicle A can charge the storage battery 6 with power supplied from the external power source B via the charger 7. The external power source B is a commercial power source of 60 Hz or 50 Hz supplied to a building or a charging spot, for example. However, as long as the external power source B is a power source external to the vehicle A, an arbitrary power source such as a storage battery of a vehicle different from the vehicle A may be used.
 モータ1は、例えば、永久磁石式同期モータを含んで構成されるモータジェネレータである。 The motor 1 is a motor generator configured to include, for example, a permanent magnet type synchronous motor.
 モータ1は、走行時には、蓄電池6からの電力の供給を受けて、車輌Aを走行させるための駆動力を生成する。走行時、モータ1には、蓄電池6からの直流電力がインバータ装置5によって三相交流電力に変換されて供給される。そして、モータ1は、当該三相交流電力によって回転子を回転させて、車軸を回転させる駆動力を生成する。なお、モータ1は、車輌ECU10にインバータ装置5が制御されることによって、所望の走行速度で車輌Aを走行させる。 The motor 1 is supplied with electric power from the storage battery 6 and generates a driving force for driving the vehicle A during traveling. During traveling, the DC power from the storage battery 6 is converted into three-phase AC power by the inverter device 5 and supplied to the motor 1. And the motor 1 produces | generates the driving force which rotates a rotor with the said three-phase alternating current power, and rotates an axle shaft. Note that the motor 1 causes the vehicle A to travel at a desired traveling speed by the vehicle ECU 10 controlling the inverter device 5.
 モータ1は、ブレーキ時には、車軸の運動エネルギーを電気エネルギーに変換する発電機として機能する。そして、モータ1は、生成した回生電力を蓄電池6に送出し、当該回生電力を蓄電池6に充電させる。なお、モータ1は、車輌ECU10にインバータ装置5が制御されることによって、回生電力を直流電力に変換して、蓄電池6に送出する。 The motor 1 functions as a generator that converts the kinetic energy of the axle into electric energy during braking. Then, the motor 1 sends the generated regenerative power to the storage battery 6 and charges the regenerative power in the storage battery 6. The motor 1 converts the regenerative power into direct-current power and sends it to the storage battery 6 by controlling the inverter device 5 by the vehicle ECU 10.
 エンジン2は、タンク3に貯蔵された燃料の供給を受けて、車輌Aを走行させるための駆動力を生成する。エンジン2は、例えば、ガソリンエンジン、ディーゼルエンジンである。エンジン2は、タンク3から供給された燃料の燃焼によって、クランクシャフトを回転させて、車軸を回転させる駆動力を生成する。 The engine 2 receives the supply of fuel stored in the tank 3 and generates a driving force for driving the vehicle A. The engine 2 is, for example, a gasoline engine or a diesel engine. The engine 2 generates a driving force for rotating the crankshaft by rotating the fuel supplied from the tank 3 to rotate the axle.
 本実施の形態に係る車輌Aは、モータ1とエンジン2とがそれぞれ別個に車軸を回転させるパラレル方式で駆動するものとするが、エンジン2とモータ1とを直結するシリーズ方式で駆動するものとしてもよい。 The vehicle A according to the present embodiment is driven by a parallel system in which the motor 1 and the engine 2 are rotated separately, but is driven by a series system in which the engine 2 and the motor 1 are directly connected. Also good.
 タンク3は、エンジン2に供給する燃料を貯蔵する。なお、当該燃料は、上記したように、エンジン2の種別に応じたものであり、ガソリン等が用いられる。 Tank 3 stores fuel to be supplied to engine 2. Note that, as described above, the fuel corresponds to the type of the engine 2, and gasoline or the like is used.
 センサ4は、タンク3に貯蔵された燃料の劣化度合いを検出する。センサ4は、例えば、タンク3からエンジン2に送り出される燃料の成分を検出する。そして、センサ4は、その検出信号を車輌ECU10に送信する。なお、燃料の劣化度合いは、タンク3に貯蔵されている期間等によっても識別することが可能であり、車輌ECU10(燃料劣化判定部10a)が当該期間を示すデータに基づいて、燃料の劣化度合いを判定する場合には、センサ4を設けない構成としてもよい。 Sensor 4 detects the degree of deterioration of the fuel stored in tank 3. The sensor 4 detects, for example, a component of fuel sent from the tank 3 to the engine 2. Then, the sensor 4 transmits the detection signal to the vehicle ECU 10. Note that the degree of fuel deterioration can also be identified by the period of time stored in the tank 3 and the like, and the vehicle ECU 10 (fuel deterioration determination unit 10a) determines the degree of fuel deterioration based on the data indicating the period. If the sensor 4 is determined, the sensor 4 may not be provided.
 インバータ装置5は、蓄電池6から供給される直流電力を三相交流電力に変換して、モータ1に対して供給する。また、インバータ装置5は、モータ1で生成される回生電力を直流電力に変換して蓄電池6に送出する。インバータ装置5には、車輌ECU10から制御信号(例えば、PWM(Pulse Width Modulation)信号)が入力されており、これによって、インバータ装置5の動作は制御されている。 The inverter device 5 converts the DC power supplied from the storage battery 6 into three-phase AC power and supplies it to the motor 1. Further, the inverter device 5 converts the regenerative power generated by the motor 1 into DC power and sends it to the storage battery 6. A control signal (for example, a PWM (Pulse Width Modulation) signal) is input from the vehicle ECU 10 to the inverter device 5, whereby the operation of the inverter device 5 is controlled.
 蓄電池6は、例えば、リチウムイオン二次電池、電気二重層キャパシタ等であって、モータ1に対して電力を供給するエネルギー源である。蓄電池6は、外部電源Bから供給される電力によって充電されるとともに、モータ1から供給される回生電力によっても充電される。なお、蓄電池6は、外部電源Bによって充電される際には、充電器7を介して交流電力から直流電力に変換されて充電が行われ、モータ1から供給される回生電力によって充電される際には、インバータ装置5を介して交流電力から直流電力に変換されて充電が行われる。 The storage battery 6 is, for example, a lithium ion secondary battery, an electric double layer capacitor, or the like, and is an energy source that supplies electric power to the motor 1. The storage battery 6 is charged with electric power supplied from the external power source B and also charged with regenerative electric power supplied from the motor 1. In addition, when the storage battery 6 is charged by the external power source B, it is charged by being converted from AC power to DC power via the charger 7 and charged by regenerative power supplied from the motor 1. Are charged by being converted from AC power to DC power via the inverter device 5.
 なお、蓄電池6は、上記したとおり、一般に、満充電に近い場合(例えば、充電率90%以上)には、モータ1からの回生電力の回収効率が低下し、当該回生電力の多くを熱エネルギーとして排出することになる。かかる状態は、蓄電池6を過充電状態にしたり、燃費を悪化させたりすることに加えて、モータ1を発熱させて、悪影響を与えるおそれもある。そのため、放電量よりも大きな回生電力量が見込まれる場合にモータ1の回生電力を効率良く回収することを考慮すると、蓄電池6には、一定の充電余力(例えば、充電率80%以下にする)を持たせるのが望ましい。 As described above, in general, when the storage battery 6 is nearly fully charged (for example, a charging rate of 90% or more), the recovery efficiency of the regenerative power from the motor 1 decreases, and most of the regenerative power is converted into thermal energy. Will be discharged as. Such a state may cause an adverse effect by causing the motor 1 to generate heat in addition to overcharging the storage battery 6 or deteriorating fuel consumption. Therefore, in consideration of efficiently recovering the regenerative power of the motor 1 when a regenerative power amount larger than the discharge amount is expected, the storage battery 6 has a certain remaining charge capacity (for example, a charging rate of 80% or less). It is desirable to have
 充電器7は、外部電源Bから蓄電池6に充電するための機器である。充電器7は、例えば、接続プラグ、整流回路、DCDCコンバータ装置を含んで構成される。そして、充電器7は、接続プラグに外部電源Bの電力供給ケーブル等が接続されて、当該接続プラグを介して電力を受電する。また、充電器7は、整流回路によって外部電源Bが供給する交流電力を直流電力に変換し、DCDCコンバータ装置によって電圧を昇圧して蓄電池6に電力を供給し、蓄電池6を充電する。 The charger 7 is a device for charging the storage battery 6 from the external power source B. The charger 7 includes, for example, a connection plug, a rectifier circuit, and a DCDC converter device. The charger 7 is connected to a connection plug with a power supply cable of the external power source B, and receives power through the connection plug. Further, the charger 7 converts AC power supplied from the external power source B into DC power by the rectifier circuit, boosts the voltage by the DCDC converter device, supplies the power to the storage battery 6, and charges the storage battery 6.
 電池ECU8は、蓄電池6の現在の充電率(充電量)(State Of Charge:SOC)を検出する。電池ECU8は、蓄電池6の各セルの電圧、蓄電池6の温度、外部電源Bから蓄電池6に供給される電力、蓄電池6からモータ1に供給する電力等を常時検出することによって、蓄電池6の充電率を常時監視している。なお、電池ECU8は、公知の電圧検出回路、電流センサ、温度センサ等の検出値に基づいて、これらの状態を検出している。そして、電池ECU8は、検出した蓄電池6の現在の充電率に係る信号を、車輌ECU10に対して送信する。 The battery ECU 8 detects a current charging rate (state of charge: SOC) of the storage battery 6. The battery ECU 8 charges the storage battery 6 by constantly detecting the voltage of each cell of the storage battery 6, the temperature of the storage battery 6, the power supplied from the external power source B to the storage battery 6, the power supplied from the storage battery 6 to the motor 1, and the like. The rate is constantly monitored. The battery ECU 8 detects these states based on detection values of a known voltage detection circuit, current sensor, temperature sensor, and the like. Then, the battery ECU 8 transmits a signal related to the detected current charging rate of the storage battery 6 to the vehicle ECU 10.
 充電制御部9は、充電器7を制御するコントローラである。充電制御部9は、充電器7のDCDCコンバータ装置に対してスイッチング信号を出力したり、充電器7と蓄電池6の間の電路を遮断したりする。なお、充電制御部9は、車輌ECU10からの制御信号によって、外部電源Bから蓄電池6への充電の開始終了が制御され、これによって外部電源Bから蓄電池6に供給する電力量(充電量)が制御されている。 The charging control unit 9 is a controller that controls the charger 7. The charging control unit 9 outputs a switching signal to the DCDC converter device of the charger 7 or cuts off the electric path between the charger 7 and the storage battery 6. The charging control unit 9 controls the start and end of charging from the external power source B to the storage battery 6 by the control signal from the vehicle ECU 10, and thereby the amount of power (charge amount) supplied from the external power source B to the storage battery 6 is controlled. It is controlled.
 車輌ECU10は、センサ4、インバータ装置5、電池ECU8、充電制御部9等とデータ通信して、これらを統括制御する電子制御ユニットである。なお、車輌ECU10には、その他の運転状態(例えば、減速機のギア、アクセルペダルの踏み込み量、シフトレバーのレバー位置、車輌の走行速度、ハンドルの操舵角、ブレーキペダルの踏み込み量等の状態)を検出する各種センサからの検出信号も入力されている。 The vehicle ECU 10 is an electronic control unit that performs data communication with the sensor 4, the inverter device 5, the battery ECU 8, the charge control unit 9, and the like, and performs overall control thereof. The vehicle ECU 10 has other driving states (for example, a state of a gear of a reduction gear, a depression amount of an accelerator pedal, a lever position of a shift lever, a traveling speed of a vehicle, a steering angle of a steering wheel, a depression amount of a brake pedal, etc.) Detection signals from various sensors for detecting the signal are also input.
 車輌ECU10は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を含んで構成されている。 The vehicle ECU 10 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like.
 車輌ECU10は、燃料劣化判定部(以下、判定部)10a、充電量調整部(以下、調整部)10b、走行制御部(以下、制御部)10c、及び燃料劣化情報記憶部(以下、記憶部)10dの機能を有する。これらの機能は、例えば、CPUがコンピュータプログラムを実行することで実現される。 The vehicle ECU 10 includes a fuel deterioration determination unit (hereinafter referred to as determination unit) 10a, a charge amount adjustment unit (hereinafter referred to as adjustment unit) 10b, a travel control unit (hereinafter referred to as control unit) 10c, and a fuel deterioration information storage unit (hereinafter referred to as storage unit). ) 10d function. These functions are realized, for example, by the CPU executing a computer program.
 判定部10aは、記憶部10dからタンク3に貯蔵された燃料の劣化度合いを示す情報(例えば、センサ4の検出信号)を取得して、燃料の劣化度合いを判定する。判定部10aは、例えば、その時点におけるタンク3に貯蔵された燃料の劣化度合いが所定のレベルを超えたか否かを判定する。但し、判定部10aは、当該燃料がタンク3に貯蔵されている期間に基づいて、当該燃料の劣化度合いを判定してもよい。 The determination unit 10a acquires information (for example, a detection signal of the sensor 4) indicating the degree of deterioration of the fuel stored in the tank 3 from the storage unit 10d, and determines the degree of deterioration of the fuel. For example, the determination unit 10a determines whether or not the degree of deterioration of the fuel stored in the tank 3 at that time exceeds a predetermined level. However, the determination unit 10 a may determine the degree of deterioration of the fuel based on the period during which the fuel is stored in the tank 3.
 判定部10aは、その時点におけるタンク3に貯蔵された燃料の劣化度合いを判定することによって、例えば、当該燃料の劣化特性に基づいて、エンジン2で使用することができない状態まで燃料の劣化が進行する時期を予測する。換言すると、燃料の劣化が進行した場合、後述する制御部10cの制御や運転者の運転切り替えによって、エンジン走行の比率が増加すると予測されるため、判定部10aは、当該エンジン走行の比率が増加するかを判定する。なお、「燃料の劣化が進行した状態」とは、エンジン2で使用することができない状態まで燃料の劣化が進行した状態を意味する。 The determination unit 10a determines the degree of deterioration of the fuel stored in the tank 3 at that time, for example, based on the deterioration characteristics of the fuel, the deterioration of the fuel progresses to a state where the engine 2 cannot be used. Predict when to do. In other words, when the deterioration of the fuel progresses, it is predicted that the engine running ratio will increase due to the control of the control unit 10c described later and the driver's operation switching, so the determination unit 10a increases the engine running ratio. Judge whether to do. The “state where fuel deterioration has progressed” means a state where fuel deterioration has progressed to a state where the engine 2 cannot be used.
 調整部10bは、タンク3に貯蔵された燃料の劣化度合いに基づいて、外部電源Bにより充電が完了した後の蓄電池6の充電量を調整する。より詳細には、調整部10bは、タンク3に貯蔵された燃料の劣化度合いが所定のレベルを超えた場合には、外部電源Bにより充電が完了した後の蓄電池6の充電量が通常(燃料の劣化度合いが所定のレベルを超えていない場合)よりも少なくなるように制御する。これによって、調整部10bは、エンジン走行の比率が増加し、回収すべき回生電力が増加した場合も、当該回生電力が効率的に回収されるように、蓄電池6の充電余力を調整する。なお、「外部電源Bにより充電が完了した後の蓄電池6の充電量を調整する」態様としては、外部電源Bから蓄電池6に供給する電力量をゼロとして、外部電源Bから蓄電池6に充電することを禁止する態様も含む。 The adjustment unit 10b adjusts the amount of charge of the storage battery 6 after the charging by the external power source B is completed based on the degree of deterioration of the fuel stored in the tank 3. More specifically, when the degree of deterioration of the fuel stored in the tank 3 exceeds a predetermined level, the adjustment unit 10b determines that the charge amount of the storage battery 6 after charging by the external power source B is normal (fuel So that the degree of deterioration is less than a predetermined level). As a result, the adjustment unit 10b adjusts the remaining charge capacity of the storage battery 6 so that the regenerative power can be efficiently recovered even when the engine running ratio increases and the regenerative power to be recovered increases. In addition, as an aspect of “adjusting the amount of charge of the storage battery 6 after the charging is completed by the external power supply B”, the amount of power supplied from the external power supply B to the storage battery 6 is set to zero, and the storage battery 6 is charged from the external power supply B. The aspect which prohibits is also included.
 制御部10cは、アクセル開度等に基づいて、モータ1(インバータ装置5)とエンジン2を制御して、車輌Aの走行状態を制御する。制御部10cは、モータ1を制御する際には、例えば、インバータ装置5を構成するスイッチング素子に出力する制御信号(PWM信号)を制御することで、モータ1の回転速度を制御し、車輌の走行速度を制御している。また、制御部10cは、エンジン2を制御する際には、例えば、エンジン2の燃焼室への燃料の噴射量や噴射タイミングを制御する。 The control unit 10c controls the motor 1 (inverter device 5) and the engine 2 based on the accelerator opening and the like, thereby controlling the running state of the vehicle A. When the control unit 10c controls the motor 1, for example, the control unit 10c controls the rotation speed of the motor 1 by controlling a control signal (PWM signal) output to a switching element that constitutes the inverter device 5. The running speed is controlled. Further, when controlling the engine 2, the control unit 10 c controls, for example, the fuel injection amount and the injection timing into the combustion chamber of the engine 2.
 この際、制御部10cは、走行状態に応じてエンジン走行とEV走行とを切り替え制御する。制御部10cは、例えば、発進時には、モータ1(インバータ装置5)を制御してEV走行を行い、走行速度が上昇するに応じてエンジン2の制御に切り替えて、エンジン走行を行う。 At this time, the control unit 10c performs switching control between engine running and EV running according to the running state. For example, at the time of starting, the control unit 10c controls the motor 1 (inverter device 5) to perform EV travel, and switches to control of the engine 2 as the travel speed increases, thereby performing engine travel.
 また、制御部10cは、タンク3に貯蔵された燃料の劣化が進行するまでに当該燃料が消費されるようにするべく、燃料の劣化度合いに基づいて、所定期間内に燃料の劣化が進行すると予測される場合には、エンジン走行の比率が大きくなるようにエンジン走行とEV走行とを切り替え制御するものとする。制御部10cは、例えば、発進後、EV走行からエンジン走行に切り替える際の判定基準とする走行速度の基準値を引き下げることによって、エンジン走行の比率を大きくする。但し、EV走行からエンジン走行に運転者が運転切り替え可能な場合等においては、車輌ECU10は、タンク3に貯蔵された燃料の劣化が進行するまでの期間を運転者に報知することによって、当該燃料が消費されるように促進するものとしてもよい。 In addition, the control unit 10c determines that the fuel deterioration proceeds within a predetermined period based on the degree of fuel deterioration so that the fuel is consumed before the fuel stored in the tank 3 deteriorates. When predicted, the engine travel and EV travel are controlled to be switched so that the ratio of engine travel is increased. For example, the control unit 10c increases the engine travel ratio by lowering the reference value of the travel speed, which is a determination criterion when switching from EV travel to engine travel after starting. However, in a case where the driver can switch the driving from EV traveling to engine traveling, the vehicle ECU 10 notifies the driver of the period until the deterioration of the fuel stored in the tank 3 progresses, so that the fuel It is good also as what promotes so that it may be consumed.
 記憶部10dは、タンク3に貯蔵された燃料の劣化度合いを示す情報を記憶する。記憶部10dは、例えば、センサ4から検出信号を取得して、当該燃料の劣化度合いを示す情報をRAM等の記憶部に記憶する。なお、記憶部10dは、当該燃料の劣化度合いを示す情報として、センサ4の検出信号に代えて、当該燃料がタンク3に貯蔵されている期間を記憶してもよい。 The storage unit 10d stores information indicating the degree of deterioration of the fuel stored in the tank 3. For example, the storage unit 10d acquires a detection signal from the sensor 4 and stores information indicating the degree of deterioration of the fuel in a storage unit such as a RAM. The storage unit 10d may store a period during which the fuel is stored in the tank 3 instead of the detection signal of the sensor 4 as information indicating the degree of deterioration of the fuel.
 <充電時における動作フロー>
 図3は、本実施の形態に係る車輌Aの車輌ECU10(充電制御装置)の充電時における動作フローの一例を示す図である。
<Operation flow during charging>
FIG. 3 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 (charging control device) of the vehicle A according to the present embodiment.
 この動作フローは、例えば、車輌Aの充電器7に外部電源Bが接続されたときに実行されるものとする。なお、この動作フローは、例えば、車輌ECU10がコンピュータプログラムに従って実行するものである。 This operation flow is executed, for example, when the external power source B is connected to the charger 7 of the vehicle A. This operation flow is executed by the vehicle ECU 10 according to a computer program, for example.
 車輌ECU10は、まず、センサ4から、燃料の劣化度合いを示す検出信号を取得して、記憶部10dに格納する(ステップS1)。 The vehicle ECU 10 first acquires a detection signal indicating the degree of fuel deterioration from the sensor 4 and stores it in the storage unit 10d (step S1).
 次に、車輌ECU10は、電池ECU8から蓄電池6の充電量を取得して、記憶部に格納する(ステップS2)。なお、上記したとおり、ここでは、電池ECU8が、蓄電池6の各セルの電圧、蓄電池6の温度、蓄電池6から流出するまたは蓄電池6に流入する電流に基づいて、蓄電池6の充電率を算出している。 Next, the vehicle ECU 10 acquires the amount of charge of the storage battery 6 from the battery ECU 8 and stores it in the storage unit (step S2). As described above, here, the battery ECU 8 calculates the charging rate of the storage battery 6 based on the voltage of each cell of the storage battery 6, the temperature of the storage battery 6, and the current flowing out of or flowing into the storage battery 6. ing.
 次に、車輌ECU10(判定部10a)は、例えば、記憶部10dに格納されたセンサ4の検出信号(例えば、燃料の酸化度)に基づいて、燃料の劣化度合いが所定のレベルを超えているか否かを判定する(ステップS3)。 Next, the vehicle ECU 10 (determination unit 10a) determines whether the degree of deterioration of the fuel exceeds a predetermined level based on, for example, the detection signal (for example, the degree of fuel oxidation) of the sensor 4 stored in the storage unit 10d. It is determined whether or not (step S3).
 そして、燃料の劣化度合いが所定のレベルを超えていると判定された場合(ステップS3:YES)、車輌ECU10(調整部10b)は、蓄電池6の充電完了後の目標の充電量を通常(燃料の劣化度合いが所定のレベルを超えていない場合の蓄電池6の充電完了後の目標の充電量(例えば、充電率100%))よりも低い値(例えば、充電率80%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS4)。 When it is determined that the degree of deterioration of the fuel exceeds a predetermined level (step S3: YES), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after the completion of charging of the storage battery 6 to the normal (fuel) Set to a value (for example, charging rate of 80%) lower than the target charging amount (for example, charging rate of 100%) after completion of charging of the storage battery 6 when the degree of deterioration of the battery does not exceed a predetermined level, A control signal is output to the charging controller 9 to start charging the storage battery 6 from the external power source B (step S4).
 ここで、燃料の劣化度合いが所定のレベルを超えている場合には、所定期間内に燃料の劣化が進行すると予測される。つまり、車輌ECU10(調整部10b)は、エンジン走行の比率が増加し、回収すべき回生電力の電力量が増加することを予測して、充電余力を有するように蓄電池6の充電を行う。なお、この際、調整部10bは、タンク3に貯蔵された燃料の量が多いほど、当該充電完了後の目標の充電量がさらに少なくなるように調整してもよい。 Here, when the degree of deterioration of the fuel exceeds a predetermined level, it is predicted that the deterioration of the fuel will proceed within a predetermined period. That is, the vehicle ECU 10 (adjustment unit 10b) charges the storage battery 6 so as to have the remaining charge capacity by predicting that the ratio of engine running increases and the amount of regenerative power to be recovered increases. At this time, the adjustment unit 10b may adjust the target charge amount after completion of the charge to be further reduced as the amount of fuel stored in the tank 3 is increased.
 一方、燃料の劣化度合いが所定のレベル以下と判定した場合(ステップS3:NO)、車輌ECU10(調整部10b)は、蓄電池6の充電完了後の目標の充電量を通常値(例えば、充電率100%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS5)。 On the other hand, when it is determined that the degree of deterioration of the fuel is equal to or lower than a predetermined level (step S3: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a normal value (for example, charge rate). 100%), a control signal is output to the charging control unit 9, and charging from the external power source B to the storage battery 6 is started (step S5).
 このようにして、外部電源Bから蓄電池6への充電が行われ、車輌ECU10(調整部10b)は、蓄電池6の充電量が設定した目標値に達したことを検出した場合、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を終了させる。 In this way, charging from the external power source B to the storage battery 6 is performed, and when the vehicle ECU 10 (adjustment unit 10b) detects that the charge amount of the storage battery 6 has reached the set target value, the charging control unit 9 A control signal is output to the end of charging of the storage battery 6 from the external power source B.
 なお、燃料の劣化度合いが所定のレベルを超えている場合には、車輌ECU10の制御部10cも、その後の走行中においては、エンジン走行の比率が大きくなるように制御するものとする。 When the degree of fuel deterioration exceeds a predetermined level, the control unit 10c of the vehicle ECU 10 is also controlled to increase the ratio of engine travel during subsequent travel.
 以上、本実施の形態に係る車輌ECU10によれば、外部電源Bによって蓄電池6を充電する際に、車輌Aが搭載するタンク3に貯蔵された燃料の劣化度合いに基づいて車輌Aのエンジン走行の比率の増加を予測し、これに対応するように蓄電池6に充電余力を持たせることができる。これによって、車輌Aの蓄電池6は、過充電状態になることなく、走行時の回生電力を効率よく回収することができる。 As described above, according to the vehicle ECU 10 according to the present embodiment, when the storage battery 6 is charged by the external power source B, the engine travel of the vehicle A is determined based on the degree of deterioration of the fuel stored in the tank 3 mounted on the vehicle A. It is possible to predict the increase in the ratio and allow the storage battery 6 to have a charging capacity so as to correspond to this. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
 (実施の形態2)
 次に、図4を参照して、実施の形態2に係る車輌ECU10(充電制御装置)の構成について説明する。本実施の形態に係る車輌ECU10(調整部10b)は、燃料の劣化度合いのレベルが大きいほど、充電完了後の蓄電池6の充電量が少なくなるように調整する点で、実施の形態1と相違する。なお、実施の形態1と共通する構成については、説明を省略する(以下、他の実施の形態についても同様)。
(Embodiment 2)
Next, the configuration of vehicle ECU 10 (charging control device) according to Embodiment 2 will be described with reference to FIG. The vehicle ECU 10 (adjustment unit 10b) according to the present embodiment differs from the first embodiment in that the vehicle ECU 10 (adjustment unit 10b) adjusts so that the amount of charge of the storage battery 6 after completion of charging decreases as the level of fuel deterioration increases. To do. Note that the description of the configuration common to the first embodiment is omitted (hereinafter, the same applies to other embodiments).
 図4は、実施の形態2に係る車輌ECU10の充電時における動作フローの一例を示す図である。図4の動作フローは、図3の動作フローと同様に、例えば、車輌Aの充電器7に外部電源Bが接続されたときに実行されるものとする。 FIG. 4 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 according to the second embodiment. 4 is executed, for example, when the external power source B is connected to the charger 7 of the vehicle A, similarly to the operation flow of FIG.
 図4に示す動作フローのうち、ステップS14、ステップS15以外の処理は、図3における処理と同様である。図4の動作フローでは、車輌ECU10は、燃料の劣化度合いのレベルが大きいほど、エンジン走行の比率が増加し、回収すべき回生電力の電力量が増加することを予測して、以下のステップS14、ステップS15の処理を行う。 In the operation flow shown in FIG. 4, processes other than step S14 and step S15 are the same as the processes in FIG. In the operation flow of FIG. 4, the vehicle ECU 10 predicts that as the level of the degree of deterioration of the fuel increases, the ratio of engine travel increases and the amount of regenerative power to be recovered increases, and the following step S <b> 14 is performed. Step S15 is performed.
 車輌ECU10は、まず、実施の形態1と同様に、センサ4から検出信号を取得し(ステップS11)、蓄電池6の充電量を取得し(ステップS12)、燃料の劣化度合いが所定のレベルを超えているか判定する(ステップS13)。 The vehicle ECU 10 first acquires a detection signal from the sensor 4 (step S11), acquires the charge amount of the storage battery 6 (step S12), and the degree of fuel deterioration exceeds a predetermined level, as in the first embodiment. (Step S13).
 次に、車輌ECU10(判定部10a)は、燃料の劣化度合いが所定のレベルを超えていると判定した場合(ステップS13:YES)、さらに、当該燃料の劣化度合いが所定の限界レベルを超えているかを判定する(ステップS14)。そして、燃料の劣化度合いが所定の限界レベルを超えている場合(ステップS14:YES)、車輌ECU10(調整部10b)は、外部充電を禁止する(ステップS15)。なお、ここで、燃料の劣化度合いが所定の限界レベルを超えている状態とは、例えば、燃料の劣化がエンジン2で使用できない状態になる間近まで進行した状態を表す。 Next, when the vehicle ECU 10 (determination unit 10a) determines that the degree of deterioration of the fuel exceeds a predetermined level (step S13: YES), the degree of deterioration of the fuel further exceeds a predetermined limit level. (Step S14). When the degree of fuel deterioration exceeds a predetermined limit level (step S14: YES), the vehicle ECU 10 (adjustment unit 10b) prohibits external charging (step S15). Here, the state in which the degree of deterioration of the fuel exceeds a predetermined limit level represents a state in which the deterioration of the fuel has progressed to the point where the engine 2 cannot be used.
 一方、燃料の劣化度合いが所定の限界レベル以下の場合(ステップS14:NO)、車輌ECU10(調整部10b)は、蓄電池6の充電完了後の目標の充電量を通常値よりも低い値(例えば、充電率80%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS16)。 On the other hand, when the degree of deterioration of the fuel is equal to or lower than a predetermined limit level (step S14: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a value lower than the normal value (for example, , The charging rate is set to 80%), and a control signal is output to the charging control unit 9 to start charging the storage battery 6 from the external power source B (step S16).
 他方、ステップS13において、燃料の劣化度合いが所定のレベル以下と判定された場合(ステップS13:NO)、車輌ECU10(調整部10b)は、実施の形態1と同様に、蓄電池6の充電完了後の目標の充電量を通常値(例えば、充電率100%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS17)。 On the other hand, when it is determined in step S13 that the degree of deterioration of the fuel is not more than a predetermined level (step S13: NO), the vehicle ECU 10 (adjustment unit 10b), after the completion of charging of the storage battery 6, as in the first embodiment. Is set to a normal value (for example, a charging rate of 100%), a control signal is output to the charging control unit 9, and charging from the external power source B to the storage battery 6 is started (step S17).
 このようにして、外部電源Bから蓄電池6への充電が行われ、車輌ECU10(調整部10b)は、蓄電池6の充電量が設定した目標値に達したことを検出した場合、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を終了させる。 In this way, charging from the external power source B to the storage battery 6 is performed, and when the vehicle ECU 10 (adjustment unit 10b) detects that the charge amount of the storage battery 6 has reached the set target value, the charging control unit 9 A control signal is output to the end of charging of the storage battery 6 from the external power source B.
 なお、車輌ECU10の制御部10cも、劣化が進行する燃料の量を減少させるべく、燃料の劣化度合いが所定の限界のレベルを超えている場合には、燃料の劣化度合いが所定のレベルを超えている場合よりも、さらに、エンジン走行の比率が大きくなるように制御するものとする。 Note that the control unit 10c of the vehicle ECU 10 also determines that the degree of deterioration of the fuel exceeds the predetermined level when the degree of deterioration of the fuel exceeds a predetermined limit level in order to reduce the amount of fuel that deteriorates. It is assumed that the engine running ratio is further controlled to be larger than the case where the engine is running.
 以上、本実施の形態に係る車輌ECU10によれば、タンク3に貯蔵された燃料の劣化度合いのレベルに基づいて、外部電源Bによって蓄電池6を充電する際における、充電完了後の蓄電池6の充電量を調整することができる。つまり、タンク3に貯蔵された燃料の劣化度合いのレベルが大きくなるほど、エンジン走行の比率が増加し、回収すべき走行時の回生電力の電力量が増加すると予測されるところ、本実施の形態に係る車輌ECU10は、当該回収すべき電力量に応じた充電余力を蓄電池6に持たせることができる。これによって、車輌Aの蓄電池6は、過充電状態になることなく、走行時の回生電力を効率よく回収することができる。 As described above, according to the vehicle ECU 10 according to the present embodiment, the charging of the storage battery 6 after completion of charging when the storage battery 6 is charged by the external power source B based on the level of deterioration degree of the fuel stored in the tank 3. The amount can be adjusted. In other words, as the level of deterioration of the fuel stored in the tank 3 increases, the ratio of engine traveling increases, and the amount of regenerative power during traveling that should be recovered increases. The vehicle ECU 10 can cause the storage battery 6 to have a charging capacity corresponding to the amount of power to be collected. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
 (実施の形態3)
 次に、図5を参照して、実施の形態3に係る車輌ECU10(充電制御装置)の構成について説明する。本実施の形態に係る車輌ECU10(調整部10b)は、車輌Aの走行履歴に基づいて、充電完了後の蓄電池6の充電量を調整する点で、実施の形態1と相違する。
(Embodiment 3)
Next, the configuration of vehicle ECU 10 (charging control device) according to Embodiment 3 will be described with reference to FIG. The vehicle ECU 10 (adjustment unit 10b) according to the present embodiment differs from the first embodiment in that the amount of charge of the storage battery 6 after completion of charging is adjusted based on the travel history of the vehicle A.
 図5は、実施の形態3に係る車輌ECU10の充電時における動作フローの一例を示す図である。図5の動作フローは、図3の動作フローと同様に、例えば、車輌Aの充電器7に外部電源Bが接続されたときに実行されるものとする。図5に示す動作フローのうち、ステップS23、ステップS25、ステップS26以外の処理は、図3における処理と同様である。 FIG. 5 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 according to the third embodiment. The operation flow of FIG. 5 is executed when the external power source B is connected to the charger 7 of the vehicle A, for example, similarly to the operation flow of FIG. In the operation flow shown in FIG. 5, processes other than step S23, step S25, and step S26 are the same as the processes in FIG.
 図5の動作フローでは、車輌ECU10は、車輌Aの走行履歴に基づいて、車輌Aの運転者が一定期間に燃料を消費する量を推定する。そして、車輌ECU10は、当該一定期間に燃料を消費する量から、タンク3に貯蔵された燃料のうち、当該期間経過後に残存すると予測される量を推定し、当該残存すると予測される量が多いほど、エンジン走行の比率が増加し、回収すべき回生電力の電力量が増加することを予測して、以下のステップS23、ステップS25、ステップS26の処理を行う。 In the operation flow of FIG. 5, the vehicle ECU 10 estimates the amount of fuel consumed by the driver of the vehicle A over a certain period based on the travel history of the vehicle A. Then, the vehicle ECU 10 estimates the amount of fuel stored in the tank 3 that is expected to remain after the lapse of time from the amount of fuel consumed during the certain period, and the amount that is predicted to remain is large. As the engine travel ratio increases and the amount of regenerative power to be recovered is predicted to increase, the following steps S23, S25, and S26 are performed.
 車輌ECU10は、まず、実施の形態1と同様に、センサ4から検出信号を取得し(ステップS21)、蓄電池6の充電量を取得する(ステップS22)。 The vehicle ECU 10 first acquires a detection signal from the sensor 4 (step S21) and acquires the charge amount of the storage battery 6 (step S22), as in the first embodiment.
 次に、車輌ECU10(判定部10a)は、車輌Aの過去の走行履歴に基づいて、一回の走行あたりの平均燃料消費量を算出する(ステップS23)。なお、一回の走行あたりの平均燃料消費量とは、例えば、車輌Aのイグニッションスイッチをオンにしてからオフにするまでの間の燃料消費量の平均値である。また、一回の走行あたりの平均燃料消費量は、一回の走行を一日単位で算出し、走行した日の一日あたりの燃料消費量の平均値であってもよい。 Next, the vehicle ECU 10 (determination unit 10a) calculates an average fuel consumption amount per one travel based on the past travel history of the vehicle A (step S23). Note that the average fuel consumption per one run is, for example, the average value of the fuel consumption from when the ignition switch of the vehicle A is turned on to when it is turned off. In addition, the average fuel consumption per run may be an average value of the daily fuel consumption calculated on a daily basis for each run.
 次に、車輌ECU10(判定部10a)は、燃料の劣化度合いが所定のレベルを超えているか判定し(ステップS24)、燃料の劣化度合いが所定のレベルを超えている場合(ステップS24:YES)、さらに、ステップS23で算出した平均燃料消費量が所定値以下であるかを判定する(ステップS25)。そして、平均燃料消費量が所定値以下の場合(ステップS25:YES)、車輌ECU10(調整部10b)は、外部充電を禁止する(ステップS26)。 Next, the vehicle ECU 10 (determination unit 10a) determines whether or not the degree of deterioration of the fuel exceeds a predetermined level (step S24), and when the degree of deterioration of the fuel exceeds a predetermined level (step S24: YES). Further, it is determined whether or not the average fuel consumption calculated in step S23 is a predetermined value or less (step S25). When the average fuel consumption is equal to or less than the predetermined value (step S25: YES), the vehicle ECU 10 (adjustment unit 10b) prohibits external charging (step S26).
 一方、平均燃料消費量が所定値を超える場合(ステップS25:NO)、車輌ECU10(調整部10b)は、蓄電池6の充電完了後の目標の充電量を通常値よりも低い値(例えば、充電率80%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS27)。 On the other hand, when the average fuel consumption exceeds a predetermined value (step S25: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target charge amount after completion of charging of the storage battery 6 to a value (for example, charge) lower than the normal value. The rate is set to 80%), and a control signal is output to the charging control unit 9 to start charging the storage battery 6 from the external power source B (step S27).
 他方、ステップS24で燃料の劣化度合いが所定のレベル以下の場合(ステップS24:NO)、車輌ECU10(調整部10b)は、実施の形態1と同様に、蓄電池6の充電完了後の目標の充電量を通常値(例えば、充電率100%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS28)。 On the other hand, when the degree of deterioration of the fuel is equal to or lower than the predetermined level in step S24 (step S24: NO), the vehicle ECU 10 (adjustment unit 10b) charges the target after completion of charging of the storage battery 6 as in the first embodiment. The amount is set to a normal value (for example, a charging rate of 100%), a control signal is output to the charging control unit 9, and charging from the external power source B to the storage battery 6 is started (step S28).
 なお、車輌ECU10の制御部10cも、劣化が進行する燃料の量を減少させるべく、一回の走行あたりの平均燃料消費量が所定値以下の場合には、さらに、エンジン走行の比率が大きくなるように制御するものとする。 Note that the control unit 10c of the vehicle ECU 10 also increases the ratio of engine travel when the average fuel consumption per travel is less than or equal to a predetermined value in order to reduce the amount of fuel that progresses deterioration. It shall be controlled as follows.
 以上、本実施の形態に係る車輌ECU10(調整部10b)によれば、車輌Aの過去の走行履歴に基づいて、外部電源Bによって蓄電池6を充電する際における、充電完了後の蓄電池6の充電量を調整することができる。つまり、タンク3に貯蔵された燃料のうち、所定期間経過後に残存すると予測される量が多いほど、エンジン走行の比率が増加し、回収すべき走行時の回生電力の電力量が増加すると予測されるところ、本実施の形態に係る車輌ECU10は、当該回収すべき電力量に応じた充電余力を蓄電池6に持たせることができる。これによって、車輌Aの蓄電池6は、過充電状態になることなく、走行時の回生電力を効率よく回収することができる。 As mentioned above, according to vehicle ECU10 (adjustment part 10b) which concerns on this Embodiment, when charging the storage battery 6 by the external power supply B based on the past driving | running | working history of the vehicle A, the charge of the storage battery 6 after completion of charge The amount can be adjusted. That is, it is predicted that the greater the amount of fuel stored in the tank 3 that is expected to remain after the lapse of the predetermined period, the higher the ratio of engine traveling and the amount of regenerative power during traveling that should be recovered. In other words, the vehicle ECU 10 according to the present embodiment can cause the storage battery 6 to have a charging capacity corresponding to the amount of power to be collected. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
 (実施の形態4)
 次に、図6を参照して、実施の形態4に係る車輌ECU10(充電制御装置)の構成について説明する。本実施の形態に係る車輌ECU10(調整部10b)は、車輌Aの次回の走行にかかる燃費(燃料消費量)に基づいて、充電完了後の蓄電池6の充電量を調整する点で、実施の形態1と相違する。なお、車輌Aの次回の走行にかかる燃費(燃料消費量)とは、例えば、充電完了後に車輌Aのイグニッションスイッチをオンにしてからオフにするまでの間の燃料消費量である。次回の走行にかかる燃費(燃料消費量)は、例えば、充電完了後に走行する際の目的地(次回の目的地)に至るまでの経路の距離等を参照することで推測可能である。
(Embodiment 4)
Next, the configuration of vehicle ECU 10 (charge control device) according to Embodiment 4 will be described with reference to FIG. The vehicle ECU 10 (adjustment unit 10b) according to the present embodiment adjusts the charge amount of the storage battery 6 after the completion of charging based on the fuel consumption (fuel consumption) for the next travel of the vehicle A. Different from Form 1. The fuel consumption (fuel consumption) for the next travel of the vehicle A is, for example, the fuel consumption from when the ignition switch of the vehicle A is turned on to when it is turned off after completion of charging. The fuel consumption (fuel consumption) for the next travel can be estimated by referring to the distance of the route to the destination (next destination) when traveling after completion of charging, for example.
 図6は、実施の形態4に係る車輌ECU10の充電時における動作フローの一例を示す図である。図6の動作フローは、図3の動作フローと同様に、例えば、車輌Aの充電器7に外部電源Bが接続されたときに実行されるものとする。図6に示す動作フローのうち、ステップS33、ステップS34、ステップS36、ステップS37以外の処理は、図3における処理と同様である。 FIG. 6 is a diagram illustrating an example of an operation flow during charging of the vehicle ECU 10 according to the fourth embodiment. The operation flow of FIG. 6 is executed when the external power source B is connected to the charger 7 of the vehicle A, for example, similarly to the operation flow of FIG. In the operation flow shown in FIG. 6, processes other than Step S33, Step S34, Step S36, and Step S37 are the same as the processes in FIG.
 図6の動作フローでは、車輌ECU10は、車輌Aの次回の走行時の目的地に基づいて、次回の走行にかかる燃費(燃料消費量)を推定する。そして、車輌ECU10は、当該次回の走行にかかる燃費(燃料消費量)が小さいときに充電完了後の蓄電池6の充電量を小さくさせる。車輌Aが蓄電池6の充電量に応じてエンジン走行とEV走行を切り替える場合(蓄電池6の充電量が小さければエンジン走行を行う)において、積極的にエンジン走行の比率を増加させるとともに、走行時の回生電力を効率よく回収可能となる。 In the operation flow of FIG. 6, the vehicle ECU 10 estimates the fuel consumption (fuel consumption) for the next travel based on the destination of the next travel of the vehicle A. And vehicle ECU10 makes the charge amount of the storage battery 6 after charge completion small when the fuel consumption (fuel consumption) concerning the said next driving | running | working is small. When the vehicle A switches between engine running and EV running according to the charge amount of the storage battery 6 (engine drive is performed if the charge amount of the storage battery 6 is small), the ratio of engine running is actively increased and Regenerative power can be collected efficiently.
 車輌ECU10は、まず、実施の形態1と同様に、センサ4から検出信号を取得し(ステップS31)、蓄電池6の充電量を取得する(ステップS32)。 The vehicle ECU 10 first acquires a detection signal from the sensor 4 (step S31) and acquires the charge amount of the storage battery 6 (step S32), as in the first embodiment.
 次に、車輌ECU10(判定部10a)は、車輌Aの次回の走行における目的地が入力されているか判定する(ステップS33)。例えば、車輌Aの使用者が充電開始前に車輌Aのナビゲーション装置(図示せず)等に目的地を設定しているか否かで判定する。あるいは、予め曜日や日にちに対応した目的地が設定されていても良い。 Next, the vehicle ECU 10 (determination unit 10a) determines whether the destination for the next travel of the vehicle A is input (step S33). For example, the determination is made based on whether or not the user of the vehicle A has set a destination in the navigation device (not shown) of the vehicle A before the start of charging. Alternatively, a destination corresponding to a day of the week or a date may be set in advance.
 次回の走行における目的地が入力されている場合(ステップS33:YES)、当該目的地に至るまでの燃費(燃料消費量)を算出する(ステップS34)。目的地に至るまでの燃費(燃料消費量)は、例えば、目的地までの経路を探索し、当該経路の距離、当該経路を走行する際の予想速度、過去の走行履歴などから算出する。 If the destination for the next run has been input (step S33: YES), the fuel consumption (fuel consumption) up to the destination is calculated (step S34). The fuel consumption (fuel consumption) up to the destination is calculated from, for example, a route to the destination, the distance of the route, the expected speed when traveling on the route, the past travel history, and the like.
 次に、車輌ECU10(判定部10a)は、燃料の劣化度合いが所定のレベルを超えているか判定し(ステップS35)、燃料の劣化度合いが所定のレベルを超えている場合(ステップS35:YES)、さらに、ステップS34で算出した目的地に至るまでの燃費(燃料消費量)が所定値以下であるかを判定する(ステップS36)。そして、目的地に至るまでの燃費(燃料消費量)が所定値以下の場合(ステップS36:YES)、車輌ECU10(調整部10b)は、外部充電を禁止する(ステップS37)。 Next, the vehicle ECU 10 (determination unit 10a) determines whether or not the degree of fuel deterioration exceeds a predetermined level (step S35), and if the degree of fuel deterioration exceeds a predetermined level (step S35: YES). Further, it is determined whether the fuel consumption (fuel consumption) up to the destination calculated in step S34 is equal to or less than a predetermined value (step S36). When the fuel consumption (fuel consumption) up to the destination is less than or equal to the predetermined value (step S36: YES), the vehicle ECU 10 (adjustment unit 10b) prohibits external charging (step S37).
 一方、ステップS34で算出した目的地に至るまでの燃費(燃料消費量)が所定値を超える場合(ステップS36:NO)、車輌ECU10(調整部10b)は、蓄電池6の充電完了後の目標の充電量を通常値よりも低い値(例えば、充電率80%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS38)。 On the other hand, when the fuel consumption (fuel consumption) up to the destination calculated in step S34 exceeds a predetermined value (step S36: NO), the vehicle ECU 10 (adjustment unit 10b) sets the target after completion of charging of the storage battery 6. The charge amount is set to a value lower than the normal value (for example, a charging rate of 80%), a control signal is output to the charge control unit 9, and charging from the external power source B to the storage battery 6 is started (step S38). .
 他方、ステップS33で次回の走行における目的地が入力されていない場合(ステップS33:NO)、または、ステップS35で燃料の劣化度合いが所定のレベル以下場合(ステップS35:NO)、車輌ECU10(調整部10b)は、実施の形態1と同様に、蓄電池6の充電完了後の目標の充電量を通常値(例えば、充電率100%)に設定して、充電制御部9に制御信号を出力して、外部電源Bから蓄電池6への充電を開始させる(ステップS39)。 On the other hand, if the destination in the next run is not input in step S33 (step S33: NO), or if the degree of fuel deterioration is less than a predetermined level in step S35 (step S35: NO), the vehicle ECU 10 (adjustment) Similarly to the first embodiment, the unit 10b) sets the target charge amount after the completion of charging of the storage battery 6 to a normal value (for example, a charging rate of 100%), and outputs a control signal to the charge control unit 9. Then, charging of the storage battery 6 from the external power source B is started (step S39).
 なお、車輌ECU10の制御部10cも、劣化が進行する燃料の量を減少させるべく、次回の走行にかかる燃費(燃料消費量)が所定値以下の場合には、さらに、エンジン走行の比率が大きくなるように制御するものとする。 Note that the control unit 10c of the vehicle ECU 10 also increases the ratio of engine travel when the fuel consumption (fuel consumption) for the next travel is equal to or less than a predetermined value in order to reduce the amount of fuel that deteriorates. It shall be controlled so that
 以上、本実施の形態に係る車輌ECU10(調整部10b)によれば、車輌Aの次回の走行にかかる燃費(燃料消費量)に基づいて、外部電源Bによって蓄電池6を充電する際における、充電完了後の蓄電池6の充電量を調整することができる。つまり、車輌Aが蓄電池6の充電量に応じてエンジン走行とEV走行を切り替える場合(蓄電池6の充電量が小さければエンジン走行を行う)において、積極的にエンジン走行の比率を増加させるとともに、走行時の回生電力を効率よく回収可能となる。 As mentioned above, according to vehicle ECU10 (adjustment part 10b) which concerns on this Embodiment, based on the fuel consumption (fuel consumption) concerning the next driving | running | working of the vehicle A, the charge in charging the storage battery 6 with the external power supply B is carried out. The amount of charge of the storage battery 6 after completion can be adjusted. In other words, when the vehicle A switches between engine travel and EV travel according to the charge amount of the storage battery 6 (engine travel is performed if the charge amount of the storage battery 6 is small), the engine travel ratio is positively increased and travel is performed. The regenerative power at the time can be efficiently recovered.
 (その他の実施の形態)
 本開示は、上記実施の形態に限らず、種々に変形態様が考えられる。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and various modifications can be considered.
 上記実施の形態では、判定部10aや調整部10bを備える充電制御装置の構成の一例として、エンジン2等を制御する車輌ECU10に適用する態様を示した。但し、充電制御装置は、任意の装置であってよく、例えば、充電制御部9や車輌Aの外部に設置された外部電源Bを制御する充電装置(図示せず)であってもよい。換言すると、判定部10aや調整部10bの構成は、充電制御部9や車輌Aの外部に設置された外部電源Bに備えられるものであってもよい。 In the above-described embodiment, as an example of the configuration of the charging control device including the determination unit 10a and the adjustment unit 10b, a mode applied to the vehicle ECU 10 that controls the engine 2 and the like is shown. However, the charging control device may be an arbitrary device, and may be, for example, a charging device (not shown) that controls the charging control unit 9 or the external power source B installed outside the vehicle A. In other words, the configuration of the determination unit 10a and the adjustment unit 10b may be provided in the external power source B installed outside the charging control unit 9 or the vehicle A.
 また、上記実施の形態では、車輌ECU10の構成の一例として、判定部10a、調整部10b、及び制御部10cの機能が一のコンピュータによって実現されるものとして記載したが、複数のコンピュータによって実現されてもよい。 In the above-described embodiment, as an example of the configuration of the vehicle ECU 10, the functions of the determination unit 10a, the adjustment unit 10b, and the control unit 10c are described as being realized by one computer, but are realized by a plurality of computers. May be.
 以上、本開示の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present disclosure have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 以上のように、充電制御装置である車輌ECU10は、車輌Aに適用され、外部電源Bから蓄電池6への充電を制御する。車輌Aは、蓄電池6の電力を利用したモータによる駆動力と、タンク3に貯蔵された燃料を利用したエンジン2による駆動力とによって走行する。車輌ECU10は、記憶部10dと、調整部10bとを有する。記憶部10dは、タンク3に貯蔵された燃料の劣化度合いを示す情報を記憶する。調整部10bは、記憶部10dに記憶された燃料の劣化度合いを示す劣化情報に基づいて、外部電源Bによる充電完了時の蓄電池6の充電量(完了時充電量)を調整する。 As described above, the vehicle ECU 10 that is a charging control device is applied to the vehicle A and controls charging from the external power source B to the storage battery 6. The vehicle A travels by the driving force by the motor using the electric power of the storage battery 6 and the driving force by the engine 2 using the fuel stored in the tank 3. The vehicle ECU 10 includes a storage unit 10d and an adjustment unit 10b. The storage unit 10 d stores information indicating the degree of deterioration of the fuel stored in the tank 3. The adjustment unit 10b adjusts the amount of charge of the storage battery 6 at the time of completion of charging by the external power source B based on the deterioration information indicating the degree of deterioration of the fuel stored in the storage unit 10d.
 車輌ECU10によれば、車輌Aが搭載するタンク3に貯蔵された燃料の劣化度合いに基づいて、エンジン走行の比率の増加を予測し、これに対応するように車輌Aの蓄電池6に充電余力を持たせることができる。これによって、車輌Aの蓄電池6は、過充電状態になることなく、走行時の回生電力を効率よく回収することができる。 According to the vehicle ECU 10, an increase in the engine running ratio is predicted on the basis of the degree of deterioration of the fuel stored in the tank 3 mounted on the vehicle A, and the remaining battery 6 is charged in the storage battery 6 of the vehicle A to correspond to this. You can have it. Thereby, the storage battery 6 of the vehicle A can efficiently recover the regenerative electric power during traveling without being overcharged.
 また、調整部10bは、劣化情報の示す劣化度合いが所定のレベルを超えている場合、劣化度合いが所定のレベル以下の場合と比較して、外部電源Bにより充電が完了した後の前記蓄電池6の充電量が少なくなるように調整するものであってもよい。すなわち、調整部10bは、劣化情報の示す劣化度合いが第1レベル以下の場合に、完了時充電量を第1充電量に調整し、劣化度合いが第1レベルを超えている場合に、完了時充電量を第1充電量より少ない第2充電量に調整する。 In addition, when the degree of deterioration indicated by the deterioration information exceeds a predetermined level, the adjustment unit 10b compares the storage battery 6 after the charging by the external power source B is completed as compared with the case where the degree of deterioration is equal to or lower than the predetermined level. It may be adjusted so that the amount of charge of the battery becomes smaller. That is, the adjustment unit 10b adjusts the completion charge amount to the first charge amount when the deterioration degree indicated by the deterioration information is equal to or lower than the first level, and when the deterioration degree exceeds the first level, The charge amount is adjusted to a second charge amount that is less than the first charge amount.
 また、調整部10bは、劣化情報の示す劣化度合いが大きいほど、完了時充電量を少なく調整してもよい。この場合、走行時に回収すべき回生電力の電力量をより高い精度で予測し、電力量に応じた充電余力を蓄電池6に持たせることができる。 Further, the adjustment unit 10b may adjust the amount of charge at completion to be smaller as the deterioration degree indicated by the deterioration information is larger. In this case, the amount of regenerative power to be collected during traveling can be predicted with higher accuracy, and the storage battery 6 can have a charging capacity corresponding to the amount of power.
 また、調整部10bは、車輌Aの走行履歴に基づいて、完了時充電量をさらに調整してもよい。この構成によれば、走行時に回収すべき回生電力の電力量をより高い精度で予測し、電力量に応じた充電余力を蓄電池6に持たせることができる。 Further, the adjustment unit 10b may further adjust the charge amount at completion based on the travel history of the vehicle A. According to this configuration, the amount of regenerative power to be collected during traveling can be predicted with higher accuracy, and the storage battery 6 can have a charging capacity corresponding to the amount of power.
 また、調整部10bは、タンク3に貯蔵された燃料のうち、所定期間経過後に残存すると予測される量が多いほど、完了時充電量を少なく調整してもよい。この構成によれば、走行時に回収すべき回生電力の電力量をより高い精度で予測し、電力量に応じた充電余力を蓄電池6に持たせることができる。 Further, the adjustment unit 10b may adjust the charge amount at the time of completion as the amount of fuel stored in the tank 3 that is expected to remain after a predetermined period of time increases. According to this configuration, the amount of regenerative power to be collected during traveling can be predicted with higher accuracy, and the storage battery 6 can have a charging capacity corresponding to the amount of power.
 また、充電制御プログラムは、蓄電池6の電力を利用したモータによる駆動力と、タンク3に貯蔵された燃料を利用したエンジン2による駆動力と、によって走行する車輌Aに適用される。この充電制御プログラムは、外部電源Bから蓄電池6への充電を制御する。この充電制御プログラムは、以下の処理をコンピュータに実行させる。すなわち、記憶部10dに記憶されたタンク3に貯蔵された燃料の劣化度合いを示す情報に基づいて、外部電源Bにより充電が完了した後の蓄電池6の充電量を調整する。さらにこのような充電制御プログラムを一過性でない記憶媒体に記憶させてコンピュータに読み込ませ、実行させることができる。このような記憶媒体としてCD(compact disc)、DVD(Digital Versatile Disc)やUSB(Universal Serial Bus)メモリ、各種メモリーカードなどを挙げることができる。 Further, the charging control program is applied to the vehicle A that travels by the driving force by the motor that uses the electric power of the storage battery 6 and the driving force by the engine 2 that uses the fuel stored in the tank 3. This charging control program controls charging from the external power source B to the storage battery 6. This charge control program causes the computer to execute the following processing. That is, the charge amount of the storage battery 6 after the charging is completed by the external power source B is adjusted based on the information indicating the degree of deterioration of the fuel stored in the tank 3 stored in the storage unit 10d. Furthermore, such a charge control program can be stored in a non-transitory storage medium, read by a computer, and executed. Examples of such a storage medium include a CD (compact disc), a DVD (Digital Versatile Disc), a USB (Universal Serial Bus) memory, and various memory cards.
 本開示に係る充電制御装置および充電制御プログラムは、外部電源からハイブリッド車輌が搭載する蓄電池を充電する際に、その蓄電池の充電量を適切に制御するために好適に用いることができる。 The charge control device and the charge control program according to the present disclosure can be suitably used to appropriately control the charge amount of the storage battery when charging the storage battery mounted on the hybrid vehicle from an external power source.
1  駆動モータ(モータ)
2  エンジン
3  燃料タンク(タンク)
4  燃料劣化検出センサ(センサ)
5  インバータ装置
6  蓄電池
7  充電器
8  電池ECU
9  充電制御部
10  車輌ECU
10a  燃料劣化判定部(判定部)
10b  充電量調整部(調整部)
10c  走行制御部(制御部)
10d  燃料劣化情報記憶部(記憶部)
1 Drive motor (motor)
2 Engine 3 Fuel tank (tank)
4 Fuel deterioration detection sensor (sensor)
5 Inverter device 6 Storage battery 7 Charger 8 Battery ECU
9 Charging control unit 10 Vehicle ECU
10a Fuel deterioration determination unit (determination unit)
10b Charge amount adjustment unit (adjustment unit)
10c Travel control unit (control unit)
10d Fuel deterioration information storage unit (storage unit)

Claims (7)

  1. 蓄電池の電力を利用したモータによる駆動力と、燃料タンクに貯蔵された燃料を利用したエンジンによる駆動力とによって走行するハイブリッド車輌に適用され、外部電源から前記蓄電池への充電を制御する充電制御装置であって、
    前記燃料タンクに貯蔵された前記燃料の劣化度合いを示す劣化情報を記憶する記憶部と、
    前記記憶部に記憶された前記劣化情報に基づいて、前記外部電源による充電完了時の前記蓄電池の完了時充電量を調整する充電量調整部と、を備えた、
    充電制御装置。
    A charge control device that is applied to a hybrid vehicle that travels by a driving force by a motor that uses electric power of a storage battery and a driving force by an engine that uses fuel stored in a fuel tank, and that controls charging of the storage battery from an external power source Because
    A storage unit for storing deterioration information indicating a degree of deterioration of the fuel stored in the fuel tank;
    A charge amount adjusting unit that adjusts a charge amount at the completion of the storage battery at the time of completion of charging by the external power source based on the deterioration information stored in the storage unit,
    Charge control device.
  2. 前記充電量調整部は、
    前記劣化情報の示す劣化度合いが第1レベル以下の場合に、前記完了時充電量を第1充電量に調整し、
    前記劣化度合いが第1レベルを超えている場合に、前記完了時充電量を前記第1充電量より少ない第2充電量に調整する、
    請求項1に記載の充電制御装置。
    The charge amount adjustment unit
    When the degree of deterioration indicated by the deterioration information is equal to or lower than the first level, the charge amount at completion is adjusted to the first charge amount,
    When the deterioration degree exceeds the first level, the charge amount at completion is adjusted to a second charge amount smaller than the first charge amount;
    The charge control device according to claim 1.
  3. 前記充電量調整部は、前記劣化情報の示す劣化度合いが大きいほど、前記完了時充電量を少なく調整する、
    請求項1、2のいずれか一項に記載の充電制御装置。
    The charge amount adjustment unit adjusts the charge amount at the time of completion as the deterioration degree indicated by the deterioration information is larger.
    The charge control device according to claim 1.
  4. 前記充電量調整部は、前記ハイブリッド車輌の走行履歴に基づいて、前記完了時充電量をさらに調整する、
    請求項1、2のいずれか一項に記載の充電制御装置。
    The charge amount adjustment unit further adjusts the charge amount at completion based on a travel history of the hybrid vehicle;
    The charge control device according to claim 1.
  5. 前記充電量調整部は、
    前記燃料タンクに貯蔵された前記燃料のうち、所定期間経過後に残存すると予測される量が多いほど、前記完了時充電量を少なく調整する、
    請求項1、2のいずれか一項に記載の充電制御装置。
    The charge amount adjustment unit
    Of the fuel stored in the fuel tank, the more the amount that is expected to remain after the lapse of a predetermined period, the smaller the amount of charge at the time of completion,
    The charge control device according to claim 1.
  6. 蓄電池の電力を利用したモータによる駆動力と、燃料タンクに貯蔵された燃料を利用したエンジンによる駆動力とによって走行するハイブリッド車輌に適用され、外部電源から前記蓄電池への充電を制御する充電制御プログラムを記憶した、一過性でない記憶媒体であって、
    前記充電制御プログラムは、コンピュータに、記憶部に記憶された前記燃料タンクに貯蔵された前記燃料の劣化度合いを示す劣化情報に基づいて、前記外部電源による充電完了時の前記蓄電池の完了時充電量を調整する処理を実行させる、
    記憶媒体。
    A charge control program for controlling charging of the storage battery from an external power source, which is applied to a hybrid vehicle that is driven by a driving force by a motor that uses the power of the storage battery and a driving force by an engine that uses the fuel stored in the fuel tank Is a non-transient storage medium that stores
    The charge control program stores a charge amount when the storage battery is completed when charging by the external power supply is completed based on deterioration information indicating a degree of deterioration of the fuel stored in the fuel tank stored in a storage unit in a computer. Execute the process of adjusting
    Storage medium.
  7. 蓄電池の電力を利用したモータによる駆動力と、燃料タンクに貯蔵された燃料を利用したエンジンによる駆動力とによって走行するハイブリッド車輌に適用され、外部電源から前記蓄電池への充電を制御する充電制御プログラムであって、
    コンピュータに、
    記憶部に記憶された前記燃料タンクに貯蔵された前記燃料の劣化度合いを示す劣化情報に基づいて、前記外部電源による充電完了時の前記蓄電池の完了時充電量を調整する処理を実行させる、
    充電制御プログラム。
    A charge control program for controlling charging of the storage battery from an external power source, which is applied to a hybrid vehicle that is driven by a driving force by a motor that uses the power of the storage battery and a driving force by an engine that uses the fuel stored in the fuel tank Because
    On the computer,
    Based on deterioration information indicating the degree of deterioration of the fuel stored in the fuel tank stored in the storage unit, a process of adjusting the charge amount at the completion of the storage battery at the time of completion of charging by the external power source is executed.
    Charge control program.
PCT/JP2017/018435 2016-06-27 2017-05-17 Charging control device, charging control program, and storage medium WO2018003334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016126783A JP2018001788A (en) 2016-06-27 2016-06-27 Charge control device, and charge control program
JP2016-126783 2016-06-27

Publications (1)

Publication Number Publication Date
WO2018003334A1 true WO2018003334A1 (en) 2018-01-04

Family

ID=60785284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018435 WO2018003334A1 (en) 2016-06-27 2017-05-17 Charging control device, charging control program, and storage medium

Country Status (2)

Country Link
JP (1) JP2018001788A (en)
WO (1) WO2018003334A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139027A1 (en) 2018-01-10 2019-07-18 株式会社Mizkan Holdings Solid ingredient-containing liquid seasoning in sealed container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302772A (en) * 2007-06-06 2008-12-18 Toyota Motor Corp Hybrid car
JP2010018128A (en) * 2008-07-09 2010-01-28 Fujitsu Ten Ltd Control device and control method
JP2010242692A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Control device and control method
JP2011235849A (en) * 2010-05-13 2011-11-24 Hitachi Automotive Systems Ltd Hybrid vehicle
JP2012166777A (en) * 2011-01-25 2012-09-06 Nissan Motor Co Ltd Hybrid vehicle control apparatus
JP2014073704A (en) * 2012-10-02 2014-04-24 Toyota Motor Corp Control device for plug-in hybrid vehicle
JP2016002807A (en) * 2014-06-13 2016-01-12 株式会社デンソー Recommended oil supply quantity presenting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302772A (en) * 2007-06-06 2008-12-18 Toyota Motor Corp Hybrid car
JP2010018128A (en) * 2008-07-09 2010-01-28 Fujitsu Ten Ltd Control device and control method
JP2010242692A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Control device and control method
JP2011235849A (en) * 2010-05-13 2011-11-24 Hitachi Automotive Systems Ltd Hybrid vehicle
JP2012166777A (en) * 2011-01-25 2012-09-06 Nissan Motor Co Ltd Hybrid vehicle control apparatus
JP2014073704A (en) * 2012-10-02 2014-04-24 Toyota Motor Corp Control device for plug-in hybrid vehicle
JP2016002807A (en) * 2014-06-13 2016-01-12 株式会社デンソー Recommended oil supply quantity presenting device

Also Published As

Publication number Publication date
JP2018001788A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5288170B2 (en) Battery temperature rise control device
JP5487861B2 (en) Battery warm-up control device
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP6011541B2 (en) Charge control device and charge control method
JP7072424B2 (en) Vehicle power system
WO2012066675A1 (en) Vehicle charging device
US11458844B2 (en) Power supply system for vehicle
KR101761539B1 (en) Hybrid vehicle
JP6694156B2 (en) Control device for hybrid vehicle
JP2009248822A (en) Charging amount controller
JP5182514B2 (en) Control device for electric vehicle
JP2014131404A (en) Vehicle charger
US10981455B2 (en) Electric vehicle
CN104802788A (en) Hybrid vehicle
JP4854557B2 (en) Electric drive control device
JP4915273B2 (en) Electrical device and method for controlling electrical device
KR101876091B1 (en) System and Method for determining Regen Mode
JP5552970B2 (en) Control device for hybrid vehicle
JP5419745B2 (en) Series hybrid vehicle control system
JP2019021412A (en) Electric vehicle
WO2018003334A1 (en) Charging control device, charging control program, and storage medium
JP2004312926A (en) Controller for vehicle and control method
JP5136612B2 (en) Hybrid vehicle power generation control device
JP2006341708A (en) Controller for hybrid vehicle
JP2010125956A (en) System for controlling electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819701

Country of ref document: EP

Kind code of ref document: A1