JP2004158132A - Magnetic head and manufacturing method of the same - Google Patents

Magnetic head and manufacturing method of the same Download PDF

Info

Publication number
JP2004158132A
JP2004158132A JP2002323447A JP2002323447A JP2004158132A JP 2004158132 A JP2004158132 A JP 2004158132A JP 2002323447 A JP2002323447 A JP 2002323447A JP 2002323447 A JP2002323447 A JP 2002323447A JP 2004158132 A JP2004158132 A JP 2004158132A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
layer
glass layer
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002323447A
Other languages
Japanese (ja)
Inventor
Tsutomu Moriwaki
力 森脇
Hiroshi Adachi
博史 足立
Akihiro Ashida
晶弘 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002323447A priority Critical patent/JP2004158132A/en
Publication of JP2004158132A publication Critical patent/JP2004158132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the production yield is degraded because exfoliation occurs at the interface of an adhesive glass layer and a nonmagnetic substrate when cutting from a laminated block to core half bodies or into the state of a gapped bar, grinding, heat treatment, etc. since adhesion is weak since wetting ability is additionally worsened and the surface area of the joint part is small since nonmagnetic substrate material used for a conventional magnetic head, for which ceramic material such as magnesium titanate is used widely in general, is poor in the wetting property of glass and mirror finishing is applied also to a surface on which the adhesive glass layer is to be formed. <P>SOLUTION: The surface of the nonmagnetic substrate on which an adhesive glass layer is formed is a satin-finished surface, and has structure where its surface relative roughness is not lower than Ra 0.1 μm to improve glass wetting property and to increase the surface area of the joining part, thereby strong adhesion is realized. Thus, it is possible to obtain a high-quality and high-yield magnetic head which is free from exfoliation also in cutting, grinding, heat treating, etc. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高品位VTRやデジタルVTR及び、情報機器用等、高周波信号を効率よく記録再生するのに適した磁気ヘッドに関するものである。
【0002】
【従来の技術】
近年、磁気記録の高密度化に伴い、磁気ヘッドとして高飽和磁束密度、狭トラック化等が、要求されている。高飽和磁束密度に関しては、従来のフェライト等に変わって、FeTaN、Co系アモルファス等の金属磁性材料が用いられ、狭トラック化に関しては、スパッタリングや蒸着などの気相成長法により、磁気コアとなる磁性層を形成する手法が多く用いられている。しかしながら、金属磁性材料は、狭トラックにすると、機械的強度が弱く、また、耐摩耗性も悪くなるので、それらの向上のため、従来から金属磁性材料の両側を非磁性基板で挟持した構造にして用いられる。
【0003】
図4に従来の磁気ヘッドの構造を示す(例えば特許文献1参照)。
【0004】
図4において、金属磁性層1の両側を非磁性基板2で挟持した構造で、金属磁性層1と非磁性基板2との間に接着ガラス層3が介在している。なお、金属磁性層1および接着ガラス層3が形成される非磁性基板2の面は何れも鏡面加工が既に施されている。
【0005】
また、左右コアの磁気ギャップ面8での接合は、磁気ギャップ面8に設けたSiO2ガラス12の上に形成された低融点ガラス13と、巻線溝9に設けた低融点ガラス4の融着により行われている。
【0006】
次に、このヘッドの製造方法を示す。まず、図5(a)に示すように、非磁性基板2の両側の面(図示上面及び下面)には、ダイヤモンド砥粒等による研磨加工が施されている。また、この時の砥粒径は1〜3μmのものを用いて、面粗度Ra0.02μm以下の鏡面を得ている。この非磁性基板2の片面(図示下面)に結晶化ガラスの微粒子を所定の厚みに塗布し、結晶化が起こらないよう比較的低温で短時間焼き付け、固形化させた接着ガラス層3を形成した第一基板5と、両側の面に鏡面研磨を施した非磁性基板2の片面(図示上面)に、金属磁性層1を被着形成し、他方の面(図示下面)には、接着ガラス層3を形成した第二基板6と、両側の面に鏡面研磨を施した非磁性基板2の片面(図示上面)に金属磁性層1を被着形成した第三基板7を作製する。次に、図5(b)に示すように、第一基板5と第三基板7で、第二基板6を数枚(または数十枚)積み重ねたものを挟み、加圧熱処理する。この時、接着ガラス層3は融着し、各基板が接着され積層体ブロックが形成される。次に、この積層体ブロックを、矢印AーB方向にプレート状に切断し、コア半体10,11を作製する。
【0007】
次に、図6(a)に示すように、コア半体10、11の磁気ギャップ面8に巻線溝9を設け、磁気ギャップ面8を平滑に研磨した後、ギャップ長に応じた厚みのSiO2等のガラス12と、低融点ガラス13の非磁性層をスパッタリング法等で形成する。そして、両コア半体10、11を磁気ギャップ面8で突き合わせ、加圧熱処理することで、磁気ギャップ面8に設けた低融点ガラス13及び、巻線溝中に既に充填された低融点ガラス4の融着により、両コア半体10,11を接合し、ギャップドプレートを作製する。その後、矢印CーD方向にギャップドバー状に切断する。
【0008】
次に、図6(b)に示すギャップドバーを矢印EーF方向に所定のコア幅になるように切断して、ヘッドチップを得る。
【0009】
【特許文献1】
特開2001−67611号公報
【0010】
【発明が解決しようとする課題】
以上説明した従来の磁気ヘッドに用いられる非磁性基板2の材料は、磁気ヘッドとして構成する場合、機械加工性や、強度及び耐摩耗性の点から、チタン酸マグネシウム等のセラミック材料が一般的に広く使われている。しかし、この基板材料はガラスの濡れ性が悪い上、加工面は鏡面加工が施されているため、濡れ性が更に悪化するとともに、接合部の表面積も小さいことから、接着力が弱く、積層体ブロックからコア半体およびギャップドバー状への切断加工や、研磨、熱処理等にって、図7に示すように、接着ガラス層3と、非磁性基板2との界面で、剥離が生じてしまい歩留まりが悪くなるという欠点がある。
【0011】
また、前記のように、切断、研磨加工や熱処理の際に発生する剥離は、殆どが非磁性基板2と接着ガラス層3の界面で発生していることがわかっている。
【0012】
本発明は上記問題に鑑みてなされたものであり、その目的とするところは、上記のような接着において、基板面を改良することによって、優れた接着性を引き出し、剥離が生じない高品質、高歩留まりを図ることができるようにすることにある。
【0013】
【課題を解決するための手段】
この課題を解決するために本発明は、金属磁性層が被着形成される一方の非磁性基板面が鏡面であるとともに、接着ガラス層が形成される他方の非磁性基板面を凹凸面とし、この時の凹凸面の面粗度をRa0.1μm以上の構造としたものである。
【0014】
これにより、接着ガラス層が形成される非磁性基板面の濡れ性は飛躍的に向上し、また、接着面積が十分に確保できるので、非磁性基板と接着ガラスとの接着力が増し、剥離の無い高品質、高歩留まりな磁気ヘッドが得られる。
【0015】
【発明の実施の形態】
本発明の請求項1及び2記載の発明は金属磁性層の両側を非磁性基板で挟持した磁気コアであって、前記金属磁性層が被着形成される一方の非磁性基板面が鏡面であるとともに、接着ガラス層が形成される他方の非磁性基板面は凹凸面としたものであり、前記金属磁性層は一般的にはスパッタ等の気相成長法により形成されるので、前記非磁性基板面の面粗度が比較的大きい場合、特性が大きく劣化してしまうので、前記金属磁性層が形成される前記非磁性基板面は、これらの影響を受けないよう鏡面化している。
【0016】
一方、前記接着ガラス層が形成される前記非磁性基板面には、結晶化ガラスから成る微粒子を塗布するため、鏡面状態では表面張力が大きく、前記接着ガラスは弾けやすく親和性が損なわれて、十分な接着がなされず、前記非磁性基板と前記接着ガラスの界面で剥離が生じてしまう。しかし、前記非磁性基板面を凹凸面にすることによって、表面張力は小さくなり、前記接着ガラスは弾けることなく、濡れ性が飛躍的に向上するので、強い接着力を有するものである。
【0017】
請求項3に記載の発明は、接着ガラス層が形成される前記非磁性基板面の面粗度をRa0.1μm以上としたものであり、前記非磁性基板面の接合部の表面積は格段に大きなくなり、接着力は更に向上することで、前記非磁性基板と前記接着ガラスとの界面で剥がれること無く、高品質、高歩留まりが実現することができる。
【0018】
請求項4に記載の発明は、金属磁性層の両側を非磁性基板で挟持した磁気コアであって、前記金属磁性層が形成される前記非磁性基板面に、鏡面加工を施す工程と、前記接着ガラス層が形成される前記非磁性基板面に、凹凸面加工を施す工程を有する磁気ヘッドの製造方法としたものであり、前記金属磁性層が形成される非磁性基板面を研磨加工によって、Ra0.02μm以下の鏡面を得ることで、磁気特性の劣化のない前記金属磁性層が形成されるものである。
【0019】
また、前記接着ガラス層が形成される前記非磁性基板面をラッピング加工によって、Ra0.1μm以上の梨地面を得ることで、前記非磁性基板面の濡れ性は飛躍的に向上するとともに、接合部の表面積も格段に大きくなるという作用を有する。
【0020】
以下、本発明の実施の形態について、図面を用いて説明する。
【0021】
(実施の形態1)
本発明の実施形態に係る磁気ヘッドを図1に示す。図1において、2は一対の非磁性基板で、金属磁性層1が形成される非磁性基板2の面には鏡面2aが施されており、接着ガラス層3が形成される非磁性基板2の面には面粗度Ra0.1μm以上の凹凸面である梨地面2bが施されている。なお、本実施の形態では凹凸面の一種として梨地面2bとしたが、凹凸形状であれば他の形状であってもよい。1は一対の非磁性基板2により挟持される金属磁性層、3は金属磁性層1と一方の非磁性基板2とを接着する接着ガラス層であり、上記非磁性基板2と金属磁性層1と接着ガラス層3とが接合して得られる磁気コアは、上記構成が互いに接合する面に対して略直交する面を境に左コア及び右コアとして独立している。8は左右コアの接合面である磁気ギャップ面、12は左右コアの磁気ギャップ面8に設けられたSiO2ガラス、13はSiO2ガラス12の上に形成された低融点ガラス、9は一方の磁気コアに形成された巻線溝、4は巻線溝9内に形成された低融点ガラスである。
【0022】
上記のように構成された本実施の形態の磁気ヘッドは、金属磁性層1の両側を非磁性基板2で挟持した構造で、金属磁性層1と非磁性基板2との間に接着ガラス層3が介在している。なお、金属磁性層1が形成される非磁性基板2の面には鏡面2aが施されており、接着ガラス層3が形成される非磁性基板2の面には面粗度Ra0.1μm以上の梨地面2bが施されている。また、左右コアの磁気ギャップ面8での接合は、磁気ギャップ面8に設けたSiO2ガラス12の上に形成された低融点ガラス13と、巻線溝9に設けた低融点ガラス4の融着により行われている。
【0023】
次に、このヘッドの製造方法を示す。
【0024】
まず、図2(a)に示すように、非磁性基板2の片側に金属磁性層1を被着形成(例えばスパッタリングによる形成)するため、ダイヤモンド砥粒等による研磨加工を施す。この時の砥粒径は1〜3μmのものを用いて、面粗度Ra0.02μm以下の鏡面2aを得る。ここで、非磁性基板2の片面を鏡面加工するのは、図2(c)に示すように金属磁性層1などの形成後に複数の非磁性基板2を積層した際に、非磁性基板間の平行度を高めるためであったり、金属磁性層1は薄い層であるために非磁性基板2の表面に凹凸があると金属磁性層1も凹凸形状となってしまい、信頼性が低下するのを防ぐために設けられている。
【0025】
また、非磁性基板2の他方の面には接着ガラス層3を形成するため、グリーンカーボンランダム砥粒等によるラッピング加工を施す。この時の砥粒径は#5000〜#500のものを用いて、面粗度Ra0.1μm以上の梨地面2bを得る。非磁性基板2における接着ガラス層3を形成する側の面を梨地面2bとしても、図2(c)に示す積層後に加圧熱処理を施しガラスが溶融した状態で梨地面2bに接合し、なおかつ接着ガラス層3は少なくとも金属磁性層1よりも厚肉であるため、接着ガラス層3が梨地面2bの凹凸形状に伴い変形して非磁性基板2間の平行度が損なわれることはない。
【0026】
次に、図2(b)のように、非磁性基板2の梨地面2bの上に結晶化ガラスの微粒子を所定の厚みに塗布し、結晶化が起こらないように比較的低温で短時間焼き付け、固形化させた接着ガラス層3を形成した第一基板5aと、非磁性基板2の鏡面2aの上に金属磁性層1を被着形成し、梨地面2bの上には上記と同様、接着ガラス層3を形成した第二基板6aと、非磁性基板2の鏡面2aの上に金属磁性層1を形成した第三基板7aを作製する。
【0027】
次に、図2(c)に示すように、第一基板5aと第三基板7aで、第二基板6aを数枚(または数十枚)積み重ねたものを挟み、加圧熱処理する。この時に、接着ガラス層3は融着し、各基板が接着された積層体ブロックを作製する。次に、この積層体ブロックを、矢印G−H方向にプレート状に切断し、コア半体10、11を作製する。
【0028】
以下、従来のものと同じ方法であるので、図6(a)、図6(b)を用いて説明する。
【0029】
まず、図6(a)に示すように、コア半体10、11の磁気ギャップ面8に巻線溝9を設け、磁気ギャップ面8を平滑に研磨した後、ギャップ長に応じた厚みのSiO2等のガラス12と、低融点ガラス13の非磁性層をスパッタリング等で形成する。そして、両コア半体10、11を磁気ギャップ面8で突き合わせ、磁気ギャップ面に設けた低融点ガラス13及び、巻線溝中に既に充填された低融点ガラス4の融着により、両コア半体10、11を接合し、ギャップドプレートを作製する。その後、矢印CーD方向にギャップドバー状に切断する。
【0030】
次に、図6(b)に示すように、ギャップドバーを矢印EーF方向に所定のコア幅になるように切断して、ヘッドチップ14を得る。
【0031】
また、非磁性基板2面の面粗度と接着力の関係をみるため、接着ガラス層3が形成される非磁性基板面を梨地状にして、その面粗度を種々変化させた第一基板5と第三基板7のみを加圧熱処理により接合し、その後、所定のチップサイズに切り出して、その接合強度を測定した結果を図3に示す。このように基板面の面粗度がRa0.05μmまでは強度面であまり変化は見られないが、Ra0.1μm以上になると強度は上昇傾向を示しており、Ra0.2μmでは2倍以上の強度が得られている。
【0032】
以上のように本実施の形態によれば、接着ガラス層3が形成される非磁性基板2の面に梨地面2bを有すると同時に、その面粗度をRa0.1μm以上にすることで、非磁性基板2の表面の表面張力は小さく、濡れ性は飛躍的に向上し、更に、接合部の表面積も格段に大きくなるので、接着ガラス層3が形成されても、弾けることなく親和性の良い接着力の強い磁気ヘッドが得られる。
【0033】
【発明の効果】
以上説明したように本発明によると、接着ガラス層が形成される非磁性基板面を凹凸面にすると同時に、その面粗度をRa0.1μm以上にすることで、接着ガラスの非磁性基板面における表面張力は小さく、濡れ性は飛躍的に向上し更に、接合部の表面積も格段に大きくなるので、接着ガラスが形成されても、弾けることなく親和性の良い接着力の強い磁気ヘッドが得られる。
【0034】
従って、積層体ブロックからコア半体およびギャップドバー状への切断加工や、研磨、熱処理等においても、剥離の無い高品質、高歩留まりな磁気ヘッドが得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の磁気ヘッドの構造を表す概略を示す斜視図
【図2】(a)同実施の形態の非磁性基板面を説明する斜視図
(b)同実施の形態の非磁性基板面に金属磁性層や接着ガラス層を形成した様子を表す斜視図
(c)同実施の形態の積層体ブロックを表す斜視図
【図3】同実施の形態における非磁性基板面粗度と接合強度を表したグラフ
【図4】従来の磁気ヘッドの構造を表す概略図
【図5】(a)従来の非磁性基板面に金属磁性層や接着ガラス層を形成した様子を表す斜視図
(b)従来の積層体ブロックを表す斜視図
【図6】(a)従来および本実施の形態のギャップドプレートまでの製造方法を説明するための斜視図
(b)従来および本実施の形態のヘッドチップに至るまでの製造方法を説明するための斜視図
【図7】従来の磁気ヘッドの剥離状態を表す斜視図
【符号の説明】
1 金属磁性層
2 非磁性基板
2a 鏡面
2b 梨地面
3 接着ガラス層
4 低融点ガラス
5 第一基板
6 第二基板
7 第三基板
8 磁気ギャップ面
9 巻線溝
10,11 コア半体
12 ギャップ材ガラス
13 ギャップ材低融点ガラス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic head suitable for efficiently recording and reproducing a high-frequency signal for a high-quality VTR, a digital VTR, and information equipment.
[0002]
[Prior art]
In recent years, with the increase in density of magnetic recording, a magnetic head is required to have a high saturation magnetic flux density, a narrow track, and the like. For the high saturation magnetic flux density, a metal magnetic material such as FeTaN or Co-based amorphous is used instead of the conventional ferrite and the like. For the narrow track, a magnetic core is formed by a vapor phase growth method such as sputtering or vapor deposition. A method of forming a magnetic layer is often used. However, a metal magnetic material having a narrow track has low mechanical strength and poor abrasion resistance. Therefore, in order to improve them, a structure in which both sides of a metal magnetic material are sandwiched between non-magnetic substrates is conventionally used. Used.
[0003]
FIG. 4 shows the structure of a conventional magnetic head (for example, see Patent Document 1).
[0004]
In FIG. 4, a structure in which both sides of a metal magnetic layer 1 are sandwiched between nonmagnetic substrates 2, and an adhesive glass layer 3 is interposed between the metal magnetic layer 1 and the nonmagnetic substrate 2. The surface of the non-magnetic substrate 2 on which the metal magnetic layer 1 and the adhesive glass layer 3 are formed has been mirror-finished.
[0005]
The joining of the left and right cores on the magnetic gap surface 8 is performed by fusing the low melting glass 13 formed on the SiO 2 glass 12 provided on the magnetic gap surface 8 and the low melting glass 4 provided on the winding groove 9. It is done by.
[0006]
Next, a method for manufacturing this head will be described. First, as shown in FIG. 5A, both surfaces (upper and lower surfaces in the figure) of the nonmagnetic substrate 2 are polished with diamond abrasive grains or the like. At this time, a mirror surface having a surface roughness Ra of 0.02 μm or less was obtained by using an abrasive having a particle size of 1 to 3 μm. Fine particles of crystallized glass were applied to one surface (the lower surface in the figure) of the nonmagnetic substrate 2 to a predetermined thickness, and baked at a relatively low temperature for a short time so that crystallization would not occur, thereby forming a solidified adhesive glass layer 3. A metal magnetic layer 1 is formed on one surface (upper surface shown) of a first substrate 5 and a non-magnetic substrate 2 having mirror-polished surfaces on both sides, and an adhesive glass layer is formed on the other surface (lower surface shown). Then, a second substrate 6 on which a metal magnetic layer 1 is formed and a metal magnetic layer 1 is formed on one surface (the upper surface in the drawing) of the non-magnetic substrate 2 having mirror-polished surfaces on both sides are produced. Next, as shown in FIG. 5B, the first substrate 5 and the third substrate 7 sandwich a stack of several (or several tens) second substrates 6 and heat-treat them under pressure. At this time, the bonding glass layer 3 is fused and the respective substrates are bonded to form a laminate block. Next, the laminate block is cut into a plate shape in the directions of arrows AB to produce core halves 10 and 11.
[0007]
Next, as shown in FIG. 6A, a winding groove 9 is provided on the magnetic gap surfaces 8 of the core halves 10 and 11, and after the magnetic gap surfaces 8 are polished smoothly, a thickness corresponding to the gap length is obtained. A glass 12 such as SiO2 and a non-magnetic layer of a low-melting glass 13 are formed by a sputtering method or the like. Then, the two core halves 10 and 11 are abutted on the magnetic gap surface 8 and subjected to heat treatment under pressure, so that the low melting glass 13 provided on the magnetic gap surface 8 and the low melting glass 4 already filled in the winding groove are formed. The two core halves 10 and 11 are joined by fusing to produce a gapped plate. Then, it is cut in the direction of arrow CD in the form of a gap bar.
[0008]
Next, the gap bar shown in FIG. 6B is cut in the direction of arrow EF so as to have a predetermined core width to obtain a head chip.
[0009]
[Patent Document 1]
JP 2001-67611 A
[Problems to be solved by the invention]
When the non-magnetic substrate 2 used in the conventional magnetic head described above is configured as a magnetic head, a ceramic material such as magnesium titanate is generally used in terms of machinability, strength, and wear resistance. Widely used. However, this substrate material has poor wettability of glass, and the processed surface is mirror-finished, so that the wettability is further deteriorated and the surface area of the joint is small, so that the adhesive strength is weak, and the laminate As shown in FIG. 7, peeling occurs at the interface between the adhesive glass layer 3 and the non-magnetic substrate 2 due to cutting processing from the block into a core half and a gap bar shape, polishing, heat treatment, and the like. There is a disadvantage that the yield is poor.
[0011]
Also, as described above, it is known that most of the peeling that occurs during cutting, polishing, or heat treatment occurs at the interface between the nonmagnetic substrate 2 and the adhesive glass layer 3.
[0012]
The present invention has been made in view of the above problems, and the object thereof is to improve the substrate surface in the above-described bonding, to draw out excellent adhesiveness, and to obtain high quality without peeling. The purpose is to enable a high yield to be achieved.
[0013]
[Means for Solving the Problems]
In order to solve this problem, the present invention has a mirror surface on one non-magnetic substrate surface on which the metal magnetic layer is formed, and the other non-magnetic substrate surface on which the adhesive glass layer is formed has an uneven surface, At this time, the surface roughness of the uneven surface is Ra 0.1 μm or more.
[0014]
Thereby, the wettability of the non-magnetic substrate surface on which the adhesive glass layer is formed is dramatically improved, and a sufficient adhesive area can be secured, so that the adhesive force between the non-magnetic substrate and the adhesive glass increases, and the peeling of the non-magnetic substrate increases. A magnetic head with no high quality and high yield can be obtained.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claims 1 and 2 of the present invention is a magnetic core in which both sides of a metal magnetic layer are sandwiched between nonmagnetic substrates, and one nonmagnetic substrate surface on which the metal magnetic layer is formed is a mirror surface. At the same time, the other non-magnetic substrate surface on which the adhesive glass layer is formed has an uneven surface, and the metal magnetic layer is generally formed by a vapor deposition method such as sputtering. If the surface roughness is relatively large, the characteristics are greatly deteriorated. Therefore, the non-magnetic substrate surface on which the metal magnetic layer is formed is mirror-finished so as not to be affected by these.
[0016]
On the other hand, on the non-magnetic substrate surface on which the adhesive glass layer is formed, fine particles made of crystallized glass are applied, so that the surface tension is large in a mirror surface state, and the adhesive glass is easily popped and the affinity is impaired, Sufficient adhesion is not achieved, and separation occurs at the interface between the non-magnetic substrate and the adhesive glass. However, by making the surface of the nonmagnetic substrate uneven, the surface tension is reduced, and the adhesive glass is not popped and the wettability is dramatically improved, so that the adhesive glass has a strong adhesive force.
[0017]
According to a third aspect of the present invention, the surface roughness of the surface of the non-magnetic substrate on which the adhesive glass layer is formed is Ra 0.1 μm or more, and the surface area of the joint of the surface of the non-magnetic substrate is significantly large. As a result, the adhesive strength is further improved, so that high quality and high yield can be realized without peeling off at the interface between the non-magnetic substrate and the adhesive glass.
[0018]
The invention according to claim 4 is a magnetic core in which both sides of a metal magnetic layer are sandwiched between non-magnetic substrates, and a step of performing mirror finishing on the non-magnetic substrate surface on which the metal magnetic layer is formed; On the non-magnetic substrate surface on which the adhesive glass layer is formed, a method for manufacturing a magnetic head having a step of performing an uneven surface process, wherein the non-magnetic substrate surface on which the metal magnetic layer is formed is polished, By obtaining a mirror surface of Ra 0.02 μm or less, the metal magnetic layer without deterioration of magnetic properties is formed.
[0019]
In addition, by obtaining a matte surface having a Ra of 0.1 μm or more by lapping the nonmagnetic substrate surface on which the adhesive glass layer is formed, the wettability of the nonmagnetic substrate surface is significantly improved, and Also has the effect that the surface area is significantly increased.
[0020]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
(Embodiment 1)
FIG. 1 shows a magnetic head according to an embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a pair of non-magnetic substrates. The surface of the non-magnetic substrate 2 on which the metal magnetic layer 1 is formed has a mirror surface 2a, and the non-magnetic substrate 2 on which the adhesive glass layer 3 is formed. The surface is provided with a matte surface 2b which is an uneven surface having a surface roughness Ra of 0.1 μm or more. In the present embodiment, the matte surface 2b is used as one type of the uneven surface, but any other shape may be used as long as the shape is uneven. Reference numeral 1 denotes a metal magnetic layer sandwiched between a pair of non-magnetic substrates 2, and 3 denotes an adhesive glass layer for bonding the metal magnetic layer 1 to one of the non-magnetic substrates 2. The magnetic core obtained by bonding with the adhesive glass layer 3 is independent as a left core and a right core on a surface substantially orthogonal to a surface where the above-described configurations are bonded to each other. Reference numeral 8 denotes a magnetic gap surface which is a joining surface of the left and right cores, 12 denotes SiO2 glass provided on the magnetic gap surface 8 of the left and right cores, 13 denotes a low melting point glass formed on the SiO2 glass 12, 9 denotes one magnetic core. Are the low melting point glass formed in the winding groove 9.
[0022]
The magnetic head of the present embodiment configured as described above has a structure in which both sides of the metal magnetic layer 1 are sandwiched between the nonmagnetic substrates 2, and the adhesive glass layer 3 is provided between the metal magnetic layer 1 and the nonmagnetic substrate 2. Is interposed. The surface of the nonmagnetic substrate 2 on which the metal magnetic layer 1 is formed has a mirror surface 2a, and the surface of the nonmagnetic substrate 2 on which the adhesive glass layer 3 is formed has a surface roughness Ra of 0.1 μm or more. A pear surface 2b is provided. The joining of the left and right cores on the magnetic gap surface 8 is performed by fusing the low melting glass 13 formed on the SiO 2 glass 12 provided on the magnetic gap surface 8 and the low melting glass 4 provided on the winding groove 9. It is done by.
[0023]
Next, a method for manufacturing this head will be described.
[0024]
First, as shown in FIG. 2A, in order to form the metal magnetic layer 1 on one side of the non-magnetic substrate 2 (for example, by sputtering), polishing is performed using diamond abrasive grains or the like. At this time, a mirror surface 2a having a surface roughness Ra of 0.02 μm or less is obtained by using an abrasive having a grain size of 1 to 3 μm. Here, one side of the non-magnetic substrate 2 is mirror-finished when a plurality of non-magnetic substrates 2 are laminated after the formation of the metal magnetic layer 1 or the like as shown in FIG. If the unevenness is present on the surface of the non-magnetic substrate 2 because the parallelism is increased or the metal magnetic layer 1 is a thin layer, the metal magnetic layer 1 also has an uneven shape and the reliability is reduced. Provided to prevent.
[0025]
Further, in order to form the adhesive glass layer 3 on the other surface of the non-magnetic substrate 2, a lapping process using green carbon random abrasives or the like is performed. At this time, a ground surface 2b having a surface roughness Ra of 0.1 μm or more is obtained by using abrasive particles having a grain size of # 5000 to # 500. Even if the surface of the non-magnetic substrate 2 on which the adhesive glass layer 3 is formed is the matte surface 2b, it is bonded to the matte surface 2b in a state where the glass is melted by applying a pressure heat treatment after lamination as shown in FIG. Since the adhesive glass layer 3 is at least thicker than the metal magnetic layer 1, the adhesive glass layer 3 is not deformed due to the uneven shape of the matte surface 2b, and the parallelism between the nonmagnetic substrates 2 is not impaired.
[0026]
Next, as shown in FIG. 2B, crystallized glass fine particles are applied to a predetermined thickness on the matte surface 2b of the non-magnetic substrate 2 and baked at a relatively low temperature for a short time so that crystallization does not occur. The first substrate 5a on which the solidified adhesive glass layer 3 is formed and the metal magnetic layer 1 are formed on the mirror surface 2a of the non-magnetic substrate 2 and adhered on the matte surface 2b in the same manner as described above. A second substrate 6a having the glass layer 3 formed thereon and a third substrate 7a having the metal magnetic layer 1 formed on the mirror surface 2a of the non-magnetic substrate 2 are produced.
[0027]
Next, as shown in FIG. 2C, the first substrate 5a and the third substrate 7a sandwich a stack of several (or several tens) second substrates 6a, and are subjected to pressure heat treatment. At this time, the bonding glass layer 3 is fused to produce a laminated block to which the respective substrates are bonded. Next, the laminate block is cut into a plate shape in the direction of arrows GH to produce core halves 10 and 11.
[0028]
Hereinafter, since it is the same method as the conventional one, it will be described with reference to FIGS. 6 (a) and 6 (b).
[0029]
First, as shown in FIG. 6A, a winding groove 9 is provided on the magnetic gap surfaces 8 of the core halves 10 and 11, and the magnetic gap surfaces 8 are polished smoothly. And the non-magnetic layer of the low-melting glass 13 are formed by sputtering or the like. Then, the two core halves 10 and 11 are abutted on the magnetic gap surface 8, and the low melting glass 13 provided on the magnetic gap surface and the low melting glass 4 already filled in the winding groove are fused to each other. The bodies 10 and 11 are joined to produce a gapped plate. Then, it is cut in the direction of arrow CD in the form of a gap bar.
[0030]
Next, as shown in FIG. 6B, the gapped bar is cut in the direction of arrow EF so as to have a predetermined core width, and the head chip 14 is obtained.
[0031]
Further, in order to examine the relationship between the surface roughness of the non-magnetic substrate 2 surface and the adhesive force, the first substrate in which the surface of the non-magnetic substrate on which the adhesive glass layer 3 is formed is matted and the surface roughness is variously changed. FIG. 3 shows the result of joining only the fifth substrate 7 and the third substrate 7 by heat treatment under pressure, cutting out the chip into a predetermined chip size and measuring the joint strength. As described above, there is not much change in the strength in terms of the surface roughness of the substrate surface up to Ra 0.05 μm, but the strength shows a tendency to increase when Ra is 0.1 μm or more. Is obtained.
[0032]
As described above, according to the present embodiment, the non-magnetic substrate 2 on which the adhesive glass layer 3 is formed has the matte surface 2b at the same time as having a surface roughness Ra of 0.1 μm or more. Since the surface tension of the surface of the magnetic substrate 2 is small, the wettability is dramatically improved, and the surface area of the joint is significantly increased, so that even if the adhesive glass layer 3 is formed, it has good affinity without popping. A magnetic head having a strong adhesive force can be obtained.
[0033]
【The invention's effect】
As described above, according to the present invention, the surface of the non-magnetic substrate on which the adhesive glass layer is formed is made to be uneven, and the surface roughness is set to Ra 0.1 μm or more. Since the surface tension is small, the wettability is dramatically improved, and the surface area of the joint is significantly increased, so that even if an adhesive glass is formed, a magnetic head with good affinity and good affinity can be obtained without popping. .
[0034]
Therefore, a high quality and high yield magnetic head free of peeling can be obtained even in cutting, lamination, heat treatment, and the like from the laminate block into a core half and a gapped bar shape.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing the structure of a magnetic head according to an embodiment of the present invention; FIG. 2 (a) is a perspective view illustrating a non-magnetic substrate surface of the embodiment; FIG. FIG. 3C is a perspective view showing a state in which a metal magnetic layer or an adhesive glass layer is formed on the surface of the non-magnetic substrate. FIG. 3C is a perspective view showing a laminate block of the embodiment. FIG. 4 is a schematic view showing the structure of a conventional magnetic head. FIG. 5 (a) is a perspective view showing a state in which a metal magnetic layer or an adhesive glass layer is formed on a conventional non-magnetic substrate surface. FIG. 6 (b) is a perspective view showing a conventional laminate block. FIG. 6 (a) is a perspective view for explaining a manufacturing method up to a gapped plate according to the conventional and the present embodiment. FIG. 7 is a perspective view for explaining a manufacturing method up to a head chip of FIG. Perspective view showing a peeling state of a conventional magnetic head [Description of symbols]
REFERENCE SIGNS LIST 1 metal magnetic layer 2 non-magnetic substrate 2 a mirror surface 2 b matte surface 3 adhesive glass layer 4 low melting point glass 5 first substrate 6 second substrate 7 third substrate 8 magnetic gap surface 9 winding groove 10, 11 core half body 12 gap material Glass 13 Gap material Low melting point glass

Claims (4)

金属磁性層の両側を非磁性基板で挟持した磁気コアを加工して得られる磁気ヘッドであって、前記金属磁性層が被着形成される一方の非磁性基板面が鏡面であるとともに、接着ガラス層が形成される他方の非磁性基板面は凹凸面としたことを特徴とする磁気ヘッド。A magnetic head obtained by processing a magnetic core in which both sides of a metal magnetic layer are sandwiched between nonmagnetic substrates, wherein one of the nonmagnetic substrate surfaces on which the metal magnetic layer is formed is a mirror surface and A magnetic head, characterized in that the surface of the other non-magnetic substrate on which the layer is formed is an uneven surface. 金属磁性層の両側を一対の非磁性基板で挟持した磁気コアを加工して得られる磁気ヘッドであって、前記金属磁性層と前記一対の非磁性基板のうち一方の非磁性基板とを接着する接着ガラス層と、前記一対の非磁性基板のうち一方の非磁性基板における前記金属磁性層が被着形成される第1の面と、前記一対の非磁性基板のうち他方の非磁性基板における前記接着ガラス層が形成される第2の面とを有し、
前記第1の面は鏡面であるとともに、前記第2の面は凹凸面としたことを特徴とする磁気ヘッド。
A magnetic head obtained by processing a magnetic core in which both sides of a metal magnetic layer are sandwiched between a pair of non-magnetic substrates, wherein the metal magnetic layer is bonded to one of the pair of non-magnetic substrates. An adhesive glass layer, a first surface of the one non-magnetic substrate of the pair of non-magnetic substrates on which the metal magnetic layer is formed, and a first surface of the other of the pair of non-magnetic substrates. A second surface on which an adhesive glass layer is formed,
The magnetic head according to claim 1, wherein the first surface is a mirror surface, and the second surface is an uneven surface.
接着ガラス層が形成される非磁性基板面の面粗度をRa0.1μm以上としたことを特徴とする請求項1及び2記載の磁気ヘッド。3. The magnetic head according to claim 1, wherein the surface roughness of the surface of the non-magnetic substrate on which the adhesive glass layer is formed is Ra 0.1 μm or more. 金属磁性層の両側を非磁性基板で挟持した磁気コアであって、前記金属磁性層が形成される前記非磁性基板面に鏡面加工を施す工程と、前記接着ガラス層が形成される前記非磁性基板面に凹凸面加工を施す工程とを有することを特徴とする磁気ヘッドの製造方法。A magnetic core having both sides of a metal magnetic layer sandwiched between non-magnetic substrates, wherein mirror-finish processing is performed on the non-magnetic substrate surface on which the metal magnetic layer is formed; and Subjecting the substrate surface to an uneven surface processing.
JP2002323447A 2002-11-07 2002-11-07 Magnetic head and manufacturing method of the same Pending JP2004158132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323447A JP2004158132A (en) 2002-11-07 2002-11-07 Magnetic head and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323447A JP2004158132A (en) 2002-11-07 2002-11-07 Magnetic head and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2004158132A true JP2004158132A (en) 2004-06-03

Family

ID=32803308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323447A Pending JP2004158132A (en) 2002-11-07 2002-11-07 Magnetic head and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2004158132A (en)

Similar Documents

Publication Publication Date Title
JP2004158132A (en) Magnetic head and manufacturing method of the same
JPS60231903A (en) Composite type magnetic head and its production
JP2000268311A (en) Magnetic head
JP2001067611A (en) Magnetic head
JP2002319106A (en) Method for manufacturing magnetic head
JPS62141609A (en) Manufacture of magnetic head
JP2004152407A (en) Magnetic head and its manufacturing method
JP2004326879A (en) Magnetic head and its manufacturing method
JPH0869609A (en) Magnetic head and its production
JPS62183012A (en) Magnetic head and its manufacture
JPH0744816A (en) Magnetic head
JPH07302408A (en) Magnetic head and its production
JP2005346751A (en) Method of manufacturing laminated magnetic head
JPH04221408A (en) Laminated magnetic head and its manufacture
JPH08203012A (en) Magnetic head device
JPH0646446B2 (en) Member for magnetic head core
JPH08138208A (en) Production of magnetic head
JPH06290411A (en) Magnetic head
JP2005327380A (en) Magnetic head and its manufacturing method
JPS6157024A (en) Manufacture of magnetic head
JPH04255902A (en) Magnetic head and manufacture thereof
JP2005025803A (en) Magnetic head, its manufacturing method, and magnetic recording/reproducing device using the magnetic head
JPH02132610A (en) Magnetic head
JPH0325709A (en) Production of magnetic head
JPH0827899B2 (en) Magnetic head and manufacturing method thereof