JP6982787B2 - Fuel cell control device and its control method, fuel cell vehicle - Google Patents

Fuel cell control device and its control method, fuel cell vehicle Download PDF

Info

Publication number
JP6982787B2
JP6982787B2 JP2018027016A JP2018027016A JP6982787B2 JP 6982787 B2 JP6982787 B2 JP 6982787B2 JP 2018027016 A JP2018027016 A JP 2018027016A JP 2018027016 A JP2018027016 A JP 2018027016A JP 6982787 B2 JP6982787 B2 JP 6982787B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell system
secondary battery
threshold value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027016A
Other languages
Japanese (ja)
Other versions
JP2018137220A (en
Inventor
隆男 渡辺
潤一 松尾
真司 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US15/900,652 priority Critical patent/US10770761B2/en
Priority to DE102018103754.6A priority patent/DE102018103754A1/en
Priority to CN201810153575.5A priority patent/CN108539230B/en
Publication of JP2018137220A publication Critical patent/JP2018137220A/en
Application granted granted Critical
Publication of JP6982787B2 publication Critical patent/JP6982787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Description

本発明は、燃料電池制御装置およびその制御方法、燃料電池自動車に関する。 The present invention relates to a fuel cell control device, a control method thereof, and a fuel cell vehicle.

近年、燃料電池及び二次電池を電源として使用する燃料電池システムを搭載した燃料電池自動車が注目されている。当該燃料電池システムから供給される電力は、走行用モータ及び補機(例えば、ラジエータファン、冷却水ポンプ、電灯など)を含む電気負荷に供給される。 In recent years, a fuel cell vehicle equipped with a fuel cell system that uses a fuel cell and a secondary battery as a power source has attracted attention. The power supplied from the fuel cell system is supplied to an electric load including a traveling motor and auxiliary equipment (for example, a radiator fan, a cooling water pump, an electric lamp, etc.).

また、燃料電池システムにおける二次電池は、燃料電池により発電された電力を蓄電する。二次電池に充電された電力は、例えば、燃料電池システムの停止後にシステムの再始動電力として使用される。従って、燃料電池システムの停止時に、二次電池の充電量(SOC:State Of Charge)がシステムの次回の始動に必要な量に満たないときは、燃料電池によって発電された電力により二次電池を充電する必要がある。 Further, the secondary battery in the fuel cell system stores the electric power generated by the fuel cell. The electric power charged in the secondary battery is used, for example, as the restart electric power of the system after the fuel cell system is stopped. Therefore, when the fuel cell system is stopped and the state of charge (SOC) of the secondary battery is less than the amount required for the next start of the system, the secondary battery is powered by the power generated by the fuel cell. Needs to be charged.

特許文献1には、燃料電池システムの停止時に、システムの次回の始動に必要な二次電池の充電量を確保するために充電を行うことが開示されている。 Patent Document 1 discloses that when the fuel cell system is stopped, charging is performed in order to secure the charge amount of the secondary battery required for the next start of the system.

特開2007−165055号公報Japanese Unexamined Patent Publication No. 2007-165055

しかしながら、燃料電池システムの停止時の上記の充電は、次回の始動に必要な充電量を確保するまでに長時間を要する場合がある。また、ショートトリップ走行の繰り返しにより、短時間で燃料電池システムの始動と停止を繰り返した場合、電力消費量に対して走行時の二次電池の充電時間が短くなる結果、燃料電池システムを停止する際の二次電池の充電量が、次回の始動に必要な値に満たないことが多くなる。そのため、燃料電池システムの始動と停止を繰り返すと、二次電池の充電量を確保するための充電に長時間を要することが多くなる。 However, the above charging when the fuel cell system is stopped may take a long time to secure the charging amount required for the next start. In addition, if the fuel cell system is repeatedly started and stopped in a short time due to repeated short trip driving, the charging time of the secondary battery during driving becomes shorter than the power consumption, and as a result, the fuel cell system is stopped. In many cases, the charge amount of the secondary battery is less than the value required for the next start. Therefore, when the fuel cell system is repeatedly started and stopped, it often takes a long time to charge the secondary battery to secure the charge amount.

本発明は、燃料電池システムの始動と停止が繰り返される場合における燃料電池システムの二次電池の充電時間を短縮する技術を提供する。 The present invention provides a technique for shortening the charging time of a secondary battery of a fuel cell system when the fuel cell system is repeatedly started and stopped.

本発明の第1の態様は、燃料電池と、二次電池とを有する燃料電池システムと、前記燃料電池システムを制御する制御部とを備えた燃料電池制御承知に関する。前記制御部は、前記二次電池の充電量が前記燃料電池システムの停止及び始動のための電力を供給可能な下限値に第1の所定値を加算した値である閾値以下であるかどうかを判定する。前記制御部は、前記燃料電池システムの命令を受け、かつ、前記二次電池の充電量が前記閾値以下であると判定した場合、前記燃料電池から前記二次電池への強制充電を充電量が前記閾値になるまで実施するように前記燃料電池システムを制御する。さらに、前記制御部は、前記強制充電の実施後、前記燃料電池システムを停止させる。前記制御部は、前記燃料電池システムを停止させた後、所定期間内に(i)前記燃料電池システムの始動要求に基づき前記燃料電池システムを始動させ、かつ(ii)前記燃料電池システムの停止命令を受けた場合、前記閾値を、前記下限値に前記第1の所定値より低い第2の所定値を加算した値に設定する。この態様において、前記制御部は、前記閾値を前記二次電池の温度に基づいて設定してもよい。また、この態様において、前記制御部は、第1の前記強制充電の実施後、前記所定期間内に第2の前記強制充電を実施する場合、前記第1の強制充電の実施時間よりも長くなるように前記第2の強制充電の充電時間を設定してもよい。さらに、この第1の態様において、前記強制充電の実施速度は、前記二次電池の温度に基づいて設定されてもよい。
本発明の第2の態様は、前記燃料電池制御装置を備える燃料電池自動車に関する。
本発明の第3の態様は、燃料電池と、二次電池とを有する燃料電池システムと、前記燃料電池システムを制御する制御部とを備えた燃料電池制御装置の制御方法に関する。
この方法は、
(i)前記燃料電池システムの停止が指示され、かつ、(ii)前記二次電池の充電量が前記燃料電池システムの停止及び始動のための電力を供給可能な下限値に第1の所定値を加算した値である閾値以下であることを条件に、前記燃料電池から前記二次電池への強制充電を充電量が前記閾値になるまで実施することと、
前記強制充電の実施後、前記燃料電池システムを停止させることと、
前記燃料電池システムが停止された後、所定期間内に(i)前記燃料電池システムの始動要求に基づき前記燃料電池システムを始動させ、かつ(ii)前記燃料電池システムの停止命令が出された場合、前記閾値を、前記下限値に前記第1の所定値より低い第2の所定値を加算した値に設定すること、
とを含む。
A first aspect of the present invention relates to a fuel cell control awareness including a fuel cell system including a fuel cell, a secondary battery, and a control unit for controlling the fuel cell system. The control unit determines whether or not the charge amount of the secondary battery is equal to or less than a threshold value which is a value obtained by adding a first predetermined value to a lower limit value capable of supplying electric power for stopping and starting the fuel cell system. judge. When the control unit receives a command from the fuel cell system and determines that the charge amount of the secondary battery is equal to or less than the threshold value, the charge amount is forced to charge the secondary battery from the fuel cell. The fuel cell system is controlled so as to carry out until the threshold is reached. Further, the control unit stops the fuel cell system after performing the forced charging. After stopping the fuel cell system, the control unit starts the fuel cell system based on (i) a start request of the fuel cell system within a predetermined period, and (ii) an order to stop the fuel cell system. When received, the threshold value is set to a value obtained by adding a second predetermined value lower than the first predetermined value to the lower limit value. In this embodiment, the control unit may set the threshold value based on the temperature of the secondary battery. Further, in this embodiment, when the second forced charging is performed within the predetermined period after the first forced charging is performed, the control unit becomes longer than the first forced charging time. As described above, the charging time of the second forced charging may be set. Further, in this first aspect, the forced charging execution speed may be set based on the temperature of the secondary battery.
A second aspect of the present invention relates to a fuel cell vehicle including the fuel cell control device.
A third aspect of the present invention relates to a control method of a fuel cell control device including a fuel cell, a fuel cell system including a secondary battery, and a control unit for controlling the fuel cell system.
This method
(i) The fuel cell system is instructed to stop, and (ii) the charge amount of the secondary battery is a first predetermined value as a lower limit value capable of supplying electric power for stopping and starting the fuel cell system. On condition that the value is equal to or less than the threshold value obtained by adding the above, the forced charging from the fuel cell to the secondary battery is carried out until the charge amount reaches the threshold value.
After performing the forced charging, stopping the fuel cell system and
After the fuel cell system is stopped, (i) the fuel cell system is started based on the start request of the fuel cell system, and (ii) the stop command of the fuel cell system is issued within a predetermined period. , The threshold value is set to a value obtained by adding a second predetermined value lower than the first predetermined value to the lower limit value.
And include.

本発明によれば、燃料電池システムの始動と停止が繰り返される場合における燃料電池システムの二次電池の充電時間を短縮する技術を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a technique for shortening the charging time of a secondary battery of a fuel cell system when the fuel cell system is repeatedly started and stopped.

一実施形態に係る燃料電池システムの概略構成を示す図である。It is a figure which shows the schematic structure of the fuel cell system which concerns on one Embodiment. 一実施形態に係る燃料電池システムにおける二次電池の充放電の制御を示すフローチャートである。It is a flowchart which shows the control of charge / discharge of a secondary battery in the fuel cell system which concerns on one Embodiment. 一実施形態に係る燃料電池システムにおける二次電池の充放電の制御に使用する閾値の設定方法の例を示す図である。It is a figure which shows the example of the setting method of the threshold value used for the control of charge / discharge of a secondary battery in the fuel cell system which concerns on one Embodiment. 一実施形態に係る燃料電池システムにおける二次電池の充放電の制御を示すグラフである。It is a graph which shows the control of charge / discharge of a secondary battery in the fuel cell system which concerns on one Embodiment. 一実施形態に係る燃料電池システムにおける二次電池の充放電の制御を示すフローチャートである。It is a flowchart which shows the control of charge / discharge of a secondary battery in the fuel cell system which concerns on one Embodiment.

以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。ただし、発明の範囲をこれらに限定するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the scope of the invention is not limited to these.

1.燃料電池システムの構成
図1を参照して、本発明の一実施形態における燃料電池システムの概略構成の例を説明する。燃料電池システム100は、主な構成として、二次電池12、昇圧コンバータ13、燃料電池14、昇圧コンバータ15、インバータ16、モータ17、補機18、及び速度センサSを備える。制御部11は燃料電池システム100を制御する。制御部11及び燃料電池システム100から、本実施形態に係る燃料電池制御装置が構成される。
1. 1. Configuration of Fuel Cell System An example of the schematic configuration of the fuel cell system according to the embodiment of the present invention will be described with reference to FIG. The fuel cell system 100 includes a secondary battery 12, a boost converter 13, a fuel cell 14, a boost converter 15, an inverter 16, a motor 17, an auxiliary machine 18, and a speed sensor S as main configurations. The control unit 11 controls the fuel cell system 100. The fuel cell control device according to the present embodiment is configured from the control unit 11 and the fuel cell system 100.

燃料電池システム100は、燃料電池自動車(FCV)などの車両(移動体)に搭載されている。なお、図1は、燃料電池システム100が備える主要な構成を示しているにすぎず、燃料電池システム100は、移動体に搭載される任意の燃料電池システムが備える他の構成を含むことができる。また、燃料電池システム100は、移動体に搭載されていなくてもよく、例えば、一般家屋など、電力を要する施設等に設置されてもよい。 The fuel cell system 100 is mounted on a vehicle (mobile body) such as a fuel cell vehicle (FCV). It should be noted that FIG. 1 only shows the main configuration included in the fuel cell system 100, and the fuel cell system 100 can include other configurations included in any fuel cell system mounted on the mobile body. .. Further, the fuel cell system 100 does not have to be mounted on the mobile body, and may be installed in a facility that requires electric power, such as a general house.

二次電池12は、充放電可能な蓄電部である。二次電池12は、例えば、リチウムイオン電池などにより構成される。二次電池12は、燃料電池14の放電経路に介挿され、インバータ16に対して燃料電池14と並列に接続されている。二次電池12は、モータ17及び補機18を含む電気負荷の要求電力のうち、予め設定された燃料電池の目標出力を差し引いた電力を電気負荷の駆動電力として出力する。すなわち、二次電池12は、モータ17及び補機18に駆動電力を供給する。さらに、二次電池12は、燃料電池システム100の始動及び停止に必要な電力を供給する。また、二次電池12は、燃料電池14の発電により得られた電力、及びモータ17から回生により得られた電力を蓄電する。 The secondary battery 12 is a power storage unit that can be charged and discharged. The secondary battery 12 is composed of, for example, a lithium ion battery or the like. The secondary battery 12 is inserted in the discharge path of the fuel cell 14 and is connected to the inverter 16 in parallel with the fuel cell 14. The secondary battery 12 outputs the power obtained by subtracting the preset target output of the fuel cell from the required power of the electric load including the motor 17 and the auxiliary machine 18 as the driving power of the electric load. That is, the secondary battery 12 supplies the driving power to the motor 17 and the auxiliary machine 18. Further, the secondary battery 12 supplies electric power necessary for starting and stopping the fuel cell system 100. Further, the secondary battery 12 stores the electric power obtained by the power generation of the fuel cell 14 and the electric power obtained by the regeneration from the motor 17.

また、二次電池12は、温度センサT及び電流センサIBを含む。温度センサTは、二次電池12の温度を計測し、計測結果を出力するセンサである。電流センサIBは、二次電池12の放電電流を計測するセンサである。 Further, the secondary battery 12 includes a temperature sensor T and a current sensor IB. The temperature sensor T is a sensor that measures the temperature of the secondary battery 12 and outputs the measurement result. The current sensor IB is a sensor that measures the discharge current of the secondary battery 12.

昇圧コンバータ13は、二次電池12とインバータ16との間に設けられたDC(直流)電圧のコンバータである。昇圧コンバータ13は、例えば、IPM(Intelligent Power Module)を使用して構成される。昇圧コンバータ13は、二次電池12から供給された電力のDC電圧を昇圧してインバータ16側に出力する。 The boost converter 13 is a DC (direct current) voltage converter provided between the secondary battery 12 and the inverter 16. The boost converter 13 is configured by using, for example, an IPM (Intelligent Power Module). The boost converter 13 boosts the DC voltage of the electric power supplied from the secondary battery 12 and outputs it to the inverter 16.

燃料電池14は、複数のセル(アノード、カソード、及び電解質を備える単一の電池(発電体))を直列に積層してなる固体高分子電解質形のセルスタックを含んで構成される。燃料電池14による通常の発電時の運転において、アノードにおいて(1)式の酸化反応が生じ、カソードにおいて(2)式の還元反応が生じる。燃料電池14全体としては(3)式の起電反応が生じることにより、電力を発生する。
2→2H++2e- (1)
(1/2)O2+2H++2e-→H2O (2)
2+(1/2)O2→H2O (3)
The fuel cell 14 includes a cell stack in the form of a solid polymer electrolyte, which is formed by stacking a plurality of cells (a single battery (generator) having an anode, a cathode, and an electrolyte) in series. In the normal operation of the fuel cell 14 during power generation, the oxidation reaction of the formula (1) occurs at the anode and the reduction reaction of the formula (2) occurs at the cathode. The fuel cell 14 as a whole generates electric power by the electromotive reaction of the equation (3).
H 2 → 2H + + 2e - (1)
(1/2) O 2 + 2H + + 2e - → H 2 O (2)
H 2 + (1/2) O 2 → H 2 O (3)

昇圧コンバータ15は、燃料電池14とインバータ16との間に設けられたDC電圧のコンバータである。昇圧コンバータ15は、燃料電池14から供給された電力のDC電圧を昇圧してインバータ16に出力する。昇圧コンバータ15は、例えば、IPM等により構成される。 The boost converter 15 is a DC voltage converter provided between the fuel cell 14 and the inverter 16. The boost converter 15 boosts the DC voltage of the electric power supplied from the fuel cell 14 and outputs the DC voltage to the inverter 16. The boost converter 15 is composed of, for example, an IPM or the like.

インバータ16は、昇圧コンバータ13及び昇圧コンバータ15とモータ17との間に設けられたインバータである。インバータ16は、燃料電池14又は二次電池12から供給された直流電力を三相交流電力に変換し、モータ17に供給する。インバータ16は、例えばIPMにより構成される。 The inverter 16 is an inverter provided between the boost converter 13, the boost converter 15, and the motor 17. The inverter 16 converts the DC power supplied from the fuel cell 14 or the secondary battery 12 into three-phase AC power and supplies it to the motor 17. The inverter 16 is composed of, for example, an IPM.

モータ17は、燃料電池システム100を搭載する移動体の車輪等を駆動するための駆動力を発生する駆動モータである。モータ17は、燃料電池14又は二次電池12からインバータ16を介して供給された電力を駆動電力として使用する。また、モータ17は、燃料電池システム100を搭載する移動体の運動エネルギーを(例えば、モータ17の回転に応じで)電気エネルギーに回生する。回生により発生した電力は二次電池12に充電される。 The motor 17 is a drive motor that generates a driving force for driving a wheel or the like of a moving body on which the fuel cell system 100 is mounted. The motor 17 uses the electric power supplied from the fuel cell 14 or the secondary battery 12 via the inverter 16 as the driving electric power. Further, the motor 17 regenerates the kinetic energy of the moving body on which the fuel cell system 100 is mounted into electric energy (for example, according to the rotation of the motor 17). The electric power generated by the regeneration is charged in the secondary battery 12.

補機18は、燃料電池14による発電に使用される補機を含む補機群である。補機18は、例えば、燃料電池の水素ポンプ及び冷却水ポンプ等を含む。補機18は、二次電池12から供給された電力を駆動電力として使用する。 Auxiliary equipment 18 is a group of auxiliary equipment including auxiliary equipment used for power generation by the fuel cell 14. The auxiliary machine 18 includes, for example, a hydrogen pump for a fuel cell, a cooling water pump, and the like. The auxiliary machine 18 uses the electric power supplied from the secondary battery 12 as the driving electric power.

速度センサSは、燃料電池システム100を搭載する移動体の移動速度の計測値を取得するセンサである。当該移動速度は、例えば、モータ17の回転数等に基づいて算出される。 The speed sensor S is a sensor that acquires a measured value of the moving speed of the moving body on which the fuel cell system 100 is mounted. The moving speed is calculated based on, for example, the rotation speed of the motor 17.

制御部11は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えたコンピュータにより構成される。制御部11は、他の構成から入力した信号、及びRAMなどの記憶部に記憶されたプログラムになどに基づいて、燃料電池システム100が備える各構成の処理及び動作を制御し、また、当該制御に必要な各種演算を実行する。 The control unit 11 is composed of a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The control unit 11 controls the processing and operation of each configuration included in the fuel cell system 100 based on signals input from other configurations and a program stored in a storage unit such as a RAM, and controls the control. Performs various operations required for.

例えば、制御部11は、燃料電池システム100の停止命令を受けたときに、二次電池12の充電量(SOC:State Of Charge)が燃料電池システム100の停止の動作、及び燃料電池システム100の次回の始動の動作に必要な電力を供給するために必要な充電量を超える量で設定された閾値(当該閾値の設定方法は詳細は後述する。)以下であるか否かを判断する。二次電池12の充電量が閾値以下である場合、制御部11は、燃料電池システム100の停止前に、燃料電池14の発電を継続させ、発生した電力で二次電池12を充電する。特に、極低温状態(例えば、0℃以下の状態)においては、氷点下3動作と言われる燃料電池14の終了処理、パーキングパージ(PPG)、及び氷点下始動の動作が実施されるため、少なくともこれらの動作に必要な電力を供給可能な充電量が確保されるように二次電池12が充電される。燃料電池システム100の停止時の制御部11による制御処理の詳細は後述する。 For example, when the control unit 11 receives a stop command for the fuel cell system 100, the charge amount (SOC: State Of Charge) of the secondary battery 12 is the operation of stopping the fuel cell system 100, and the fuel cell system 100. It is determined whether or not it is equal to or less than the threshold value (details of the setting method of the threshold value will be described later) set in an amount exceeding the charge amount required to supply the power required for the next start operation. When the charge amount of the secondary battery 12 is equal to or less than the threshold value, the control unit 11 continues the power generation of the fuel cell 14 and charges the secondary battery 12 with the generated power before the fuel cell system 100 is stopped. In particular, in an extremely low temperature state (for example, a state of 0 ° C. or lower), the fuel cell 14 termination process, parking purge (PPG), and sub-freezing start operation, which are said to be three sub-zero operations, are performed. The secondary battery 12 is charged so as to secure a charge amount capable of supplying the electric power required for operation. The details of the control process by the control unit 11 when the fuel cell system 100 is stopped will be described later.

ここで、燃料電池14の終了処理とは、エアコンプレッサにより燃料電池14のスタック内から水を排出する処理である。パーキングパージとは、燃料電池14の動作の停止後、温度が0℃以下になる直前に実施される燃料電池14のスタック内の水分のパージ処理である。氷点下始動は、氷点下時における燃料電池システム100の始動の動作である。 Here, the termination process of the fuel cell 14 is a process of discharging water from the stack of the fuel cell 14 by an air compressor. The parking purge is a process of purging the water content in the stack of the fuel cell 14 which is performed immediately after the operation of the fuel cell 14 is stopped and immediately before the temperature becomes 0 ° C. or lower. Sub-zero starting is the operation of starting the fuel cell system 100 when the temperature is below freezing.

2.燃料電池システムの停止及び始動の制御フロー
図2から図4を参照して、燃料電池システム100の停止及び始動の制御の一例を説明する。まず、図2を参照して、極低温状態(すなわち、上記の氷点下3動作が実施される状況)における処理制御のフローを説明する。この処理は、制御部11により制御により実行される。
2. 2. Control Flow for Stopping and Starting the Fuel Cell System An example of controlling the stopping and starting of the fuel cell system 100 will be described with reference to FIGS. 2 to 4. First, with reference to FIG. 2, a flow of processing control in an extremely low temperature state (that is, a situation in which the above three sub-freezing operations are performed) will be described. This process is controlled by the control unit 11.

図2に示す処理において、まず、制御部11は、車両の停止命令であるイグニッションOFFの操作がなされると(燃料電池システム100の停止命令(停止指示)を受けると(ステップS11))、二次電池12の充電量が予め設定された閾値(SOC閾値)以下であるか否かを判断する(ステップS12)。二次電池12の充電量がSOC閾値以下である場合(ステップS12のYes)、処理はステップS13へ進み、SOC閾値より大きい場合(ステップS12のNo)、処理はステップS14へ進む。 In the process shown in FIG. 2, first, when the control unit 11 is operated to turn off the ignition, which is a vehicle stop command (when it receives the stop command (stop instruction) of the fuel cell system 100 (step S11)), the second. It is determined whether or not the charge amount of the next battery 12 is equal to or less than a preset threshold value (SOC threshold value) (step S12). When the charge amount of the secondary battery 12 is equal to or less than the SOC threshold value (Yes in step S12), the process proceeds to step S13, and when the charge amount is larger than the SOC threshold value (No in step S12), the process proceeds to step S14.

SOC閾値として、燃料電池システム100の停止の動作、及び燃料電池システム100の次回の始動の動作に必要な電力を供給するために必要な充電量(SOC下限値)に所定値(充電量加算値)を加算した値が設定される。充電量加算値は、後述するステップS13にて二次電池12の強制充電が所定期間内に連続して実施される回数(又は、実施間隔が所定期間内である強制充電が連続して実施される回数)に応じた値に設定される。具体的には、連続して実施された回数が多いほど、充電量加算値を低い値に設定することができる。また、充電量加算値は、温度センサTから取得された二次電池12の温度に応じた値に設定可能である。例えば、充電量加算値は、二次電池12の温度が低いほど高い値が設定されうる。 As the SOC threshold, a predetermined value (charge amount addition value) is set to the charge amount (SOC lower limit value) required to supply the power required for the operation of stopping the fuel cell system 100 and the operation of the next start of the fuel cell system 100. ) Is added and the value is set. The charge amount addition value is the number of times that the secondary battery 12 is continuously forcibly charged within a predetermined period in step S13 described later (or the forcible charging for which the execution interval is within a predetermined period is continuously performed. It is set to a value according to the number of times. Specifically, the larger the number of consecutive executions, the lower the charge amount addition value can be set. Further, the charge amount addition value can be set to a value corresponding to the temperature of the secondary battery 12 acquired from the temperature sensor T. For example, the charge amount addition value can be set higher as the temperature of the secondary battery 12 is lower.

図3のグラフは、充電量加算値に応じて定まるSOC閾値を概念的に示している。図3において、二次電池12の強制充電の実施が1回目のSOC閾値よりも、2回目の連続実施のときのSOC閾値の方が低く設定され、また、3回目の連続実施のときのSOC閾値の方がさらに低く設定されることが示されている。また、二次電池12の温度が低いほど、SOC閾値が高く設定されることが示されている。 The graph of FIG. 3 conceptually shows the SOC threshold value determined according to the charge amount addition value. In FIG. 3, when the forced charging of the secondary battery 12 is performed, the SOC threshold value at the time of the second continuous execution is set lower than that at the first SOC threshold value, and the SOC at the time of the third continuous execution is set. It has been shown that the threshold is set even lower. It is also shown that the lower the temperature of the secondary battery 12, the higher the SOC threshold is set.

図2の説明に戻る。ステップS13において、制御部11は、燃料電池14を動作して発電させ、二次電池12を充電(強制充電)するように制御する。ステップS13における二次電池12の充電は二次電池12の充電量がSOC閾値を超える(ステップS12のNo)まで実施される。従って、SOC閾値が高いほど充電が長時間実施され、SOC閾値が低いほど充電が短時間実施される。 Returning to the description of FIG. In step S13, the control unit 11 operates the fuel cell 14 to generate electricity, and controls the secondary battery 12 to be charged (forced charging). Charging of the secondary battery 12 in step S13 is carried out until the charge amount of the secondary battery 12 exceeds the SOC threshold value (No in step S12). Therefore, the higher the SOC threshold, the longer the charging, and the lower the SOC threshold, the shorter the charging.

二次電池12の充電量がSOC閾値を超えた(ステップS12のNo)後、制御部11は、燃料電池14の終了処理として、エアコンプレッサにより燃料電池14のスタック内から水を排出する処理(ステップS14)と、燃料電池14の動作の停止(ステップS15)と、パーキングパージ(ステップS16)とを実施する。 After the charge amount of the secondary battery 12 exceeds the SOC threshold value (No in step S12), the control unit 11 discharges water from the stack of the fuel cell 14 by an air compressor as a process of terminating the fuel cell 14 (No). Step S14), the operation of the fuel cell 14 is stopped (step S15), and the parking purge (step S16) is performed.

その後、制御部11は、燃料電池システム100の始動命令を受けたときに、氷点下時における燃料電池システム100の始動の動作を実施する(ステップS17)。その後、燃料電池システム100を備える車両は、燃料電池システム100からの電力供給を受けて走行し(ステップS18)、処理は再びステップS11へ進む。 After that, when the control unit 11 receives the start command of the fuel cell system 100, the control unit 11 executes the operation of starting the fuel cell system 100 at the time of below freezing point (step S17). After that, the vehicle equipped with the fuel cell system 100 travels by receiving the electric power supplied from the fuel cell system 100 (step S18), and the process proceeds to step S11 again.

図4は、極低温状態において、ショートトリップ走行が繰り返された場合に図2に示した制御に従って制御部11により燃料電池システム100の停止及び始動を所定期間内に繰り返し実施したときの二次電池12の充電量の時系列の変化を示している。SOC下限値は、燃料電池システム100の停止及び始動のための電力を供給可能な二次電池12の充電量の下限値である。SOC閾値1から3は、SOC下限値に対してそれぞれ異なる大きさの充電量加算値を加算した値である。 FIG. 4 shows a secondary battery when the fuel cell system 100 is repeatedly stopped and started by the control unit 11 according to the control shown in FIG. 2 when the short trip running is repeated in an extremely low temperature state. It shows the time-series change of the charge amount of 12. The SOC lower limit is the lower limit of the charge amount of the secondary battery 12 capable of supplying electric power for stopping and starting the fuel cell system 100. The SOC threshold values 1 to 3 are values obtained by adding charge amount addition values having different sizes to the SOC lower limit value.

図4によると、タイミングt1で制御部11が車両の停止命令であるイグニッションOFFの操作がなされると(燃料電池システム100の停止命令を受けると)、タイミングt1では二次電池12の充電量がSOC閾値1(SOC下限値+δSOC1)よりも高いため、燃料電池システム100の停止動作等(S14〜S16)が実施される。燃料電池システム100の停止動作等により電力が消費され、二次電池12の充電量が減少する。その後、燃料電池システム100の始動命令を受けたときに、氷点下時における燃料電池システム100の始動の動作(S17)を実施され、車両は走行を開始する(S18)。ショートトリップ走行を終了し、燃料電池システム100の停止命令を指示(S11)したタイミングt2で制御部11は二次電池12の充電量がSOC閾値1以下か判断する(S12)。図4に示されるように、タイミングt2におけるSOCは、SOC閾値1以下であるので、燃料電池システム100による二次電池12の強制充電を実施する(S13)。その後充電量がSOC閾値1まで増加したとき(タイミングt3)、燃料電池システム100の停止命令中であるので、制御部11は燃料電池システム100を停止させる(S14〜S16)。燃料電池14の停止動作によって、二次電池14の充電量が減少する。 According to FIG. 4, when the control unit 11 operates the ignition OFF, which is a vehicle stop command, at the timing t1 (when the fuel cell system 100 is stopped), the charge amount of the secondary battery 12 is charged at the timing t1. Since it is higher than the SOC threshold value 1 (SOC lower limit value + δ SOC1), the fuel cell system 100 is stopped (S14 to S16). Electric power is consumed by the stop operation of the fuel cell system 100 and the like, and the charge amount of the secondary battery 12 is reduced. After that, when the start command of the fuel cell system 100 is received, the operation of starting the fuel cell system 100 at the time of below freezing point (S17) is executed, and the vehicle starts running (S18). At the timing t2 when the short trip run is completed and the stop command of the fuel cell system 100 is instructed (S11), the control unit 11 determines whether the charge amount of the secondary battery 12 is equal to or less than the SOC threshold value 1 (S12). As shown in FIG. 4, since the SOC at the timing t2 is equal to or less than the SOC threshold value 1, the fuel cell system 100 performs forced charging of the secondary battery 12 (S13). After that, when the charge amount increases to the SOC threshold value 1 (timing t3), the fuel cell system 100 is being instructed to stop, so the control unit 11 stops the fuel cell system 100 (S14 to S16). The charge amount of the secondary battery 14 is reduced by the stop operation of the fuel cell 14.

その後、タイミングt3とタイミングt4との間で、走行時間が短いショートトリップ走行が行われると、氷点下3動作により二次電池12の電力が使用され、さらに充電量が減少する。ショートトリップ走行が終了し、タイミングt4で再び車両の停止命令であるイグニッションOFFの操作がなされると(燃料電池システム100の停止命令(S11)を受けると)、その時点での二次電池12の充電量がSOC閾値2(強制充電が短時間に連続して実施されるときに設定される閾値で、前回の判断で使用されたSOC閾値1よりも低い値が設定されたSOC閾値:SOC下限値+δSOC2)以下であるため、燃料電池システム100による強制充電が実施される(S13)。その後充電量がSOC閾値2まで増加したとき(タイミングt5)、強制充電が終了(タイミングt5)し、燃料電池14の停止動作等(S14〜S16)が実施され充電量が減少する。 After that, when a short trip running with a short running time is performed between the timing t3 and the timing t4, the power of the secondary battery 12 is used by the operation below the freezing point 3, and the charge amount is further reduced. When the short trip run is completed and the ignition OFF operation, which is a vehicle stop command, is performed again at the timing t4 (when the fuel cell system 100 stop command (S11) is received), the secondary battery 12 at that time The amount of charge is SOC threshold 2 (a threshold set when forced charging is continuously performed in a short period of time, and a value lower than the SOC threshold 1 used in the previous judgment is set. SOC threshold: SOC lower limit Since the value is + δSOC2) or less, forced charging by the fuel cell system 100 is carried out (S13). After that, when the charge amount increases to the SOC threshold value 2 (timing t5), the forced charging ends (timing t5), the fuel cell 14 is stopped (S14 to S16), and the charge amount decreases.

その後、ショートトリップ走行終了後、タイミングt6で再び車両の停止命令であるイグニッションOFFの操作がなされると(燃料電池14の停止命令を受けると)、その時点での二次電池12の充電量がSOC閾値3(強制充電が短時間に連続して実施されるときに設定される閾値で、前回の判断で使用されたSOC閾値2よりも低い値が設定されたSOC閾値:SOC下限値+SOCδ3)以下であるため強制充電が実施される。その後充電量がSOC閾値3まで増加したとき(タイミングt7)、燃料電池14の停止動作等が実施され充電量が減少する。 After that, when the ignition OFF operation, which is a vehicle stop command, is performed again at the timing t6 after the short trip run is completed (when the fuel cell 14 stop command is received), the charge amount of the secondary battery 12 at that time is reduced. SOC threshold 3 (SOC threshold set when forced charging is continuously performed for a short period of time and lower than SOC threshold 2 used in the previous judgment: SOC lower limit value + SOCδ3) Since it is as follows, forced charging is carried out. After that, when the charge amount increases to the SOC threshold value 3 (timing t7), the fuel cell 14 is stopped and the charge amount decreases.

以上のように本実施形態によれば、制御部11は、燃料電池システム100の停止が指示され、かつ、二次電池12の充電量がSOC閾値1以下であることを条件に、充電量がSOC閾値1になるまで燃料電池14から二次電池12への強制充電を実施する。その後、所定期間内にショートトリップ走行が行われ、その後燃料電池システム100の停止が指示されると、二次電池12の充電量がSOC閾値2以下であることを条件に、制御部11は、充電量がSOC閾値2になるまで燃料電池システム100による二次電池12への強制充電を実施する。また、図4に示すように、SOC閾値2においてSOC下限値に対して加算された上記の充電量加算値は、SOC閾値1においてSOC下限値に対して加算された充電量加算値より低い。従って、SOC閾値2は、SOC閾値1より低い値が設定される。 As described above, according to the present embodiment, the control unit 11 is instructed to stop the fuel cell system 100, and the charge amount of the secondary battery 12 is equal to or less than the SOC threshold value 1. The fuel cell 14 is forcibly charged to the secondary battery 12 until the SOC threshold value is 1. After that, when a short trip run is performed within a predetermined period and then the fuel cell system 100 is instructed to stop, the control unit 11 sets the condition that the charge amount of the secondary battery 12 is equal to or less than the SOC threshold value 2. The secondary battery 12 is forcibly charged by the fuel cell system 100 until the charge amount reaches the SOC threshold value 2. Further, as shown in FIG. 4, the above-mentioned charge amount addition value added to the SOC lower limit value in the SOC threshold value 2 is lower than the charge amount addition value added to the SOC lower limit value in the SOC threshold value 1. Therefore, the SOC threshold value 2 is set to a value lower than the SOC threshold value 1.

すなわち、制御部11は、二次電池12の充電量がSOC閾値1になるまで第1の強制充電を実施した後、所定期間内に第2の強制充電を実施する場合、二次電池12の充電量がSOC閾値1より低いSOC閾値2になるまで第2の強制充電を実施するように制御する。その結果、第2の強制充電は、充電量がSOC閾値1まで充電を継続する場合と比較して短い時間で完了することができる。燃料電池14の始動と停止が繰り返される場合における燃料電池14の二次電池12の充電時間を短縮することができる。 That is, when the control unit 11 performs the first forced charging until the charge amount of the secondary battery 12 reaches the SOC threshold value 1, and then performs the second forced charging within a predetermined period, the control unit 11 of the secondary battery 12 The second forced charge is controlled until the charge amount reaches the SOC threshold value 2 lower than the SOC threshold value 1. As a result, the second forced charging can be completed in a shorter time as compared with the case where the charging amount continues to be charged up to the SOC threshold value 1. It is possible to shorten the charging time of the secondary battery 12 of the fuel cell 14 when the fuel cell 14 is repeatedly started and stopped.

本実施形態においては、所定期間内に燃料電池システム100の始動と停止が繰り返される場合に、強制充電の実施時間が徐々に長くなるようにSOC閾値を設定している。すなわち、図4に示されるとおり、SOC閾値1とSOC閾値2の差分よりも、SOC閾値2とSOC閾値3の差分を小さく設定したように、所定期間内における強制充電の回数が増加するほど、SOC閾値の減少値を小さく設定した。その結果、氷点下3動作における充電量の減少量がほぼ一定と仮定すると、強制充電の回数が増加するほど、そのときのSOC閾値に到達するまでの強制充電の時間を長くさせることができる。従って、制御部11は、第1の強制充電の実施後、所定期間内に第2の強制充電を実施する場合、第1の強制充電の実施時間よりも長くなるように、第2の強制充電の実施時間を制御している。例えば、第1の強制充電の実施時間を5分、第2の強制充電の実施時間を10分に設定することができる。 In the present embodiment, the SOC threshold value is set so that the execution time of forced charging gradually increases when the fuel cell system 100 is repeatedly started and stopped within a predetermined period. That is, as shown in FIG. 4, as the difference between the SOC threshold value 2 and the SOC threshold value 3 is set smaller than the difference between the SOC threshold value 1 and the SOC threshold value 2, the number of forced charges within a predetermined period increases. The decrease value of the SOC threshold was set small. As a result, assuming that the amount of decrease in the charge amount in the three sub-zero operations is substantially constant, as the number of forced charges increases, the time for forced charging until the SOC threshold value at that time is reached can be lengthened. Therefore, when the control unit 11 performs the second forced charging within a predetermined period after the execution of the first forced charging, the control unit 11 performs the second forced charging so as to be longer than the execution time of the first forced charging. The implementation time of is controlled. For example, the execution time of the first forced charging can be set to 5 minutes, and the execution time of the second forced charging can be set to 10 minutes.

なお、図4に示す制御において、強制充電回数が増加するほど、強制充電の実施時間(t2〜t3、t4〜t5及びt6〜t7)が徐々に長くなるようにSOC閾値1から3が設定されている。 In the control shown in FIG. 4, SOC threshold values 1 to 3 are set so that the forced charging execution time (t2 to t3, t4 to t5, and t6 to t7) gradually increases as the number of forced chargings increases. ing.

このように強制充電が繰り返されるほど強制充電の実施時間が徐々に長くなるように制御することにより、ユーザ(例えば、燃料電池システム100を搭載した燃料電池自動車のドライバ)は、徐々に充電量が下限値(SOC下限値)に近づいていることを把握することができる。 By controlling so that the execution time of the forced charging gradually becomes longer as the forced charging is repeated in this way, the user (for example, the driver of the fuel cell vehicle equipped with the fuel cell system 100) gradually increases the charge amount. It can be grasped that the lower limit value (SOC lower limit value) is approaching.

なお、以下に説明するように、強制充電の実施時間をSOC閾値に依存しない方法で設定することも可能である。 As will be described below, it is also possible to set the execution time of forced charging by a method that does not depend on the SOC threshold value.

図5を参照して、上記の変形例について説明する。ステップS11及びS12は、図2に示した処理と同様の処理を行う。図5のステップS12において、Yesと判断された場合、ステップS13−1において制御部11は強制充電を開始し、充電時間が予め設定された時間閾値になるまで強制充電を継続する(ステップS13−1及びS13−2)。強制充電の終了後(S13−2のNo)、処理はステップS14へ進む。ステップS14からS18の処理は図2に示した処理と同様である。 The above-mentioned modification will be described with reference to FIG. Steps S11 and S12 perform the same processing as that shown in FIG. If Yes is determined in step S12 of FIG. 5, the control unit 11 starts forced charging in step S13-1 and continues forced charging until the charging time reaches a preset time threshold value (step S13-). 1 and S13-2). After the forced charging is completed (No in S13-2), the process proceeds to step S14. The processing of steps S14 to S18 is the same as the processing shown in FIG.

時間閾値は、二次電池12の温度に応じて変更することができる(例えば、低温であるほど、充電時間が長時間になるように設定される)。 The time threshold can be changed according to the temperature of the secondary battery 12 (for example, the lower the temperature, the longer the charging time is set).

また、時間閾値は、二次電池12の強制充電が所定期間内に連続して実施される回数(又は、実施間隔が所定期間内である強制充電が連続して実施される回数)に応じた値に設定可能である。具体的には、所定期間内に連続して実施された回数が多いほど、時間閾値を長い時間に設定することができる。 Further, the time threshold value corresponds to the number of times that the forced charging of the secondary battery 12 is continuously carried out within a predetermined period (or the number of times that the forced charging is continuously carried out within the predetermined period). It can be set to a value. Specifically, the larger the number of consecutive executions within a predetermined period, the longer the time threshold can be set.

以上、図面を参照しながら本発明の実施形態について説明したが、本発明の範囲はかかる実施形態に限定されない。当業者であれば、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属する。 Although the embodiments of the present invention have been described above with reference to the drawings, the scope of the present invention is not limited to such embodiments. It is clear that one of ordinary skill in the art can come up with various modifications or modifications, which naturally belong to the technical scope of the present invention.

例えば、上記の実施形態においてδSOCが条件に応じて変化する例を説明したが、δSOCを固定とすることを排除するものではない。 For example, in the above embodiment, an example in which δSOC changes depending on a condition has been described, but it does not exclude fixing δSOC.

100 燃料電池システム
11 制御部
12 二次電池
13 昇圧コンバータ
14 燃料電池
15 昇圧コンバータ
16 インバータ
17 モータ
18 補機
S 速度センサ
IB 電流センサ
T 温度センサ
100 Fuel cell system 11 Control unit 12 Secondary battery 13 Boost converter 14 Fuel cell 15 Boost converter 16 Inverter 17 Motor 18 Auxiliary S Speed sensor IB Current sensor T Temperature sensor

Claims (6)

燃料電池と、二次電池とを有する燃料電池システムと、前記燃料電池システムを制御する制御部とを備えた燃料電池制御装置であって、
前記制御部は、前記二次電池の充電量が前記燃料電池システムの停止及び始動のための電力を供給可能な下限値に第1の所定値を加算した値である閾値以下であるかどうかを判定し、
前記燃料電池システムの停止命令を受け、かつ、前記二次電池の充電量が前記閾値以下であると判定した場合、前記燃料電池から前記二次電池への強制充電を充電量が前記閾値になるまで実施するように前記燃料電池システムを制御し、
前記強制充電の実施後、前記燃料電池システムを停止させ、
前記燃料電池システムが停止された後、所定期間内に、(i)前記燃料電池システムの始動要求に基づき前記燃料電池システムを始動させ、かつ(ii)前記燃料電池システムの停止命令を受けた場合、前記閾値を、前記下限値に前記第1の所定値より低い第2の所定値を加算した値に設定するように構成される燃料電池制御装置。
A fuel cell control device including a fuel cell system having a fuel cell, a secondary battery, and a control unit for controlling the fuel cell system.
The control unit determines whether or not the charge amount of the secondary battery is equal to or less than a threshold value which is a value obtained by adding a first predetermined value to a lower limit value capable of supplying electric power for stopping and starting the fuel cell system. Judgment,
When the stop command of the fuel cell system is received and it is determined that the charge amount of the secondary battery is equal to or less than the threshold value, the charge amount becomes the threshold value for forced charging from the fuel cell to the secondary battery. Control the fuel cell system to carry out
After performing the forced charging, the fuel cell system is stopped and the fuel cell system is stopped.
After the fuel cell system is stopped, (i) the fuel cell system is started based on the start request of the fuel cell system, and (ii) the stop command of the fuel cell system is received within a predetermined period. , A fuel cell control device configured to set the threshold value to a value obtained by adding a second predetermined value lower than the first predetermined value to the lower limit value.
前記閾値は、前記二次電池の温度に基づいて設定される、請求項1に記載の燃料電池制御装置。 The fuel cell control device according to claim 1, wherein the threshold value is set based on the temperature of the secondary battery. 前記制御部は、第1の前記強制充電の実施後、前記所定期間内に第2の前記強制充電を実施する場合、前記第1の強制充電の実施時間よりも長くなるように前記第2の強制充電の実施時間を設定するように構成される請求項1に記載の燃料電池制御装置。 When the second forced charging is carried out within the predetermined period after the first forced charging is carried out, the control unit may use the second forced charging longer than the first forced charging time. The fuel cell control device according to claim 1, wherein the execution time of forced charging is set. 前記強制充電の実施時間は、前記二次電池の温度に基づいて設定される、請求項1から3のいずれか一項に記載の燃料電池制御装置。 The fuel cell control device according to any one of claims 1 to 3, wherein the forced charging execution time is set based on the temperature of the secondary battery. 請求項1から4のいずれか一項に記載の燃料電池制御装置を備える燃料電池自動車。 A fuel cell vehicle comprising the fuel cell control device according to any one of claims 1 to 4. 燃料電池と、二次電池とを有する燃料電池システムと、前記燃料電池システムを制御する制御部とを備えた燃料電池制御装置の制御方法であって、
(i)前記燃料電池システムの停止が指示され、かつ、(ii)前記二次電池の充電量が前記燃料電池システムの停止及び始動のための電力を供給可能な下限値に第1の所定値を加算した値である閾値以下であることを条件に、前記燃料電池から前記二次電池への強制充電を充電量が前記閾値になるまで実施することと、
前記強制充電の実施後、前記燃料電池システムを停止することと、
前記燃料電池システムが停止された後、所定期間内に(i)前記燃料電池システムの始動要求に基づき前記燃料電池システムを始動させ、かつ(ii)前記燃料電池システムの停止命令が出された場合、前記閾値を、前記下限値に前記第1の所定値より低い第2の所定値を加算した値に設定すること、
を含む制御方法。
It is a control method of a fuel cell control device including a fuel cell system including a fuel cell and a secondary battery, and a control unit for controlling the fuel cell system.
(i) The stop of the fuel cell system is instructed, and (ii) the charge amount of the secondary battery is a first predetermined value as a lower limit value capable of supplying electric power for stopping and starting the fuel cell system. On condition that the value is equal to or less than the threshold value obtained by adding the above, the forced charging from the fuel cell to the secondary battery is carried out until the charge amount reaches the threshold value.
After performing the forced charging, stopping the fuel cell system and
After the fuel cell system is stopped, (i) the fuel cell system is started based on the start request of the fuel cell system, and (ii) the stop command of the fuel cell system is issued within a predetermined period. , The threshold value is set to a value obtained by adding a second predetermined value lower than the first predetermined value to the lower limit value.
Control methods including.
JP2018027016A 2017-02-20 2018-02-19 Fuel cell control device and its control method, fuel cell vehicle Active JP6982787B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/900,652 US10770761B2 (en) 2017-02-20 2018-02-20 Fuel cell control device, control method thereof, and fuel cell vehicle
DE102018103754.6A DE102018103754A1 (en) 2017-02-20 2018-02-20 Fuel cell control device, control method thereof and fuel cell vehicle
CN201810153575.5A CN108539230B (en) 2017-02-20 2018-02-22 Fuel cell control device, control method thereof, and fuel cell vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029413 2017-02-20
JP2017029413 2017-02-20

Publications (2)

Publication Number Publication Date
JP2018137220A JP2018137220A (en) 2018-08-30
JP6982787B2 true JP6982787B2 (en) 2021-12-17

Family

ID=63364916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027016A Active JP6982787B2 (en) 2017-02-20 2018-02-19 Fuel cell control device and its control method, fuel cell vehicle

Country Status (2)

Country Link
JP (1) JP6982787B2 (en)
CN (1) CN108539230B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103151B2 (en) * 2018-10-17 2022-07-20 トヨタ自動車株式会社 How to control fuel cell vehicles and fuel cell vehicles
JP6787970B2 (en) * 2018-10-22 2020-11-18 本田技研工業株式会社 Fuel cell system and its control method
CN109910685B (en) * 2019-03-25 2021-09-14 浙江吉利汽车研究院有限公司 Cold start method, device and equipment
CN111063918B (en) * 2019-12-26 2021-07-20 潍柴动力股份有限公司 Control method and device for fuel cell
JP7367613B2 (en) * 2020-05-22 2023-10-24 トヨタ自動車株式会社 fuel cell system
CN112389279A (en) * 2020-10-29 2021-02-23 长城汽车股份有限公司 Vehicle energy distribution method and device
CN114619919B (en) * 2020-12-14 2024-05-03 丰田自动车株式会社 Method, device, equipment and storage medium for charging FCV energy storage battery
CN112622696A (en) * 2020-12-28 2021-04-09 长城汽车股份有限公司 Vehicle reserved energy determination method and device and vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659204B2 (en) * 2001-08-30 2005-06-15 日産自動車株式会社 Mobile fuel cell power plant
JP3999498B2 (en) * 2001-11-13 2007-10-31 日産自動車株式会社 Fuel cell system and method for stopping the same
JP4811626B2 (en) * 2003-08-25 2011-11-09 トヨタ自動車株式会社 Fuel cell system for vehicle and electric vehicle
JP2007026822A (en) * 2005-07-14 2007-02-01 Nissan Motor Co Ltd Controller for fuel cell system
JP4977342B2 (en) * 2005-08-01 2012-07-18 本田技研工業株式会社 Fuel cell system and method for adjusting charge amount of power storage device
JP2007165055A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Fuel cell system and operation stop method of fuel cell system
JP5094058B2 (en) * 2006-06-30 2012-12-12 三洋電機株式会社 Power system
JP2008282767A (en) * 2007-05-14 2008-11-20 Toyota Motor Corp Fuel cell system
JP5319176B2 (en) * 2008-06-19 2013-10-16 本田技研工業株式会社 Fuel cell system
JP4790781B2 (en) * 2008-07-31 2011-10-12 本田技研工業株式会社 Fuel cell vehicle
JP4758466B2 (en) * 2008-10-31 2011-08-31 本田技研工業株式会社 Fuel cell vehicle
JP5892182B2 (en) * 2014-01-09 2016-03-23 トヨタ自動車株式会社 Vehicle power supply
JP5961233B2 (en) * 2014-09-29 2016-08-02 富士重工業株式会社 Vehicle control device and vehicle
JP6048473B2 (en) * 2014-10-27 2016-12-21 トヨタ自動車株式会社 CONTROL METHOD FOR EXTERNAL POWER SUPPLY SYSTEM AND EXTERNAL POWER SUPPLY SYSTEM USING FUEL CELL AND SECONDARY BATTERY MOUNTED ON VEHICLE
JP6213511B2 (en) * 2015-03-25 2017-10-18 トヨタ自動車株式会社 Electric vehicle and control method thereof

Also Published As

Publication number Publication date
CN108539230B (en) 2020-11-03
CN108539230A (en) 2018-09-14
JP2018137220A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6982787B2 (en) Fuel cell control device and its control method, fuel cell vehicle
JP6270009B2 (en) Vehicle power control device
US9007001B2 (en) Power supply system and vehicle equipped with power supply system
US8639413B2 (en) Vehicle power supply system and method for controlling the same
US8907622B2 (en) Vehicle charging system and electrically powered vehicle provided with the same
JP4774430B2 (en) Electric vehicle and power storage device control method
JP2003249236A (en) Power supply device
US10770761B2 (en) Fuel cell control device, control method thereof, and fuel cell vehicle
US9834100B2 (en) Charge/discharge system
JP5796457B2 (en) Battery system and battery system control method
JP2015048064A (en) Vehicle
CN102369622A (en) Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
JP2019205316A (en) Battery discharge control arrangement
JP2012080689A (en) Power supply unit for electric vehicle
KR101926896B1 (en) Controlling method and apparatus for charging low-voltage battery
US9849805B2 (en) Fuel cell vehicle
JP2012050281A (en) Battery charging system of electric vehicle
JP4064398B2 (en) Charge / discharge control device for motor battery
KR20170025605A (en) Power conversion control method of for using high voltage vehicle
JP6133623B2 (en) Dual power load drive system and fuel cell vehicle
CN107482274B (en) Fuel cell system
JP6270010B2 (en) Vehicle power control device
JP5181900B2 (en) Power storage device output prediction device and hybrid vehicle control system
JP2021090266A (en) Solar charging system
JP2010158102A (en) Fuel cell vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211103

R151 Written notification of patent or utility model registration

Ref document number: 6982787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151