JP2004326879A - Magnetic head and its manufacturing method - Google Patents

Magnetic head and its manufacturing method Download PDF

Info

Publication number
JP2004326879A
JP2004326879A JP2003118254A JP2003118254A JP2004326879A JP 2004326879 A JP2004326879 A JP 2004326879A JP 2003118254 A JP2003118254 A JP 2003118254A JP 2003118254 A JP2003118254 A JP 2003118254A JP 2004326879 A JP2004326879 A JP 2004326879A
Authority
JP
Japan
Prior art keywords
protective film
magnetic
layer
glass
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118254A
Other languages
Japanese (ja)
Inventor
Tsutomu Moriwaki
力 森脇
Akihiro Ashida
晶弘 芦田
Osamu Kohama
修 小浜
Hiroshi Adachi
博史 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003118254A priority Critical patent/JP2004326879A/en
Publication of JP2004326879A publication Critical patent/JP2004326879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that peeling is caused at a boundary of a adhesion glass layer and a non-magnetic substrate, and a boundary of a protecting film and the adhesion glass layer due to a cutting process from a lamination body block to a core half body and a gaped bar type, grinding, heat treatment, or the like, and yield and work efficiency are reduced largely. <P>SOLUTION: As reducing reaction of the protecting film and the adhesion glass layer can be prevented by performing a reaction preventing material on a protecting film consisting of SiO<SB>2</SB>on a metal magnetic layer and forming the adhesion glass material or a Cr material as this reaction preventing material, stable crystal structure of the adhesion glass layer is obtained, adhesive force is improved remarkably. Thereby, as the strong lamination body block which can resist sufficiently for processing by cutting, grinding, heat treatment, or the like is formed, looseness and peeling of a junction part is not caused, a magnetic head having high quality and high processing yield is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高品位VTRやデジタルVTR及び、情報機器用等、高周波信号を効率よく記録再生するのに適した磁気ヘッドに関するものである。
【0002】
【従来の技術】
近年、磁気記録の高密度化に伴い、磁気ヘッドとして高飽和磁束密度、狭トラック化等が、要求されている。高飽和磁束密度に関しては、従来のフェライト等に変わって、FeTaN、Co系アモルファス等の金属磁性材料が用いられ、狭トラック化に関しては、スパッタリングや蒸着などの気相成長法により、磁気コアとなる磁性層を形成する手法が多く用いられている。しかしながら、金属磁性材料は、狭トラックにすると、機械的強度が弱く、また、耐摩耗性も悪くなるので、それらの向上のため、従来から金属磁性材料の両側を非磁性基板で挟持した構造にして用いられる。
【0003】
図6(a)および(b)に従来の磁気ヘッドの構造を示す(例えば特許文献1参照)。
【0004】
金属磁性層1の両側を非磁性基板2で挟持した構造で、金属磁性層1と非磁性基板2との間に接着ガラス層3が介在している。
【0005】
また、左右コアの磁気ギャップ面9での接合は、磁気ギャップ面9に設けたSiO2ガラス11の上に形成された低融点ガラス12と、巻線溝10に設けた低融点ガラス5の融着により行われている。
【0006】
次に、このヘッドの製造方法を示す。まず、図5(a)に示すように、非磁性基板2の片面に結晶化ガラスの微粒子を大気中にて、所定の厚みに塗布し、結晶化が起こらないよう比較的低温で短時間焼き付け、固形化させた接着ガラス層3を形成した第一基板6と、非磁性基板2の一方に金属磁性層1の上に形成されたSiO2等の保護膜4、他方には接着ガラス層3が形成された第二基板7と、非磁性基板2の一方に金属磁性層1の上に形成されたSiO2等の保護膜4を形成した第三基板8を作製する。次に図5(b)に示すように、第一基板6と第三基板8で、第二基板7を複数枚積み重ねたものを挟み、加圧熱処理する。この時、接着ガラス層3は融着し、各基板が接着され積層体ブロックが形成される。次に、この積層体ブロックを、矢印A−B方向にプレート状に切断し、コア半体13、14を作製する。
【0007】
次に、図4(a)に示すように、コア半体13、14の磁気ギャップ面9に巻線溝10を設け、磁気ギャップ面9を平滑に研磨した後、ギャップ長に応じた厚みのSiO2等のガラス11と、低融点ガラス12の非磁性層をスパッタリング法等で形成する。そして、両コア半体13、14を磁気ギャップ面9で突き合わせ、加圧熱処理することで、磁気ギャップ面9に設けた低融点ガラス12及び、巻線溝10中に既に充填された低融点ガラス5の融着により、両コア半体13、14を接合し、ギャップドプレートを作製する。その後、矢印C−D方向にギャップドバー状に切断する。
【0008】
次に、図4(b)に示すギャップドバーを矢印E−F方向に所定のコア幅になるように切断して、ヘッドチップを得る。
【0009】
【特許文献1】
特開2001−67611号公報
【0010】
【発明が解決しようとする課題】
以上、説明した従来の磁気ヘッドにおいては、金属磁性層1には一般的にアモルファス合金が広く用いられているが、このアモルファス合金は結晶化温度を有し、結晶化温度以上で熱処理を行うと、アモルファス状態から結晶化状態となり、その磁気特性は大きく劣化する。従ってガラス接着等の熱処理はその温度以下で行なわれなければならないので、軟化点の低い低融点Pbガラスが必要とされている。
【0011】
低融点Pbガラスは一般に機械的強度が小さいので、ヘッドにする際の加工に耐えることが難しく、そのため特に、アモルファス合金を用いた金属磁性層1の上に形成されたSiO2等の保護膜4と、非磁性基板2を接着する接着ガラス層3には、機械的強度が大きく、結晶化後の融点も上昇する低融点結晶化Pbガラスが多く用いられている。
【0012】
この接着ガラス層3は非磁性基板2の片面のみに大気中にて塗布、焼き付け処理し、複数枚積み重ねて加圧熱処理によって積層体ブロック状に形成するが、この時の加圧熱処理は、金属磁性層1の酸化を防ぐ目的で窒素雰囲気で行なわれている。そのため、保護膜4と、接着ガラス層3とで反応が生じ、接着ガラス層3のPbOが還元され、結晶化が不安定となり、結晶が上手く形成されず、接着力が大きく低下してしまう。
【0013】
このため、積層体ブロックからコア半体およびギャップドバー状への切断加工や、研磨、熱処理等によって、図3(a)に示すように、接着ガラス層3と非磁性基板2との界面や、図3(b)に示すように、接着ガラス層3と保護膜4との界面で、剥離が生じてしまい歩留まりや作業能率が大きく低下するという欠点があった。
【0014】
本発明は上記問題に鑑みてなされたものであり、その目的とするところは、上記のような積層接着において、保護膜4と、接着ガラス3との反応を防止することによって、優れた接着性を引き出し、剥離が生じない高品質、高歩留まりを図ることができるようにすることにある。
【0015】
【課題を解決するための手段】
この課題を解決するために本発明は、金属磁性層の両側を非磁性基板で挟持した構造の磁気コアであって、前記非磁性基板の一方に、前記金属磁性層を形成しその後、前記金属磁性層の上に保護膜を被着形成するとともに、前記非磁性基板の他方には、接着ガラス層が設けられた前記非磁性基板を複数枚積み重ねた積層体ブロックにおいて、前記金属磁性層の保護膜上に反応防止材が形成された構造の磁気ヘッドとしたものである。また、前記金属磁性層の保護膜上の反応防止材として前記接着ガラス材或いはCr材を形成するものである。これにより、前記金属磁性層上の保護膜と、接着ガラスとの還元反応が防止できるため、前記接着ガラスは安定した結晶状態が得られ、接着力は飛躍的に向上する。このことによって、切断、研磨、熱処理等による加工にも十分に耐え得る強固な積層体ブロックが形成されるので、接合部の緩みや剥離が生じなく加工歩留まりや作業能率は画期的に向上し、生産性の高い製造プロセスを実現し得るものである。
【0016】
【発明の実施の形態】
本発明の請求項1記載の発明は金属磁性層の両側を非磁性基板で挟持した構造の磁気コアであって、前記非磁性基板の一方に、前記金属磁性層を形成しその後、前記金属磁性層の上に保護膜を被着形成するとともに、前記非磁性基板の他方には、接着ガラス層が設けられた前記非磁性基板を複数枚積み重ねた積層体ブロックにおいて、前記金属磁性層の保護膜上に反応防止材が形成された構造の磁気ヘッドとしたものである。積層体ブロック状に積層接着する際、前記金属磁性層の酸化を防ぐため、窒素雰囲気で加圧熱処理が行われている。このため、前記金属磁性層上のSiO2等の保護膜と、前記接着ガラスとが反応して、前記接着ガラスのPbOが還元され、結晶化が不安定となり、本来の結晶構造が得られず接着力が大きく低下してしまう。従って、積層体ブロックからコア半体およびギャップドバー状への切断加工や、研磨、熱処理等によって接着ガラス層と、非磁性基板との界面や、前記金属磁性層の保護膜との界面で剥離が生じてしまう。よって、前記金属磁性層の保護膜上に前記接着ガラスとの反応を避けるため、反応防止材を形成している。この前記反応防止材を形成することによって、前記接着ガラスのPbOは還元されず、本来の結晶状態で積層接着が行われるので、接着力は飛躍的に向上し、接合部の緩みや剥離が生じない強い接着力を有するものである。
【0017】
請求項2に記載の発明は、非磁性基板の一方に、金属磁性層を形成しその後、前記金属磁性層の上に保護膜を被着形成するとともに、前記非磁性基板の他方には、接着ガラス層が設けられた前記非磁性基板を複数枚積み重ねた積層体ブロックにおいて、前記金属磁性層の保護膜上の反応防止材に、前記接着ガラス材を形成するものである。前記金属磁性層の保護膜上に形成する前記接着ガラス材は、前記非磁性基板の他方に形成する前記接着ガラス層と、同じ低融点結晶化Pbガラスであり、この時の形成方法も前記非磁性基板の他方に形成する前記接着ガラス層と同様に、大気中にて塗布、焼き付け処理によって形成する。大気中にて塗布、焼き付け処理されるため、前記保護膜上に塗布、焼き付けされた低融点結晶化Pbガラスから成る前記接着ガラス材と、前記保護膜との間には還元反応が生じることなく、前記接着ガラス材の主成分であるPbOがそのままの状態が保たれる。また、前記非磁性基板の他方にも、従来通り前記接着ガラス層を大気中にて塗布、焼き付け処理を行う。すなわち前記非磁性基板の両方の面に、前記接着ガラスが形成されることになる。この様な状態で、前記非磁性基板を複数枚積み重ねて窒素雰囲気にて加圧熱処理し、積層体ブロックに形成することで、前記接着ガラスは安定した結晶状態が得られるので、接着力は飛躍的に向上し、接合部の緩みや剥離が生じない強い接着力を有するものである。
【0018】
請求項3に記載の発明は、非磁性基板の一方に、金属磁性層を形成しその後、前記金属磁性層の上に保護膜を被着形成するとともに、前記非磁性基板の他方には、接着ガラス層が設けられた前記非磁性基板を複数枚積み重ねた積層体ブロックにおいて、前記金属磁性層の保護膜上の反応防止材に、Cr材を形成するものである。一般的にCr材はガラス材等の反応防止や、濡れ性が良好なため、この様な磁気ヘッドにおいても従来から、巻線溝等に低融点ガラスを充填する際の下地膜として広く用いられている。このCr材を前記保護膜上にも形成することで、窒素雰囲気での加圧熱処理が行われても、SiO2等の保護膜から酸素が吸収されないため、前記接着ガラス層は安定した結晶状態で接着に至る。従って、接着力は飛躍的に向上し、接合部の緩みや剥離が生じない強い接着力を有するものである。
【0019】
また、積層接着後の接着力の関係をみるため、前記保護膜上に前記接着ガラス材を大気中にて塗布、焼き付したもの或いはCr材を形成したものを、窒素雰囲気にて加圧熱処理し、所定のチップサイズに切り出して、その接合強度を測定した結果を図7に示す。
【0020】
なお、比較するため、前記保護膜上に反応防止材を施さない従来仕様品も測定するとともに、各検討品に対して、強度分布も併せてみるため、積層接着されたプレート状から左部(L)、右部(R)および中央部(C)に分けて測定、評価した(図7参照)。
【0021】
前記保護膜上に反応防止材を施していない接合強度は、140g以下と全体的に弱くなっているが、保護膜上に接着ガラス材やCr材を形成した接合強度は、反応防止材無品に比べ3倍以上の450g以上の強度が得られている。
【0022】
請求項4に記載の発明は、金属磁性層の両側を非磁性基板で挟持した構造の磁気コアであって、前記非磁性基板の一方に前記金属磁性層を形成するとともに、前記金属磁性層の上に保護膜を形成する工程と、前記保護膜上に接着ガラス材或いはCr材を形成する工程と、前記非磁性基板の他方に接着ガラスを塗布、焼き付けする工程と、前記非磁性基板を複数枚積み重ねて加圧熱処理を施し、積層体ブロックに形成する工程を有する磁気ヘッドの製造方法としたものであり、前記保護膜上に前記接着ガラス層と同一の接着ガラス材を大気中にて塗布、焼き付け処理した反応防止材を形成する或いは、Cr材を形成することによって、前記非磁性基板を複数枚積み重ねて窒素雰囲気で、加圧熱処理した状態で積層体ブロックが形成されても、前記保護膜と前記接着ガラス層との間には反応が生じないため、前記接着ガラス層は安定した結晶構造が得られることになる。このため、接着力は飛躍的に向上し、接合部の緩みや剥離が生じない強い接着力が得られるという作用を有する。
【0023】
(実施の形態1)
本発明の実施形態に係る磁気ヘッドを図1(a)および(b)に示す。金属磁性層1の両側を非磁性基板2で挟持した構造で、金属磁性層1上にSiO2から成る保護膜4、更にその上には反応防止材15として、接着ガラス材或いはCr材と、非磁性基板2との間に接着ガラス層3が介在している。また、左右コアの磁気ギャップ面9での接合は、磁気ギャップ面9に設けたSiO2ガラス11の上に形成された低融点ガラス12と、巻線溝10に設けた低融点ガラス5の融着により行われている。
【0024】
次に、このヘッドの製造方法を示す。
【0025】
まず、図2(a)に示すように、非磁性基板2の一方に低融点結晶化Pbガラスの微粉末を所定の厚みに塗布する。この時の厚みは非磁性基板2のソリ、タワミや金属磁性層1等の厚みバラツキを考慮すると、1μm〜5μmが必要であり、ここでは2〜4μm塗布し、結晶化が起こらないよう比較的低温で短時間焼き付け、固形化させた接着ガラス層3を形成した第一基板6aを得る。
【0026】
次に、非磁性基板2の一方に金属磁性層1と、その上にSiO2から成る保護膜4をスパッタリング法等によって形成し、更にその上には反応防止材15を形成するが、ここで反応防止材15として接着ガラス材を形成する場合、接着ガラス層3のト−タル厚みは2〜4μmとしていることから、その半分の1〜2μmを塗布し、大気中にて比較的低温、短時間で焼き付けを行うとともに、非磁性基板2の他方には接着ガラス層3を残り半分の1〜2μmを塗布、焼き付けした第二基板7aを得る。なお、反応防止材15としてCr材を形成する場合、Cr材はスパッタリング法等によって0.1μm〜0.5μmの厚みで形成するので、非磁性基板の他方に形成する接着ガラス層3は2〜4μmを形成することになる。
【0027】
次に、非磁性基板2の一方に、金属磁性層1と、その上にSiO2から成る保護膜4と、更にその上に反応防止材15として接着ガラス或いはCr材を形成した第三基板8aを作製する。
【0028】
次に、図2(b)のように、第一基板6aと第三基板8aで、第二基板7aを複数枚積み重ねたものを挟み、加圧熱処理する。この時、保護膜4上に反応防止材15として形成された接着ガラスや、接着ガラス層3は融着し、各基板が接着され積層体ブロックが形成される。
【0029】
また、保護膜4上に反応防止材15としてCr材を形成する場合でもCr材は、保護膜4との付着強度が強く且つ、接着ガラス層3とのガラス濡れ性が良いので、接着ガラスと同様、強固な積層体ブロックが形成される。
【0030】
次に、この積層体ブロックを、矢印G−H方向にプレート状に切断し、コア半体13、14を作製する。
【0031】
以下、従来のものと同じ方法であるので、図4(a)、図4(b)を用いて説明する。まず、図4(a)に示すように、コア半体13、14の磁気ギャップ面9に巻線溝10を設け、磁気ギャップ面9を平滑に研磨した後、ギャップ長に応じた厚みのSiO2等のガラス11と、低融点ガラス12の非磁性層をスパッタリング法等で形成する。そして、両コア半体13、14を磁気ギャップ面9で突き合わせ、加圧熱処理することで、磁気ギャップ面9に設けた低融点ガラス12及び、巻線溝10中に既に充填された低融点ガラス5の融着により、両コア半体13、14を接合し、ギャップドプレートを作製する。その後、矢印C−D方向にギャップドバー状に切断する。
【0032】
次に、図4(b)に示すギャップドバーを矢印E−F方向に所定のコア幅になるように切断して、ヘッドチップを得る。
【0033】
また、積層接着後の接着力の関係をみるため、保護膜4上に反応防止剤15として接着ガラス材を大気中にて塗布、焼き付したもの或いはCr材を形成したものを、窒素雰囲気にて加圧熱処理し、所定のチップサイズに切り出して、その接合強度を測定した結果を図7に示す。
【0034】
なお、比較するため、保護膜4上に反応防止材15を施さない従来仕様品も測定するとともに、各検討品に対して、強度分布も併せてみるため、積層接着されたプレート状から左部(L)、右部(R)および中央部(C)に分けて測定、評価した。
【0035】
以上のように本実施の形態によれば、保護膜4上に反応防止材15として接着ガラス材或いはCr材を形成することで、SiO2から成る保護膜4と、接着ガラス層3との還元反応が防止できるため、接着ガラス層3は安定した結晶構造が得られ、接着力は飛躍的に向上する。このような効果によって、切断、研磨、熱処理等による加工にも十分耐え得る強固な積層体ブロックが形成されるので、接合部の緩みや剥離が生じなく、加工歩留まりや作業能率は画期的に向上し、生産性の高い製造プロセスが実現した。
【0036】
【発明の効果】
以上説明したように本発明によると、非磁性基板の一方に、金属磁性層を形成しその後、金属磁性層の上に保護膜を被着形成するとともに、非磁性基板の他方には、接着ガラス層が設けられた非磁性基板を複数枚積み重ねた積層体ブロックにおいて、保護膜上に反応防止材として接着ガラス材或いはCr材を形成することで、SiO2から成る保護膜と、接着ガラス層との還元反応が防止できるため、接着ガラス層は安定した結晶構造が得られ、接着力は飛躍的に向上する。このような効果によって、切断、研磨、熱処理等による加工にも十分耐え得る強固な積層体ブロックが形成されるので、接合部の緩みや剥離が生じなく、加工歩留まりや作業能率は画期的に向上し、生産性の高い製造プロセスが実現した。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態の磁気ヘッドの構造を表す斜視図
(b)同実施の形態の磁気ヘッドのテ−プ摺動面を表す拡大図
【図2】(a)同実施の形態の非磁性基板面に金属磁性層や接着ガラス層を形成した様子を表す斜視図
(b)同実施の形態の積層体ブロックを表す斜視図
【図3】(a)従来の磁気ヘッドの剥離状態を表す斜視図
(b)従来の磁気ヘッドの剥離状態を表す斜視図
【図4】(a)従来および本発明のギャップドプレートまでの製造方法を説明するための斜視図
(b)従来および本発明のヘッドチップに至るまでの製造方法を説明するための斜視図
【図5】(a)従来の非磁性基板面に金属磁性層や接着ガラス層を形成した様子を表す斜視図
(b)従来の積層体ブロックを表す斜視図
【図6】(a)従来の磁気ヘッドの構造を表す斜視図
(b)従来の磁気ヘッドのテ−プ摺動面を表す拡大図
【図7】同実施の形態における保護膜上の反応防止による接合強度を示す特性図
【符号の説明】
1 金属磁性層
2 非磁性基板
3 接着ガラス層
4 保護膜
5 低融点ガラス
6 6a第一基板
7 7a第二基板
8 8a第三基板
9 磁気ギャップ面
10 巻線溝
11 SiO2ガラス
12 低融点ガラス
13 コア半体
14 コア半体
15 反応防止材接着ガラス材
16 反応防止材Cr材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic head suitable for efficiently recording and reproducing a high-frequency signal for a high-quality VTR, a digital VTR, and information equipment.
[0002]
[Prior art]
In recent years, with the increase in density of magnetic recording, a magnetic head is required to have a high saturation magnetic flux density, a narrow track, and the like. For the high saturation magnetic flux density, a metal magnetic material such as FeTaN or Co-based amorphous is used instead of the conventional ferrite or the like. For the narrow track, a magnetic core is formed by a vapor growth method such as sputtering or vapor deposition. A method of forming a magnetic layer is often used. However, a metal magnetic material having a narrow track has low mechanical strength and poor abrasion resistance. Therefore, in order to improve them, a structure in which both sides of a metal magnetic material are sandwiched between non-magnetic substrates is conventionally used. Used.
[0003]
FIGS. 6A and 6B show the structure of a conventional magnetic head (for example, see Patent Document 1).
[0004]
A structure in which both sides of a metal magnetic layer 1 are sandwiched between nonmagnetic substrates 2, and an adhesive glass layer 3 is interposed between the metal magnetic layer 1 and the nonmagnetic substrate 2.
[0005]
The joining of the left and right cores on the magnetic gap surface 9 is performed by fusing the low melting glass 12 formed on the SiO 2 glass 11 provided on the magnetic gap surface 9 and the low melting glass 5 provided on the winding groove 10. It is done by.
[0006]
Next, a method for manufacturing this head will be described. First, as shown in FIG. 5 (a), fine particles of crystallized glass are applied to one surface of the non-magnetic substrate 2 in air at a predetermined thickness, and baked at a relatively low temperature for a short time so that crystallization does not occur. A first substrate 6 on which a solidified adhesive glass layer 3 is formed, a protective film 4 such as SiO2 formed on the metal magnetic layer 1 on one of the nonmagnetic substrates 2, and an adhesive glass layer 3 on the other. The second substrate 7 thus formed and the third substrate 8 in which the protective film 4 such as SiO 2 formed on the metal magnetic layer 1 is formed on one of the non-magnetic substrates 2 are manufactured. Next, as shown in FIG. 5B, the first substrate 6 and the third substrate 8 sandwich a stack of a plurality of the second substrates 7 and heat-treat under pressure. At this time, the bonding glass layer 3 is fused and the respective substrates are bonded to form a laminate block. Next, the laminated body block is cut into a plate shape in the direction of arrow AB to produce core halves 13 and 14.
[0007]
Next, as shown in FIG. 4A, a winding groove 10 is provided on the magnetic gap surfaces 9 of the core halves 13 and 14, and after the magnetic gap surfaces 9 are polished smoothly, a thickness corresponding to the gap length is obtained. A nonmagnetic layer of a glass 11 such as SiO2 and a low-melting glass 12 is formed by a sputtering method or the like. Then, the two core halves 13 and 14 are abutted on the magnetic gap surface 9 and subjected to heat treatment under pressure, so that the low melting glass 12 provided on the magnetic gap surface 9 and the low melting glass already filled in the winding groove 10 are formed. By fusing 5, both core halves 13 and 14 are joined to produce a gapped plate. Then, it cut | disconnects in the direction of arrow CD into a gapped bar shape.
[0008]
Next, the gap bar shown in FIG. 4B is cut in the direction of arrow EF so as to have a predetermined core width to obtain a head chip.
[0009]
[Patent Document 1]
JP 2001-67611 A
[Problems to be solved by the invention]
In the conventional magnetic head described above, an amorphous alloy is generally widely used for the metal magnetic layer 1. However, this amorphous alloy has a crystallization temperature, and when the amorphous alloy is subjected to a heat treatment at the crystallization temperature or higher. The state changes from an amorphous state to a crystallized state, and its magnetic properties are greatly deteriorated. Therefore, since heat treatment such as glass bonding must be performed at a temperature lower than that temperature, low melting point Pb glass having a low softening point is required.
[0011]
Since low-melting Pb glass generally has a low mechanical strength, it is difficult to withstand the processing at the time of forming a head. Therefore, in particular, the protection film 4 such as SiO2 formed on the metal magnetic layer 1 using an amorphous alloy and For the bonding glass layer 3 for bonding the non-magnetic substrate 2, low melting point crystallized Pb glass having high mechanical strength and increasing the melting point after crystallization is often used.
[0012]
The adhesive glass layer 3 is applied and baked on only one surface of the non-magnetic substrate 2 in the air, and a plurality of sheets are stacked and formed into a laminate block shape by pressure heat treatment. This is performed in a nitrogen atmosphere for the purpose of preventing oxidation of the magnetic layer 1. For this reason, a reaction occurs between the protective film 4 and the bonding glass layer 3, PbO of the bonding glass layer 3 is reduced, crystallization becomes unstable, crystals are not formed well, and the bonding strength is greatly reduced.
[0013]
For this reason, as shown in FIG. 3A, the interface between the adhesive glass layer 3 and the non-magnetic substrate 2, As shown in FIG. 3B, at the interface between the adhesive glass layer 3 and the protective film 4, there is a defect that peeling occurs and the yield and work efficiency are greatly reduced.
[0014]
The present invention has been made in view of the above problems, and an object of the present invention is to prevent a reaction between the protective film 4 and the bonding glass 3 in the above-described lamination bonding, thereby achieving excellent adhesion. It is intended to achieve high quality and high yield without peeling.
[0015]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a magnetic core having a structure in which both sides of a metal magnetic layer are sandwiched between nonmagnetic substrates, wherein the metal magnetic layer is formed on one of the nonmagnetic substrates, and then the metal magnetic layer is formed. A protective film is formed on the magnetic layer, and the other of the non-magnetic substrates is a laminate block in which a plurality of the non-magnetic substrates provided with an adhesive glass layer are stacked. This is a magnetic head having a structure in which a reaction preventing material is formed on a film. Further, the adhesive glass material or the Cr material is formed as a reaction preventing material on the protective film of the metal magnetic layer. Thereby, since a reduction reaction between the protective film on the metal magnetic layer and the adhesive glass can be prevented, a stable crystalline state of the adhesive glass is obtained, and the adhesive strength is dramatically improved. As a result, a strong laminate block which can sufficiently withstand processing by cutting, polishing, heat treatment, etc. is formed, so that looseness or peeling of the joint does not occur, and the processing yield and work efficiency are dramatically improved. Thus, a highly productive manufacturing process can be realized.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is a magnetic core having a structure in which both sides of a metal magnetic layer are sandwiched between nonmagnetic substrates, wherein the metal magnetic layer is formed on one of the nonmagnetic substrates, and then the metal magnetic layer is formed. A protective film is formed on the metal magnetic layer in a laminated block in which a plurality of the nonmagnetic substrates provided with an adhesive glass layer are stacked on the other of the nonmagnetic substrates. This is a magnetic head having a structure in which a reaction preventing material is formed thereon. When laminating and bonding in a laminated block shape, pressurized heat treatment is performed in a nitrogen atmosphere to prevent oxidation of the metal magnetic layer. For this reason, the protective film such as SiO2 on the metal magnetic layer reacts with the adhesive glass, PbO of the adhesive glass is reduced, the crystallization becomes unstable, and the original crystal structure is not obtained, and the adhesion is reduced. The power is greatly reduced. Therefore, the lamination block is cut into a core half and a gapped bar shape, or is peeled off at the interface between the adhesive glass layer and the non-magnetic substrate or the interface between the metal magnetic layer and the protective film by polishing, heat treatment, or the like. Will happen. Therefore, a reaction preventing material is formed on the protective film of the metal magnetic layer in order to avoid a reaction with the adhesive glass. By forming the reaction preventive material, PbO of the adhesive glass is not reduced, and lamination bonding is performed in an original crystalline state. Therefore, the bonding force is significantly improved, and loosening or peeling of a joint occurs. Has no strong adhesive strength.
[0017]
According to a second aspect of the present invention, a metal magnetic layer is formed on one of the non-magnetic substrates, and then a protective film is formed on the metal magnetic layer, and an adhesive is formed on the other of the non-magnetic substrates. In the laminate block in which a plurality of the nonmagnetic substrates provided with the glass layers are stacked, the adhesive glass material is formed on the reaction preventing material on the protective film of the metal magnetic layer. The adhesive glass material formed on the protective film of the metal magnetic layer is the same low melting point crystallized Pb glass as the adhesive glass layer formed on the other of the non-magnetic substrates. Like the adhesive glass layer formed on the other side of the magnetic substrate, it is formed by applying and baking in air. Since the coating and baking treatment is performed in the air, a reduction reaction does not occur between the bonding glass material made of the low melting point crystallized Pb glass coated and baked on the protective film and the protective film. Thus, PbO, which is a main component of the adhesive glass material, is kept as it is. Further, the adhesive glass layer is applied and baked in the air on the other side of the non-magnetic substrate as in the related art. That is, the adhesive glass is formed on both surfaces of the non-magnetic substrate. In such a state, a plurality of the non-magnetic substrates are stacked and heat-treated under pressure in a nitrogen atmosphere to form a laminated block, whereby a stable crystalline state is obtained in the adhesive glass, so that the adhesive force is greatly increased. It has a strong adhesive strength that does not cause loosening or peeling of the joints.
[0018]
According to a third aspect of the present invention, a metal magnetic layer is formed on one of the nonmagnetic substrates, and then a protective film is formed on the metal magnetic layer, and an adhesive is formed on the other of the nonmagnetic substrates. In a laminated block in which a plurality of the nonmagnetic substrates provided with a glass layer are stacked, a Cr material is formed as a reaction preventing material on a protective film of the metal magnetic layer. In general, a Cr material has been widely used as a base film when filling a winding groove or the like with a low melting point glass even in such a magnetic head because a Cr material has good reaction prevention and good wettability of a glass material. ing. By forming this Cr material also on the protective film, even if pressure heat treatment is performed in a nitrogen atmosphere, oxygen is not absorbed from the protective film such as SiO 2, so that the adhesive glass layer has a stable crystalline state. Leads to bonding. Therefore, the adhesive strength is dramatically improved, and the adhesive has a strong adhesive strength that does not cause loosening or peeling of the joint.
[0019]
Further, in order to see the relationship of the adhesive force after lamination, the adhesive glass material applied and baked on the protective film in the air or the Cr material formed thereon was subjected to a pressure heat treatment in a nitrogen atmosphere. FIG. 7 shows a result obtained by cutting out a chip having a predetermined size and measuring the bonding strength.
[0020]
For comparison, a conventional product having no reaction-preventing material on the protective film was also measured, and for each of the tested products, the strength distribution was also examined. L), the right part (R) and the central part (C) were measured and evaluated (see FIG. 7).
[0021]
The bonding strength without the reaction preventing material on the protective film is 140 g or less, which is generally weak. However, the bonding strength with the adhesive glass material or the Cr material formed on the protective film is unreacted. The strength of 450 g or more, which is three times or more as compared with the above, is obtained.
[0022]
The invention according to claim 4 is a magnetic core having a structure in which both sides of a metal magnetic layer are sandwiched between nonmagnetic substrates, wherein the metal magnetic layer is formed on one of the nonmagnetic substrates, Forming a protective film on the protective film, forming an adhesive glass material or a Cr material on the protective film, applying and baking adhesive glass to the other of the non-magnetic substrates; A method of manufacturing a magnetic head, comprising stacking a plurality of sheets and performing a pressure heat treatment to form a laminated block, and applying the same adhesive glass material as the adhesive glass layer on the protective film in the air. By forming a baking-treated reaction preventing material or by forming a Cr material, even if the laminate block is formed in a state where a plurality of the non-magnetic substrates are stacked and subjected to a pressure heat treatment in a nitrogen atmosphere, Since the reaction between the protective film and the adhesive glass layer does not occur, the adhesive glass layer will be stable crystal structure is obtained. For this reason, the adhesive strength is dramatically improved, and has the effect of obtaining a strong adhesive strength without loosening or peeling of the joint.
[0023]
(Embodiment 1)
1A and 1B show a magnetic head according to an embodiment of the present invention. It has a structure in which both sides of a metal magnetic layer 1 are sandwiched between non-magnetic substrates 2. A protective film 4 made of SiO 2 is formed on the metal magnetic layer 1, and a reaction preventing material 15 is further formed on the protective film 4. Adhesive glass layer 3 is interposed between magnetic substrate 2. The joining of the left and right cores on the magnetic gap surface 9 is performed by fusing the low melting glass 12 formed on the SiO 2 glass 11 provided on the magnetic gap surface 9 and the low melting glass 5 provided on the winding groove 10. It is done by.
[0024]
Next, a method for manufacturing this head will be described.
[0025]
First, as shown in FIG. 2A, fine powder of low-melting-point crystallized Pb glass is applied to one side of the nonmagnetic substrate 2 to a predetermined thickness. The thickness at this time is required to be 1 μm to 5 μm in consideration of the warpage of the non-magnetic substrate 2, the deflection of the metal magnetic layer 1, and the like. A first substrate 6a having the adhesive glass layer 3 solidified by baking at a low temperature for a short time is obtained.
[0026]
Next, a metal magnetic layer 1 is formed on one side of the non-magnetic substrate 2 and a protective film 4 made of SiO2 is formed thereon by a sputtering method or the like, and a reaction preventing material 15 is further formed thereon. When the adhesive glass material is formed as the preventive material 15, since the total thickness of the adhesive glass layer 3 is 2 to 4 μm, a half of the total thickness of 1 to 2 μm is applied, and a relatively low temperature and a short time are applied in the air. Is performed, and the other half of the nonmagnetic substrate 2 is coated with the remaining half of the adhesive glass layer 3 having a thickness of 1 to 2 μm, and the second substrate 7a is baked. When a Cr material is formed as the reaction preventing material 15, the Cr material is formed to a thickness of 0.1 μm to 0.5 μm by a sputtering method or the like. 4 μm will be formed.
[0027]
Next, on one of the non-magnetic substrates 2, a metal magnetic layer 1, a protective film 4 made of SiO2 thereon, and a third substrate 8a on which an adhesive glass or a Cr material is formed as a reaction preventing material 15 thereon. Make it.
[0028]
Next, as shown in FIG. 2B, the first substrate 6a and the third substrate 8a sandwich a stack of a plurality of second substrates 7a, and are subjected to pressure heat treatment. At this time, the adhesive glass or the adhesive glass layer 3 formed as the reaction preventing material 15 on the protective film 4 is fused and the respective substrates are adhered to form a laminate block.
[0029]
Further, even when a Cr material is formed as the reaction preventing material 15 on the protective film 4, the Cr material has a high adhesion strength to the protective film 4 and a good glass wettability with the adhesive glass layer 3, so that the Cr material is Similarly, a strong laminate block is formed.
[0030]
Next, the laminate block is cut into a plate shape in the direction of arrows GH to produce core halves 13 and 14.
[0031]
Hereinafter, since it is the same method as the conventional one, it will be described with reference to FIGS. 4 (a) and 4 (b). First, as shown in FIG. 4A, a winding groove 10 is provided on the magnetic gap surfaces 9 of the core halves 13 and 14, and the magnetic gap surfaces 9 are polished smoothly, and then SiO2 having a thickness corresponding to the gap length is obtained. The non-magnetic layer of the glass 11 and the low melting point glass 12 is formed by a sputtering method or the like. Then, the two core halves 13 and 14 are abutted on the magnetic gap surface 9 and subjected to heat treatment under pressure, so that the low melting glass 12 provided on the magnetic gap surface 9 and the low melting glass already filled in the winding groove 10 are formed. By fusing 5, both core halves 13 and 14 are joined to produce a gapped plate. Then, it cut | disconnects in the direction of arrow CD into a gapped bar shape.
[0032]
Next, the gap bar shown in FIG. 4B is cut in the direction of arrow EF so as to have a predetermined core width to obtain a head chip.
[0033]
Further, in order to examine the relationship between the adhesive strengths after the lamination bonding, an adhesive glass material applied and baked in the air as a reaction inhibitor 15 on the protective film 4 or a Cr material formed thereon was placed in a nitrogen atmosphere. FIG. 7 shows the results of measuring the bonding strength by cutting out a chip having a predetermined size.
[0034]
For comparison, a conventional product without the reaction preventing material 15 on the protective film 4 was also measured, and the strength distribution was also examined for each of the products under consideration. (L), right part (R) and central part (C) were measured and evaluated.
[0035]
As described above, according to the present embodiment, by forming the adhesive glass material or the Cr material as the reaction preventing material 15 on the protective film 4, the reduction reaction between the protective film 4 made of SiO 2 and the adhesive glass layer 3 is performed. Therefore, a stable crystal structure can be obtained in the bonding glass layer 3, and the bonding strength is dramatically improved. By such an effect, a strong laminate block that can withstand processing such as cutting, polishing, heat treatment, etc. is formed, so that loosening or peeling of the joint does not occur, and the processing yield and work efficiency are dramatically improved. An improved and productive manufacturing process has been realized.
[0036]
【The invention's effect】
As described above, according to the present invention, a metal magnetic layer is formed on one of the nonmagnetic substrates, and then a protective film is formed on the metal magnetic layer, and an adhesive glass is formed on the other of the nonmagnetic substrates. In a laminated block in which a plurality of non-magnetic substrates provided with layers are stacked, an adhesive glass material or a Cr material is formed as a reaction preventing material on the protective film, so that a protective film made of SiO2 and an adhesive glass layer are formed. Since a reduction reaction can be prevented, a stable crystal structure is obtained in the adhesive glass layer, and the adhesive strength is dramatically improved. By such an effect, a strong laminate block that can withstand processing such as cutting, polishing, heat treatment, etc. is formed, so that loosening or peeling of the joint does not occur, and the processing yield and work efficiency are dramatically improved. An improved and productive manufacturing process has been realized.
[Brief description of the drawings]
FIG. 1A is a perspective view showing a structure of a magnetic head according to an embodiment of the present invention; FIG. 2B is an enlarged view showing a tape sliding surface of the magnetic head according to the embodiment; FIG. 3B is a perspective view illustrating a state in which a metal magnetic layer or an adhesive glass layer is formed on the surface of the non-magnetic substrate according to the embodiment. FIG. 3B is a perspective view illustrating a laminated block according to the embodiment. FIG. 4 (a) is a perspective view showing a peeled state of a conventional magnetic head. FIG. 4 (a) is a perspective view showing a manufacturing method up to a gap plate according to the related art and the present invention. FIG. 5 (a) is a perspective view showing a state in which a metal magnetic layer or an adhesive glass layer is formed on a conventional non-magnetic substrate surface. FIG. 6 (b) is a perspective view showing a conventional laminated block. FIG. 6 (a) is a conventional magnetic head. FIG. 7B is an enlarged view showing a tape sliding surface of a conventional magnetic head. FIG. 7 is a characteristic view showing bonding strength by preventing a reaction on a protective film in the embodiment. ]
DESCRIPTION OF SYMBOLS 1 Metal magnetic layer 2 Nonmagnetic substrate 3 Adhesive glass layer 4 Protective film 5 Low melting glass 6 6a First substrate 7 7a Second substrate 8 8a Third substrate 9 Magnetic gap surface 10 Winding groove 11 SiO2 glass 12 Low melting glass 13 Core half 14 Core half 15 Reaction prevention material Adhesive glass material 16 Reaction prevention material Cr material

Claims (4)

金属磁性層の両側を非磁性基板で挟持した構造の磁気コアであって、前記非磁性基板の一方に、前記金属磁性層を形成しその後、前記金属磁性層の上に保護膜を被着形成するとともに、前記非磁性基板の他方には、接着ガラス層が設けられた前記非磁性基板を複数枚積み重ねた積層体ブロックにおいて、前記金属磁性層の保護膜上に反応防止材が形成された構造の磁気ヘッド。A magnetic core having a structure in which both sides of a metal magnetic layer are sandwiched between nonmagnetic substrates, wherein the metal magnetic layer is formed on one of the nonmagnetic substrates, and then a protective film is formed on the metal magnetic layer. And a structure in which a reaction preventing material is formed on a protective film of the metal magnetic layer in a laminate block in which a plurality of the nonmagnetic substrates provided with an adhesive glass layer are stacked on the other of the nonmagnetic substrates. Magnetic head. 前記金属磁性層の保護膜上の反応防止材に前記接着ガラス材を形成した請求項1記載の磁気ヘッド。2. The magnetic head according to claim 1, wherein the adhesive glass material is formed on the reaction preventing material on the protective film of the metal magnetic layer. 前記金属磁性層の保護膜上の反応防止材にCr材を被着形成した請求項1記載の磁気ヘッド。2. The magnetic head according to claim 1, wherein a Cr material is applied to the reaction preventing material on the protective film of the metal magnetic layer. 金属磁性層の両側を非磁性基板で挟持した構造の磁気コアであって、前記非磁性基板の一方に前記金属磁性層を形成するとともに、前記金属磁性層の上に保護膜を形成する工程と、前記保護膜上に接着ガラス材或いはCr材を形成する工程と、前記非磁性基板の他方に接着ガラスを塗布、焼き付けする工程と、前記非磁性基板を複数枚積み重ねて加圧熱処理を施し、積層体ブロックに形成する工程を有する磁気ヘッドの製造方法。A magnetic core having a structure in which both sides of the metal magnetic layer are sandwiched between nonmagnetic substrates, wherein the metal magnetic layer is formed on one of the nonmagnetic substrates, and a protective film is formed on the metal magnetic layer. Forming an adhesive glass material or a Cr material on the protective film, applying an adhesive glass to the other of the non-magnetic substrates, and baking; stacking a plurality of the non-magnetic substrates and performing a pressure heat treatment; A method of manufacturing a magnetic head, comprising a step of forming a laminated block.
JP2003118254A 2003-04-23 2003-04-23 Magnetic head and its manufacturing method Pending JP2004326879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118254A JP2004326879A (en) 2003-04-23 2003-04-23 Magnetic head and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118254A JP2004326879A (en) 2003-04-23 2003-04-23 Magnetic head and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004326879A true JP2004326879A (en) 2004-11-18

Family

ID=33497843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118254A Pending JP2004326879A (en) 2003-04-23 2003-04-23 Magnetic head and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004326879A (en)

Similar Documents

Publication Publication Date Title
JPH036564B2 (en)
JPS6134707A (en) Magnetic head
JPH06223316A (en) Magnetic head
JP2004326879A (en) Magnetic head and its manufacturing method
JPS5870418A (en) Manufacture of magnetic head
JP3524421B2 (en) Magnetic head
JP2874787B2 (en) Manufacturing method of alloy magnetic thin film laminate
JP2542946B2 (en) Magnetic head and manufacturing method thereof
JPS62141609A (en) Manufacture of magnetic head
JPS59117729A (en) Production of magnetic head core
JPH0785290B2 (en) Method of manufacturing magnetic head core
JP2001067611A (en) Magnetic head
JPS63300418A (en) Magnetic head and its production
JPS6047215A (en) Magnetic head and its manufacture
JP2004158132A (en) Magnetic head and manufacturing method of the same
JPH06349019A (en) Magnetic head
JPH06338014A (en) Magnetic head
JPH08147618A (en) Magnetic head and its manufacture
JPS62273613A (en) Manufacture of magnetic head
JPH0582645B2 (en)
JP2000311308A (en) Magnetic head and its production
JPH06223315A (en) Magnetic head
JPS6157024A (en) Manufacture of magnetic head
JPH03203010A (en) Production of magnetic head
JPH0620210A (en) Manufacture of magnetic head