JP4918814B2 - Air quantity control device for internal combustion engine - Google Patents

Air quantity control device for internal combustion engine Download PDF

Info

Publication number
JP4918814B2
JP4918814B2 JP2006173437A JP2006173437A JP4918814B2 JP 4918814 B2 JP4918814 B2 JP 4918814B2 JP 2006173437 A JP2006173437 A JP 2006173437A JP 2006173437 A JP2006173437 A JP 2006173437A JP 4918814 B2 JP4918814 B2 JP 4918814B2
Authority
JP
Japan
Prior art keywords
load
alternator
battery
air
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006173437A
Other languages
Japanese (ja)
Other versions
JP2008002381A (en
Inventor
貴充 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006173437A priority Critical patent/JP4918814B2/en
Publication of JP2008002381A publication Critical patent/JP2008002381A/en
Application granted granted Critical
Publication of JP4918814B2 publication Critical patent/JP4918814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、内燃機関の空気量制御装置に関し、特に、オルタネータの負荷状態に応じて吸入空気量を補正制御する技術に関する。   The present invention relates to an air amount control device for an internal combustion engine, and more particularly to a technique for correcting and controlling an intake air amount in accordance with a load state of an alternator.

例えば、車両の減速時にオルタネータの発電電圧を高めて回生発電を行ってバッテリを充電し、その後、回生発電によりバッテリに蓄えた電気で車載電気負荷の消費電力を賄うことにより、オルタネータの駆動に要するエネルギを低減し、燃費を向上させるようにしている。このオルタネータの減速回生制御では、回生発電によるバッテリ充電後、オルタネータの発電電圧を低く設定してバッテリを放電状態とし、バッテリの充電状態(SOC)を充電可能な予め定めた設定値に制御することにより、燃費低減効果や減速加速度性能等を一定に保つようにしている。このバッテリ放電状態のときはオルタネータの負荷が低減されるため、オルタネータ負荷分の吸入空気補正量を低減する。そのために、オルタネータの負荷を検出する必要がある。   For example, it is necessary to drive the alternator by charging the battery by increasing the power generation voltage of the alternator when the vehicle is decelerating, charging the battery, and then covering the power consumption of the in-vehicle electric load with the electricity stored in the battery by regenerative power generation. Energy is reduced and fuel consumption is improved. In this deceleration regeneration control of the alternator, after the battery is charged by regenerative power generation, the power generation voltage of the alternator is set to a low level to place the battery in a discharged state, and the state of charge (SOC) of the battery is controlled to a predetermined set value that can be charged. Thus, the fuel consumption reduction effect, deceleration acceleration performance, etc. are kept constant. Since the load of the alternator is reduced in this battery discharge state, the intake air correction amount corresponding to the alternator load is reduced. Therefore, it is necessary to detect the load of the alternator.

特許文献1には、オルタネータの発電電流を検出する電流センサを設け、電流センサで検出したオルタネータ発電電流とエンジン回転数とからオルタネータに生じるオルタネータ負荷トルクを演算し、このオルタネータ負荷トルクに応じて吸入空気補正量を制御する技術が開示されている。
特開2003−336532号公報
In Patent Document 1, a current sensor for detecting the generated current of the alternator is provided, and the alternator load torque generated in the alternator is calculated from the alternator generated current detected by the current sensor and the engine speed, and suction is performed according to the alternator load torque. A technique for controlling the air correction amount is disclosed.
JP 2003-336532 A

しかしながら、特許文献1のようにオルタネータの発電電流を検知するために電流センサを設ける構成では、部品点数が増加してコストが上昇すると共に、レイアウトの制約等の問題がある。
本発明は上記問題点に着目してなされたもので、オルタネータ発電電流検出用の電流センサを設けることなく、オルタネータの負荷変化に応じて適切な吸入空気量の補正を可能とする内燃機関の空気量制御装置を提供することを目的とする。
However, in the configuration in which the current sensor is provided to detect the generated current of the alternator as in Patent Document 1, the number of parts increases and the cost increases, and there are problems such as layout restrictions.
The present invention has been made paying attention to the above-mentioned problems, and it is possible to correct the intake air amount appropriately according to the load change of the alternator without providing a current sensor for detecting an alternator power generation current. An object is to provide a quantity control device.

このため、請求項1の発明は、内燃機関により駆動されるオルタネータのバッテリ放電中の負荷変化に応じて吸入空気量を補正制御する内燃機関の空気量制御装置であって、バッテリ放電中であってON状態の車載電気負荷が存在するときは、放電電流値相当分のバッテリ分空気補正量とON状態の車載電気負荷がない無負荷時の消費電流分空気補正量とを比較して小さい方を減算すべきバッテリ分空気補正量とし、この減算すべきバッテリ分空気補正量を、車載電気負荷の総消費電流値相当分である電気負荷分空気補正量から減算して、オルタネータ負荷分の空気量補正量を決定する構成としたことを特徴とする。 For this reason, the invention of claim 1 is an air amount control device for an internal combustion engine that corrects and controls the intake air amount in accordance with a load change during battery discharge of the alternator driven by the internal combustion engine. When there is an on-vehicle electric load that is ON, the battery air correction amount corresponding to the discharge current value is smaller than the air current correction amount for the current consumption when there is no on-vehicle electric load that is ON. Subtract the battery air correction amount to be subtracted from the electric load air correction amount corresponding to the total consumption current value of the in-vehicle electric load, and subtract the air for the alternator load. A feature is that the amount correction amount is determined.

本発明によれば、既存のバッテリ電流センサで検出されるバッテリの充放電電流値相当分の空気補正量と消費電流値が既知のON状態にある車載電気負荷相当分の空気量補正量とからオルタネータ負荷分の空気量補正量を決定する構成としたので、オルタネータ発電電流検出用の電流センサを設けることなく、オルタネータ負荷分の空気量補正量が可能となる。従って、コストの上昇を抑制でき、また、レイアウトが制約されることがない。   According to the present invention, from the air correction amount corresponding to the charge / discharge current value of the battery detected by the existing battery current sensor and the air amount correction amount corresponding to the on-vehicle electric load in which the current consumption value is in the known ON state. Since the air amount correction amount for the alternator load is determined, the air amount correction amount for the alternator load can be provided without providing a current sensor for detecting the alternator power generation current. Therefore, an increase in cost can be suppressed and the layout is not restricted.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る内燃機関の空気量制御装置の第1実施形態を示すシステム構成図である。
図1において、エンジン1の吸気通路2には、電子制御式のスロットル弁(以下「電制スロットル弁」という)3が介装され、エンジン運転状態に基づいて制御されるアクチュエータを介して吸入空気流量が制御される。エンジン1によりファンベルトを介して駆動されて発電するオルタネータ4は、後述するマイクロコンピュータを内蔵するECM(エンジンコントロールモジュール)10からの発電電圧指令を受けてレギュレータ5により発電電圧が制御される。オルタネータ4とバッテリ6からの電力は、マイクロコンピュータを内蔵する車載電気負荷制御ユニット7を介して各車載電気負荷8に供給される。電流センサ9は、バッテリ6の充放電電流を検出し、その検出出力をECM10に入力する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram showing a first embodiment of an air amount control device for an internal combustion engine according to the present invention.
In FIG. 1, an electronically controlled throttle valve (hereinafter referred to as an “electrically controlled throttle valve”) 3 is interposed in an intake passage 2 of the engine 1, and intake air is supplied via an actuator controlled based on the engine operating state. The flow rate is controlled. An alternator 4 that is driven by the engine 1 via a fan belt to generate electric power is controlled by a regulator 5 in response to a power generation voltage command from an ECM (engine control module) 10 incorporating a microcomputer, which will be described later. Electric power from the alternator 4 and the battery 6 is supplied to each in-vehicle electric load 8 via the in-vehicle electric load control unit 7 having a built-in microcomputer. The current sensor 9 detects the charging / discharging current of the battery 6 and inputs the detection output to the ECM 10.

前記車載電気負荷制御ユニット7は、オルタネータ4やバッテリ6からの電力供給により駆動し、接続される車載電気負荷8への電力供給を制御して車載電気負荷8を駆動制御すると共に、スイッチがONされ使用状態にある車載電気負荷8をECM10に通知する。
ECM10は、例えばコンピュータを内蔵してオルタネータ4やバッテリ6からの電力供給により駆動し、エンジン回転速度を検出するクランク角センサ、エンジン冷却水温度を検出する水温センサ、吸入空気流量を検出するエアフローメータ、スロットル弁開度を検出するスロットルセンサ等の図示しない各種センサからの信号に基づいて検出されるエンジン運転状態に応じて電制スロットル弁3の開度を制御する。
The in-vehicle electric load control unit 7 is driven by power supply from the alternator 4 or the battery 6, and controls the power supply to the in-vehicle electric load 8 connected to drive and control the in-vehicle electric load 8, and the switch is turned on. The ECM 10 is notified of the in-vehicle electric load 8 in use.
The ECM 10 includes, for example, a computer and is driven by power supplied from the alternator 4 and the battery 6 to detect an engine rotation speed, a water temperature sensor that detects an engine cooling water temperature, and an air flow meter that detects an intake air flow rate. The opening degree of the electric throttle valve 3 is controlled according to the engine operating state detected based on signals from various sensors (not shown) such as a throttle sensor for detecting the throttle valve opening degree.

また、ECM10は、電制スロットル弁3が略全閉のアイドル状態でエンジン回転数が所定以上の減速時に、燃料噴射を停止する燃料カット制御を行い、燃料カット中にレギュレータ5に対して高い発電電圧指令値を出力してオルタネータ4の回生発電によりバッテリ6を充電し、回生発電後、バッテリ電圧より低い発電電圧指令値を出力し、回生発電で蓄えた電気エネルギ分をバッテリ6から放電させてバッテリ6の充電状態(SOC)を回生制御による充電可能な一定値に維持制御する。   Further, the ECM 10 performs fuel cut control to stop fuel injection when the engine throttle speed is decelerated at a predetermined value or more in the idle state in which the electric throttle valve 3 is substantially fully closed, and high power generation with respect to the regulator 5 during the fuel cut. The voltage command value is output and the battery 6 is charged by regenerative power generation of the alternator 4. After the regenerative power generation, a power generation voltage command value lower than the battery voltage is output, and the electric energy stored by the regenerative power generation is discharged from the battery 6. The state of charge (SOC) of the battery 6 is maintained and controlled to a constant value that can be charged by regenerative control.

更に、ECM10は、電流センサ9で検出されるバッテリ6の充放電電流値相当分であるバッテリ分空気補正量と、車載電気負荷ユニット7から通知されたON状態にある使用状態の車載電気負荷8の総消費電流値相当分である電気負荷分空気補正量とに基づいてオルタネータ負荷分の空気補正量を決定し、この決定したオルタネータ負荷分の空気補正量に基づいて電制スロットル弁3の開度を補正し、オルタネータ4の負荷状態に応じて吸入空気量を補正制御する。   Further, the ECM 10 includes a battery air correction amount corresponding to the charge / discharge current value of the battery 6 detected by the current sensor 9 and the in-vehicle electric load 8 in the ON state notified from the in-vehicle electric load unit 7. The air correction amount for the alternator load is determined based on the air load correction amount corresponding to the electric load corresponding to the total current consumption value, and the electric throttle valve 3 is opened based on the determined air correction amount for the alternator load. The intake air amount is corrected and controlled according to the load state of the alternator 4.

ここで、オルタネータ4の発電電流Ia、バッテリ6の充放電電流Ib及び車載電気負荷の総消費電流IRは、図2に示すような関係にある。
図2(A)はバッテリ充電時の場合で、オルタネータ発電電流Iaは、Ia=IR+Ibと表せる。また、図2(B)はバッテリ放電時の場合で、オルタネータ発電電流Iaは、Ia=IR−Ibと表せる。
Here, the generated current Ia of the alternator 4, the charge / discharge current Ib of the battery 6, and the total consumption current IR of the in-vehicle electric load are in a relationship as shown in FIG. 2.
FIG. 2A shows a case where the battery is charged, and the alternator power generation current Ia can be expressed as Ia = IR + Ib. FIG. 2B shows a case where the battery is discharged, and the alternator power generation current Ia can be expressed as Ia = IR−Ib.

図2の関係から、バッテリ充電時のオルタネータ発電電流Iaは、バッテリ充電電流Ibと車載電気負荷8の総消費電流値IRを加算することで推定することができ、バッテリ放電時のオルタネータ発電電流Iaは、車載電気負荷8の総消費電流値IRからバッテリ充電電流Ibを減算することで推定することができる。そして、バッテリ充放電電流Ibは電流センサ9で検出され、車載電気負荷8の総消費電流値IRは、例えばECM10に予め各車載電気負荷毎の消費電流値を記憶させておくことで算出することができる。従って、オルタネータ発電電流検出用の電流センサを設けなくてもオルタネータ4の発電電流値を推定可能であることがわかる。そして、例えばバッテリ放電時では、オルタネータ4の発電電流はバッテリ6からの放電電流分少なく、その分オルタネータ負荷が低減されるので、ON状態にある使用状態の車載電気負荷8の総消費電流値相当分の電気負荷分空気補正量からバッテリ6の充放電電流値相当分のバッテリ分空気補正量を減算したものがオルタネータ負荷分の空気補正量とすることができる。   From the relationship of FIG. 2, the alternator power generation current Ia at the time of battery charging can be estimated by adding the battery charging current Ib and the total consumption current value IR of the in-vehicle electric load 8, and the alternator power generation current Ia at the time of battery discharge. Can be estimated by subtracting the battery charging current Ib from the total consumption current value IR of the in-vehicle electric load 8. The battery charge / discharge current Ib is detected by the current sensor 9, and the total current consumption value IR of the in-vehicle electric load 8 is calculated by, for example, storing the current consumption value for each in-vehicle electric load in the ECM 10 in advance. Can do. Therefore, it can be seen that the power generation current value of the alternator 4 can be estimated without providing a current sensor for detecting the power generation current of the alternator. For example, when the battery is discharged, the generated current of the alternator 4 is less by the amount of the discharge current from the battery 6, and the alternator load is reduced by that amount. This corresponds to the total current consumption value of the in-vehicle electric load 8 in the ON state in use. The air correction amount corresponding to the alternator load can be obtained by subtracting the battery air correction amount corresponding to the charge / discharge current value of the battery 6 from the air load correction amount corresponding to the electric load.

次に、第1実施形態のECM10による空気量補正制御動作を図3のフローチャートに従って説明する。
ステップ1(図中S1で示し、以下同様とする)で、電流センサ9からの信号によりバッテリ6が放電中か否か判定し、放電中であればステップ2に進む。
ステップ2で、電流センサ9からの入力信号からバッテリ放電電流値を読込む。
Next, the air amount correction control operation by the ECM 10 of the first embodiment will be described with reference to the flowchart of FIG.
In step 1 (indicated by S1 in the figure, the same shall apply hereinafter), it is determined whether or not the battery 6 is being discharged based on a signal from the current sensor 9. If the battery 6 is being discharged, the process proceeds to step 2.
In step 2, the battery discharge current value is read from the input signal from the current sensor 9.

ステップ3で、例えば予め記憶させたバッテリ放電電流値とバッテリ分空気補正量との対応マップから放電電流値相当分のバッテリ分空気補正量を設定する。
ステップ4で、車載電気負荷ユニット7の通知信号に基づいてON状態にある車載電気負荷8があるか否かを判定し、ON状態にある車載電気負荷8があれば判定がYESとなりステップ5に進む。
In step 3, for example, the battery air correction amount corresponding to the discharge current value is set from a correspondence map of the battery discharge current value stored in advance and the battery air correction amount.
In step 4, it is determined whether or not there is an in-vehicle electric load 8 in the ON state based on the notification signal of the in-vehicle electric load unit 7. If there is an in-vehicle electric load 8 in the ON state, the determination is YES and step 5 is performed. move on.

ステップ5では、例えば実験等により求めて予め記憶させた各車載電気負荷毎の空気補正量から車載電気負荷ユニット7から通知されたON状態にある各車載電気負荷8の空気補正量を加算し、ON状態にある車載電気負荷8の総空気補正量を算出し電気負荷分空気補正量を設定する。
ステップ6で、ステップ3で設定した放電電流値相当分のバッテリ分空気補正量とON状態の車載電気負荷8がない無負荷時の消費電流分空気補正量とを比較し、小さい方を選択して後述のステップ7で使用する減算すべきバッテリ分空気補正量とする。これにより、後述のステップ7で減算するバッテリ分空気補正量の上限を無負荷時の消費電流分空気補正量に制限する。ここで、前記無負荷時の消費電流分空気補正量は、車載電気負荷ユニット7やECM10等の消費電流分で車両の走行制御に必要な消費電流値相当分の空気補正量である。
In step 5, for example, the air correction amount of each in-vehicle electric load 8 in the ON state notified from the in-vehicle electric load unit 7 is added from the air correction amount for each in-vehicle electric load obtained and stored in advance by an experiment or the like, The total air correction amount of the in-vehicle electric load 8 in the ON state is calculated, and the air correction amount for the electric load is set.
In step 6, the battery air correction amount corresponding to the discharge current value set in step 3 is compared with the air consumption correction amount in the no-load state where there is no on-vehicle electric load 8 and the smaller one is selected. The battery air correction amount to be subtracted used in step 7 described later. Thereby, the upper limit of the battery air correction amount to be subtracted in step 7 described later is limited to the current consumption air correction amount at no load. Here, the air correction amount corresponding to the consumption current at the time of no load is an air correction amount corresponding to the consumption current value necessary for vehicle travel control by the consumption current amount of the in-vehicle electric load unit 7 or the ECM 10.

ステップ7で、ステップ5で設定したON状態の車載電気負荷に対応する電気負荷分空気補正量からステップ6のバッテリ分空気補正量を減算してオルタネータ負荷分の空気補正量を演算する。ここで演算されたオルタネータ負荷分空気補正量がオルタネータ4の発電電流量に対応するもので、この演算されたオルタネータ負荷分空気補正量に基づいて電制スロットル弁3の開度を補正する。   In step 7, the air correction amount for the alternator load is calculated by subtracting the battery air correction amount in step 6 from the electric load air correction amount corresponding to the on-vehicle electric load set in step 5. The alternator load air correction amount calculated here corresponds to the generated current amount of the alternator 4, and the opening degree of the electric throttle valve 3 is corrected based on the calculated alternator load air correction amount.

一方、ステップ4の判定がNOの場合はステップ8で無負荷時のオルタネータ負荷分空気補正量を演算する。
ステップ8では、前述した車両の走行制御に必要な消費電流値相当分の空気補正量である無負荷時の消費電流分空気補正量からステップ3で設定した放電電流値に対応するバッテリ分空気補正量を減算して、無負荷時におけるオルタネータ負荷分空気補正量を算出する。そして、演算されたオルタネータ負荷分空気補正量に基づいて電制スロットル弁3の開度を補正する。
On the other hand, if the determination in step 4 is NO, in step 8, the alternator load air correction amount at no load is calculated.
In step 8, the battery air correction corresponding to the discharge current value set in step 3 from the no-load consumption current air correction amount corresponding to the current consumption corresponding to the consumption current value necessary for the vehicle travel control described above. Subtract the amount to calculate the alternator load air correction amount at no load. Then, the opening degree of the electric throttle valve 3 is corrected based on the calculated alternator load air correction amount.

図4に、第2実施形態の空気量補正制御動作のフローチャートを示す。尚、ハードウエアの構成は図1に示す第1実施形態と同様である。
ステップ11、12は、第1実施形態のステップ1,2と同様で、バッテリ6が放電中か否かを判断し、放電中であれば放電電流値を読込む。
ステップ13で、車載電気負荷ユニット7の通知信号に基づいてON状態にある車載電気負荷8があるか否かを判定し、YESであればステップ14に進む。
FIG. 4 shows a flowchart of the air amount correction control operation of the second embodiment. The hardware configuration is the same as that of the first embodiment shown in FIG.
Steps 11 and 12 are the same as steps 1 and 2 of the first embodiment, and it is determined whether or not the battery 6 is being discharged. If the battery 6 is being discharged, the discharge current value is read.
In step 13, it is determined whether or not there is an in-vehicle electric load 8 that is in the ON state based on the notification signal of the in-vehicle electric load unit 7. If YES, the process proceeds to step 14.

ステップ14で、例えば予め記憶させた車載電気負荷毎の消費電流値からON状態にある各車載電気負荷の消費電流値を読込み加算して総消費電流値を設定する。
ステップ15では、ステップ12で読込んだバッテリ放電電流値と予め記憶された無負荷時の消費電流値とを比較して小さい方を選択し、ステップ16で使用する減算すべきバッテリ放電電流値とする。
In step 14, for example, the current consumption value of each in-vehicle electric load in the ON state is read from the current consumption value for each in-vehicle electric load stored in advance, and the total current consumption value is set.
In step 15, the battery discharge current value read in step 12 is compared with the prestored no-load consumption current value and the smaller one is selected, and the battery discharge current value to be subtracted used in step 16 is selected. To do.

ステップ16では、ステップ14で設定したON状態にある車載電気負荷8の総消費電流値からステップ15で設定したバッテリ放電電流値を減算してオルタネータ発電電流値を演算する。
ステップ17では、例えば予め記憶させたオルタネータ発電電流値とオルタネータ負荷分空気補正量との対応マップから、ステップ16で演算したオルタネータ発電電流値に対応するオルタネータ負荷分空気補正量を設定する。そして、設定したオルタネータ負荷分空気補正量に基づいて電制スロットル弁3の開度を補正する。
In step 16, the alternator power generation current value is calculated by subtracting the battery discharge current value set in step 15 from the total current consumption value of the in-vehicle electrical load 8 in the ON state set in step 14.
In step 17, for example, the alternator load air correction amount corresponding to the alternator power generation current value calculated in step 16 is set from a correspondence map between the alternator power generation current value and the alternator load air correction amount stored in advance. Then, the opening degree of the electric throttle valve 3 is corrected based on the set alternator load air correction amount.

一方、ステップ13の判定がNOの場合は、ステップ18で無負荷時のオルタネータ負荷分空気補正量を演算する。
ステップ18では、予め記憶させた車両の走行制御に必要な無負荷時の消費電流値からステップ2で設定したバッテリ放電電流値を減算して、バッテリ放電時における無負荷時のオルタネータ発電電流値を算出する。そして、ステップ17で、前述と同様にしてオルタネータ負荷分空気補正量を設定し、設定したオルタネータ負荷分空気補正量に基づいて電制スロットル弁3の開度を補正する。
On the other hand, if the determination in step 13 is NO, the air correction amount corresponding to the alternator load at no load is calculated in step 18.
In step 18, the battery discharge current value set in step 2 is subtracted from the pre-stored no-load consumption current value necessary for vehicle travel control to obtain the no-load alternator power generation current value during battery discharge. calculate. In step 17, the alternator load air correction amount is set in the same manner as described above, and the opening degree of the electric throttle valve 3 is corrected based on the set alternator load air correction amount.

かかる各実施形態によれば、既存のバッテリ電流検出用の電流センサ9と車載電気負荷ユニット7からの入力信号により、オルタネータ4の発電電流値に対応したオルタネータ負荷分の空気補正量を推定することができる。従って、オルタネータ4の発電電流検出用の電流センサを設けることなく、バッテリ放電中のオルタネータ4の負荷状態に応じた適切な空気補正を行うことができるので、コストが低減できると共にレイアウトが制約されることがない。また、車載電気負荷8がON状態にある場合には、減算するバッテリ分空気補正量の上限を無負荷時の消費電流相当分の空気補正量に制限したことで、車載電気負荷8がONした時の突入電流相当分の空気補正量を確保することができる。   According to each of the embodiments, the air correction amount for the alternator load corresponding to the generated current value of the alternator 4 is estimated from the input signals from the existing battery current detection current sensor 9 and the in-vehicle electric load unit 7. Can do. Accordingly, it is possible to perform appropriate air correction according to the load state of the alternator 4 during battery discharge without providing a current sensor for detecting the generated current of the alternator 4, thereby reducing costs and restricting the layout. There is nothing. In addition, when the in-vehicle electric load 8 is in the ON state, the in-vehicle electric load 8 is turned on by limiting the upper limit of the battery air correction amount to be subtracted to the air correction amount corresponding to the consumption current at no load. An air correction amount equivalent to the inrush current at the time can be secured.

尚、バッテリ充電時では、バッテリ放電時と逆にバッテリ充電電流値相当分の空気補正量を加算するようにすればよい。   When the battery is charged, the air correction amount corresponding to the battery charging current value may be added, contrary to when the battery is discharged.

本発明に係る内燃機関の空気量制御装置の第1実施形態のシステム構成図The system block diagram of 1st Embodiment of the air quantity control apparatus of the internal combustion engine which concerns on this invention オルタネータ発電電流、バッテリ充放電電流及び車載電気負荷の消費電流との関係を示す図The figure which shows the relationship between the alternator power generation current, the battery charge / discharge current, and the current consumption of the in-vehicle electric load 第1実施形態の空気補正量制御動作を説明するフローチャートThe flowchart explaining the air correction amount control operation of the first embodiment. 第2実施形態の空気補正量制御動作を説明するフローチャートFlowchart for explaining the air correction amount control operation of the second embodiment.

符号の説明Explanation of symbols

1 エンジン
3 電制スロットル弁
4 オルタネータ
5 レギュレータ
6 バッテリ
8 車載電気負荷
9 電流センサ
10 ECM
1 Engine 3 Electric throttle valve 4 Alternator 5 Regulator 6 Battery 8 On-board electric load 9 Current sensor 10 ECM

Claims (5)

内燃機関により駆動されるオルタネータのバッテリ放電中の負荷変化に応じて吸入空気量を補正制御する内燃機関の空気量制御装置であって、
バッテリ放電中であってON状態の車載電気負荷が存在するときは、放電電流値相当分のバッテリ分空気補正量とON状態の車載電気負荷がない無負荷時の消費電流分空気補正量とを比較して小さい方を減算すべきバッテリ分空気補正量とし、この減算すべきバッテリ分空気補正量を、車載電気負荷の総消費電流値相当分である電気負荷分空気補正量から減算して、オルタネータ負荷分の空気量補正量を決定する構成とした、
ことを特徴とする内燃機関の空気量制御装置。
An air amount control device for an internal combustion engine that corrects and controls an intake air amount in accordance with a load change during battery discharge of an alternator driven by the internal combustion engine,
When there is an on-vehicle electric load during battery discharge, the battery air correction amount equivalent to the discharge current value and the current consumption air correction amount when there is no load when there is no on-vehicle electric load The smaller one is compared with the battery air correction amount to be subtracted, and the battery air correction amount to be subtracted is subtracted from the electric load air correction amount corresponding to the total consumption current value of the in-vehicle electric load, It was configured to determine the amount of air correction for the alternator load.
An air amount control device for an internal combustion engine, characterized in that:
バッテリ放電中であってON状態の車載電気負荷がないときは、車両の走行制御に必要な消費電流値相当分の空気補正量からバッテリの放電電流値相当分のバッテリ分空気補正量を減算してオルタネータ負荷分の空気量補正量を決定する構成とした
ことを特徴とする請求項1に記載の内燃機関の空気量制御装置。
When the battery is being discharged and there is no on-vehicle electric load, the battery air correction amount equivalent to the battery discharge current value is subtracted from the air correction amount equivalent to the current consumption value required for vehicle travel control. 2. An air amount control apparatus for an internal combustion engine according to claim 1, wherein an air amount correction amount corresponding to an alternator load is determined.
前記オルタネータ負荷分の空気量補正量を、電流センサで検出されたバッテリ充放電電流値から変換したバッテリ分空気量補正量とON状態にある車載電気負荷の総消費電流値相当分の電気負荷分空気補正量とに基づいて決定する構成とした
ことを特徴とする請求項1に記載の内燃機関の空気量制御装置。
The amount of air correction for the alternator load converted from the battery charge / discharge current value detected by the current sensor and the amount of electric load equivalent to the total consumption current value of the on-vehicle electric load in the ON state 2. The air amount control device for an internal combustion engine according to claim 1, wherein the air amount is determined based on an air correction amount.
内燃機関により駆動されるオルタネータのバッテリ放電中の負荷変化に応じて吸入空気量を補正制御する内燃機関の空気量制御装置であって、
バッテリ放電中であってON状態の車載電気負荷が存在するときは、電流センサで検出されたバッテリ充放電電流値と予め記憶された無負荷時の消費電流値とを比較して小さい方を減算すべきバッテリ放電電流値とし、この減算すべきバッテリ放電電流値を、ON状態にある車載電気負荷の総消費電流値から減算してオルタネータの発電電流値を推定し、該推定したオルタネータ発電電流値に基づいてオルタネータ負荷分の空気量補正量を決定する構成とした
ことを特徴とする内燃機関の空気量制御装置。
An air amount control device for an internal combustion engine that corrects and controls an intake air amount in accordance with a load change during battery discharge of an alternator driven by the internal combustion engine,
When there is an on-vehicle electric load during battery discharge, compare the battery charge / discharge current value detected by the current sensor with the pre-stored no-load current consumption value and subtract the smaller one The battery discharge current value to be subtracted, the battery discharge current value to be subtracted is subtracted from the total current consumption value of the on-vehicle electric load in the ON state to estimate the generator current value of the alternator, and the estimated alternator power generation current value An air amount control device for an internal combustion engine, characterized in that an air amount correction amount corresponding to an alternator load is determined based on the above.
バッテリ放電中であってON状態の車載電気負荷がないときは、車両の走行制御に必要な消費電流値から電流センサで検出されたバッテリ充放電電流値を減算することでオルタネータの発電電流値を推定し、該推定したオルタネータ発電電流値に基づいて、オルタネータ負荷分の空気量補正量を決定する構成とした
ことを特徴とする請求項4に記載の内燃機関の空気量制御装置。
When the battery is being discharged and there is no on-vehicle electrical load, the generator current value of the alternator is obtained by subtracting the battery charge / discharge current value detected by the current sensor from the current consumption value required for vehicle travel control. The air amount control device for an internal combustion engine according to claim 4 , wherein the air amount correction amount for the alternator load is determined based on the estimated alternator power generation current value.
JP2006173437A 2006-06-23 2006-06-23 Air quantity control device for internal combustion engine Expired - Fee Related JP4918814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173437A JP4918814B2 (en) 2006-06-23 2006-06-23 Air quantity control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173437A JP4918814B2 (en) 2006-06-23 2006-06-23 Air quantity control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008002381A JP2008002381A (en) 2008-01-10
JP4918814B2 true JP4918814B2 (en) 2012-04-18

Family

ID=39006966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173437A Expired - Fee Related JP4918814B2 (en) 2006-06-23 2006-06-23 Air quantity control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4918814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230390B2 (en) * 2013-11-29 2017-11-15 ダイハツ工業株式会社 Control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185645A (en) * 1989-01-07 1990-07-20 Mitsubishi Electric Corp Device for controlling engine speed
JP2001173481A (en) * 1999-12-17 2001-06-26 Mitsubishi Motors Corp Control device for vehicular generator
JP2003336532A (en) * 2002-05-17 2003-11-28 Nissan Motor Co Ltd Air quantity control device for internal combustion engine
JP2006002603A (en) * 2004-06-16 2006-01-05 Nissan Motor Co Ltd Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2008002381A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US10054097B2 (en) Vehicular control apparatus
JP2950014B2 (en) How to drive a hybrid car
CN100593635C (en) Vehicle control system
JP4587121B2 (en) Engine control device with auxiliary equipment
JP2008014221A (en) Controller of engine with auxiliary machine
JP2006258070A (en) Method for controlling idling operation stop of internal combustion engine
US10214205B2 (en) Hybrid vehicle
JP2007120334A (en) Abnormality diagnostic device of vehicle driving system
JP2009179311A (en) Power supply device
JP4586773B2 (en) Battery temperature estimation device
JP5580867B2 (en) Vehicle power generation control device
JP4918814B2 (en) Air quantity control device for internal combustion engine
JP4609654B2 (en) Engine control device
JP5432330B2 (en) Vehicle power generation apparatus and power generation control method thereof
JP4635961B2 (en) Battery charge state control device
JP2009183064A (en) Alternator control diagnosing device
JP2007318913A (en) State-of-charge controller of battery
JP4844417B2 (en) Control device
JP6725399B2 (en) Electronic control unit for automobile
JP5277976B2 (en) Vehicle power generation control device
JP2007057422A (en) Error correction device for current sensor
JP5339090B2 (en) Control device for internal combustion engine of vehicle
JP4140532B2 (en) Power generation control device for internal combustion engine
JP6176911B2 (en) Control device
KR101405745B1 (en) Engine Torque Control Method in Vehicle

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees