JP2004165561A - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
JP2004165561A
JP2004165561A JP2002332128A JP2002332128A JP2004165561A JP 2004165561 A JP2004165561 A JP 2004165561A JP 2002332128 A JP2002332128 A JP 2002332128A JP 2002332128 A JP2002332128 A JP 2002332128A JP 2004165561 A JP2004165561 A JP 2004165561A
Authority
JP
Japan
Prior art keywords
layer
wiring
signal line
photoelectric conversion
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332128A
Other languages
English (en)
Inventor
Keiichi Nomura
慶一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002332128A priority Critical patent/JP2004165561A/ja
Publication of JP2004165561A publication Critical patent/JP2004165561A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】積層構造の場合に、より低抵抗な信号配線を提供しノイズ低減を図る。さらに、信号線に形成される寄生容量Cを低減し、外部静電気に強いセンサー構造を提供する。
【解決手段】光電変換素子とスイッチ素子とから構成される画素を有する光電変換装置であって、前記光電変換素子を構成する半導体層と、前記スイッチ素子を構成する半導体層が異なる層から形成され、前記スイッチ素子の制御配線を含む第1の層と、前記スイッチ素子の主電極を含む第2の層と、前記光電変換素子のバイアス配線を含む第3の層がこの順で多層構造を有しており、前記第3の層が少なくとも前記光電変換素子からの信号を転送する信号線を含んでいる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、医療画像診断装置、非破壊検査装置、放射線を用いた分析装置等に応用されている、X線、γ線等の放射線を検出する放射線検出装置における光電変換装置に関する。
【0002】
【従来の技術】
従来、医療画像診断で用いられる撮影方法は、静止画像を得る一般撮影と動画像を得る透視撮影に大きく分類される。夫々の撮影方法は必要に応じて、撮影装置を含めて選択される。
【0003】
液晶TFT技術の進歩、情報インフラの整備が充実した現在では、非単結晶シリコン、例えば、非晶質シリコン(以下、a−Siと略記)を用いた光電変換素子とスイッチTFTにより構成されたセンサーアレーと、放射線を可視光等に変換する蛍光体とを組み合わせた放射線検出装置としてのフラットパネル検出器(以下、FPDと略記)が提案され、大面積で、且つ、真のデジタル化の可能性が出てきている(例えば、特許文献1参照)。
【0004】
このFPDは、放射線画像を瞬時に読み取り、瞬時にディスプレイ上に表示できるものであり、また、画像は、デジタル情報として直接取り出すことが可能であるため、データーの保管、或いは、加工、転送等取り扱いが便利であると言った特徴がある。また、感度等の諸特性は、撮影条件に依存するが、従来のスクリーンフィルム系(S/F系)撮影法、コンピューティッドラジオグラフィ(CR)撮影法に比較して、同等又はそれ以上であることが確認されている。
【0005】
図6に、このFPDの模式的等価回路図を示す。図中、101は光電変換素子部、102は転送用のスイッチTFT部、103はスイッチTFT駆動配線、104は信号線、105はバイアス配線、106は信号処理回路、107はTFT駆動回路、108はA/D変換部である。
【0006】
X線等の放射線は紙面上部より入射し、波長変換体としての不図示の蛍光体により可視光に変換される。変換光は、光電変換素子部101により電荷に変換され、光電変換素子部101内に蓄積される。その後、TFT駆動回路107より、TFT駆動配線から転送TFT102を動作させ、この蓄積電荷を信号線104に転送し、信号処理回路106にて処理され、更に、A/D変換部108にてA/D変換され出力される。
【0007】
基本的には、上述のような素子構成が一般的であり、特に、前記光電変換素子はPIN型フォトダイオード(以下、PIN型PDと略記)、或いは、本発明者等が採用しているMIS型フォトディテクタ(以下、MIS型PDと略記)等様々な素子が提案されている。
【0008】
【特許文献1】
特許第3066944号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上述のFPDにおいては、大面積で、且つ、完全デジタル化が達成され、漸く、一般撮影に主に使用され始めている状況であるが、感度と言った点では、更なる向上が期待されており、また、透視撮影を可能とするためには、より一層の感度向上が必須と考えられる。
【0010】
図7に、MIS型PDを用いたFPDの1ビットの等価回路を示す。図中、CはMIS型PDの合成容量、Cは信号線に形成される寄生容量、Vsはセンサーバイアス電位、Vrはセンサーリセット電位、SWはMIS型PDのVs/Vr切り替えスイッチ、SWはスイッチTFTのゲート電圧VgのON/OFF切り替えスイッチ、SWは信号線リセットスイッチ、Voutは出力電圧である。
【0011】
MIS型PDにはバイアス電位として半導体層が空乏化するようSWにより電位Vsが与えられる。この状態で、蛍光体からの変換光が半導体層に入射すると、ホールブロッキング層で阻止されていた正電荷がa−Si層内に蓄積され、電位差Vtが発生する。その後、SWよりスイッチTFTのON電圧が印加され、電圧Voutとして出力される。出力Voutは不図示の読出し回路により読み出され、その後SWにより信号線がリセットされ、順次読出しが行われる。
【0012】
上述の駆動方法に従って、スイッチTFTをライン毎に順次ONすることにより、1フレームの全読出しが完了する。その後、SWよりMIS型PDにリセット電位Vrを与え、リセットを行い、再度、バイアス電位Vsを与え、画像読み取りの蓄積動作に入る。
【0013】
MIS型PDの出力Voutの飽和値は、概ね電位Vtに比例する。電位Vtは、バイアス電圧差Vs−Vrと内部ゲインGの積により決まる。内部ゲインGとは、Cins/(Cins+Csemi)で求められる。出力電圧Voutは、概ね電位Vtに対しC/C容量比で出力される。
【0014】
MIS型PDの感度は、光入射状態での上述の飽和出力電圧、即ち、信号成分と、暗状態での出力電圧、即ち、ノイズ成分の比で概ね表現できる。
【0015】
信号成分は、一般的には、(1)PD開口率、(2)PD光入射効率、言い換えれば、真性a−Si膜内に入射する光量、更に、(3)内部ゲインに依存する。一方、ノイズ成分は、以下に示す様々な要因が確認されている。
(1)ショットノイズ センサー開口率の平方根に比例するショットノイズ。
(2)KTCノイズ 容量Cの平方根に比例するKTCノイズ。
(3)信号配線ノイズ 配線抵抗の平方根、及び、容量Cに比例する配線ノ
イズ。
(4)ICノイズ 容量Cに比例するICノイズ。
(5)ゲート配線ノイズ 配線抵抗の平方根に比例する配線ノイズ。
【0016】
通常、感度向上を達成するためには、当然のことながら、信号成分を増大させるか、或いは、ノイズ成分を減少させるか、或いは、同時に達成する必要がある。しかし、信号成分とノイズ成分は、相互に関係しており、前者を改善した結果、後者に影響を及ぼし、結局、感度改善には至らない場合が多い。
【0017】
例えば、信号成分を改善するために、上述の(1)PD開口率を向上させる場合、配線幅、或いは、配線間のスペースをシュリンクして、実現することが考えられるが、逆に、微細化に伴い、配線抵抗、或いは、信号線の寄生容量が増大し、ノイズ成分が増大する結果となる。即ち、信号成分は改善されるが、ノイズ成分は増加することになり、感度低下を引き起こす場合がある。更に、微細化により、配線ルールが厳しくなるため、歩留り低下等を来し、生産性を低下させることになる。
【0018】
また、上述の(2)光入射効率においても、同様に、光電変換層であるa−Si膜に接合されているオーミックコンタクト層は、キャリアブロッキング層としての機能と上部電極としての機能が必要なため、光吸収を無視できない500Å程度以上の膜厚が必要となる。その結果、n膜での光吸収が感度低下を引き起こす。当然、n膜の薄膜化を実施した場合、逆に、n膜の抵抗が大きくなり、PD上部電極として機能しない結果となる。
【0019】
また、上述の(3)内部ゲインを向上させる場合、a−Si膜も厚膜化、或いは、ゲートSiN膜の薄膜化を実施する必要がある。しかし、a−Si膜の厚膜化は、一方でスイッチTFTの転送能力の低下を引き起こし、その結果、TFTサイズの増大、開口率の低下となる。また、その応力、異物発生等、生産上の問題においても限度がある。また、SiN膜の薄膜化は、配線交差部等での絶縁耐圧を考慮すると同様に限度があり、仮に、薄膜化が達成できたとしても、寄生容量Cの増大によりノイズ成分が増加し、目立った感度向上は達成されない。
【0020】
一方、ノイズ低減に着目して、ゲート配線抵抗を低減する場合、ゲート配線の厚膜化、或いは、幅広化が必要であるが、前者は、配線交差部での絶縁耐圧の低下を引き起こし、また、後者は、開口率の低下を引き起こすことになる。
【0021】
また、信号線の配線抵抗を低減する場合、信号線の厚膜化、或いは、幅広化が必要であるが、前者は、応力の増大により生産設備上限度があるばかりか、加工上の問題から厚膜化は限度がある。また、後者は、上述したのと同様、開口率の低下を引き起こすことになる。
【0022】
以上、現行の構成では、設計において、感度は最適化されることになる。言い換えれば、より一層の感度向上は根本的な構成、材料、製造プロセスの改良が必要となると言い換えることができる。
〔発明の目的〕
そこで、本発明の目的は、高精細が必要とされるカセッテタイプ、マンモグラフィー等の放射線検出装置に用いる光電変換装置において、積層構造の場合に、より低抵抗な信号配線としノイズ低減を図る。さらに、信号線に形成される寄生容量Cを低減し、外部静電気に強いセンサー構造を提供することを目的とする。
【0023】
【課題を解決するための手段】
上述の課題を解決するため、本発明は、光電変換素子とスイッチ素子とから構成される画素を有する光電変換装置であって、前記光電変換素子を構成する半導体層と、前記スイッチ素子を構成する半導体層が異なる層から形成され、前記スイッチ素子の制御配線を含む第1の層と、前記スイッチ素子の主電極を含む第2の層と、前記光電変換素子のバイアス配線を含む第3の層がこの順で多層構造を有しており、前記第3の層が少なくとも前記光電変換素子からの信号を転送する信号線を含んでいる。
〔作用〕
以上の構成によって、低抵抗な信号配線とし、容量Cを低減し、外部静電気に強い構造のFPDが実現できる。
【0024】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0025】
本発明の理解のために、まず、従来の光電変換素子をMIS型PDとした場合の1画素について説明する。
【0026】
図8は、1画素についての模式的平面図である。302はスイッチTFT駆動配線、304はスイッチTFTゲート電極、308はセンサーバイアス配線、310は信号線、309はスイッチTFTソース・ドレイン電極(以下、SD電極と略記)、403は第2のオーミックコンタクト層、404は透明電極層である。本説明ではスイッチ素子としてTFTを用いた例について説明するが、これに限られるものではない。
【0027】
図9に、図8に示した1画素内の各素子を模式的に配列した模式的断面図である。製造フロー説明の都合上、スイッチTFT駆動配線及び信号線をコンタクトホール(以下、接続孔という)によりパッド部と接続する部分も図示してある。301はガラス基板等の絶縁性表面を有する基板、302はスイッチTFT駆動配線、303はセンサー(MIS型PD)下部電極、304はスイッチTFTゲート電極、305は第1のゲート絶縁膜、306は第1の真性a−Si膜、307は第1のオーミックコンタクト層、308はバイアス配線、309はスイッチTFTのSD電極、310は信号線、313はエッチストップ絶縁層、320は保護膜、401は第2のゲート絶縁膜、402は第2の真性a−Si膜、403は第2のオーミックコンタクト層、404は透明電極層、405は素子分離部、406は接続孔である。
【0028】
次に、このFPDの製造方法について述べる。
【0029】
図10に、FPDの製造方法を示す。
【0030】
第1に、ガラス基板301上に、第1の金属層により、スイッチTFT駆動配線302、スイッチTFTゲート電極304を形成する。第1の金属層としては、Cr、Al、Mo、Ti、Al−Nd合金、及びそれらの積層構造がスパッタ法により形成される。
【0031】
第2に、第1のゲート絶縁膜305、第1の真性a−Si膜306、チャネルスットッパー(エッチストッパー)用の絶縁膜313をプラズマCVD法により順次積層する。
【0032】
第3に、裏面露光によりチャネルスットッパー用の絶縁膜313をエッチングする。図10(a)に模式的平面図を示す。
【0033】
第4に、プラズマCVD法により第1のオーミックコンタクト層(n層)307を積層する。
【0034】
第5に、第2の金属層を積層する。第2の金属層としては、Cr、Al、Mo、Ti、Al−Nd合金、及びそれらの積層構造がスパッタ法により形成される。
【0035】
第6に、レジストワークにより、スイッチTFTのSD電極309及び信号線310、及び前記光電変換素子の下電極303を形成する。図10(b)に模式的平面図を示す。
【0036】
第7に、第2のゲート絶縁膜401、第2の真性a−Si膜402、第2のオーミックコンタクト層(n層)403をプラズマCVD法により順次積層する。
【0037】
第8に、接続孔406を形成する。
【0038】
第9に、第3の金属層を積層する。第3の金属層としては、Cr、Al、Mo、Ti、Al−Nd合金、及びそれらの積層構造がスパッタ法により形成する。
【0039】
第10に、レジストワークにより、光電変換素子のバイアス配線308、配線引き出し部を形成する。図10(c)に模式的平面図を示す。
【0040】
第11に、透明電極層404を積層する。透明電極層404としては、ITO(Indium Tin Oxide)、ZnO、酸化スズ(SnO)等が使用される。
【0041】
第12に、透明電極層404と第2のオーミックコンタクト層403をエッチングする。図10(d)に模式的平面図を示す。
【0042】
第13に、保護層を積層し、配線引き出し部等、必要な領域を除去する。その後、必要に応じて蛍光体(不図示)を設ける。
【0043】
以上の工程を経て光電検出装置を作製するわけであるが、このような装置によればスイッチ素子とは別の層で光電変換素子を形成されているために、光電変換素子の配置がスイッチ素子による制限を受けないため開口率を向上させることが可能となる。しかしながら、そのような構成においてどの層にどのような機能を割り振るかの検討はまだ充分にされていないのが現状である。以下、本発明の各実施形態における各層への機能の割り振りに関して述べる。
【0044】
[実施形態1]
本実施形態においては、配線となる金属層を3層有する構成に関して述べる。その3層を、スイッチ素子の制御電極及び制御配線を含む第1の層、信号線を含む第2の層、光電変換素子のバイアス配線及び前記信号線の冗長配線を含む第3の層としている。この層は好ましくは金属がよいが、それに準ずる抵抗率を持つもので代用することも可能である。
【0045】
図1(a)に、本実施形態の1画素の模式的平面図を示す。302はスイッチTFT駆動配線、304はスイッチTFTゲート電極、308はセンサーバイアス配線、309はスイッチTFTのSD電極、310は信号線、311は信号線310の冗長配線、403は第2のオーミックコンタクト層、404は透明電極層、406は接続孔である。
【0046】
図1(b)に、図1(a)のAA′に示した1画素内の各素子を模式的に配列した模式的断面図を示す。スイッチTFT駆動配線及び信号線を接続孔によりパッド部と接続する部分も図示してある。301はガラス基板、302はスイッチTFT駆動配線、303はセンサー下部電極、304はスイッチTFTゲート電極、305は第1のゲート絶縁膜、306は第1の真性a−Si膜、307は第1のオーミックコンタクト層、308はバイアス配線、309は転送TFTのSD電極、310は信号線、311は信号線310の冗長配線、313はエッチストップ絶縁層、320は保護膜、401は第2のゲート絶縁膜、402は第2の真性a−Si膜、403は第2のオーミックコンタクト層、404は透明電極層、405は素子分離部、406は接続孔である。信号線310とその信号線310の冗長配線311とは、接続孔406を介して電気的に接続される。
【0047】
このように、第2層目を信号線、第3層目の配線を信号線の冗長配線とすることによって信号線の配線抵抗を下げることができる。また、異物等による信号配線の断線に対して、歩留まりの向上が期待できる。本実施形態では、第2の真性a−Si膜402をドライエッチング等により画素分離する場合を示しているが、画素分離はしなくてもよい。
【0048】
〔実施形態2〕
本実施形態においては、配線となる金属層を3層有する構成に関して述べる。その3層を、スイッチ素子の制御電極及び制御配線を含む第1の層、スイッチ素子の主電極(例えばスイッチ素子がTFTの場合にはSD電極)を含む第2の層、光電変換素子のバイアス配線を含む第3の層としている。これらの層は好ましくは金属がよいが、それに準ずる抵抗率を持つもので代用することも可能である。
【0049】
図2に、本実施形態の1画素の模式的平面図を示す。302はスイッチTFT駆動配線、304はスイッチTFTゲート電極、308はセンサーバイアス配線、309はスイッチTFTのSD電極、311は信号線、403は第2のオーミックコンタクト層、404は透明電極層、406は接続孔である。また、断面図は、図1(b)と同一となる。実施形態1との違いは、3層目の金属層で信号線を形成し、接続孔406を介してソース電極と信号線311を電気的に接続する。
【0050】
このような構成にすると、スイッチTFT駆動配線302と3層目の信号線311とのクロス部容量(寄生容量C)を低減することができ、感度アップが達成される。
【0051】
〔実施形態3〕
本実施形態においては、配線となる金属層を3層有する構成に関して述べる。その3層を、スイッチ素子の制御電極及び制御配線を含む第1の層、スイッチ素子の主電極(例えばスイッチ素子がTFTの場合にはSD電極)、信号線の冗長配線を含む第2の層、光電変換素子のバイアス配線、信号線を含む第3の層としている。これらの層は好ましくは金属がよいが、それに準ずる抵抗率を持つもので代用することも可能である。
【0052】
第3図に、本実施形態の1画素の模式的平面図を示す。302はスイッチTFT駆動配線、304はスイッチTFTのゲート電極、308はセンサーバイアス配線、309はスイッチTFTのSD電極、310は信号線の冗長配線、311は信号線、403は第2のオーミックコンタクト層、404は透明電極層、406は接続孔である。また、断面図は、図1(b)と同一となる。
【0053】
実施形態1と実施形態3との違いは、2層目の金属層で信号線の冗長配線310を形成し、接続孔406を介してソース電極と3層目の信号線311を電気的に接続するが、スイッチTFT駆動配線302と2層目の信号線の冗長配線310は、クロス部を形成しないことである。すなわち、図3を参照すると第2の金属層はスイッチTFT駆動配線302上を除いて形成されているのである。したがって、第3の金属層により信号線の主配線部を形成することとなる。
【0054】
このような構成にすると、スイッチTFT駆動配線302と信号線311とのクロス部容量(寄生容量C)を低減することができ、かつ、2層目と3層目の配線を信号線として使用することで、配線抵抗を下げることができ、感度アップが達成される。
【0055】
〔実施形態4〕
本実施形態においては、配線となる金属層を3層有する構成に関して述べる。その3層を、スイッチ素子の制御電極及び制御配線を含む第1の層、スイッチ素子の主電極(例えばスイッチ素子がTFTの場合にはSD電極)、信号線を含む第2の層、光電変換素子のバイアス配線、一定電位線を含む第3の層としている。これらの層は好ましくは金属がよいが、それに準ずる抵抗率を持つもので代用することも可能である。
【0056】
図4(a)に、本実施形態の1画素の模式的平面図を示す。302はスイッチTFT駆動配線、304はスイッチTFTのゲート電極、308はセンサーバイアス配線、309はスイッチTFTのSD電極、310は2層目の信号線、312は3層目のGND線、403は第2のオーミックコンタクト層、404は透明電極層、406は接続孔である。
【0057】
図4(b)に、図4(a)のAA′に示した1画素内の各素子を模式的に配列した模式的断面図を示す。スイッチTFT駆動配線及び信号線を接続孔によりパッド部と接続する部分も図示してある。301はガラス基板、302はスイッチTFT駆動配線、303はセンサー下部電極、304はスイッチTFTゲート電極、305は第1のゲート絶縁膜、306は第1の真性a−Si膜、307は第1のオーミックコンタクト層、308はバイアス配線、309は転送TFTのSD電極、310は2層目の信号線、312は3層目のGND配線、313はエッチストップ絶縁層、320は保護膜、401は第2のゲート絶縁膜、402は第2の真性a−Si膜、403は第2のオーミックコンタクト層、404は透明電極層、405は素子分離部、406は接続孔である。
【0058】
実施形態1〜3との違いは、第3の金属層により一定電位に固定される配線(ここではGND)を形成している点である。
【0059】
また、TFT上の一定電位配線上の、真性a−Si膜、オーミックコンタクト層は除去してもかまわない。
【0060】
このような構成にすると、TFT上部が定電位に固定されるため、静電気に対して強くなる。
【0061】
〔実施形態5〕
本実施形態においては、配線となる金属層を3層有する構成に関して述べる。それらの3層を、スイッチ素子の制御電極及び制御配線を含む第1の層、スイッチ素子の主電極(例えばスイッチ素子がTFTの場合にはSD電極)、信号線を含む第2の層、光電変換素子のバイアス配線、信号線の冗長配線を含む第3の層としている。これらの層は好ましくは金属がよいが、それに準ずる抵抗率を持つもので代用することも可能である。本実施形態は、MIS型PDを用いたFPDの例について述べる。
【0062】
図5(a)に、光電変換素子をMIS型PDとした場合の1画素の模式的平面図を示す。302はスイッチTFT駆動配線、304はスイッチTFTのゲート電極、308はセンサーバイアス配線、309はスイッチTFTのSD電極、310は信号線、403は第2のオーミックコンタクト層、404は透明電極層、406は接続孔である。
【0063】
図5(b)に、図5(a)のAA′に示した1画素内の各素子を模式的に配列した模式的断面図を示す。スイッチTFT駆動配線及び信号線を接続孔によりパッド部と接続する部分も図示してある。301はガラス基板、302はスイッチTFT駆動配線、303はセンサー下部電極、304はスイッチTFTゲート電極、305は第1のゲート絶縁膜、306は第1の真性a−Si膜、307は第1のオーミックコンタクト層、308はバイアス配線、309は転送TFTのSD電極、310は信号線、311は信号線310の冗長配線、313はエッチストップ絶縁層、320は保護膜、401は第2のゲート絶縁膜、402は第2の真性a−Si膜、403は第2のオーミックコンタクト層、404は透明電極層、405は素子分離部、406は接続孔である。
【0064】
信号線310と信号線310の冗長配線311は、接続孔等を介さず電気的に接続されるため、実施形態1よりも低抵抗な配線の形成が可能となる。また、異物等による信号配線の断線に対して、歩留まりの向上が期待できる。本実施形態では、第2の真性a−Si膜402をドライエッチング等により画素分離する場合を示しているが、画素分離はしなくてもよい。
【0065】
以上、本発明の実施の形態について説明したが、本発明の好適な実施の態様を以下のとおり列挙する。
[実施態様1]
光電変換素子とスイッチ素子とから構成される画素を有する光電変換装置であって、
前記光電変換素子を構成する半導体層と、前記スイッチ素子を構成する半導体層が異なる層から形成され、前記スイッチ素子の制御配線を含む第1の層と、前記スイッチ素子の主電極を含む第2の層と、前記光電変換素子のバイアス配線を含む第3の層がこの順で多層構造を有しており、前記第3の層が少なくとも前記光電変換素子からの信号を転送する信号線を含んでいることを特徴とする光電変換装置。
[実施態様2]
前記第1の層、第2の層、及び第3の層は、金属層であることを特徴とする実施態様1に記載の光電変換装置。
[実施態様3]
前記第3の層の信号線は、冗長配線であり、前記第2の層に形成された信号線と接続孔を介して電気的に接続されていることを特徴とする実施態様1に記載の光電変換装置。
[実施態様4]
前記第3の層の信号線は、前記第2の層のスイッチ素子の主電極と接続孔を介して電気的に接続されていることを特徴とする実施態様1に記載の光電変換装置。
[実施態様5]
前記第3の層の信号線は、前記第2の層に形成された信号線の冗長配線と接続孔を介して電気的に接続されていることを特徴とする実施態様1に記載の光電変換装置。
[実施態様6]
前記第3の層の信号線は、冗長配線であり、前記第2の層に形成された信号線と接続孔を介さずに電気的に接続されていることを特徴とする実施態様1に記載の光電変換装置。
[実施態様7]
前記第1の層のスイッチ素子の制御配線と前記第2の層に形成された信号線の冗長配線は、クロス部を形成しないことを特徴とする実施態様2に記載の光電変換装置。
[実施態様8]
実施態様1〜7のいずれかに記載の光電変換装置を有し、放射線を可視光に変換する波長変換体を組み込んだことを特徴とする放射線検出装置。
[実施態様9]
光電変換素子とスイッチ素子とから構成される画素を有する光電変換装置であって、
前記光電変換素子を構成する半導体層と、前記スイッチ素子を構成する半導体層が異なる層から形成され、前記スイッチ素子の制御配線を含む第1の層と、前記スイッチ素子の主電極を含む第2の層と、前記光電変換素子のバイアス配線を含む第3の層がこの順で多層構造を有しており、前記第3の層は、前記スイッチ素子上部に形成され定電位に固定されていることを特徴とする光電変換装置。
[実施態様10]
前記第1の層、第2の層、及び第3の層は、金属層であることを特徴とする実施態様9に記載の光電変換装置。
[実施態様11]
光電変換素子とスイッチ素子から構成される光電変換装置において、
前記スイッチ素子は、第1の金属層、第1の絶縁層、第1の半導体層、エッチストップ絶縁層、第1のオーミックコンタクト層、及び第2の金属層で構成され、
前記光電変換素子は、前記第2の金属層、第2の絶縁層、第2の半導体層、第2のオーミックコンタクト層、第3の金属層、及び透明電極層で構成され、
前記第3の金属層は、前記スイッチ素子上部に形成され定電位に固定されていることを特徴とする光電変換装置。
[実施態様12]
実施態様9〜11のいずれかに記載の光電変換装置を有し、放射線を可視光に変換する波長変換体を組み込んだことを特徴とする放射線検出装置。
【0066】
【発明の効果】
以上説明したように、本発明の光電変換装置において、積層構造にすることで開口率の向上を図ると同時に、1層目のスイッチTFT駆動配線と3層目の信号線とのクロス部容量(寄生容量C)を低減することができ、かつ、信号線の配線抵抗を下げることができ、ノイズ低減し感度を上げることができる。
【0067】
さらに、スイッチTFT上部が定電位に固定されるため、外部静電気に対して強くなり、画質の良好なFPDを実現することができる。
【図面の簡単な説明】
【図1】実施形態1の(a)は模式的平面図、(b)は模式的断面図
【図2】実施形態2の模式的平面図
【図3】実施形態3の模式的平面図
【図4】実施形態4の(a)は模式的平面図、(b)は模式的断面図
【図5】実施形態5の(a)は模式的平面図、(b)は模式的断面図
【図6】従来のFPDの模式的等価回路図
【図7】従来のMIS型FPDの1ビット等価回路図
【図8】従来の1画素の模式的平面図
【図9】従来の1画素の模式的断面図
【図10】(a)〜(d)は従来のFPDの製造方法を示す図
【符号の説明】
101 光電変換素子部
102 スイッチTFT部
103 スイッチTFT駆動配線
104 信号線
105 バイアス配線
106 信号処理回路
107 TFT駆動回路
108 A/D変換部
301 ガラス基板
302 スイッチTFT駆動配線
303 センサー(MIS型PD)下部電極
304 スイッチTFTゲート電極
305 第1のゲート絶縁膜
306 第1の真性a−Si膜
307 第1のオーミックコンタクト層
308 センサーバイアス配線
309 スイッチTFTのSD電極
310,311 信号線又は信号線の冗長配線
312 GND線
313 エッチストップ絶縁層
320 保護膜
401 第2のゲート絶縁膜
402 第2の真性a−Si膜
403 第2のオーミックコンタクト層
404 透明電極層
405 素子分離部
406 接続孔(コンタクトホール)

Claims (1)

  1. 光電変換素子とスイッチ素子とから構成される画素を有する光電変換装置であって、
    前記光電変換素子を構成する半導体層と、前記スイッチ素子を構成する半導体層が異なる層から形成され、前記スイッチ素子の制御配線を含む第1の層と、前記スイッチ素子の主電極を含む第2の層と、前記光電変換素子のバイアス配線を含む第3の層がこの順で多層構造を有しており、前記第3の層が少なくとも前記光電変換素子からの信号を転送する信号線を含んでいることを特徴とする光電変換装置。
JP2002332128A 2002-11-15 2002-11-15 光電変換装置 Pending JP2004165561A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332128A JP2004165561A (ja) 2002-11-15 2002-11-15 光電変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332128A JP2004165561A (ja) 2002-11-15 2002-11-15 光電変換装置

Publications (1)

Publication Number Publication Date
JP2004165561A true JP2004165561A (ja) 2004-06-10

Family

ID=32809296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332128A Pending JP2004165561A (ja) 2002-11-15 2002-11-15 光電変換装置

Country Status (1)

Country Link
JP (1) JP2004165561A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520488A (ja) * 2007-03-08 2010-06-10 フェアチャイルド・イメージング 歯科応用に適応した小型のcmosに基づくx線検出器
JP2010161142A (ja) * 2009-01-07 2010-07-22 Seiko Epson Corp 光電変換装置、電気光学装置、電子機器
EP2810058A4 (en) * 2012-01-30 2015-08-19 Seung Ik Jun PANEL FOR DETECTING RADIATION
US9515118B2 (en) 2012-01-30 2016-12-06 Rayence Co., Ltd. Radiation detecting panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520488A (ja) * 2007-03-08 2010-06-10 フェアチャイルド・イメージング 歯科応用に適応した小型のcmosに基づくx線検出器
JP2010161142A (ja) * 2009-01-07 2010-07-22 Seiko Epson Corp 光電変換装置、電気光学装置、電子機器
EP2810058A4 (en) * 2012-01-30 2015-08-19 Seung Ik Jun PANEL FOR DETECTING RADIATION
US9515118B2 (en) 2012-01-30 2016-12-06 Rayence Co., Ltd. Radiation detecting panel

Similar Documents

Publication Publication Date Title
US7521684B2 (en) Radiation detecting apparatus, manufacturing method therefor, and radiation image pickup system
KR100764977B1 (ko) 고체촬상장치 및 방사선촬상장치
US7629564B2 (en) Conversion apparatus, radiation detecting apparatus, and radiation detecting system
JP5448877B2 (ja) 放射線検出器
JP4498283B2 (ja) 撮像装置、放射線撮像装置及びこれらの製造方法
EP1420453B1 (en) Image pickup apparatus, radiation image pickup apparatus and radiation image pickup system
EP2081230B1 (en) Photodetecting device, radiation detecting device, and radiation imaging system
JP2010034520A (ja) 放射線検出装置及び放射線撮像システム
JP2003513472A (ja) 完成度の高いコンタクトバイアを備え且つfetの光応答を低減したイメージャ
JP2008244251A (ja) アモルファスシリコンフォトダイオード及びその製造方法ならびにx線撮像装置
JP2009252835A (ja) 電磁波検出素子
JP5739359B2 (ja) 撮像装置およびその製造方法ならびに撮像表示システム
US20130048960A1 (en) Photoelectric conversion substrate, radiation detector, and radiographic image capture device
JP4067055B2 (ja) 撮像装置及びその製造方法、放射線撮像装置、放射線撮像システム
EP2023163A2 (en) Image detecion device
JP2013161810A (ja) 撮像装置およびその製造方法ならびに撮像表示システム
JP2004096079A (ja) 光電変換装置、画像読取装置および光電変換装置の製造方法
US7233003B2 (en) Radiation detector
JP2004015000A (ja) 放射線検出装置及び放射線撮像システム
JP4018461B2 (ja) 放射線検出装置及びその製造方法並びに放射線撮像システム
JP2014122903A (ja) 放射線検出器および放射線画像撮影装置
JP2003258226A (ja) 放射線検出装置及びその製造方法
JP2004165561A (ja) 光電変換装置
JP2013157347A (ja) 撮像装置およびその製造方法ならびに撮像表示システム
JP2004015002A (ja) 放射線撮像装置